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Biomass analysis is a slow and tedious process and not solely due to the long generation

time for most plant species. Screening large numbers of plant variants for various geno-,

pheno-, and chemo-types, whether naturally occurring or engineered in the lab, has

multiple challenges. Plant cell walls are complex, heterogeneous networks that are

difficult to deconstruct and analyze. Macroheterogeneity from tissue types, age, and

environmental factors makes representative sampling a challenge and natural variability

generates a significant range in data. Using high throughput (HTP) methodologies allows

for large sample sets and replicates to be examined, narrowing in on more precise data

for various analyses. This review provides a comprehensive survey of high throughput

screening as applied to biomass characterization, from compositional analysis of cell

walls by NIR, NMR, mass spectrometry, and wet chemistry to functional screening

of changes in recalcitrance via HTP thermochemical pretreatment coupled to enzyme

hydrolysis and microscale fermentation. The advancements and development of most

high-throughput methods have been achieved through utilization of state-of-the art

equipment and robotics, rapid detection methods, as well as reduction in sample

size and preparation procedures. The computational analysis of the large amount

of data generated using high throughput analytical techniques has recently become

more sophisticated, faster and economically viable, enabling a more comprehensive

understanding of biomass genomics, structure, composition, and properties. Therefore,

methodology for analyzing large datasets generated by the various analytical techniques

is also covered.

Keywords: biomass recalcitrance, biomass compositional analysis, high throughput analysis, neural networks,

biomass conversion

INTRODUCTION

Crop breeding for improved traits has been in constant development since mankind first
intentionally put seeds in the ground. Selection of better crops has been, until recently, a long-term
strategy, with simple selection criteria of higher yield or increased tolerance to various stresses.
With the advent of molecular genetics, plant breeding has accelerated significantly, with specific
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genes and entire metabolic pathways being added or deleted in
a few days, however the results are not always selectable with
simple phenotypic criteria. While plants continue to require
weeks, months, or years to fully mature and exhibit stable traits,
phenotypes such as reduced recalcitrance, altered polysaccharide
and lignin content, and other changes in cell wall composition
are not readily discernable. Technologies to rapidly evaluate
engineered plants for non-phenotypically evident resultant traits
has not kept pace with the generation of these mutations, nor has
the analytical methodology needed to catalog, interpret, compare,
andmodel the huge genetic information being uncovered gene by
gene.

As plant engineering methodologies have evolved to generate
more variants in shorter time, screening these expanded
sample sets has ranged from cumbersome to nearly impossible,
depending on the analyses and turnaround required. Simple
changes to phenotype such as biomass yield can be readily
evaluated by increasing the area planted to accommodate
more variants and replicates and measuring height, width,
mass, etc. by hand. Given enough researchers (most probably
students), several thousand plants can be evaluated in this
manner, however, understanding the more intricate specifics
of compositional analysis, conversion potential, and chemical
changes to components such as lignin require much more
detailed analyses.

Over the past decade or so, multiple research groups
have developed methods to address some of these complex
measurements. In this review, we cover advances in measuring
changes in plant cell wall chemistry and recalcitrance,
developments in rapid sugar and fatty acid analysis, advances
in spectroscopy applications and instrumentation to cell wall
composition determination, and use of data analysis and systems
biology modeling to develop understandings from the acquired
data.

Table 1 is a summary of HTP methods used in HTP analysis
of biomass. Details for each method can be found in sections
High Throughput Plant Cell Wall Compositional Analysis, HTP
Recalcitrance Screening, NMR for Biomass Sugar and Fatty Acid
Composition and in the associated references. Data analysis and
systems biology modeling is handled separately in section Data
Analysis and Systems Biology Modeling for High Throughput
Biomass Analysis.

HIGH THROUGHPUT PLANT CELL WALL
COMPOSITIONAL ANALYSIS

Compositional analysis of biomass is a complex, but necessary
and important analytical technique. The ratio, composition,
and content of the three major cell wall components
(cellulose, hemicellulose, lignin), have a direct impact on
the technoeconomics of biomass conversion to products and
knowing the potential yields is the best way to standardize the
cost analysis across different feedstocks. Several methods have
been developed to deconvolute the complexity of the plant cell
wall down to the subunit level. Such methods are laborious, slow,
and employ a variety of harsh reagents requiring some degree

of remediation (Elliston et al., 2015). Destructive methods, such
as 2-stage acid hydrolysis and pyrolysis-Molecular Beam Mass
Spectrometry (py-MBMS), rely on breaking apart the various
polymers and measuring the content of the resultant subunits,
which can then be mathematically reassembled to estimate the
various polymer content. The use of simpler and more rapid
spectroscopic methods have proved invaluable in analyzing
biomass (Elliston et al., 2015). Non-destructive spectroscopic
methods such as Near InfraRed (NIR) spectroscopy rely on
specific bond detection and quantitation, which is then fed
to a multivariate model in order to predict the content of the
various polymers, using samples previously characterized by
destructive methods to build the model. While this latter method
is fast and non-destructive, it is not a primary measurement and
requires significant upfront efforts to build good models. Any
samples that fall outside the predictive range of the model cannot
be characterized with any precision. While the destructive
methods provide direct data, they can be very slow (2-stage
acid hydrolysis), require detailed analytical methods to measure
products, and can use a lot of sample material. The NIR and
py-MBMS methods have been reviewed by Xiao et al. for readers
interested in more details (Xiao et al., 2014).

Micro-Scale 2-Stage Acid Hydrolysis
Decades ago, the National Renewable Energy Laboratory
established several standard Laboratory Analytical Procedures
(LAPs) designed to standardize analytical methods in an
emerging and very chemically complicated landscape of biomass
conversion. Basing many of these LAPs on tried-and-true
methods from pulp and paper and forage analysis, these
protocols became a standard yardstick by which disparate labs
could meaningfully measure complex parameters of biomass
conversion. The procedures established were highly regimented
and geared toward the bench-scale, i.e., using 1–10 g of material
and requiring several days for completion. A reasonably well-
trained technician could be expected to handle 40–50 samples per
week for compositional analysis and enzyme hydrolysis and/or
Simultaneous Saccharification and Fermentation (SSF). A large
fraction of that time taken up by the manual manipulations
of weighing the samples and taking representative samples, as
well as the relatively long analysis times (30–60 min/sample) via
HPLC.

The bench-scale compositional analysis LAP requires 0.3–3 g
of biomass to be hydrolyzed first by 72% (w/w) H2SO4 at 30◦C
and then by 4% (w/w) H2SO4 in an autoclave, sequentially
hydrolyzing cellulose and hemicellulose to oligomers and then to
monomers, but requiring the use of pressure-rated glass vessels
(Sluiter et al., 2008). The severe conditions result in degradation
of sugars to hydroxymethyl furfural, furfural, levulinic acid, and
other products as they are released from the polymer matrix,
necessitating the use of sugar recovery standards to account for
those losses. The sugars are typically measured via HPLC with
Pb-, Ca-, or H-based ion exchange resins used to resolve the
various sugars. The best separation and quantitation is typically
found using the Pb-based chemistry, however these columns
require neutralization of samples (CaCO3), long run times (∼45–
60min), and de-ashing guard columns to protect the analytical
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TABLE 1 | Summary of HTP methods in biomass conversion.

Analysis Method Estimated throughput

(samples/day in triplicate)

Advantages Downsides References

Plant cell wall

composition

2-stage acid

hydrolysis- glass

tube array

250 - Low sample mass standard

consumables

- comparable to standard

bench-scale method

- Solids dispensing is limiting step

- only glucan and xylan measured

- sugar quantitation kits are costly

- manual transfers between

operations

Selig et al.,

2011

2-stage acid

hydrolysis- HPLC

vials

100 - Complete compositional analysis

possible

- low sample mass standard

consumables

- comparable to standard

bench-scale method

- Extensive hands-on operations

- HPLC analysis is limiting step

- Specialized robot for sample

hydrolysis

DeMartini

et al., 2010

py-MBMS 250 - Simple operation

- good lignin compositional and

content analysis

- additional info beyond cell wall

polymers present in spectrum

- can be used to identify non-volatile

extractives

- Specialized MS instrument

- carbohydrate analysis is limited

- semi-quantitative

- manual sample prep

Xiao et al.,

2014; Sykes

et al., 2015a;

Harman-Ware

et al., 2017

NIR 350 (500 if duplicates are run

instead of triplicates, as is typical)

- Non-destructive

- rapid

- minimal sample prep

- highly automated system

- potentially field-portable

- simple operation

- low operating cost

- Requires extensive model building

- samples restricted to within model

- predictive, not primary analytical

method

Sluiter and

Wolfrum,

2013; Xiao

et al., 2014

sequential

extractive

fractionation and

hydrolysis

25 - Very low sample mass

- comprehensive component analysis

- extensive hands-on operations

- GC analysis is limiting step

- Specialized robot for sample prep

- numerous solvent extraction steps

- not yet amenable to extended

automation

Foster et al.,

2010

NMR 100 - Quantitation of sugars beyond

glucose and xylose

- quantitation of fatty acids

- can be used for HTP metabolomics

- Required NMR autosampler

- requires pre-hydrolysis of biomass

- HTP NMR tube filling requires

specialized equipment

Gjersing

et al., 2013

Plant cell wall

recalcitrance

Combined

pretreatment and

enzyme hydrolysis

250 - Flexible-can screen based on

pretreatment or enzyme efficacy

- low sample mass

- adaptable to alternative

pretreatment chemistries

- Limited to glucose and xylose

analysis

- specialized robot and reactor

required

- size reduction of samples by hand

required

- subject to product inhibition at low

enzyme loadings

Selig et al.,

2010; Studer

et al., 2010

Reduced-scale

SSF

100 - Directly relevant to 2nd-gen

bioethanol

- product analysis can be automated

- CO2 evolution, anaerobicity, and

evaporation control difficult to

co-manage

- high variability due to

microbiological conversion

- susceptible to microbial

contamination

Elliston et al.,

2015

HTP CBP 100 - Simple protocol product analysis

can be automated

- CO2 evolution, anaerobicity, and

evaporation control difficult to

co-manage high variability due to

microbiological conversion

susceptible to microbial

contamination not fully developed

yet complex product portfolio

feedstock-dependent conversion

extent

Oguntimein

et al., 2018
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column Pb-groups from complexing with the neutralization
CO−2

3 ions. For a sample set of 50, running them in triplicate
and with various sugar, sugar recovery, and instrument validation
standards, could easily tie up an HPLC for a week or longer.
The soluble lignin was estimated by absorbance and the insoluble
lignin, whether natural or precipitated by the severe conditions,
was measured gravimetrically, adjusting for inorganic content as
determined gravimetrically after ashing the sample.

In 2011, Selig et al. published the first HTP method for
measuring glucan and xylan content in plant cell walls (Selig
et al., 2011). The protocol was primarily a scaled-down version
of the NREL LAP, with enzyme-linked spectrophotometric
measurements replacing HPLC as the primary sugar analysis.
This limited sugar detection to glucose and xylose only,
but allowed for parallel processing of multiple samples
and automated quantitation by microtiter plate (MTP)
spectrophotometers while only using 50mg of sample for
each analysis. While liquid handling and absorbance reading
steps were all automated using various robots, transfer between
the robots was carried out by hand. Solids dispensing was
automated into special dispensing plates that were used to
manually add samples to the custom Hastelloy deep 96-well
reactor plates. As manual mixing during the acid hydrolysis was
not practical, sonication was used to maintain sample dispersity
and special clamping mechanisms were used to seal the reactor
during the digestion. Other adaptations included the inclusion
of strong buffering of diluted aliquots instead of whole sample
neutralization to minimize differences in pH which affected the
enzyme-linked assays, and the use of centrifugation to minimize
solids interference with pipetting by the robots. While the
scaled-down version of the compositional analysis method was
fast and reproducible, it did not track exactly 1:1 with standard
bench-scale analysis (due mainly to the change in sugar detection
and the simple error propagation of using small masses and
volumes), and should therefore only be used in a comparative
manner within a given sample set and not as a precise analytical
tool. It also suffered from the requirement of highly specialized,
expensive, and very heavy custom reactor plates. Subsequent
refinements to the method substituted 96-well format glass tubes
for the Hastelloy reactor plate, eliminating the expensive custom
reactor, the need for problematic sealing films, and allowed for
the use of an autoclave instead of a Parr reactor for the 2nd
stage of hydrolysis. Extraction and enzymatic de-starching of
the starting material, especially for herbaceous feedstocks, was
also worked into the method after the initial publication (Decker
et al., 2012).

DeMartini et al. (2010) developed a similar method around
the same time, utilizing HPLC vials instead of Hastelloy reactors
or 96-well format glass tubes (DeMartini et al., 2010). The
use of readily available HPLC vials allowed for automated
solid and liquid dispensing, as well as heating on the Symyx
Core Module robot, however subsequent manipulations, such as
centrifugation, transfer of supernatant to polypropylene tubes,
neutralization with CaCO3, and analysis by HPLC required
individual manual operations. The other advantage of the HPLC
vials, however, was the ability to estimate insoluble lignin content
gravimetrically after washing and drying the residual solids

and subtracting previously determined ash content, even if the
washing steps were carried out by hand.

Foster et al. (2010) developed a small-scale protocol for plant
cell wall compositional analysis as well, however the protocol
utilized numerous solvent addition and removal steps as well
as sample extraction and de-starching. The starting material
was mechanically sized-reduced biomass from essentially an
automated small-scale ball mill. These complex steps precluded
ready automation, but the protocol provided much of the
same information as larger-scale standard analyses while using
considerably less material (Foster et al., 2010).

Though several labs have developed HTP/micro-scale
compositional analysis methods, it remains a major tenet of this
work that these methods are not as precise and accurate as larger-
scale, lower throughput methodologies. Much of this is tied up in
the heterogeneity of the samples, especially when a single particle
of bark or rind can comprise 10% or more of a single sample
or when automated dispensing results in size-fractionation of
the bulk material during repeated sample aliquoting. Primarily,
these methods are useful in ranking large samples sets in terms of
cellulose content or percent theoretical conversion in subsequent
enzymatic or microbiological conversion. They also result in
significant savings in reagent costs, sample prep, and technician
time, however the costs of the robots, especially those designed
for accurate and reproducible solids dispensing in the 1–10mg
range, is prohibitive for many research groups.

Pyrolysis-MBMS for Analysis of Cell Wall
Composition and Other Components
Present in Lignocellulosic Biomass (LCB)
The analysis of biomass by analytical pyrolysis techniques has
been practiced for decades as it can provide a significant
amount of information regarding the structure and composition
of biomass as well as inform pyrolysis processes, conditions
and upgrading strategies that are used to generate bio-oil.
Fast pyrolysis, the rapid thermal decomposition of material
in the absence of oxygen, produces analytes that originate
from different components in the feedstock that can be
analyzed using detectors such as mass spectrometers. Pyrolysis-
molecular beam mass spectrometry (py-MBMS) is an analytical
technique that uses a pyrolyzer coupled to a molecular beam
mass spectrometer to analyze all ions generated without
chromatographic separation. Fast pyrolysis of samples is typically
performed at temperatures between 300 and 700◦C in the
timescale of < 1 min/sample. Electron ionization is used to
generate ions with voltages ranging from <20 eV up to 70 eV
and ions are detected after passing through a quadrupole which
typically scans for the analysis of m/z 30–450. Py-MBMS has
been used as a high throughput technique to analyze LCB for
estimation of lignin content, syringyl/guaiacyl (S/G) ratios, sugar
composition as well as diterpenoid resin acid content in biomass
extract. The benefits of using py-MBMS for biomass analysis
include rapid throughput (250 samples/day), minimal sample
preparation and low sample amount requirements (10mg).
The high-throughput nature of py-MBMS has enabled studies
across large populations and sample set sizes allowing for the
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incorporation of appropriate statistical and biological variations
in data. Py-MBMS data can be analyzed using various statistical
tools such as principle component analysis (PCA), partial
least squares regression (PLS), clustering methods and other
predictive analytics that provide both quality control measures
and a means to understand the underlying spectral patterns
as well as their sources and associations with other biomass
properties and genomics.

Lignin content in biomass samples can be estimated relative
to a standard of known Klason lignin content run in the same set
of samples by py-MBMS through summation of ion intensities
that originate from phenolic species generated during pyrolysis
which may include m/z 120, 124, 137, 138, 150, 152, 154, 164,
167, 168, 178, 180, 181, 182, 194, 208, and 210 (Sykes et al., 2008).
Relative syringyl (S) monomers in lignin are typically calculated
by summation of ion intensities of m/z 154, 167, 168, 182, 194,
208, 210; whereas relative guaiacyl (G) monomeric values can
be determined by summation of ion intensities of m/z 124, 137,
138, 150, 164, 178. S/G ratios are then determined by dividing
the sum of S-based ions by the sum of G-based ions. Table 2
summarizes the sources of various ions seen in py-MBMS spectra
of biomass and example spectra of maize stems are shown in
Figure 1 (Penning et al., 2014a). Otherwise, PLS models can be
used to determine lignin content in a set of samples relative to
wet chemistry methods using a variety of standards. The analysis
of lignin content and S/G ratios in lignocellulosic biomass by
py-MBMS has been reported extensively in the literature and
has been used in studies focused on the analysis of biomass
recalcitrance, (Studer et al., 2011; Biswal et al., 2015, 2018; Decker
et al., 2015; Sykes et al., 2015b) for genetic studies including as
QTL and GWAS, (Wegrzyn et al., 2010; Penning et al., 2014a;
Muchero et al., 2015) to determine within-plant variability and
the effects of environmental conditions on cell wall structure
(Sykes et al., 2008; Mann et al., 2009), and for the analysis of
biomass either engineered or selected for different lignin content
and monomer compositions (Penning et al., 2014b; Sykes et al.,
2015b; Edmunds et al., 2017).

Structural carbohydrate or sugar composition has also been
estimated in a variety of LCB types by py-MBMS. Ions that
can originate from C5 sugars (xylose, etc.) include m/z 57,
73, 85, 96, 114 and ions attributed to C6 sugars (glucose,
etc.) include m/z 57, 60, 73, 98, 126, 144. The pyrolysates
from which the carbohydrate-derived ions originate include
anhydrosugars, furans, low molecular weight aldehydes and
ketones and other compounds as shown in Table 2. In a
study by Sykes et al. (2015a) structural carbohydrates were
determined using a standard method involving low-throughput
two-stage acid hydrolysis of biomass followed by HPLC analysis
of the hydrolysates. The HPLC method was used to build a
PLS model with py-MBMS spectra for the prediction of sugar
content in various types of biomass. The best PLS models
incorporated different biomass types (hardwood, softwood, etc.)
which extended the range in composition of each of the
major sugars predicted. While models used to predict sugar
composition within a biomass type were not ideal, py-MBMS
analysis for sugar composition of biomass has a significant

increase in throughput over traditional methods using two-
stage acid hydrolysis followed by HPLC analysis (Sykes et al.,
2015a).

Diterpenoid resin acids from pine and pine extracts have
also been analyzed using py-MBMS. Typically, diterpenoid resin
acids are extracted from coniferous biomass and derivatized
prior to analysis by GC. The derivatizing step of resin acids
is cumbersome, time consuming and consumes an additional
step involving a derivatizing reagent. Harman-Ware et al.
(2017) developed a high-throughput method for the analysis of
diterpenoid resin acids from the organic extract obtained from
pine sapling cross sections using py-MBMS.While the py-MBMS
analysis of pine biomass correlated spectral patterns indicative
of variable levels of diterpenoid resin acids with GC data, it
was not possible to use or spike standards for the quantification
of these compounds in the biomass samples. Additionally,
the low content (<5 wt%) of the resin acids made reliable
quantification by analysis of the whole biomass difficult and
the variability within trees complicated sampling methodology.
Instead, total diterpenoid content was determined by py-MBMS
analysis of the organic extract left after evaporation by means
of an external calibration standard consisting of a mixture of
components closely resembling the composition as determined
by GC (Harman-Ware et al., 2017).

The analysis of biomass by py-MBMS is limited to non-volatile
samples and analytes (for quantification) and small sample
size. Therefore, harvesting, sample preparation, and variability
of biomass are all experimental considerations that must be
made in advance and understood when interpreting spectral
data. Other considerations that must be made when interpreting
spectra include the presence of inorganic salts and other
compounds (proteins, lipids, etc.), the pyrolysis temperature,
the fragmentation energy of the ionization source and other
parameters that can influence the pyrolysis and subsequent
spectra of a given sample. Also, it is not recommended to
compare samples analyzed when instrument maintenance and
tuning adjustments have been made as the spectra could change
slightly. Typically, standards are run within a set and samples that
need to be compared are run within a set without maintenance
down time of the instrument between sample analyses. As no
chromatographic separation has occurred, the sources of the ions
present in the spectra must also be interpreted with caution as
many analytes may produce the same ions.

Py-MBMS data has been used to analyze large data sets
with a focus on a small number of ions present in the
spectra. The mining of MBMS spectral data for clustering,
mapping and making spectral associations with genotypes and
phenotypes will extend the usefulness and capabilities of py-
MBMS analyses as more genetic and phenotypic information
about biomass is elucidated. Improvements in mass resolution
and sensitivity would also extend capabilities for py-MBMS to
analyze components that are difficult to identify and quantify
and/or make up a smaller fraction of biomass such as metabolites,
lipids, etc. While py-MBMS has proven to be instrumental in
the elucidation of biomass characteristics relating particularly to
lignin, there may still be untapped information present in the
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TABLE 2 | Summary of ion assignments in py-MBMS spectra of lignocellulosic biomass or biomass extracts.

m/z Pyrolysate ion sources Source of pyrolysate

57, 73, 85, 96, 114 Anhydrosugars, furans, levoglucosan, low molecular weight acids, ketones and

aldehydes, etc.

C5 sugars

57, 60, 73, 98, 126, 144 C6 sugars

124, 137, 138, 152, 164, 178, Guaiacyl compounds such as methylguaiacol, vanillin, coniferyl alcohol, etc. Guaiacyl (G) lignin monomers

154, 167, 168, 182, 194, 208, 210 Syringyl compounds such as syringol, methylsyringol, sinapyl alcohol, etc. Syringyl (S) lignin monomers

94, 120, 150, 151, 180, 181 Phenol, 4-vinylphenol, multiple S and G sources, etc. Other lignin (coumaryl - H, coumarate,

ferulate, other phenolics and/or

combinations of multiple sources)

135, 148, 195, 197, 213, 219, 237,

239, 254, 285, 287, 300, 302

Abietic acid, dehydroabietic acid, neoabietic acid, fragmentation ions from methyl losses,

etc.

Diterpenoid resin acids

FIGURE 1 | Py-MBMS spectra of maize stems can be used to

compare relative abundances of lignin and carbohydrate components. (A)

upper and lower spectra of stems from different lines can be subtracted to

show differences in certain ions as shown in subtraction spectrum, (B)

Reprinted by permission from Penning et al. (2014b), Bioenergy Research:

Springer Nature, copyright 2014.

spectra that could potentially inform other useful properties of
biomass.

NIR Spectroscopy for Structural
Components
As an alternative to the wet chemistry method, Near Infrared
(NIR) spectroscopy has been used for decades for the rapid

analysis of biomass, starting with the prediction of forage quality
(Norris et al., 1976; Shenk et al., 1979; Abrams et al., 1987). Its
use for the prediction of biomass composition in a biorefinery
context originated later (Sanderson et al., 1996; Hames et al.,
2003). An overview of the technique and a comprehensive review
of its use in biomass conversion processes was recently published
(Skvaril et al., 2017).

Rapid analysis using NIR is considered a secondary analytical
method, because NIR spectra are correlated with primary
biomass compositional analysis data using multivariate
calibration algorithms to produce a calibration equation.
This equation can then be used to predict the composition
of samples in lieu of primary biomass compositional analysis.
Robust calibration methods, including methods for estimating
calibration and predicting have been developed (Martens and
Næs, 1992; Martens and Martens, 2001; Olivieri Alejandro et al.,
2006; Zhang and Garcia-Munoz, 2009).

Because the method relies only on the collection of a
NIR spectrum for a given sample, the technique can provide
compositional analysis data much more quickly than traditional
chemical analysis methods. Many calibration models for biomass
feedstocks and process intermediates have been published,
including contributions from these authors (Wolfrum and
Sluiter, 2009; Godin et al., 2011; Liu et al., 2013; Sluiter and
Wolfrum, 2013; Payne and Wolfrum, 2015). These models have
been used for the prediction of large numbers of samples, saving
substantial amounts of time (and cost) compared to conventional
laboratory analysis (Pordesimo et al., 2005; Templeton et al.,
2009).

Care must be taken when using NIR spectroscopy for rapid
biomass analysis. Because it is a secondary method, a prediction
of biomass composition will be accurate only if the underlying
sample set used to develop the calibration equation contains
sufficient compositional variability compared to that expected
in the sample population. Unknown samples that are not part
of the calibration population are inevitably poorly predicted.
If careful attention is not paid to this issue, unreliable and
even misleading results will be obtained. Poorly predicted
samples (flagged either as outliers or with large prediction
uncertainties) can be excellent candidates for improving a
calibration model. If these samples undergo compositional
analysis using traditional analytical methods, they can be added
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to the existing calibration model to extend its predictive range;
by definition, these new samples are within the calibration
population.

As discussed above, high-throughput analysis using NIR
spectroscopy involves (1) collecting a NIR spectra of a biomass
sample, and then (2) predicting one or more chemical properties
of the biomass sample by comparing the collected spectra
to a collection or library of samples for which spectral and
chemical properties are known. There are opportunities to make
improvements in both areas.

Spectrometer manufacturers are constantly improving
the performance of NIR spectrometers, such as increasing
the signal-to-noise ratio, the spectral resolution, or the
spectral range of instruments, and it is likely that these
improvements in performance will continue in the future.
While these improvements require additional research and
development on conventional spectrometers and are important
advances, they represent incremental improvements to existing
technology. There are two different and complementary
approaches that offer opportunities for substantial improvement
in high-throughput analysis using NIR spectroscopy: NIR
hyperspectral imaging and low-cost, ultra-portable NIR
spectrometers.

NIR hyperspectral image cameras are conceptually similar to
conventional cameras except the pixels of the two-dimensional
images produced consist of NIR spectra (Boldrini et al., 2012).
Recent contributions have presented comprehensive reviews
and discussions of applications of hyperspectral imaging for
biomass analysis (Fahlgren et al., 2015; Eylenbosch et al.,
2017). This is an active area of research, and the Department
of Energy ARPA-E Transportation Energy from Renewable
Agriculture (TERRA, https://arpa-e.energy.gov/?q=arpa-
e-programs/terra) is currently supporting work in high-
throughput biomass phenotyping in both laboratory and field
environments using a variety of spectroscopy approaches,
including hyperspectral imaging. Work sponsored by the
ARPA-E TERRA will dramatically accelerate the application
of hyperspectral imaging for biomass analysis in the coming
years.

Several ultra-portable NIR spectrometers have been
developed in recent years that have the potential to provide
performance comparable to conventional NIR spectrometers
in a much smaller form factor and at a much lower cost
than traditional NIR spectrometers. Very-low cost, ultra-
portable, and ubiquitous NIR spectrometers could represent
a compelling alternative to traditional NIR rapid analysis
approaches for biomass analysis. The composition of biomass
materials could be tracked essentially continuously across
the value chain from harvest and collection, transport,
storage, through conversion to fuels and chemicals. Table 3

highlights four different instruments (listed alphabetically)
that represent unique approaches to ultra-portable NIR
spectroscopy.

While this is not meant to be an exhaustive list of all
ultra-portable NIR spectrometers, the list does demonstrate the
breadth of technical innovation in this area. For example, each
of these instruments employs a different active optical element

or light processing modality. The microNIR instrument uses a
fixed Linear Variable Filter as the dispersive element in the optical
path. The NeoSpectra is a Fourier Transform spectrometer,
using a miniature Michelson Interferometer based on micro-
electro-mechanical system (MEMS) fabrication technology. The
NIRONE uses a MEMS-based Fabry-Perot Interferometer (FPI)
as a tunable optical filter. The NIRVASCAN instrument uses
a fixed grating in combination with a digital micromirror
device (DMD) consisting of several hundred thousand miniature
mirrors acting as a wavelength filter. Each of these instruments
has a different spectral range, signal-to-noise ratio, sample
presentation geometry, and data collection and processing
environment. It is beyond the scope of this work to provide a
comprehensive comparison of the performance of each of these
instruments; the suitability of a given instrument depends in large
part on the potential application.

Some challenges remain for further development of these
novel spectrometers, including the demonstration of adequate
data collection and processing environments, long-term
performance stability in real-world applications, the ability to
develop useful and robust calibration models for use on these
new platforms, and to perform accurate calibration transfer
among spectrometers (Workman and Mark, 2013) so that
calibration equations developed on a primary instrument can be
used on multiple secondary instruments. Nonetheless, it is clear
that there has been substantial developing in ultra-portable NIR
spectroscopy in recent years, and this development will likely
continue.

As mentioned above, the way NIR spectroscopy is used for
rapid analysis (calibration model development and subsequent
sample prediction) has evolved substantially over the last
several decades, for example, with more robust PLS modeling
algorithms and improved outlier detection and measures of
prediction uncertainty. However, as NIR spectroscopy for rapid
biomass analysis becomes more widely used (in part due to
developments in hyperspectral imaging instruments and lower-
cost spectrometer technology), it will be possible to take
fundamentally new approaches to deriving useful information
from larger collections of spectral data. While the size of these
data sets may never approach those of laboratory analytical
techniques such as hyphenated chromatography (e.g., GC-GC-
MS, LC-MS), they will likely be large enough and have enough
variability to permit machine learning or neural net modeling
approaches for classification applications, and real-time updating
of classification and prediction modeling using cloud computing
resources. Both the development of novel approaches for
processing the data and the curation andmanagement of the data
itself will represent key technical challenges (and opportunities)
in the future. In summary, rapid analysis using near Infrared
(NIR) spectroscopy has proven to be a robust, reliable
technique for high-throughput biomass characterization when
used properly and with care. In the future new opportunities
for the technique will develop because of improvements in the
two complementary technologies that have made the technique
useful in the past: NIR spectroscopy instrumentation and spectral
data processing techniques, particularly machine learning
approaches.

Frontiers in Energy Research | www.frontiersin.org 7 November 2018 | Volume 6 | Article 120

https://arpa-e.energy.gov/?q=arpa-e-programs/terra
https://arpa-e.energy.gov/?q=arpa-e-programs/terra
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Decker et al. HTP Screening

TABLE 3 | Ultra-portable NIR spectrometers.

Spectrometer Manufacturer Active Optical Element Website

microNIR Viavi Solutions Linear Variable Filter (LVF) Grating https://www.viavisolutions.com

NeoSpectra Si-Ware Systems MEMS-based Michelson Interferometer http://www.neospectra.com/product/description

NIRONE Spectral Engines Fabry-Perot Interferometer https://www.spectralengines.com

NIRVASCAN Allied Scientific Pro Digital Micromirror Device (DMD) https://nirvascan.alliedscientificpro.com

HTP RECALCITRANCE SCREENING

Measuring biomass recalcitrance across large numbers of natural
and transgenic plant variants has long held the promise of
identifying promising lignocellulosic biofuel feedstocks. The

best screen should include both compoitonal analysis of the
starting feedstock as well as sugar release after processing, in
order to measure conversion efficiency as well as titer and
yield (Sykes et al., 2015a). For conversion, either pretreatment,
enzyme hydrolysis, or a combined approach may be used.

More recently, microbial assays of a Consolidated Bioconversion
Process (CBP) nature, in which cellulolytic microbes are used
to hydrolyze lignocellulosic feedstocks and measured by product
formation, have been employed. Both approaches can be used
to screen a range of substrates for differences in recalcitrance by
holding the catalyst(s) constant or to evaluate different catalysts
(pretreatment conditions, enzyme systems, microbes) on a single
defined substrate. In both systems, product detection is critical
to evaluating the differences induced by the variables introduced.
Many of the methods used to set up and analyze the experiments
are the same or similar.

HTP screening methods are being increasingly applied to
process development in biotechnology (Long et al., 2014;
Back et al., 2016; Yang et al., 2017; Zutz et al., 2017). As
new methodology is developed, HTP screening is increasingly
employed to collect biological data that historically required
extensive time and effort (Scheel and Lutke-Eversloh, 2013;
Suzuki et al., 2015) and is widely used today in the development
of fermentation process assays (Decker et al., 2003, 2009; Selig
et al., 2010, 2011; Studer et al., 2010; Suzuki et al., 2015;
Yang et al., 2017). There have been rapid developments of
HTP techniques in recent years in micro-scale culturing, online
analysis and monitoring, and real-time control, which have
enabled increased systems automation (Yang et al., 2017). A
key technology in applying HTP to microbiological screening
has been the miniaturization of bioreactors, making large
experimental cultivation economical and practical (Back et al.,
2016; Velez-Suberbie et al., 2017). Both micro- and mini-
bioreactors are critical to biotechnology process development.
Recent HTP developments applied to biological research
have been applied to developing more effective large-scale
operations, greatly decreasing the time and expense compared
to development at scale (Lattermann and Buchs, 2015) and
it is likely that there is room for continued improvements
(Long et al., 2014). As an example, microtiter plates (MTP)
are simple, easy to shake, and inexpensive (Bharadwaj et al.,
2011; Yang et al., 2017) and have been demonstrated to

effectively replace shake flasks (Oguntimein et al., 2018). MTPs
have been used to screen specific activities of enzyme variants
using various techniques, such as protein quantitation by
immunoturbidimetric (ITA) assays, (Yang et al., 2017), direct
fluorescence resonance energy transfer for protease activity
(Suzuki et al., 2015), cell free protein production (Casteleijn
et al., 2013), fungal biosensor assay to detect estrogen activity
(Zutz et al., 2017), protein purification and characterization for
crystallographic studies (Kim et al., 2011), and enzyme-screening
of ionic liquid pretreated lignocellulose (Bharadwaj et al., 2011).
Despite these recent examples of MTP-based screening, few
details are known regarding actual culture conditions inside the
MTP, the technology to measure these details in real time in such
numbers and small volumes remains lacking (Long et al., 2014).

Lignocellulosic biomass (LCB) has been the focus of research
as a renewable source for second generation bioethanol
production but selection and development of these substrates
with high bioethanol yield requires the availability of reliable
methods for compositional and structural characterization
(Elliston et al., 2015). As discussed in Section High Throughput
Plant Cell Wall Compositional Analysis, quick HTP analysis
of the potential of LCB feedstocks is an important step
in the development of second generation bioethanol. HTP
screening allows the rapid investigation of a large set of samples
at minimum cost. An assay used to determine bioethanol
production from large numbers of LCBs must be robust, rapid,
easy to perform, and must use modest amounts of the samples
(Elliston et al., 2015). This section of the review focuses on the use
of high throughput (HTP) pretreatment and enzyme hydrolysis
as well as consolidated bioprocessing for the conversion of LCB
into bioethanol.

The production of second generation biofuel involves
a number of consecutive process operations, each with a
combination of multitude steps. These operations can be
delineated into pretreatment, hydrolysis, fermentation, and
distillation and/or separation. The overall process design could be
one of several general approaches, including separate hydrolysis
and fermentation (SHF) or simultaneous saccharification and
fermentation (SSF) for any given LCB substrate, but the
most rapid, effective, and cost effective method to produce
bioethanol for any approach requires the optimization of
various process parameters. Bearing this in mind, Decker et al.
(2009) and Gomez et al. (2010) developed methods for the
rapid screening of biomass for the hydrolysis stage (Decker
et al., 2009; Gomez et al., 2010), however further research
is required to investigate downstream process impacts due
to yeast or other micro-organisms. The potential effect of

Frontiers in Energy Research | www.frontiersin.org 8 November 2018 | Volume 6 | Article 120

https://www.viavisolutions.com
http://www.neospectra.com/product/description
https://www.spectralengines.com
https://nirvascan.alliedscientificpro.com
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Decker et al. HTP Screening

fermentation inhibitors released during biomass processing on
the final alcohol yields is also very critical. This may be process
or substrate-specific (Pienkos and Zhang, 2009). In view of
the importance of both separate hydrolysis and fermentation
(SHF) and simultaneous saccharification and fermentation (SSF)
methodologies, SSF methodology on a solid substrate has not
been widely investigated at the much smaller HTP scale. The
SSF approach introduces a complication as a result of CO2

production during yeast fermentation which must be vented
to reduce pressure in the reaction vessel while at the same
time controlling evaporation, all whilst potentially being stirred
vigorously. The current paradigm, however, is focused more
toward SHF (Waldron, 2014) and consolidated bioprocessing
(CBP) (Oguntimein et al., 2018). This method simplifies
the engineering requirement such as decreased capital and
operational expenditures and reduces the potential for microbial
contamination prior to the addition of yeast.

Substrate Preparation
The preparation of solid substrates in the case of second
generation biofuels presents its own unique set of problems
to HTP screening, primarily the requirement to accurately,
repeatedly and rapidly dispense solid, heterogenous sample
material by weight. Manual weighing is too labor intensive
and time consuming, making it impractical. Recent solutions
have included automatic weighing robots (Santoro et al.,
2010), production of handbills (dry biomass sheets that can
be subdivided to repeatable mass) (Berlin et al., 2006) and
biomass slurry pipetting (Chundawat et al., 2008). Automatic
weighing and dispensing robots for dry biomass are expensive
and require dedicated operation. Grinding of sample is required,
with suitable size ranges pre-determined for each biomass type.
Typically, the grinding is accomplished off-deck before loading
the samples onto the robot, however on deck grinding through
ball-milling has been used in several labs (Foster et al., 2010;
Santoro et al., 2010). Attention should be paid to avoid over-
milling, which reduces structural recalcitrance factors in the
material. Electrostatic forces generated during dispensing (by a
rotating anti-bridging wire on plastic dispenser walls or steel balls
grinding biomass in a plastic tube for example)must be addressed
or else the sample will be errantly dispensed to the adjacent wells,
inter-well spaces, or the bottom of the balance or robot. Sample
heterogeneity is also a major issue, especially in small sample
masses (Santoro et al., 2010).

The use of handbills requires additional equipment and
expertise, so the use of filter paper as a universal substrate for
the measurement of cellulase activity has been adapted by many
groups (Ghose, 1987). Elliston et al. (2015) have investigated
slurry pipetting techniques using a Tecan Freedom EvoTM liquid
handling robot equippedwith amulti-channel arm (TecanGroup
Ltd, Mannedorf, Switzerland). Liquid transfer was applied in the
study for HTP SSF analyses using a 96-well plate format. The
major obstacles include evaporation of samples, with the small
scales utilized in HTP (typically ≤1mL) driving the requirement
for effective sealing, especially when incubated for days at
elevated temperatures. In order to measure evaporative loss, a
1.0mL matrix storage tube plate dried to a constant weight at

50◦C was used with each well filled with 1.0mL yeast nitrogen
base (YNB) medium. The tubes were sealed with screw caps and
incubated at 50◦C (enzyme optimum temperature) over 72 h.
Evaporation rates were low and linear over 24, 48, and 72 h
time points, with evaporative losses of 0.28, 0.60, and 0.91%,
respectively (Elliston et al., 2015).

For pretreated substrates, several methods have been
employed. In one of the earliest studies on HTP pretreatment
and enzyme hydrolysis, Chundawat et al. (2008) utilized
ammonia fiber expansion in a batch pretreatment of corn stover,
dispensing the pretreated material into the wells of a 96-well
microtiter plate and evaluating the effects of solids loading and
particle size on digestibility (Chundawat et al., 2008). While this
approach gives the advantage of potentially screening numerous
enzyme combinations, the process is limited to one of a few types
of biomass. A more versatile approach, pioneered by Studer
et al. (2010), Decker et al. (2009), and Selig et al. (2010) was to
carry out pretreatment in a HTP reactor plate containing parallel
individual reaction chambers. Multiple biomass types can be
screened in a massively parallel fashion, though conversion
conditions are limited to a single pretreatment and digestion
temperature/time/pressure combination for each plate. For
reactor plates in a standard 96-well format, the added advantage
of automated or semi-automated simultaneous liquid transfers
for all wells greatly increases throughput while retaining the
option to pipet individual enzyme or acid catalysts by well. Use
of acid-resistant metallurgy and appropriate sealing systems
allows for high temperature and acid-catalyzed thermochemical
pretreatments (Decker et al., 2009; Selig et al., 2010; Studer et al.,
2010).

Effect of Solid Substrate Mass on
Simultaneous Saccharification and
Fermentation (SSF)
In one of the earliest biomass-related HTPmethods, Decker et al.
(2003) used Whatman number one filter paper and powdered
celluloses dispensed as a slurry to automated the filter paper assay
used to quantify cellulase activity as a precursor to SSF (Decker
et al., 2003). In 2012 and 2014, Yee et al. developed a reduced-
bench-scale system for both SSF and Consolidated BioProcessing
(CBP, see below) of biomass using bottles, measuring products
by HPLC and substrate utilization by mass loss (Yee et al.,
2012, 2014). Reducing SSF to HTP-friendly microtiter plate
formatting, Elliston et al. (2015), using Whatman number one
filter paper (FP) and office copier paper (OCP) (6mm diameter)
as substrates, found that the masses were highly repeatable;
2.36mg ± 3.1% (w/w) and 2.19mg ± 2.5% (w/w), respectively,
with six sample points. The consistent thickness and density
of these substrates, which enabled the high mass repeatability,
allowed for rapid allocation of substrate to small matrix tubes.
In a comparative experiment between shake flask (200mL in
500mL Erlenmeyer flasks), tubes (10mL in 30mL screw-capped
culture bottles) andMTP format (1mL in 1mL screw-cap matrix
storage) using yeast and mold media (YM) plus glucose [0.9%
(w/v)], OCP [2.5% (w/v)], or FP [2.5% (w/v)], ethanol yield was
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FIGURE 2 | Biomass loaded into deepwell microtiter plate for high throughput

evaluation of Clostridia for consolidated biomass processing.

similar at each scale, validating the use of the HTP small scale
method for screening yeasts by SSF (Elliston et al., 2015).

Effect of Microorganisms on Bioethanol
Production From LCB
Oguntimein et al. (2018) demonstrated a HTP 96 well
microplate assay to evaluate MTP- consolidated bioprocessing
as a method to measure biomass conversion potential. Twenty
milligrams of pre-milled switchgrass or avicel was dispensed
into deep well MTPs (2.2 mL/well volume) 96 well microplates
shown in Figure 2 using a Powdernium R© powder dispensing
system (Symyx, Geneva, Switzerland). After additional of liquid
medium, C. thermocellum 1hpt was inoculated into rows A-C
while C. thermocellum LL1210 was inoculated into rows E-G).
Sterile water as added to rows D and H. Plates were placed at a
45-degree angle on an orbital shaker (Cole Palmer Model 51300)
set at 125 rpm in a 60◦C incubator in a Coy anaerobic chamber
(5% H2, 10% CO2, and 85% N2, Coy Laboratories Products Inc.,
Grass Lake, MI).

Both C. thermocellum 1hpt and LL1210 strains metabolized
Avicel, generating cellobiose, glucose, lactic acid, formic acid,
acetic acid and ethanol in titers and ratios similar to that obtained
in bench scale fermentations, demonstrating the applicability of
a HTP method using CBP using C. thermocellum. Strain LL1210
generated higher ethanol titers than those of strain1hpt, which is

consistent based on earlier reports from larger-scale experiments
(Dumitrache et al., 2016). The absolute titers for ethanol were
lower than those produced in pH-controlled bioreactors and
switchgrass generated lower ethanol concentrations than avicel
(Oguntimein et al., 2018).

Effect of Lignocellulosic Biomass
Lindedam et al. (2014) compared three HTP pretreatment and
enzymatic hydrolysis systems (HTPH-systems) for screening
lignocellulosic biomass by enzymatic saccharification to confirm
that quantitative differences in substrate can be detected at a
small scale. Twenty winter wheat cultivars grown at two sites
in Denmark were hydrothermally pretreated and enzymatically
digested in three separately engineered HTPH-systems at (1)
University of California, Riverside, (2) National Renewable
Energy Laboratory (NREL), Colorado, and (3) University of
Copenhagen (CPH). All three systems delineated differential
sugar release among the cultivars, though average extent of
cellulose conversion varied at 57, 64, and 71% for Riverside,
NREL and CPH, respectively. Riverside and NREL systems
had the highest pair-wise correlation with glucose, while xylose
yields correlated best between Riverside and CPH. All three
systems agreed on Flair as the cultivar with the highest
yield and Dinosor, Glasgow, and Robigus with the lowest.
Despite the varied conditions between the three HTPH-systems
which resulted in different absolute values, the correlation and
rank ordering agreement between them clearly indicates that
microscale combined thermochemical and enzymatic conversion
can be used to identify recalcitrant phenotypes between varied
feedstocks (Lindedam et al., 2014).

Elliston et al. used ethanol production under SSF conditions to
assay the conversion of milled wheat straw pretreated under two
different conditions different conditions (195◦C for 10min and
210◦C for 10min). Analysis of twelve replicates demonstrated
the expected increase in ethanol yield for wheat straw pretreated
at 210◦C for 10min (80% of theoretical yield) compared to
pretreatment at 195◦C for 10min (64% of theoretical yield)
(Elliston et al., 2015).

Zhang et al. also used HTP pretreatment and co-hydrolysis
(HTPH) to rapidly identify promising Miscanthus genotypes,
including hybrids ofMiscanthus sacchariflorus/M. sinensis as well
as M. lutarioriparius, highlighting the commercially promising
hybrids. The results also indicated that, at least in Miscanthus,
glucan plus xylan content influences both mass and theoretical
yields, while lignin and ash contents had no measurable impact
(Zhang et al., 2012).

Applying consolidated bioprocessing (CBP) in HTP assay
format, Oguntimein et al. demonstrated the fermentation of
switchgrass and Avicel by a parent strain of Clostridium
thermocellum (1hpt) (Oguntimein et al., 2018). The HTP, MTP-
based CBP assay produced ethanol levels similar to bench-scale
Avicel and switchgrass fermentations (Dumitrache et al., 2016;
Tian et al., 2016). According to the authors, additional studies
are needed comparing the effect of biomass concentration on
bioethanol production, to correlate the HTP CBP screen with
other analytical methods such as quantitative saccharification of
residual biomass, and evaluation of well pooling necessary to
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determine the extent of hydrolysis and fermentation. Screening
on other biomass feedstocks such as corn stover and poplar is
also needed to validate a broader application of the method.
Lastly, evaluating multiple microbial strains will provide a more
comparative picture of the impact of microbial factors on the
assay specificity (Oguntimein et al., 2018).

This review reports on the factors influencing HTP assays
methods for screening of otherwise recalcitrant lignocellulosic
substrates for bioethanol production so that they can be
performed efficiently and reproducibly in a laboratory setting.
Current methods are influenced by the preparation of LCB, the
type of LCB, weight of biomass and the type of fermenting
organisms. Further studies are required to evaluate and optimize
the interactions of these factors in order to have practical uses
in the biorefining of biomass substrates for second generation
biofuels. Most of the HTP methods have been developed
to mimic large-scale operating conditions (Lattermann and
Buchs, 2015). This trend will likely continue toward even
smaller reactors, potentially even single-cell microfluidic chips
(Oguntimein et al., 2018).

NMR FOR BIOMASS SUGAR AND FATTY
ACID COMPOSITION

Detailed characterization is required for the continued
development of biomass feedstocks possessing traits desirable
for biofuels and bio-derived chemicals. Quick and precise
identification of cell wall chemistry traits and composition
due to both gene transformation and natural variation can be
accomplished through high-throughput (HTP) characterization
using nuclear magnetic resonance (NMR) spectroscopy.
Traditionally, lignin and carbohydrate chemistries have been
obtained through time and labor-intensive bench-scale HPLC
and gravimetric determination (Sluiter et al., 2008, 2010).
While carbohydrate characterization methods can incorporate
automated sample preparation in 96-well plates, a time-
consuming HPLC analysis step for minor sugars composition is
often the bottleneck in throughput (Selig et al., 2011).

Simple 1H NMR methods provide a wealth of information
about liquid samples, such as biomass hydrolysates, including
both carbohydrate and hydrolysate by-product compositions.
Mixture analysis of NMR spectra is well developed, with
many software applications making analysis straightforward
and reliable (da Silva Neto et al., 2009; Powers, 2009; Spraul
et al., 2009; Da Silva et al., 2013). Traditionally, sugar analysis
in biomass hydrolysates has been performed using integration
of the anomeric proton region between 4.4 and 5.4 ppm
against a reference standard (Kiemle et al., 2003; Mittal et al.,
2009), but peak overlap occurs for several sugars and the large
water peak at 4.8 ppm often makes integration of these peaks
impossible. Shifting of the water peak above the anomeric proton
region requires either highly acidic conditions, which cause
NMR instrumentation issues (Kelly et al., 2002), or a below-
freezing temperatures of water, rendering them undesirable
for high-throughput analysis. Gjersing et al. (2013) reported a
method developed for high-throughput screening of biomass

hydrolysates generated from two-stage acid hydrolysis using
1H NMR spectra. HPLC-measured concentration data was
used to construct a Partial Least Squares Regression (PLS)
model for sugar composition using NMR spectra of aqueous
hydrolysates. A model for each monomeric sugar can be used
to determine concentrations within the hydrolysate mixture. In
this method, 8 biomass feedstocks were used to construct a
PLS model with HPLC data and NMR spectra. The fully cross-
validated model was used to predict sugar concentrations for
15 samples, including a feedstock that was not in the original
model, and compared to HPLC-measured concentrations. The
NMR based PLS model and HPLC-measured concentrations
agreed, within error, demonstrating the applicability of the model
(Gjersing et al., 2013). Use of a cryoprobe allowed for the NMR
experiment time to be further reduced, and preliminary work
indicates 4min per sample—a dramatic increase in throughput
compared to traditional HPLC methods. A combination of
this NMR approach for analysis of carbohydrates combined
with the high-throughput micro-scale hydrolysis preparation
discussed previously (Selig et al., 2011) could provide a
truly high-throughput screening method for biomass sugar
composition.

Increasingly, metabolite profiles are being used to screen
biological materials, including biomass populations to look
for varying plant responses to stress (Ruan and Teixeira da
Silva, 2011; Sun et al., 2016). Recent reports demonstrate that
the laborious extraction procedures for metabolites has been
improved, making metabolic analysis by NMR more practical
(Fumagalli et al., 2009; Martineau et al., 2011; Rivas-Ubach et al.,
2013). Additionally, high-resolution magic angle spinning (HR
MAS)NMRprovides the ability to use whole cell plantmaterial to
detect changes in abundant metabolites, which eliminates several
preparation steps (Silva et al., 2012; Blondel et al., 2016).

Fatty acids from non-lignocellulosic biomass such as
microalgae have become more routinely recognized as a
feedstock for biofuel production (Fukuda et al., 2001; Chisti,
2007; Wijffels and Barbosa, 2010). Algal lipid composition
varies greatly among species and additional variation is added
when culture growth conditions are modified (Scott et al.,
2010). Thus, it is imperative that analytical tools be developed
for rapid screening of large numbers of samples necessary for
comparative studies. Traditionally, protocols for analysis of lipids
from microalgae involve time-consuming and labor-intensive
extraction followed by chromatography (Bligh and Dyer,
1959; Jones et al., 2012). A fluorescent model was developed
that suffered from many technical drawbacks to large-scale
screening, including daily calibration of the fluorescent probe
and specificity of cell response (Cooksey et al., 1987; Elsey et al.,
2007; Chen et al., 2009). However, a simple 1H NMR screening
method was developed that allowed for assessment of major lipid
classes from rough microalgae extracts (Nuzzo et al., 2013). The
collection of a single NMR spectrum took only a few minutes,
without purification of rough extracts, and employed the use of
a reference electronic signal as an external standard, known as
ERETIC (Akoka et al., 1999). This allowed for the quantification
of several major lipid classes important for biodiesel synthesis,
including total fatty acids, free fatty acids, triacylglycerols,

Frontiers in Energy Research | www.frontiersin.org 11 November 2018 | Volume 6 | Article 120

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Decker et al. HTP Screening

unsaturated fatty acids, and saturated fatty acids (Nuzzo et al.,
2013).

Overall, there have been dramatic improvements in sample
handling over the last two decades that have allowed traditional
bench-scale methodologies to become high-throughput. As
robotics and sample changers become more common place,
methodologies can be upgraded to accommodate the demand for
the large data sets involved in bioinformatics.

DATA ANALYSIS AND SYSTEMS BIOLOGY
MODELING FOR HIGH THROUGHPUT
BIOMASS ANALYSIS

There is a need for integrated biological models to capture
the higher order complexity in the interactions that occur
among cellular components. A full model of all of the higher
order interactions of cellular and organismal components is
one of the ultimate grand challenges of systems biology
(Sweetlove et al., 2017). The ability to build such comprehensive
models will usher in a new era in biology. Success in the
construction and application of computational algorithms will
enable new insights into the molecular mechanisms responsible
for complex biological systems and related emergent properties;
using technologies not previously available on a scale not feasible
before. A full systems biology model of all of the higher order
interactions of cellular and organismal components would lead
to breakthroughs, which would have profound effects on the field
(Sweetlove et al., 2017).

The cost of generating biological data is dropping
exponentially, resulting in increased data that has far outstripped
the predictive growth in computational power from Moore’s
Law. This flood of data has opened a new era of systems
biology in which there are unprecedented opportunities to
gain insights into complex biological systems. The dominant
paradigm of high-throughput systems biology is the use of
new technologies to generate massive amounts of data that
can then be analyzed computationally for new insights and
hypothesis generation. Solving such complex combinatorial
problems will give us extraordinary levels of understanding
of biological systems. Paradoxically, understanding higher
order sets of relationships among biological objects leads to a
combinatorial explosion in the search space of biological data.
These exponentially increasing volumes of data, combined
with the desire to model more and more sophisticated sets of
relationships within a cell and across an organism (or in some
cases even ecosystems), have led to a need for computational
resources and sophisticated algorithms that can make use of such
datasets. Thus, the bottleneck in biological science is often no
longer data generation but rather the computational analysis.

Biological organisms, including plants, microbes, and
humans, are derived from complex genetic systems that are
composed of functional networks of interacting molecules,
macromolecules, and even species (Foster et al., 2017).
The subsequent phenotypes are the result of orchestrated,
hierarchical, varied collections of expressed genomic variants
regulated by and related to biotic and abiotic signals. However,

at the individual organism level, the measured effects of these
genomic variants can be viewed as the result of historic selective
pressure and current environmental as well as epigenetic
interactions. Thus, the co-occurrence of genome variants and
the resulting complex phenotypes can be viewed in the context
of genome-wide associations in several different ways. This
phenomenon allows us to use vectors of genome variant-to-trait
associations to detect the higher order interactions occurring
in an organism across hierarchical phenotypes. A full model of
all of the higher order interactions of cellular and organismal
components is one of the ultimate grand challenges of systems
biology.

We are attempting to do this for the bioenergy feedstock
Populus trichocarpa (black cottonwood) and are currently using
10 million genome variants derived from the resequenced
genomes of more than a thousand different genotypes
and 160,000 phenotypes that have been measured across
this population (including transcriptomics, metabolomics,
microbiomics, and phenomics data).

Networks
Networks are useful tools for modeling and analyzing complex
biological systems by representing biological objects as nodes,
(e.g., genes, proteins or metabolites) and representing the
relationships/interactions/similarities between them as edges
(Barabasi and Oltvai, 2004). For example, networks can model
co-expression relationships between genes, sequence similarity
between genes, physical interactions between proteins and/or
correlations between metabolites. Networks allow for biological
datasets to be visualized in an intuitive manner and network
visualization packages such as Cytoscape provide an interactive
environment for network visualization. However, networks are
not simply useful as a visualization tool. Networks provide a
data structure that serves as a mathematical representation of
a complex system, allowing further analysis to be performed
on a dataset represented as a network. Datasets represented
as networks are also very easily merged with other networks,
thus constructing a useful tool for combining information
from different data sources to create a combined and holistic
environment for data interpretation (Shannon et al., 2003).

GWAS Network Construction
Phenotypes are often complex traits, in that they are influenced
by the environment and potentially a large number of genes
(Solovieff et al., 2013). GWAS attempts to associate the presence
of SNPs with these complex traits (Visscher et al., 2012; Solovieff
et al., 2013). This involves genotyping a large number of
individuals in a population, measuring phenotypes across all of
these individuals and statistically determining the association
between the presence/absence of the genotyped markers or
SNPs and each phenotype (Korte and Farlow, 2013). A general
concern when conducting GWAS studies is that individuals
within a population that can be genetically related and share
causal alleles, which cause the phenotype, and non-causal alleles
artifactually connected to the phenotype (Visscher et al., 2012;
Korte and Farlow, 2013). These causal and non-causal alleles can
be located near each other on a chromosome and could thus be
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in linkage disequilibrium (i.e., alleles which are correlated across
a population and co-inherited. This linkage disequilibrium (LD)
between causal and non-causal alleles across related individuals
results in non-causal alleles being correlated with a phenotype
when they have no actual effect on the phenotype. A common
approach to correcting for this phenomenon is to take population
structure into account to avoid artificially inflated p-values.
Population structure is often estimated from a kinshipmatrix and
incorporated into the model (Flint-Garcia et al., 2003).

Spurious phenotype-to-genotype associations can also result
from outlier phenotype values, this is especially evident when
using linear models to calculate such associations. We therefore
often apply a median absolute deviation (MAD) from the median
cutoff in order to determine if a given phenotype measurement is
an outlier compared to measurement taken across the population
(Leys et al., 2013).

Associations between genome variants (SNPs) and
phenotypes are typically made with the use of a linear mixed
model as found in EMMAX (Kang et al., 2010). This results in
multiple individual tests being performed, thereby introducing
a multiple hypotheses bias, i.e., type 1 error. This bias is often
mitigated with one of several false discovery rate methods,
including the Benjamini–Hochberg method (Benjamini and
Hochberg, 1995).

Alternatively, networks can then be created in which
the respective SNPs and phenotypes are nodes and an
edge denotes a significant GWAS association between them,
enabling the subsequent determination of whether or not a

phenotype-associated SNPs reside within genes and create a
subnetwork of gene-phenotype associations.

Layered Networks, LOE Scores, and New
Potential Targets
Alternate lines of evidence about the relationships between genes,
and between genes and phenotypes can be created using several
sets of networks. We recently developed a Lines of Evidence
scoring system (LOE scores) in order to quantify the number of
lines of evidence connecting genes to phenotypes (Figure 3). The
GWAS network layers provide functional information at various
scales (from molecular to organismal to environmental), which
reflect signaling cascades, biosynthetic pathway information, and
various regulatory circuits. For example, the co-expression and
co-methylation networks provide information from multiple
regulatory layers within the cell and the SNP correlation
network models putative co-evolution relationships between
genes (Climer et al., 2014; Joubert et al., 2018; Weighill et al.,
2018).

LOE (Lines of Evidence) scores for each gene can be calculated
by starting with functions or topics of interest, revealing the
strength of the evidence linking each gene to the function or
topic of interest. The LOE breadth score quantifies types of
LOE’s (number of layers) that connect a gene and topic or
function, and the LOE depth score quantifies the total number
of functions/topic a gene is associated with. Individual layer LOE
scores from each layer (e.g., co-expression or GWAS) indicate

FIGURE 3 | Schematic of the Lines of Evidence scoring system (LOE scores) used to quantify the number of lines of evidence connecting genes to phenotypes.
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the number of function/topic associations a gene has within that
particular layer (Weighill et al., 2018).

This LOE approach provides a new approach for exploring
the vast data collections that are occurring in biology today. Any
known genes, phenotypes or annotation topics of interest can be
provided as input. A rank-order list of new candidate genes that
have multiple lines of evidence supporting their involvement in
the area of interest can be created from LOE scores. And as such,
this approach generates a prioritized list for genetic modification
via transformation, genome editing, selective breeding etc. used
to validate and/or manipulate a phenotype or set of phenotypes.

Deeper Discoveries in Systems Biology:
The Balance Between Type 1 and Type 2
Error
In a GWAS analysis that is done in isolation there is often large
concern for false positives and stringent, riotous FDR thresholds
are frequently applied. However, this overcompensation for type-
1 error (avoiding false positives) will likely result in large type
2 errors (i.e., false negatives). If one’s goal is to create a systems
biology model that captures as many biological interactions
(e.g., protein-protein interactions, epistatic and pleiotropic
interactions, biosynthetic regulators, etc.) as possible, this is a
heavy price to pay. We are now using a combination of relaxed
FDR thresholds in combination with LOE on the resulting
associations in order to strike an improved balance between type
1 and type 2 error, allowing for a more comprehensive models of
the entire biological system. As such, our ability to reconstruct
the entirety of a complex biological system improves as the
number of population-scale endo-, meso- and exo-phenotypes
are measured and combined with deep layers of experimental
data collected on individual genotypes.

FUTURE PROSPECTS FOR HIGH
THROUGHPUT BIOMASS AND DATA
ANALYSIS

This review has covered recent developments for the high
throughput analysis of biomass composition and other properties
that have been made possible through the use of robotics and
miniaturized equipment, sophisticated computational tools,
rapid detection instrumentation and by reduction in sample
size, preparation, man-power, and materials needed for analyses.
There is still room for improvement in these processes,
particularly in relation to increases in preparation throughput
and accuracy of the results. Improvements to instrumentation
will continue in effort to enhance sensitivity, resolution, dynamic
range, and robustness. Additionally, smaller and portable
instruments that can be brought to the field would aid in
reducing sample collection resources and errors. Processing
parameters, scalability and the effects of other variables,
associated particularly in deconstruction and conversion
analyses, still require further investigations for accuracy and
applicability to large-scale conditions. Comprehensive analysis
of data using sophisticated computational tools could extend the
capabilities of associated analytical methods and instrumentation

and provide a better understanding of biological systems as a
whole.
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