
REVIEW
published: 17 March 2015

doi: 10.3389/fgene.2015.00106

Frontiers in Genetics | www.frontiersin.org 1 March 2015 | Volume 6 | Article 106

Edited by:

Ming Qi,

Zhejiang University Medical School,

China

Reviewed by:

Qingfeng Yan,

Zhejiang University, China

Yufeng Qian,

University of Texas at Austin, USA

Kenneth Johnson,

University of Texas at Austin, USA

Monique Bolotin-Fukuhara,

Université Paris Sud, France

William Copeland,

National Institutes of Health, USA

Jean-Paul Di Rago,

CNRS–Bordeaux University, France

*Correspondence:

Enrico Baruffini,

Department of Life Sciences,

University of Parma, Parco Area delle

Scienze 11/A, 43124 Parma, Italy

enrico.baruffini@unipr.it

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to Genetic

Disorders, a section of the journal

Frontiers in Genetics

Received: 17 December 2014

Paper pending published:

27 January 2015

Accepted: 02 March 2015

Published: 17 March 2015

Citation:

Lodi T, Dallabona C, Nolli C, Goffrini P,

Donnini C and Baruffini E (2015) DNA

polymerase γ and disease: what we

have learned from yeast

Front. Genet. 6:106.

doi: 10.3389/fgene.2015.00106

DNA polymerase γ and disease: what
we have learned from yeast
Tiziana Lodi †, Cristina Dallabona †, Cecilia Nolli, Paola Goffrini, Claudia Donnini and

Enrico Baruffini *

Department of Life Sciences, University of Parma, Parma, Italy

Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible

for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA

polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1)

cause many mitochondrial pathologies, such as progressive external ophthalmoplegia

(PEO), Alpers’ syndrome, and ataxia-neuropathy syndrome, all of which present instability

of mtDNA, which results in impaired mitochondrial function in several tissues with variable

degrees of severity. In this review, we summarize the genetic and biochemical knowledge

published on yeast mitochondrial DNA polymerase from 1989, when theMIP1 gene was

first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the

pathological mutations found in human POLG and modeled in MIP1, (ii) determining the

molecular defects caused by these mutations and (iii) finding the correlation between

mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We

also describe recent findings regarding the discovery of molecules able to rescue the

phenotypic defects caused by pathological mutations in Mip1, and the construction

of a model system in which the human Pol γ holoenzyme is expressed in yeast and

complements the loss of Mip1.

Keywords: DNA polymerase γ, Mip1, Mip1 interactions, Pol γ mutations, yeast model

Introduction

DNA polymerase γ (or Pol γ) is the only DNA replicase identified in animal and fungal mitochon-
dria. Although four other DNA polymerase activities were recently identified in Saccharomyces
cerevisiae mitochondria (DNA polymerase ζ, Rev1, DNA polymerase η, and DNA polymerase α)
(Zhang et al., 2006; Chatterjee et al., 2013; Lasserre et al., 2013), Mip1, the yeast Pol γ, is the only
enzyme to be able to fully replicate mitochondrial DNA (mtDNA). Deletion of MIP1 makes the
strain rho0, i.e., devoid of mtDNA.

S. cerevisiae is a facultative anaerobe yeast and is able to survive in the absence of oxida-
tive phosphorylation (OXPHOS) activity and of mitochondrial genome, provided that a fer-
mentative carbon source is available. The non-essentiality of respiration for viability makes
this organism an excellent model for studying mitochondrial biogenesis as well as nucleo-
mitochondrial interactions. Respiratory deficient (RD) cells efficiently generate the ATP needed
to sustain the growth by alcoholic fermentation. On media containing a limiting amount
of fermentative carbon sources, colonies generated by RD cells display the so called “petite
phenotype”, since they are smaller than the respiratory proficient wild type colonies because
they are unable to produce biomass through respiration of ethanol, the end product of fer-
mentation. Since both nuclear and mitochondrial genomes participate to OXPHOS functions,
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the petite phenotype can derive from mutations in nuclear genes
that encode mitochondrial functions (pet mutants, Mendelian
inherited, Sherman, 1963) or from mtDNA mutations (petite
mutants, non-Mendelian inherited, Ephrussi and Slonimski,
1955). Cytoplasmic petite mutants, which arise spontaneously
with high frequency (around 1–10% depending on the strains),
are completely devoid of mtDNA (rho0 cells) or carry extensive
deletions of mtDNA and regular repetitions of the conserved
sequences (rho− cells). Cells containing functional mitochon-
drial genomes are termed rho+ (Dujon, 1981). S. cerevisiae is
sensitive to antibiotics that inhibit the mitochondrial transla-
tion, such as erythromycin, when grown on oxidative carbon
sources. Erythromycin resistant mutants arise spontaneously
with low frequency (10−7 to 10−8) as a result of mutations in
specific nucleotides of the mitochondrial gene encoding the 21S
rRNA (Sor and Fukuhara, 1984). For this reason, in yeast strains
mutated in MIP1 the frequency of mutants resistant to ery-
thromycin (EryR mutants) is an in vivo index of the replication
fidelity of Mip1.

Each yeast cell contains 10–50 copies of mtDNA per nuclear
genome, depending on the growth condition. Recombination
between these molecules is highly active (Dujon et al., 1974). A
strong link between erroneous recombination and rho− trans-
mission has been postulated, which would explain the molecu-
lar mechanism that generates this class of cytoplasmic petite. In
particular, it has been suggested that mtDNA deletions giving
rise to rho− genomes can occur through homologs recombina-
tion between imperfect repeats (Slonimski and Lazowska, 1977;
Gaillard et al., 1980). Rho− mtDNA genomes are not very sta-
ble and may then evolve into rho0 status. Rho0 clones can also
be generated directly by treatment with different molecules, such
as ethidium bromide (EtBr), which inhibits both mitochondrial
transcription andmtDNA replication, either directly or indirectly
(Slonimski et al., 1968; Richardson and Parker, 1973). Human
tissues, in case of mtDNA mutations, are mostly heteroplasmic,
whereas yeast is homoplasmic: if mtDNA point mutations or
mtDNA rearrangements occur, after a few generations two pop-
ulations of cells will be produced, one bearing only wild type
mtDNA molecules and the other bearing only mutated mtDNA
molecules.

mtDNA is packaged within protein-DNA structures called
nucleoids, which are anchored to the inner mitochondrial mem-
branes (Chen et al., 2005). A variable number of nucleoids are
present in each mitochondrion and each nucleoid contains sev-
eral copies ofmtDNA.Different proteinsmake up nucleoid struc-
tures, and are all involved in maintaining the integrity of the
mtDNA and are responsible for its replication, recombination,
repair and transmission to the bud (Chen and Butow, 2005; Kucej
et al., 2008). Mutants which have been altered or are devoid of
these functions are heavily affected with respect to mtDNA stabil-
ity. Therefore, depending on the nuclear background, the level of
cytoplasmic petite mutants can increase, in some cases reaching
the entire cell population.

The mechanism of mtDNA replication in yeast is not com-
pletely known. In contrast to what has been assumed for decades,
mtDNA is not always circular, as in the case of animals. The
majority of mtDNA is present as concatenamers of linear tandem

arrays of several genome units and only a small proportion of
mtDNA has a circular shape (Maleszka et al., 1991). In particular,
concatenamers are mainly present in mother cells whereas cir-
cular mtDNA is found in the buds (Ling and Shibata, 2002).
Two theories were proposed regarding the replication of yeast
mitochondrial DNA. (i) According to the most accepted theory,
the replication starts at several origins called Ori sites, and it is
RNA-primed and bidirectional like that of chromosomal DNA
(reviewed in Lecrenier and Foury, 2000). While Ori sites have not
been identified in other fungi, it is known that Ori sites of S. cere-
visiae are 300-bp-long sequences composed of three repeated
GC-rich clusters separated by an AT-reach region and preceded
by a transcription site called r (Baldacci et al., 1984; Foury et al.,
1998). (ii) According to the second hypothesis, the replication
occurs via a “rolling circle” mechanism, which produces long
tandemly repeated mtDNA molecules, which are then converted
into circular monomers (Ling and Shibata, 2002; Ling et al.,
2007). Recent findings also demonstrate that homologs recom-
bination and strand invasion could account for initiating repli-
cation in yeasts (Ling and Shibata, 2002; Gerhold et al., 2010).
Therefore, the mtDNA replication mechanism in yeast is differ-
ent from the best-known mechanism in mammalians, in which
both the H and the L strands are continuously synthesized from
OriH and OriL, respectively, which are located far from each
other. In this case, two models have been proposed. (i) Accord-
ing to the most accepted hypothesis, i.e., the asynchronous strand
displacement model, at the beginning the H strand is replicated
by single-stranded replication starting from the OriH, with dis-
placement of the D-loop. This synthesis proceeds until OriL
is exposed. In the OriL site, synthesis of the L-strand is initi-
ated in the opposite direction and is primed by RNA synthesis
(Shadel and Clayton, 1997). (ii) Alternatively, the strand-coupled
bidirectional replicationmodel has been proposed, in which bidi-
rectional replication is initiated from a region near OriH, fol-
lowed by progression of the two forks around the mtDNA circle
(Holt et al., 2000). More recently other mechanisms have been
proposed (reviewed in McKinney and Oliveira, 2013). A limited
number of proteins are involved in mtDNA replication, andmost
of them are conserved in yeast and humans, which suggests that
the molecular mechanisms of the replication are partially similar
(reviewed in Lecrenier and Foury, 2000).

Mip1 Milestones: A Historical Point of View

The first information on yeast DNA polymerase γ dates back
to 1970, when a mitochondrial DNA polymerase was proven
to be resistant to aphidicolin and highly sensitive to ddNTPs,
such as DNA polymerase γ of higher eukaryotes (Wintersberger
and Wintersberger, 1970; Wintersberger and Blutsch, 1976). The
MIP1 gene was cloned by functional complementation of a ther-
mosensitive (ts) mutant, called mip1-1, identified in a screening
of mutants able to grow on glycerol at 25◦C but not at 36◦C,
due to massive production of petitemutants at high temperatures
(Genga et al., 1986). In particular, in these conditions the mip1-1
mutant was completely deficient of both mtDNA replication and
mtDNA polymerase activity (Foury, 1989). The gene wasmapped
to chromosome 15 and sequenced, resulting in an open reading
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frame encoding a 1254 amino acid long protein. The deletion of
MIP1, as expected, produced a strain that was unable to grow on
respiratory carbon sources and devoid of mtDNA. CloningMIP1
paved the way for the isolation of genes encoding the DNA poly-
merase γ of Schizosaccharomyces pombe (Ropp and Copeland,
1995) and, subsequently, of humans and Drosophila (Ropp and
Copeland, 1996).

Based on the alignment with bacterial DNA polymerases
of family A, which includes bacterial and bacteriophage poly-
merases which share significant similarity to E. coli polymerase
I, three highly conserved motifs were identified in the exonu-
clease domain and called exo1, exo2, and exo3 (Bernad et al.,
1989). A mutation in exo1, a mutation in exo2 and two single
mutations in exo3 were introduced in Mip1 (Foury and Van-
derstraeten, 1992). These mutations determined a decrease in
proofreading activity and consequently a mtDNA mutator phe-
notype, characterized by an increased frequency of EryR mutants,
which demonstrates the functional role of the exo motifs. How-
ever, in these mutants an increase of mtDNA extended muta-
bility, accompanied by a decrease in the gap-filling activity and
processivity, was also observed, especially at 35◦C. This suggests
that the two catalytic domains do not act independently of each
other in Pol γ. The discovery that the D230A mutant displayed a
significant reduction of exonuclease activity was the basis for the
creation of a mouse model lacking Pol γ exonuclease activity. In
this model, an increase inmtDNA point mutability and deletions,
a reduction in the life span and the onset of premature aging were
observed (Trifunovic et al., 2004).

Thanks to its ability to grow even in the absence of mitochon-
drial DNA and to the sequence conservation among eukaryotic
polymerase γ, yeast was considered to be the organism of choice

FIGURE 1 | Mip1 milestones. Information regarding yeast Mip1 is shown in blue, information on other eukaryotic Pol γ obtained thanks to the use of yeast Mip1 is in

red, information on human POLGA mutations/polymorphisms obtained by modeling and studying the mutations in yeast is in green.

to study the effects of pathological mutations in human Pol γ,
starting from 2006 (Stuart et al., 2006), a few years after the first
identification of pathological mutation in the POLG gene (Van
Goethem et al., 2001) Several works have been published since
then, in which mip1 alleles carrying substitutions correspond-
ing to pathological mutations were expressed in mutant strains
devoid of mtDNA polymerase, as explained later. Besides stud-
ies designed to validate the pathogenicity of human mutations
and to understand the molecular mechanisms responsible for the
associated diseases, studies performed in yeast led to the discov-
ery of the genetic and chemical rescue of the effects of mutations
in MIP1, through ribonucleotide reductase overexpression and
the administration of antioxidants, respectively (Baruffini et al.,
2006). These observations led to several studies on human cells
or murine organisms. At the same time, with the help of yeast,
pharmacogenetic research was performed in order to study the
correlation between toxicity due to sodium valproate or NRTIs,
and polymorphisms in POLG (Baruffini and Lodi, 2010; Stew-
art et al., 2010). The milestones described in this chapter are
illustrated in Figure 1.

Mip1 Biochemical Properties

Mip1 is a protein of approximately 140 kDa, it belongs to the sub-
class γ of the family A polymerases to which several bacterial and
viral DNA polymerases belong, and is divided into four domains:
besides a mitochondrial targeting signal (MTS) motif, which is
necessary for the import into the mitochondrial matrix, it pos-
sesses an exonucleasic (exo) domain, a spacer or linker region,
a polymerase (Pol) domain and a C-terminal extension (CTE)
specific to fungi polymerase γ (Figure 2).

Frontiers in Genetics | www.frontiersin.org 3 March 2015 | Volume 6 | Article 106

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lodi et al. Saccharomyces cerevisiae DNA polymerase γ

FIGURE 2 | Domains of human POLGA and yeast Mip1 shown in linear

form. Linear form of human POLGA according to its 3D structure. The linear

form of Mip1 was constructed following the alignment of yeast Mip1 and

human POLGA. MLS, mitochondrial localization signal; Exo, exonuclease

domain; Spacer, spacer or linker region; Pol, polymerase domain; MTS,

mitochondrial targeting sequence; CTE, C-terminal extension.

Thanks to the purification of the native protein from S. cere-
visiae (Sen et al., 1994), it has been possible to determine the
kinetic properties of Mip1 polymerase. Mip1 has a Km for dNTPs
lower than 1µM (Sen et al., 1994), while the kpol is about 60
nt/s and the processivity is about 500 nt per one binding event
(Viikov et al., 2011). It can use different types of DNA as sub-
strates, including the poly [dA-dT] and poly[dA]-oligo[dT], but
not the poly [rA]-oligo [dT]. The inability to use this product as
a substrate distinguished Mip1 from Pol γ of higher eukaryotes.
The following molecules act as inhibitors of the catalytic activ-
ity: the Mn2+ ion, whose in vivo administration increases up to
100 times the mtDNA point mutability (Putrament et al., 1975),
EtBr, ddTTP, and ddCTP as well as various nucleoside reverse
transcriptase inhibitors (NRTIs) which are also used in antiretro-
viral therapy, such as 3′-fluoro-TTP and didehydro(d4)CTP (Sen
et al., 1994; Eriksson et al., 1995). Furthermore, Mip1, similarly
to prokaryotic polymerases of family A, is also able to perform
strand displacements with rates of about 30 nt/s (Viikov et al.,
2011), in accordance with the observation that human Pol γ

can be stimulated to perform strand displacement by the human
DNA2 protein (reviewed in Copeland and Longley, 2008).

The polymerase domain is divided into three subdomains:
thumb, palm and fingers. Three motifs, which are highly con-
served in all eukaryotic Pol γ, are located in the Pol domain and
are called polA, polB, and polC. The first mutants in the catalytic
domain were constructed by random mutagenesis in 1995 (Hu
et al., 1995). Three mutations in the fingers subdomain, T716I,
E724K, and P851L, were associated both with increased point
mutability and increased extended mutability (Table 1), indicat-
ing that the catalytic domain is involved both in themtDNApoly-
merization and in replication fidelity. Moreover, these mutations
are partially dominant, as are most of the pathological substitu-
tions located in the fingers subdomain identified in patients with
adPEO.

The 3′–5′ exonuclease domain has a proofreading activity
which, in its human counterpart, contributes at least 20-fold to
the fidelity of replication (Longley et al., 2001). Specific muta-
tions in exo1, exo2, and exo3 drastically reduce the exonucle-
ase activity and consequently, the fidelity of replication (Foury
and Vanderstraeten, 1992; Hu et al., 1995; Vanderstraeten et al.,
1998) (Table 1). In addition, some of these mutations, such as
D171A and the double mutant D171A/D230A, not only decrease
the proofreading activity, but also determine an increase of the
mismatch extension, with a double negative effect on the replica-
tion fidelity. The analysis of these mutants showed that the Mip1
proofreading activity mainly corrects transversions, whereas the
proteinMsh1, which is involved in the post-replicationmismatch
repair, mainly corrects transitions. In addition, many muta-
tions in the exo domain, as previously mentioned, determine an
increase in the percentage of petite colonies in the clonal popula-
tion. This suggests that the two catalytic domains do not carry out
their activities independently of each other and, in particular, that
mutations in the exo domain decrease the polymerase activity.

Human DNA polymerase γ consists of a catalytic subunit
(POLGA) and two accessory subunits (POLGB) (Yakubovskaya
et al., 2006). POLGB is a small subunit which binds the cat-
alytic subunit, binds tightly the DNA and increases the proces-
sivity of the whole holoenzyme (Lim et al., 1999). The spacer
domain of POLGA is divided into two subdomains: an intrin-
sic processivity (IP) subdomain and a long accessory-interacting
determinant (AID) subdomain (Lee et al., 2009). The first one
is responsible for the intrinsic processivity of the catalytic sub-
unit, whereas the second, which interacts with the accessory sub-
units, is responsible for enhanced processivity. On the contrary,
Mip1 is a monomeric protein (Lucas et al., 2004; Viikov et al.,
2011). The absence of the accessory subunit explains why the
Mip1 spacer is shorter than that of POLGA of higher eukary-
otes. Indeed, most of the sequence that corresponds to the AID
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subdomain is absent inMip1, and the IP subdomain has a shorter
sequence than the human counterpart (Lee et al., 2009). Never-
theless, Mip1 is highly processive: this probably indicates that the
mechanisms responsible for processivity in Mip1 and in human
Pol γ are partially different (Viikov et al., 2011).

The CTE is a specific region of fungal Pol γ and its length is
variable from species to species, reaching its maximum in Saccha-
romycetales (Young et al., 2006). InMip1, the CTE corresponds to
residues 975–1254. Deletion of the last 216 amino acids, among
which the most conserved residues are located, leads to a sharp
increase of extended mutability (petite frequency of 98% after 24
h) and point mutability (10–100-fold increase in EryR mutants),
while the deletion of the last 175 poorly conserved amino acids
leads to a wild type phenotype: this indicates that some residues
between 1038 and 1079 are critical for the activity and replica-
tion fidelity of Mip1 (Young et al., 2006). In addition, arginine
1001, a very conserved residue in fungal polymerases, is impor-
tant for the polymerase activity, since replacing it with isoleucine
causes a petite frequency of 20% and a 50-fold higher point muta-
bility compared to the wild type (Hu et al., 1995). In vitro analy-
sis showed that the region 1038–1079, despite containing several
positively charged residues, is important for efficient polymeriza-
tion but not for processivity, which is increased in the absence of
this region (Viikov et al., 2012). However, the exonuclease activity
of the mutant Mip1 lacking the last 216 amino acids is similar to
that of wild type Mip1, so that in the presence of low concentra-
tions of dNTPs the balance between the exonuclease activity and
the polymerase activity is tipped in favor of the first. Similarly, the
strand displacement activity is halved (Viikov et al., 2012).

Polymorphisms in Mip1

Alignment of Mip1 sequences from several strains obtained
by the Sanger Saccharomyces genome resequencing project
(https://www.sanger.ac.uk/research/projects/genomeinformatics/
sgrp.html) and by the Saccharomyces genome database
(www.yeastgenome.org) reveals the presence of 28 amino
acid substitutions (Baruffini et al., 2007a) (Supplementary Table
1). The strains with the greatest differences are the reference
strain S288C, which possesses the allele named MIP1[S], and
strain Sigma1278b, which possesses the alleleMIP1[6] (Baruffini
et al., 2007a). Most of the substitutions are semi-conservative
(Supplementary Table 1, green amino acids) or map in positions
which are poorly conserved in Pol γ from different fungal and
animal organisms (yellow amino acids). Two exceptions are the
amino acid 357, which is E in S288C-derived strains and is K
in all the other strains, and the amino acid 661, which is A in
the former strains but is T in the latter ones. Amino acids E357
and A661 were transmitted to S288C by its ancestor EM93,
a heterozygous diploid strain which contains one K357-T661
allele, and one E357-A661 allele. The latter allele is also present
in strains BY474X, which are isogenic to S288C and which were
used to construct the deletant strain collections, and in the
W303-1B strain, which shares a common origin with S288C and
is one of the most used strains in the analysis of mitochondrial
phenotypes (Schacherer et al., 2007). We and others have shown
that the presence of alanine at position 661 results both in higher
extended mtDNA mutability (2–2.5% petite frequency for strain

W303-1B compared to 0.5–1% for the strains with T661) and
in increased thermosensitivity (5–20% petite frequency at 36◦C,
25–40% at 37◦C, 60–70% at 38◦C for strain W303-1B compared
to 0.5–3%) (Baruffini et al., 2007a; Young and Court, 2009).
This substitution is then responsible for about one fourth of the
petite mutability in strains BY474X (Dimitrov et al., 2009). A661
also determines a 3-4-fold increase of mtDNA point mutability
(Baruffini et al., 2007a). The amino acid E357 is responsible for
a 2-3-fold increase of the mtDNA point mutability, but has no
effects on the mtDNA extended mutability.

Due to the presence of amino acid substitutions affecting the
mitochondrial mutability, it is critical to choose correctly the
genetic background for evaluating the effects of substitutions
in Mip1. The use of a strain containing the high mutator
allele MIP1[S], with increased basal mitochondrial mutability,
allows one to note even small effects consequent to amino
acid substitutions, since the gap resulting from the introduc-
tion of pathological mutations is larger. On the other hand, the
use of a strain containing the low mutator alleles MIP1[6] or
MIP1[S]A661T allows the study of highly deleterious mutations,
which in the MIP1[S] background could lead to a total loss of
mtDNA (Baruffini et al., 2007b).

Mip1 Interactions

Physical or genetic interactions between Mip1 and a few mito-
chondrial and non-mitochondrial proteins have been reported.
Physical interaction with Sed1 was demonstrated by co-
immunoprecipitation experiments (Phadnis and Sia, 2004). Sed1
is located both on the cell surface and within the inner mito-
chondrial membrane (IMM). Deletion of SED1 leads to a 3.2-fold
increase of EryR mutability and to a 4.3-fold increase of petite
mutability, and to a decrease of Cox3 protein levels. Furthermore,
Mip1 levels are reduced 3-fold. On the basis of these observa-
tions, it has been hypothesized that Sed1 could assist other pro-
teins, including Mip1, in the mitochondrial import, leading to
a reduction of their levels in its absence. Sed1p could also be
associated with themitochondrial replicationmachinery (MRM),
at the site of mtDNA binding to the inner membrane, leading
to a stabilization of the proteins of this complex, such as Mip1
(Phadnis and Sia, 2004). Mip1 is also part of a complex which
includes Abf2, Mgm101 and the mtDNA. Thanks to the Mgm101
interaction with transmembrane protein Mmm1 in the outer
membrane, this complex takes part to a two-membrane-spanning
replisome, which is essential for mtDNA maintenance (Meeusen
and Nunnari, 2003). This complex could also include Pif1, the
mitochondrial helicase involved in recombination (Cheng and
Ivessa, 2010).

At a high temperature (>37◦C), the maintenance of mito-
chondrial genome is partially impaired. It has been demon-
strated that at a non-permissive temperature Mip1 is partially
misfolded, thus explaining the increase of petite frequency. Most
Mip1 molecules are misfolded in the strain mutated in MDJ1,
which encodes a mitochondrial co-chaperone which has a role in
maintaining the active conformation of several proteins, includ-
ing Mip1, at elevated temperatures (Duchniewicz et al., 1999).
Moreover, after a heat shock at 46–48◦C, Mip1 can partially
reactivate its active conformation only in the presence of the
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cochaperone Mdj1 and the bichaperones Ssc1(Hsp70)-Hsp78
(Germaniuk et al., 2002; Lewandowska et al., 2006).

The first identified genetic interactor of MIP1 was RNR1,
which encodes the large subunit of the ribonucleotide reductase,
which catalyzes the reduction of rNDPs to dNDPs (Elledge and
Davis, 1990; reviewed in Nordlund and Reichard, 2006). Foury
and coworkers found that RNR1 is a multicopy suppressor of the
thermosensitive mutationmip1-1 capable of restoring the growth
of the mutant strain at 36◦C; moreover, in the diploid strain
MIP1/mip11, which has a petite frequency of about 45% at 37◦C,
overexpression of RNR1 reduces the extendedmtDNAmutability
approximately 2-fold (Lecrenier and Foury, 1995). Subsequently,
it was found that the overexpression of RNR1 reduced the detri-
mental effects on extendedmtDNAmutability caused by different
pathological mutations modeled in Mip1 (Baruffini et al., 2006;
Stumpf et al., 2010). The rescue by RNR1 overexpression is prob-
ably due to the increase of the dNTP pools, which are 3-8-fold
higher. The same levels of rescue can be achieved by deletion of
SML1, which encodes a protein that inhibits the ribonucleotide
reductase activity by binding and sequestering Rnr1 (Chabes
et al., 1999; Zhao et al., 2000). The deletion of SML1 had the same
effect of RNR1 overexpression both on themip1-1mutant and on
the pathological Mip1 variants (Zhao et al., 1998; Baruffini et al.,
2006, 2012).

A third genetic interactor is MSH1, which encodes the only
mitochondrial protein responsible for the mismatch repair. Dele-
tion or overexpression of MSH1 affects both the point and the
extended mtDNA mutability. In fact, msh11 cells become petite
within a few generations (Reenan and Kolodner, 1992), whereas
strains overexpressing MSH1 display an increased petite fre-
quency (Dzierzbicki et al., 2004). The deletion of a single MSH1
copy in a diploid strain increases 7-fold the point mutability (Chi
and Kolodner, 1994), whereas amoderate overexpression reduces
the EryR mutability (Koprowski et al., 2002). Deletion of MSH1
in hyper- or hypomutator mip1 mutant strains affects the point
mutability, as described for the mip1R233W mutant strain, where
the effects due to the two mutations were additive (Foury and
Szczepanowska, 2011).

The last genetic interactors known so far are REV3 and REV7.
These encode the two subunits of Pol ζ, which is involved in
the error-prone translesion synthesis (TLS), and REV1. REV1
encodes a deoxycytidyl transferase involved in the repair through
TLS of abasic sites and adducted guanines in damaged DNA
and forms a complex with Pol ζ. These three proteins have also
been detected in mitochondria (Zhang et al., 2006). The deletion
of each of these three genes reduced the frequency of sponta-
neous or UV-induced -1 frameshift mutations in the mtDNA
about 5-20-fold, but at the same time it increased 2-30-fold
the spontaneous or UV-induced point mutability (Zhang et al.,
2006; Kalifa and Sia, 2007). This suggests that mitochondrial
TLS system is more error-prone than that of Pol ζ, and may
be represented by Mip1 itself (Kalifa and Sia, 2007). Further-
more, the deletion of REV3, REV7, or REV1 in a mip11 strain
unable to lose the mtDNA showed how Pol ζ and Pol γ belong
to the same epistatic group, while Rev1 belongs to a differ-
ent group. In contrast, overexpression of REV3 and REV1,
as discussed in more detail later, is able to reduce the petite

mutability due to pathological substitutions in Mip1 (Baruffini
et al., 2012).

Validation of Pol γ Pathological Mutations
in Yeast

In humans, mutations in POLG cause many mitochondrial
pathologies, like PEO, Alpers’ syndrome and ataxia-neuropathy
syndrome. These are all characterized by instability of mtDNA,
i.e., mtDNA depletion and/or large scale deletions, which result
in impaired mitochondrial function in several tissues with dif-
ferent degrees of severity (reviewed in Stumpf and Copeland,
2011). From the first observation that a disease associated
with multiple deletions of mtDNA was caused by a muta-
tion in a nuclear gene (Zeviani et al., 1989) later identi-
fied as POLG and from the first identification of mutations
in POLG as the cause of PEO (Van Goethem et al., 2001),
almost 250 disease-associated mutations have been documented.
These are compiled at the Human DNA Polymerase γ Muta-
tion Database (http://tools.niehs.nih.gov/polg/), which reports
the genetics related to the different mutations and a description
of the associated phenotypes. Most of the mutations were identi-
fied in compound heterozygosity, i.e., a mutation was present in
the maternal allele and a different mutation in the paternal allele.
Some patients carry only a singlemutation in each allele, butmost
patients carry two mutations in one or both the alleles. In these
cases, it is unclear how the two substitutions in the same allele
contribute to the pathological phenotype. In other cases, patients
carry both a putative pathological mutation and an amino acid
substitution considered as a neutral polymorphism in the same
allele, and determining whether the polymorphism can influence
the severity of the disease should be of great interest. More-
over, it is often not possible to assess the dominance/recessivity
of pathological mutations, especially when the family history is
incomplete or absent.

Yeast has been proven to be an ideal genetic system to obtain
such information and to validate in vivo the pathogenicity of Pol
γ mutations, i.e., to establish relations between a mutation and
the associated phenotypes. For validation in yeast, theMIP1 wild
type residue is substituted with the corresponding residue found
in patients. When the human mutation involves a conserved
residue, the corresponding yeast MIP1 codon can be directly
mutated, thus producing the “pathological” allele. When the Pol
γ mutated residue is not conserved, but the surrounding stretch
is, it is possible to produce a “humanized wild type allele” by
replacing the Mip1 amino acid with the wild type amino acid
present at the equivalent position of Pol γ. The “humanized
wild type allele” is then mutagenized to obtain the “pathologi-
cal allele.” In order to correctly substitute the orthologs residue,
the sequence alignment between human and yeast mtDNA poly-
merase has to be done unambiguously. However, not all residues
involved in diseases are located in conserved regions. Another
great advantage of yeast is the possibility of working in the same
genetic background, in which the mutant strains differ from
each other only for the mip1 mutant allele. For the validation of
disease-related mutations, mip1 mutant alleles are introduced in
amip11 strain. Since the deletion of the chromosomalMIP1 gene
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makes the cells immediately and irreversibly rho0, the deletion of
MIP1 has to be carried out in cells containing a plasmid-borne
wild typeMIP1 allele, which can be removed by plasmid shuffling
only after its replacement with the mutant allele under analysis
(as in Baruffini et al., 2006, 2007a,b, 2010, 2011; Spinazzola et al.,
2009; Stricker et al., 2009). Another strategy involves first disrupt-
ing theMIP1 wild type gene thus obtaining a mip11 rho0 strain,
and then introducing the mutant allele at the chromosomal locus
or in a plasmid. Functional mtDNA is subsequently reintroduced
either by crossing with wild type rho+ cells and sporulation (as in
Stuart et al., 2006; Stumpf et al., 2010) or by the cytoduction tech-
niques (as in Szczepanowska and Foury, 2010). However, it must
be underlined that the use of yeast Mip1 to model pathological
mutations also has some shortcomings. Amino acids which are
not conserved and are not in a conserved stretch cannot be stud-
ied. In addition, the validation is based on the general assumption
that if an amino acid is conserved between Mip1 and human Pol
γ, the substitution of that amino acid in one protein can predict
the effect of the mutation in the second protein. However, this
assumption is not applicable to all amino acids, especially if the
amino acid lies far from the active site or has a second function
specific to human POLGA, such as the binding of POLGB, as in
the case of the amino acid A467 (Chan et al., 2005a).

The obtained mutant strains are then analyzed to assess
the effects of the mip1 mutation on: (i) oxidative growth,
by spot assays on media supplemented with non-fermentative
carbon sources; (ii) mtDNA extended mutability, measured
as frequency of petite mutants; (iii) mtDNA point mutability
measured as frequency of EryR mutants, which arise from spe-
cific point mutations in the mitochondrial 21S rRNA encod-
ing gene. These analyses are carried out at the optimal growth
temperature, which in yeast is 28–30◦C, but also at a higher
temperature (37◦C), which is more stressful for mitochondrial
metabolism, in order to assess thermosensitivity of mutant
Mip1.

It is also possible to determine whether the pathological muta-
tion is responsible for mtDNA deletions or complete depletion
by analyzing the nature of petite mutants produced (rho− or
rho0). For this purpose, different techniques have been applied.
The most frequently used method is crossing a large number
of defined petite mutants (tested strains) with several mit−

strains (tester strains) harboring point mutations in mitochon-
drial genes encoding respiratory proteins. The method is based
on the capacity of rho− genomes to retrieve mit− genomes to
wild type through homologs recombination. If restoration of
respiratory competence in diploids is observed, it means that
the rho− genome has retained a DNA fragment encompassing
the mit− mutation (as in Baruffini et al., 2006, 2007b, 2011;
Szczepanowska and Foury, 2010). This method was also validated
by Southern-blot analysis (Baruffini et al., 2006). Petite mutants
can also be examined by confocal fluorescence microscopy fol-
lowing 40,60-diamidino-2-phenylindole hydrochloride (DAPI)
staining of cytoplasm, which in yeast also stains mtDNA (as in
Stuart et al., 2006; Qian et al., 2014). In both rho− cells and
mit− cells stained with DAPI, several small spots can be observed
under the surface of the cells, whereas these spots are absent in
rho0 due to the lack of mtDNA.

To examine the quantity and integrity of the mitochondrial
genomes in petite mutants, quantitative PCR (qPCR) methods
were used (as in Stuart et al., 2006; Qian et al., 2014). The copy
number of mitochondrial genomes was determined by qPCR of
short mitochondrial targets: no detectable PCR products indicate
the absence of mtDNA. The integrity of mtDNAs was determined
by qPCR of longmitochondrial targets. The relative amplification
of the long mtDNA fragment in petite cells, compared to that of
the reference wild type controls, provides information about the
presence of damaged DNA that blocks the PCR polymerase (as
in Stuart et al., 2006). Altogether, these experimental approaches
provide relevant information about the molecular mechanism of
the replication defect associated with the disease.

Besides these analyses, other biochemical parameters regard-
ing specific Mip1 activity can also be analyzed. For example
mtDNA polymerase activity can be analyzed by gap filling exper-
iments, processivity, DNA binding affinity, exonuclease activity,
dNTP misincorporation (as in Szczepanowska and Foury, 2010).

In Supplementary Table 2, a list of results concerning val-
idation in yeast of several POLG mutations is presented. All
the mutations involve amino acids that are conserved between
human and yeast mtDNA polymerase or located in a conserved
region, except human A467T, which lies in the linker domain. In
humans, this mutation was often found in compound with other
mutations. However, homozygous subjects were also described,
which indicates that a specific pathological defect is associated
with this mutation.

Validation results obtained by different authors are in general
coherent, except for a few cases, probably due to the different
(non-isogenic) background of the strains used, which results in
a higher variability and thus in a non-statistically significant dif-
ference. Considering only mutations for which a pathological
role has been demonstrated or postulated on the basis of sev-
eral observations, the prediction capability of the yeast model
systems fluctuates from 70% (as in Stumpf et al., 2010) to 100%
(as in Baruffini et al., 2007b, 2011). An example of discrep-
ancy concerns human mutation R574W (yeast R467W). Two
independent laboratories have obtained similar results using dif-
ferent yeast strains, showing that the presence of the yR467W
mutation increases both extended and point mtDNA mutability
(Szczepanowska and Foury, 2010; Baruffini et al., 2011); on the
contrary, on the basis of results reported by Stumpf et al. (2010),
the yR467W mutation has to be considered a neutral change in
yeast. This discrepancy can be explained by the onset of a sec-
ond mutation, capable of suppressing the phenotypic effect of the
yR467W mutation, or by the use of a genetic background with
a high basal petite frequency (approximately 10%). Indeed, in
our experience, a higher basal petite frequency is associated with
a higher standard deviation between experiments, so that it is
more difficult to demonstrate that a small difference is statistically
significant.

One of the advantages offered by yeast is the possibility of
obtaining accurate information on the dominance/recessivity
of mutations, which is not always easy and straightforward
in patients. The dominance/recessivity is determined analyz-
ing mtDNA mutability in the so-called “heteroallelic” strains, in
which both a wild type MIP1 copy and a mip1 mutant allele
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are present, thus mimicking the human diploid condition. For
instance, yeast studies have been crucial in establishing the domi-
nance of the extremely severe mutation hE895G (yE698G), found
in a child dead 36 h after birth. Due to unclear family history,
it could not be established whether the hE895G mutation was
inherited as a dominant or recessive trait, as well as whether it was
transmitted from the reportedly normal proband father, whose
DNAwas not available for the study, or was the result of a de novo
event. The latter hypothesis was supported by the results obtained
in the heteroallelic MIP1/mip1E698G yeast strain, which demon-
strated the negative dominant character of the hE698G muta-
tion (Spinazzola et al., 2009). The dominant character of hH932Y
(yH734Y) and the recessive character of hG1051R (yG807R) were
also clearly defined through yeast studies (Baruffini et al., 2007b).

Determination of mtDNA mutability in heteroallelic strains
not only allows one to determine the dominance/recessivity of
a mutation, but also to understand whether the mutation leads
to a gain of function (i.e., dominant negative) or a loss of
function (i.e., null allele). In fact an increase of petite accumu-
lation was observed in a strain carrying a single copy (hemial-
lelic strain), compared to a strain carrying two copies of wild
type MIP1 (homoallelic strain), indicating haploinsufficiency
(Baruffini et al., 2006). So if the heteroallelic MIP1/mip1 strain
shows a petite frequency higher than the homoallelicMIP1/MIP1
but similar to the hemiallelic MIP1/mip11, the mutation deter-
mines loss of function and is dominant by haploinsufficiency.
On the other hand, if the mutant strain shows a petite frequency
higher than that of the hemiallelic strain, the mutation is consid-
ered dominant negative. It is necessary to underline that, so far,
almost all the putative dominant mutations in humans are dom-
inant negative in yeast, whereas mutations that cause a total loss
of function in yeast are recessive in humans and often associated
with severe diseases.

Yeast is not only suitable for validating mutations and clari-
fying the pathogenicity of mutations. In some cases, it can also
have a “predictive role.” This was the case of mutation hS305R,
found in two related subjects. One patient carried the hS305R
mutation in compound heterozygous with a second mutation,
whereas the second one was heterozygous for the hS305R muta-
tion alone, suggesting that the mutation, which was inherited
from the mother, behaves as dominant. In yeast, the correspond-
ing yC261R mutation displayed a recessive phenotype that was
then divergent from the clinical feature of the second patient.
These data obtained in yeast prompted the authors to look for
another mutation. Additional analysis on the patient’s DNA was
not feasible, but further examination of parents’ DNA allowed to
detect an additional pathogenic mutation, hP1073L, which was
identified in the father and was missed in the first genetic analy-
sis. This confirmed that the second patient was also compound
heterozygous for two allelic mutations (Baruffini et al., 2011).
Therefore, the discrepancy between the results obtained in yeast
and the clinical features may in some case predict the presence
of a cryptic, undetected mutation in the patients second allele, as
postulated in the case of mutation hR386H (yI334H).

Patients often carry more than one POLG mutation, in cis or
in trans, and the specific contribution of each mutation to the
disease cannot be established. In yeast, mutations can be studied

alone or in combination, so it is possible to clearly evaluate the
contribution of eachmutation to the pathology. Functional inter-
actions ofmip1mutations in ciswere studied by introducing both
mutations in the same mip1 allele, and in trans by transform-
ing the mip11 strain with the two plasmid-borne mutant alleles
(Supplementary Table 3). For instance, in the case of mutation
hH932Y (yH734Y), found in trans with hG1051R (yG807R), the
comparison of the severity of the yH734Y and yG807R muta-
tions, alone or in compound, strongly suggested that the major
contributor to the disease was hH932Y, even though a strong
synergistic effect of the two mutations, when associated, was
confirmed (Baruffini et al., 2007b).

A different degree of severity of Alpers’ disease has been
described in patients carrying the common A467T mutation in
compound with mutation G303R, R574W or P625R, suggesting
that the phenotypic differences observed are likely to be ascribed
at least in part to the presence of these additional mutations.
Results in yeast demonstrated that hG303R (yG259R) is highly
detrimental, hR574W (yR467W) produces an intermediate phe-
notype which is also very severe but less damaging than G303R,
and hP625R (P513R) induces a mild defect at 28◦C but a strong
increase of mtDNA mutability at 37◦C. The detrimental effects
observed in yeast correlated to the severity of this phenotype
in humans, thus explaining the phenotypic modulation of the
observed clinical features.

In some cases pathological mutations are present in com-
pound with single nucleotide polymorphisms (SNP). This raises
the question of whether these substitutions are neutral or can act
as phenotypic modifiers which lead to more severe clinical phe-
notypes. This was the case of the hA889T (yA692T) mutation
present in cis-compound with the SNP E1143G (E900G). Com-
paring the effect of the mip1A692T+E900G allele, which carries the
two mutations in compound, and the effect ofmip1A692T ormip1
E900G mutant alleles, demonstrated that the presence of the two
substitutions in cis exerts a deleterious synergistic effect on the
mtDNA mutability, thus indicating that E900G is not a neutral
polymorphism if in compound with another mutation (Baruffini
et al., 2007b).

Besides Validation: Molecular Defects
Associated with Mip1 Mutations

Studies on Pol γ mutations in yeast, animal models, cell culture,
in vitro and in silico analysis have clarified some of the molecular
defects associated with different mutations.

In yeast it has been observed that the mutations L210P
(human L244P), G651S (hG848S), A692T (hA889T), H734Y
(hY932Y), G807R (hG1051R), and E900G (hE1143G) lead to a
50 to 90%, reduction in mitochondrial protein levels. Reduced
protein levels may account, at least in part, for the increase
of petite mutability associated with these mutations (Baruffini
et al., 2007b; Szczepanowska and Foury, 2010). Since the expres-
sion levels of such Mip1 variants are normal the decrease of
soluble mitochondrial proteins suggests either that the mutant
proteins are not transported properly into the mitochondria or
that proteins are misfolded and/or degraded in mitochondria.
Although the analyses performed on patients’ cells are limited, it
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was observed that a decrease of Pol γ holoenzyme levels occurs in
fibroblasts from patients bearing mutations R232H and G848S in
trans (75% reduction), and mutations A467T and T914P in trans
(45% reduction) (Taanman et al., 2008). A reduction in Pol γ cat-
alytic subunit was also observed in a patient bearing the mutation
T9214P (Roos et al., 2013) and, in another patient, the com-
plete lack of POLGA containing the stop mutation E873X, due
to nonsense-mediated mRNA decay, was reported (Chan et al.,
2005b).

Most of the mutations in POLG determine alterations of
the mtDNA polymerase biochemical properties, i.e., decrease
of catalytic activity, processivity, DNA binding affinity, and/or
binding affinity for the incoming dNTP (reviewed in Chan
and Copeland, 2009; Stumpf and Copeland, 2011). Regarding
the Mip1 mutant, the following was observed: (1) decrease
in the gap-filling DNA synthesis associated with muta-
tions L260R (hL304R), R265L (hR309L), R265H (hR309H),
F268R (hW312R), R467W (hR574W), G651S (hG848S), A692T
(hA889T), H734Y (hY932Y), G807R (hG1051R); (2) decrease in
processivity and of DNA binding affinity in the case of mutations
L360R, R265L, R265H, R467W, and F268R; (3) increase in dNTP
misincorporation in the case of mutations L260R and R265H; (4)
increase in Exo/Pol ratio in the case of mutations L260R, R265L,
R265H, and F268R (Baruffini et al., 2007b; Szczepanowska and
Foury, 2010). These data were confirmed for human Pol γ har-
boring mutation G848S, showing less than 1% of polymerase
activity and a 5-fold increase in Kd(DNA) (Kasiviswanathan et al.,
2009).

In contrast, the exonuclease activity is only slightly or not at
all reduced, even in the case of mutations in the exo domain,
suggesting that the defects of mtDNA replication are not due to
defects of proofreading activity but to deficiency of polymerase
activity (Szczepanowska and Foury, 2010). In yeast, the absence
of the Mip1 exonuclease activity results in a 160-fold increase of
the frequency of deletions between 21 bp direct repeats (Phadnis
et al., 2005; Stumpf and Copeland, 2013). Seven mutations in the
exo domain did not cause an increase of this type of deletions,
further indicating that the exonuclease activity is scarcely or not
at all affected (Stumpf and Copeland, 2013).

Regarding the dominant negative mutations, two main
hypotheses have been proposed to explain this dominance. Some
mutations completely inhibit the polymerase activity of Pol γ, but
not the DNA binding affinity. Thus, the mutant polymerase that
binds the DNA with similar affinity to that of wild type Pol γ

may block the replication but may also prevent the binding of
the wild type enzyme. For example, the Y955C mutation, which
is dominant in both yeast and humans, prevents the polymerase
from synthesizing DNA, especially in the case of the incorpo-
ration of dATP:T, but it does not change the Kd(DNA) (Gra-
ziewicz et al., 2004; Estep and Johnson, 2011). On the other hand,
some mutant Pol γ variants may directly cause lesions to DNA.
In the diploid strain containing a wild type MIP1 allele and a
mip1 allele harboring mutation Y757C, which corresponds to
human Y955C, an accumulation of mtDNA lesions was found
(Stuart et al., 2006). In addition, in mice expressing a cardiac tar-
geted Y955C variant, an accumulation of the oxidized nucleotide
8-hydroxy-2-deoxyguanosine (8-OHdG) in the mtDNA (Lewis

et al., 2007) was observed, probably because the Y955C Pol γ

displays a reduced discrimination for incorporation of 8-oxo-
dGTP or for translesion synthesis opposite to 8-oxo-dG (Gra-
ziewicz et al., 2007). However, more recently it was shown that
physiological effects of the Y955C mutation might not be due to
an increased incorporation of 8-oxo-dG, since the incorporation
rate of 8-oxo-dG is low in wt Pol γ and further decreased 500-fold
in Y955C Pol γ (Hanes and Johnson, 2007; Estep and Johnson,
2011).

On the basis of information obtained from several studies,
including studies in yeast and an in silico analysis, the majority
of mutations in POLG were included in five clusters, depend-
ing on the defect associated with the mtDNA polymerase (Euro
et al., 2011; Farnum et al., 2014): cluster 1, mutations in the poly-
merase domain, which are mostly dominant and which affect
the polymerase activity; cluster 2, recessive mutations in the
spacer domain which affect the upstream DNA-binding chan-
nel; cluster 3, recessive mutations in the exo domain and in the
fingers subdomain which are associated with a Pol γ specific func-
tional module involved in the partitioning of the DNA substrate
between the exo and the pol catalytic sites; cluster 4, recessive
mutations in the exo domain which influence the bond with one
of the accessory subunit; cluster 5, recessive mutations of the
IP subdomain which affect the binding to other proteins of the
replisome.

Besides Validation: Chemical and Genetic
Rescue of the Phenotype

By using yeast, it is possible to easily identify, in short times,
molecules or genes able to reduce the effects of pathological
substitutions.

Regarding the chemical rescue, active molecules were identi-
fied by analyzing their ability to restore oxidative growth and/or
to reduce petite frequency of mip1 mutants grown in their pres-
ence. The identification of these molecules has a double signifi-
cance. Firstly, on the basis of the mechanisms by which the drugs
act, it is possible to deduce information on the molecular defects
caused by the Mip1 mutation. Secondly, identification of such
drugs can pave the way for studies on their therapeutic potential.
It has been demonstrated in yeast that the administration of lipoic
acid orMitoQ, twomitochondrial antioxidantmolecules, reduces
the petitemutability due to somemip1mutations (Baruffini et al.,
2006, 2011, 2012). Out of all the studied mutations, the dominant
mutations in the polymerase domain, in particular the mutation
Y757C (hY955C), are particularly sensitive. This observation is
consistent with the fact that, as reported in the previous section,
human Pol γ harboring Y955C leads to increased incorpora-
tion of 8-OHdG. Thus, it is possible that supplementation with
antioxidants reduces the levels of oxidized bases, which would
consequently be incorporated into the mtDNA.

Regarding the genetic rescue, both the overexpression of
RNR1 and the deletion of SML1 reduce the petitemutability in the
ts mutant mip1-1 by increasing the concentration of dNTP. This
was also observed for most of the pathological mutations intro-
duced in MIP1 (Baruffini et al., 2006, 2011, 2012; Stumpf et al.,
2010), although at a different extent. It is reasonable to think that
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the rescue is greater when the ability of the Mip1 mutant to bind
the incoming dNTP is more compromised. This was demon-
strated for the H734Y mutation, for which RNR1 overexpres-
sion causes a 5-fold decrease of petite frequency. In vitro analysis
on human Pol γ containing the corresponding H932Y muta-
tion showed that the affinity for the incoming dNTP is reduced
approximately 200-fold compared to the wild type (Stumpf et al.,
2010). The increase of the dNTP pools as a rescue mechanism
was also demonstrated by the observation that the processivity
defect of human DNA polymerase γ harboring the Y955C muta-
tion was overcome by increasing the dATP or dTTP concentra-
tion during in vitro synthesis of mtDNA fragments (Atanassova
et al., 2011). Supplementation of dNTPs precursors as a poten-
tial therapeutic agent was shown on differentiating myotubes of
a patient harboring mutations in POLG, in which the addition of
dAMP and dGMP slightly increased the levels of mtDNA (Bulst
et al., 2009). In addition, supplementing myotubes of patients
harboring mutations in POLG with specific combinations of the
four dNMPs showed near normalization of the mtDNA levels
(Bulst et al., 2012). However, it is necessary to emphasize that the
alteration of the dNTPs concentration may also have deleterious
consequences (Xu et al., 2008).

Finally, the extended and point mtDNA mutability due to
Mip1 mutations is rescued by overexpression of Pol ζ and Rev1
that, in yeast, are also located in the mitochondria (Zhang et al.,
2006; Baruffini et al., 2012). Intriguingly, the Mip1 mutations
which are rescued by Pol ζ overexpression are not recovered by
antioxidant treatment, and vice versa, suggesting that the res-
cue is exerted through two alternative mechanisms. The first
one is most likely related to the ability of Pol ζ to replace Mip1
containing mutations which mainly reduce the catalytic activ-
ity. The second one is likely linked to the ability of antioxidant
molecules to reduce the concentration of oxidized bases which
can be incorporated by Mip1 bearing specific mutations such as
Y757C.

Beyond Validation: Study of Correlation
between Mutations/Polymorphisms in Pol
γ and Mitochondrial Toxicity Caused by
Sodium Valproate, NRTIs and
Environmental Mutagens

Sodium valproate (valproic acid, or VPA) is a drug used as an
anticonvulsant, and for migraine, bipolar disorder and chronic
headache. However, the administration of VPA in some indi-
viduals can lead to a fulminant liver failure. The frequency of
this adverse effect is very high in patients with Alpers’ syn-
drome bearing mutations in POLG, and also in subjects not
affected by Alpers’ syndrome but carrying Pol γ polymorphisms.
Through a combined approach performed on cells of subjects
showing episodes of VPA-induced liver toxicity and harboring
polymorphisms in POLG, and on yeast cells bearing the cor-
responding mip1 mutations, it was demonstrated that patients
heterozygous for polymorphisms E1143G and Q1236H have a
higher probability of developing VPA-induced toxicity (Stewart
et al., 2010).

Nucleoside reverse transcriptase inhibitors (NRTIs) are used
in the highly active antiretroviral therapy (HAART), which has
significantly increased the life expectancy of HIV patients. How-
ever, in some patients a prolonged treatment induces side effects,
most of which are due to interference of the NRTIs or of
their triphosphorylated form with the mitochondrial function.
NRTIs are nucleosides analogs in which the hydroxyl moiety
in 3′ was substituted with a group that blocks the formation
of the 3′-5′ bond in the nascent strand. Several observations
suggest that mitochondrial toxicity depends on NRTIs interfer-
ence with Pol γ activity, resulting in decreased mtDNA levels,
especially in the case of pyrimidine analogs, such as stavudine
(2′,3′-didehydro-2′,3′-dideoxythymidine, or d4T) and zalcitabine
(2′,3′-dideoxycytidine, or ddC) (reviewed in Lee et al., 2003 and
Koczor and Lewis, 2010). In addition, some triphosphorylated
NRTIs can inhibit the activity of human Pol γ in vitro (Johnson
et al., 2001; Lim and Copeland, 2001). It has also been demon-
strated by in vitro experiments that substitutions in Pol γ may
alter the mtDNA polymerase discrimination between the correct
dNTP and the corresponding dNRTI-TP. This results either in
a decreased ability to incorporate the dNTPs, for example in the
case of E895G, Y951F, and Y955F substitutions (Lim et al., 2003),
or in an increased ability to incorporate the dNRTI-TP, such as
in the case of mutation R964C, which causes a 33% decrease of
dTTP incorporation efficiency and a 3-fold lower d4TTP dis-
crimination compared to wild type Pol γ (Bailey et al., 2009).
Mitochondrial toxicity was observed in a patient homozygous for
the R964C mutation after treatment with D4T (Yamanaka et al.,
2007), and a correlation between treatment with D4T and mito-
chondrial toxicity was proposed for subjects heterozygous for the
widespread SNP E1143G (Chiappini et al., 2009). We have pre-
viously constructed and validated two yeast models useful for
studying the correlation betweenmutations or polymorphisms in
POLG and mtDNA depletion after treatment with D4T or ddC,
(Baruffini and Lodi, 2010; Baruffini et al., 2015). These mod-
els were constructed by cloning and introducing in yeast the
human ENT1 gene, which encodes a membrane nucleoside trans-
porter, and the herpes simplex virus TK1 gene, which encodes
a thymidine kinase, or the human DCK gene, which encodes a
deoxycytidine kinase, in order to allow the proper transport and
phosphorylation of the analog. Our results show that, besides
R964C and E1143G, other polymorphisms in POLGmight cause
mtDNA instability and depletion following treatment with these
NRTIs. However, further studies are needed in human cells.

Alkylating agents, such as methyl methanesulfonate (MMS),
also increase mtDNA point mutability besides nuclear DNA
mutability. It was shown that administration of MMS in strains
harboring mutator mip1 heterozygous mutations corresponding
to human pathological ones further increased the EryR point
mutability due to CG transversions (Stumpf and Copeland,
2014). MMS induced mutability in mip1 mutant strains seems
to be due to an active mechanism, in which the mutant poly-
merase binds to the DNA and stalls mtDNA replication, resulting
in ssmtDNA which can be alkylated by MMS. Trace amounts of
CdCl2 are also associated with an increase in the petite frequency
and a decrease in the mtDNA content both in homozygous and
MIP1/mip1 heterozygous strains (Stumpf and Copeland, 2014).
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Recent Findings and Future Directions in
Modeling Human Mutations and Drug
Discovery

In recent years, research on MIP1 focused on genetic and
molecular suppressors able to reduce point and extendedmtDNA
mutability due to mtDNA polymerase dysfunctions. By ran-
dom mutagenesis, a MIP1 mutation, A256T, was recently iden-
tified. This behaves like an antimutator, decreasing 2.2-fold
the frequency of EryR mutants (Foury and Szczepanowska,
2011). The A256 residue is conserved in humans (A300)
and is part of a conserved region, suggesting that Pol γ

A300T can behave as an antimutator allele. Further experi-
ments in animal models should be performed to prove this
hypothesis.

In 2014, Qian and coauthors constructed a “humanized” yeast
model in which yeast Mip1 was replaced by human Pol γ. They
deleted most of the endogenous MIP1 gene and cloned both
POLG(1) and POLG2 under the MIP1 promoter and in frame
with theMIP1MLS region. Themip11 “humanized” strain, con-
taining both POLGA and POLGB, was able to grow on oxida-
tive carbon sources at a similar rate to MIP1 wild type strain,
indicating that the human holoenzyme can complement the loss
of Mip1 and can replicate yeast mtDNA. The complementa-
tion was partial, since in the humanized strain the mtDNA lev-
els were reduced to 50% compared to the wild type strain, and
both petite and EryR frequencies were doubled. Nevertheless,
this system has proven useful to model human Pol γ mutations
in yeast. Four mutations were introduced in POLGA (S305R,
H932Y, Y951N, and Y955C). The behavior of mutant POLGA
strains is very similar to strains harboring the corresponding
mutations in MIP1 (Table 2). In both systems, S305R strongly
increases the petite frequency and is recessive, whereas H932Y,
Y951N, and Y955C make the strain rho0 (and thus unable to
grow on oxidative carbon sources) and are dominant. In both sys-
tems, EryR mutant frequency, which is measured in the diploid
strain, increases when each mutation is present in heterozygosis,
though at different extents (Qian et al., 2014). Overall, the con-
struction of this “humanized” strain indicates that MIP1, used
until now in validation studies, is a good model to study the

phenotypic consequences of mutations, at least for the conserved
amino acids. Furthermore, it provides a novel and invaluable
tool to assess the physiological effects of disease-associated muta-
tions directly in human Pol γ itself, thus also allowing to over-
come the weaknesses associated to the use of Mip1 discussed
above.

Recently, yeast has proven to be an excellent tool for drug
discovery, in particular in the case of mitochondrial disorders.
This is of paramount importance since no established treatment
for these pathologies is available so far. Molecules acting as
potential therapeutics in disorders associated with primary defi-
ciencies in the mitochondrial ATP synthase were successfully
found in yeast by high throughput approaches aimed at iden-
tifying chemical suppressors of pathological phenotypes (Cou-
plan et al., 2011; Aiyar et al., 2014). In such a screen, the fmc1
null mutant, unable to assemble the F1 sector of ATP syn-
thase at high temperatures, was used as yeast model of these
pathologies. Taking advantage of the RD thermosensitive phe-
notype of this mutant, a yeast-based assay was developed in
which thousands of chemical compounds from several chemi-
cal libraries were tested for their ability to suppress the respi-
ratory growth defect at 37◦C. By such a screen, drugs effective
on a fmc1 yeast mutant were successfully found. These drugs
were also active on strains mutated in ATP6, which, if mutated
in humans, caused neuropathy, ataxia, and retinitis pigmentosa
(NARP) syndrome. Moreover, they have proven to be effective
in human cybrids derived from NARP patients, thus validating
the yeast-based approach and demonstrating that yeast can be
used as a pharmacological model for the study of mitochondrial
diseases.

We used a similar high throughput approach, in collaboration
with A. Delahodde (I2BC, Université Paris-Sud), to find drugs
that could potentially be used in POLG disease therapy. About
1600 molecules included in two chemical libraries were assayed
for their ability to restore the oxidative growth of thermosensi-
tive mip1 strains harboring mutations equivalent to the human
pathological ones. Six rescuing molecules were identified, three
of which also decreased the frequency of cells depleted of mtDNA
at 28◦C. The rescue has also been proven effective in a C. ele-
gans POLG model. Studies on fibroblasts from patients bearing

TABLE 2 | Comparison between four mutations studied in yeast mip1 strain and in humanized yeast POLG strain.

Mutation Yeast mip1 strain Humanized POLG strain

Haploid strain Diploid strain Haploid strain Diploid strain

Petitea EryRb Petitea EryRb Petitea % EryRb Petitea EryRb

S305R 84 8 2.1 2 100 ND 2.5 7

H932Y >99% 10 5–9 10 100 ND 11 58

Y951Nc 100% ND 15–25 6 100 ND 15 9

Y955C 100% ND 35–91 11 100 ND 22 24

The values are calculated starting from the data found in Baruffini et al. (2006; 2007b; 2010), Stuart et al. (2006); Stumpf et al. (2010) and Qian et al. (2014).
a Petite indicates the petite fold increase compared to the wild type, except in the case of strains for which the petite frequency is >99%.
b EryR indicates EryR fold increase compared to the wild type. c Baruffini, unpublished results

ND, not determinable.
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mutations in POLG and experiments aimed at gaining more
insight into the molecular mechanism behind the rescue are in
progress.
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