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Adipic acid is one of the most important feedstocks for producing resins, nylons,

lubricants, plasticizers. Current industrial petrochemical process, producing adipic acid

from KA oil, catalyzed by nitric acid, has a serious pollution to the environment, due

to the formation of waste nitrous oxide. Hence, developing cleaner methods to produce

adipic acid has attracted much attention of both industry and academia. This mini-review

article discussed advances on adipic acid synthesis from bio-renewable feedstocks, as

well as most recent progress on cleaner technology from fossil fuels over novel catalytic

materials. This work on recent advances in green adipic acid production will provide

insights and guidance to further study of various other industrial processes for producing

nylon precursors.

Keywords: nanostructured catalyst, glucose, glucaric acid, adipic acid, cyclohexanone, polyoxometalates

INTRODUCTION

Adipic acid (AA) has immense practical use in industrial for the production of nylon-66, nylon-6,
lubricant and plasticizer (Feng et al., 2019; Perkel and Voronina, 2019; Pisk et al., 2019; Yang B.
et al., 2019; Yang J. et al., 2019). In current industrial processes, AA is synthesized mainly by
oxidation of KA oil using 50–60% nitric acid as oxidant and copper/ammonium metavanadate
as the catalyst (Van de Vyver and Roman-Leshkov, 2013; Deng et al., 2016; Rahman et al.,
2016). However, this process emits nitrous oxide which can cause ozone depletion, acid rain, and
global warming. Furthermore, the applicability of the phase-transfer catalyst in industrial scale is
expensive. Obviously, we need to develop more sustainable AA manufacturing process which can
avoid the use of toxic reagents and tedious products separation (Dugal et al., 2000; Cheng et al.,
2007; Fujitani et al., 2009; Jin et al., 2011; Indulkar et al., 2012; Lu et al., 2012; Vafaeezadeh et al.,
2012).

Cyclohexane, cyclohexanol, cyclohexanone can be oxidized to produce AA without formation
of any greenhouse gases (Sato et al., 1998; Chatterjee et al., 2018; Luo et al., 2018; Mazzi et al., 2018;
Mouheb et al., 2018; Wang et al., 2018). Oxygen, air, hydrogen peroxide (H2O2) are regarded as
clean oxidant since they give water as the only byproduct. It is essential to use separable and reusable
inexpensive catalysts for development of sustainable protocols (Baig and Varma, 2012). Various
of solid supported catalysts, such as metal oxides, (Hereijgers and Weckhuysen, 2010; Makgwane
and Ray, 2014) hollow structure silicates, (Dai et al., 2016; Xia et al., 2018) carbon nanotubes
(CNTs), (Machado et al., 2014; Yang et al., 2016) and polyoxometalates (POMs), (Luo et al., 2018)
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GRAPHICAL ABSTRACT | Heterogeneous Catalysts for Adipic Acid Synthesis.

show remarkable performances in AA synthesis, due to the
inherent adsorptive properties and tunable acidity.

Some alternative bio-derived AA processes have been
extensively reported for synthesizing AA by oxidizing
lignocellulosic biomass derived chemicals, e.g., hemicellulose,
cellulose, and lignin (Vardon et al., 2015; Han, 2016).
Different processes including glucose to glucaric acid process,
hydroxymethylfurfural (HMF) to furan dicarboxylic acid
(FDCA) process, γ -valerolactone process, lignin and lignin-
derived oils process, were reported for AA synthesis from
biomass feedstocks (Deng et al., 2016; Gunukula and Anex, 2017;
Skoog et al., 2018). In the glucose conversion route, glucaric
acid was formed as intermediate by oxidizing the glucose and
further undergo hydrogenolysis to form AA (Zhang and Deng,
2015; Zhang and Huber, 2018). This reaction can be achieved
in the presence of Au, Pt, and Pd catalysts (Ibert et al., 2002;
Merbouh et al., 2002). In the FDCA process, FDCA were
formed as intermediates by oxidizing the HMF and was further
hydrogeneolyzed to form AA (Gilkey et al., 2018). Noble Pt and
Au metals-based catalysts were reported most effective for this
reaction (Kong et al., 2018).

Most recent review articles on the synthesis of AA have
been listed in this section. Van de Vyver and Roman-Leshkov
(2013), Deng et al. (2016), and Rahman et al. (2016) summarized
the performances of various catalysts for AA production, with
specific focus on metal catalyst design and reaction mechanism.
The progress of the metabolic pathways for AA production has
been reviewed (Polen et al., 2013; Alonso et al., 2015; Deng et al.,
2016; Kruyer and Peralta-Yahya, 2017; Skoog et al., 2018). In
2018, Li et al. (2018) summarized the conversion of cellulose and
its derivatives to various organic acids. In this mini review, the
glucose and HMF processes will be reviewed systematically. We

will particularly focus on the advances of the performances of
metallic solid catalysts and POM catalysts for synthesis of AA
from both glucose and HMF routes in past 5 years, including
mechanistic insights and catalysts stability. The opportunities
and challenges in the green process of AA production will
be discussed.

HETEROGENEOUS METALLIC CATALYST
FOR GLUCSOE AND DERIVATIVES
OXIDATION

The transformation of bio-based glucose and its derivatives into
AA is green and sustainable. In the first step, the glucose was
oxidized to form glucaric acid which was further converted to AA
by a catalytic hydrodeoxygenation (HDO) process (Figure 1A).
A patent disclosed a yield of 89% of AA in the HDO process over
Pt/Rh metallic catalysts in acidic condition using acetic acid and
HBr as solvent (Boussie et al., 2014). Lin et al. (2019) reported
the deoxydehydration of cellulose-derived D-glucaric acid to AA
ester over ReOx/ZrO2-Pd/C catalysts (Y = 82%). In this part, we
summarized the most recent progress of glucaric acid synthesis
from glucose.

In the industry, this process can be achieved in the presence
of homogeneous catalysts and toxic oxidants under harsh
conditions (Smith et al., 2012). The difficulty of separation and
the hazardous byproducts hampered the further development of
this process. Literatures have widely demonstrated the synthesis
of glucaric acid over the supported noble metal catalysts, e.g.,
Pd, (Jin et al., 2016) Pt, (Bellardita et al., 2016; Shi et al., 2018)
and Au (Wojcieszak et al., 2016; Derrien et al., 2017; Solmi
et al., 2017) catalysts. Au nanoparticles were immobilized on
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FIGURE 1 | (A) Glucose oxidation to produce AA, (Jin et al., 2016). (B) TEM images of PtPd/TiO2 (Jin et al., 2016).

active carbon (Table 1, #1) (Solmi et al., 2017). After adding Bi
additives, AuBi/AC catalyst showed higher glucaric acid yield
(Table 1, #2). They claimed that Au particle size affected the
ratio between the parallel reactions of gluconic and glucaric acid
formation. The reuse study showed a little decline of the activity
due to the agglomeration of nanoparticles and the deposition of
organic residues (Solmi et al., 2017). Au-Pt and Au-Pd catalysts
were supported on various metal oxides (Table 1, #3) (Derrien
et al., 2017). The catalytic performance of these catalysts was
significantly influenced by the nature of the support. The best
glucaric acid yield (44%) was obtained in the presence of ZrO2

supported Au-Pt catalyst under base-free conditions (Derrien
et al., 2017) CeO2 supported Au-Pt catalyst showed the lowest
activity. They also noticed that Au-Pd showed higher ability to
convert glucose to gluconic acid, but lower ability to further
convert gluconic acid to glucaric acid comparing to the Au-
Pt catalysts (Derrien et al., 2017). The recycled Au-Pt/ZrO2

catalyst was stable in three successive runs, but displayed lower
glucaric acid selectivity in the fourth to sixth runs. The TEM
images showed the particles’ morphology did not change after
24 h reaction. ICP results showed there was no trace of Au or
Pt presented in the reaction solution. Hence, they concluded
that the activity decline was caused by the multiple handling
and washing of the catalyst. The same group synthesized Pt/C
catalyst and obtained a yield of 54% of glucarate under alkaline
conditions (Table 1, #4) (Derrien et al., 2016). Lee et al. (2016)
get a maximum yield of 74% of glucaric acid with Pt/C in
aqueous solution with pH of 7.2 using air as oxidant. They
found that the selectivity to gluconic acid was higher in acidic
conditions due to C-C bond cleavage to short chain carboxylic
acids (Table 1, #5) (Lee et al., 2016). The Pt/C catalyst showed
good stability in at least five consecutive runs and had no
Pt leaching and morphology changing during the reaction.
Bimetallic PtPd/TiO2 (TOF= 2404 h−1) catalyst was synthesized

via a simple in situ reduction method and displayed much higher
activity compared to monometallic catalysts (TOF = 248 h−1)
due to the existence of PtPd alloy structure as confirmed by
the TEM image (Figure 1B, Table 1, #6) (Jin et al., 2016). The
PtPd/TiO2 catalyst was stable in three consecutive runs with no
activity loss, but about 4% Pt and Pd leaching was observed. It
is highly possible that the leached metal species may be inactive
in this reaction. The same group prepared Pt-Cu/TiO2 catalyst
using NaBH4 as reducing agent and demonstrated a satisfactory
activity for glucaric acid (X = 92%, S = 60%) under base-free
conditions (Table 1, #7) (Jin et al., 2015; Shi et al., 2018). They
observed strong metal-support interaction between Pt and TiO2

support. The stability study showed that the catalyst exhibited
same conversion of glucose and marginal change of selectivity to
glucaric acid after three runs. This work demonstrated that it is
practicable to replace the second noble metal with inexpensive
Cu metal for the glucose oxidation process (Shi et al., 2018).

HMF is an important platform chemical which can be
converted to AA by two steps. HMF was oxidized to form FDCA
which undergo deoxygenation to form AA. Wei et al. (2019)
reported one-step conversion of FDCA to AA in water over
niobic acid-supported Pt catalyst 38% AA yield was obtained
at 200

◦

C in 8 h over Pt/Nb2O5 catalyst which was proved to
be stable in at least five repeated runs. The hydrodeoxygenation
of FDCA was also conducted in the presence of Pt-MoOx/TiO2

catalyst with AA yield of 21% at 200
◦

C in 4 h (Asano et al., 2016).
The low solubility of FDCA in water may cause the low AA
yield. Gilkey et al. (2017) studied the metal-free hydrogenolysis
of tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) to produce
AA. A 99% THFDCA conversion and 89% yield of AA were
obtained at 160

◦

C in 2 h. The literatures about this step was
rare, but FDCA synthesis from HMF oxidation has been widely
reported as one of the key steps of biomass conversion to AA
(Figure 2A) (Zhang et al., 2015, 2018; Zhou et al., 2016; Diamond
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TABLE 1 | Heterogeneous metallic catalyst for glucose and derivatives oxidation.

# Catalyst Reaction conditions Conversion, selectivity

1 Au/C Glucose, 60
◦

C, 3 h, 1MPa, O2 Y = 24%

2 AuBi/C Glucose, 60
◦

C, 3 h, 1MPa, O2 Y = 31%

3 Au-Pt/ZrO2 Glucose, 100
◦

C, 4 h, 4MPa, air Y = 44%

4 Pt/C Glucose, 60
◦

C, 24 h, 0.1MPa, air Y = 54%

5 Pt/C Glucose, 80
◦

C, 10 h, 1.4MPa, O2 X = 99%, S = 74%

6 PtPd/TiO2 Glucose, 45
◦

C, 24 h, 0.1MPa, O2 X = 100%, S = 40.4%

7 PtCu/TiO2 Glucose, 90
◦

C, 12 h, 1.5MPa, O2 X = 92%, S = 60%

8 AuPd/AER HMF, 100
◦

C, 4 h, 1MPa, O2 X = 100%, S = 93.2%,

9 AuPd/CaMgAl HMF, 100
◦

C, 6 h, 0.5MPa, O2 X = 96.1%, S = 89.4%

10 PdNi/Mg(OH)2 HMF, 100
◦

C, 10 h, 0.1MPa, air X = 99%, S = 76%

11 PdCo/Mg(OH)2 HMF, 100
◦

C, 10 h, 0.1MPa, air X = 94%, S = 46%

12 PdCu/Mg(OH)2 HMF, 100
◦

C, 10 h, 0.1MPa, air X = 81%, S = 41%

13 Pt-Ni/AC HMF, 100
◦

C, 6 h, 0.4MPa, O2 X = 100%, S = 43.1%

14 Pt/C HMF, 110
◦

C, 12 h, 1MPa, O2 X = 99%, S = 96%

15 Ru/MnCo2O4 HMF, 120
◦

C, 10 h, 2.4MPa, air X = 100%, S = 99.1%

16 Ru/HAP HMF, 120
◦

C, 24 h, 2MPa, air X = 100%, S = 99.6%

et al., 2018; Li et al., 2018; Rathod and Jadhav, 2018; Ventura et al.,
2018). Au-Pd alloy nanoparticles were immobilized on basic
anion-exchange resin and catalyzed the HMF to FDCA reaction
with a yield of 93.2% (Table 1, #8) (Antonyraj et al., 2017). The
physical mixture of Au and Pd nanoparticles showed only 52%
FDCA yield. This confirmed the major role of the AuPd alloy as
active species as evidenced by the XPS study (Antonyraj et al.,
2017). This catalyst had nometal leaching and activity decreasing
after six cycles. Au-Pd alloy was also supported on La-doped
CaMgAl layered double hydroxide (LDH) (Gao et al., 2017). TEM
images showed that small nanoparticles with 3–4 nm particle size
were well-dispersed on the LDH support (Figure 2B) (Gao et al.,
2017). A yield more than 99% of FDCAwas obtained ascribing to
the high surface basicity of the support and the synergy between
Au-Pd nanoparticles (Table 1, #9). They also observed that the
La2O3 on the surface of the LDH support can form carboxylic
acid products and prevent the deterioration of the LDH support,
thus enhance the catalyst stability (Gao et al., 2017). This catalyst
maintained good activity after four runs with only 2% decreasing
of the yield. No leaching of Au or Pdwas detected. However, there
were 0.8% of Mg and 0.3% of Ca lost after the reaction.

Ni, Co, and Cu metals were selected to synthesis bimetallic
Pd catalysts. Gupta et al. (2017a,b) found that PdNi/Mg(OH)2
catalyst displayed higher catalytic performance than Co and Cu
based Pd/Mg(OH)2 catalyst due to the synergistic cooperation
between Pd and Ni species (Table 1, #10–12). This catalyst can be
reused for three consecutive reactions without significant activity
loss, Pd/Ni metal leaching, or particle size changing. Ni and
Pt bimetallic nanoparticles were supported on active carbon by
atomic layer deposition method (Table 1, #13) (Shen et al., 2018).
The TEM images showed that themetal were uniformly dispersed
on the support (Figure 2C). A 97.5% yield of FDCA (TOF=
35.8 h−1) was obtained in 15 h reaction. They claimed that the
presence of Ni species enhanced the ability of Pt to adsorb and
oxidize C = O bond (Shen et al., 2018). The catalysts recycled

after four runs showed 86.3% FDCA yield which is lower than the
fresh catalysts (97.5%). However, the reasons for the activity loss
was not discussed in this work. Pt supported on carbon displayed
96% yield of FDCA in the absence of base (Table 1, #14) (Han
et al., 2016). The introduction of N atom brought more medium
strength basic sits to the catalyst and thus elevated the catalytic
activity (Han et al., 2016). Ru immobilized on MnCo2O4 was
reported highly active (Y = 99.1%) for HMF oxidation under
base-free condition (Table 1, #15) (Mishra et al., 2017). The
existence of both Lewis and BrØnsted acid sites facilitated the
HMF oxidation to FDCA (Mishra et al., 2017). The reusability
study showed that there was no significant change in the rate
of HMF conversion in at least five successive runs. The TEM
images of both fresh and used catalysts indicated that there was
no discernible change of the structure. No Ru metal leaching was
detected by ICP analysis.

Gao et al. (2018) supported Ru on hydroxyapatite. The TEM
image showed a typical rod-shape agglomerates with the mean
size of Ru nanoparticles about 1.8 nm (Figure 2D). Hundred
percentage of conversion of HMF and 99.6% selectivity to FDCA
were obtained in the presence of oxygen and water. The acidic-
basic sites on hydroxyapatite support were essential for good
catalytic performance (Table 1, #16) (Gao et al., 2018). There
was about 10% loss of the FDCA yield after the fifth runs. ICP
results revealed there was no leaching of Ru and Ca species from
the catalyst. No aggregation of Ru nanoparticles was noticed
from the TEM images. The adsorption of impurities and the
partial oxidation of Ru nanoparticles were the main reason of the
catalyst deactivation.

CYCLOHEXANE, AND
CYCLOHEXANONE/CYCLOHEXANOL
OXIDATION TO AA

Cyclohexane and cyclohexanone/cyclohexanol are the most
selected chemicals as the model substrates for oxidation reaction
to produce AA over various of catalysts, such as metal oxides,
carbon nano tubes (CNTs), and TS-1 catalysts (Cavani et al.,
2011; Alshammari et al., 2012; Dai et al., 2016; Chen et al., 2017;
Nale et al., 2017).

Cyclohexane Oxidation to AA
Metal oxides are widely studied for oxidation reaction (Fang
et al., 2013; Hao et al., 2013; Zhang et al., 2013; Li et al.,
2014; Qadir et al., 2014; Gui et al., 2015; Imanaka et al., 2015;
Wang et al., 2016; Shiraishi et al., 2017). The nature of the
metal oxides as support or as active species influenced the
catalytic performance of the catalysts significantly (Unnarkat
et al., 2016; Ribeiro de SousaMartins et al., 2017; Yang et al., 2017;
FelicianoMiranda et al., 2018). Acharyya et al. (2015) synthesized
Cr2O3 supported Cu nanoclusters with hydrothermal method
which converted cyclohexane to cyclohexanone with high yield,
but failed to produce any AA. Whereas, WO3 supported Cu
converted cyclohexane with 88% conversion and 75% selectivity
to AA (Table 2, #1) (Acharyya et al., 2015). Most probably,
the activation energy was lowered in the case of Cu-WO3
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FIGURE 2 | (A) HMF to AA, (Lee et al., 2016) TEM images of (B) AuPd/CaMgAl, (Gao et al., 2017) (C) Pt-Ni/AC, (Shen et al., 2018) (D) Ru/HAP (Gao et al., 2018).

catalysts due to the flexibility property of the Cu-framework. The
impregnated CuO/WO3 catalyst was inactive for cyclohexane
oxidation to AA. It seems that the synergistic interaction between
the Cu and W species is the main reason of the oxidation
activity. Recycled Cu-WO3 catalysts have no metal leaching in
at least four consecutive runs without any decreasing of catalytic
performance. Comparing to Cu, Au has the same outermost
electronic configurations but far higher activity in oxidation
reactions. Liu et al. (2016) coated Au on the wall of the stainless
steel microcapillary. A conversion of 2.1% and selectivity of
18.9% to AA were obtained for cyclohexane oxidation in 4min
(Table 2, #2). The stability of the catalyst was not reported in
this work. Alshammari et al. (2015, 2016) incorporated Au,
Pd, and Ag on TiO2 using sol-gel methods. Bimetallic catalysts
AuPd/TiO2 showed higher selectivity compared to monometallic
Pd/TiO2 toward AA (Table 2, #3) due to smaller particle size as
observed by TEM images. Au as a second metal is important
for enhancing the AA selectivity due to the synergistic effects
between Au and Pd metals. The bimetallic catalyst was observed
deactivated after consecutive runs due to the formation of Pdδ−

species with lower binding energy, metal leaching and coke
formation (Alshammari et al., 2016). Chen et al. (2017) confined
Au nanoparticles in hybrid shells of organic linker-assisted silica
nanospheres (GOS) using amino function groups for anchoring
Au precursor. TEM images showed that GOS has uniformed
nanospheres with 120–150 nm diameter. The AuNPs (<2 nm)
were highly dispersed on the shells of silica. FTIR and Raman
results indicated that the incorporation of AuNPs didn’t alter
the structure of GOS. The obtained catalyst oxidized cyclohexane

with 45% selectivity to AA under solvent-free conditions using
O2 as oxidant (TOF = 59,307 h−1, Table 2, #4). It seems that
the AuNPs confined in silica shell is more active than that in
the inner cores. Besides, C-H bonds in silica shell improved the
hydrophobicity and the adsorption of cyclohexane.

Hollow structure silicates (HTS) with large intraparticle voids
were more active than TS-1 catalyst for cyclohexane oxidation
reaction as reported (Shi et al., 2011). This special structure
can aggravate the movement of products and reactants in and
out of the channels. Zou et al. (2015b) evaluated various of
HTS catalysts and found Mn-HTS gave the highest selectivity
toward AA due to the nature of Mn metal (Table 2, #5).
The stability of Mn-HTS catalysts maintained in four runs.
The stability was confirmed by comparing the FT-IR and UV-
Vis spectra of the fresh and recycled catalysts. This reaction
proceeded via radical intermediates with Ti(IV)-O q or Ti(IV)-
OO q species as active centers and Mn3+ as promoters. W based
HTS bifunctional catalysts showed higher activity compared to
H2WO4/TS-1 for the oxidation of cyclohexane (Table 2, #6) due
to higher accessibility of Ti species, large intraparticle voids and
the bifunctional catalytic sites (Dai et al., 2016).

Carbon nanotubes (CNTs) have been widely used as catalysts
support because they are insoluble in the most solvents (Coleman
et al., 2006; Moniruzzaman and Winey, 2006; Tangestaninejad
et al., 2008, 2009; Moghadam et al., 2010a,b). On the other
hand, CNT can create confined spaces for metals to prevent
the aggregation and to act as a template for metal seed growth
(Moghadam et al., 2010a). Yang et al. (2016) prepared Fe-,
Ni-, and FeNi- based CNT catalysts with controllable wall
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TABLE 2 | Cyclohexane, cyclohexanol, and cyclohexanone oxidation to AA.

# Catalyst Reaction conditions Conversion,

selectivity

1 Cu-WO3 Cyclohexane, 70
◦

C, 12 h,

H2O2

X = 75%, S = 88%,

TON = 119

2 Au-Al2O3 Cyclohexane, 180
◦

C,

0.25 h, 3MPa, O2

X = 2.1%, S = 18.9%

3 Au/TiO2 Cyclohexane, 150
◦

C, 4 h,

TBHP, 1MPa, O2

X = 25%, S = 26%,

TON=237

4 AuNPs(GOS) Cyclohexane, 150
◦

C, 3 h,

TBHP

X = 34%, S = 45.1%,

TON = 59307

5 Mn-HTS Cyclohexane, 140
◦

C, 6 h,

1MPa, O2

X = 8.6%, S = 57.7%,

TON = 324

6 W/HTS Cyclohexane, 90
◦

C, 14 h,

H2O2

X = 31.4%, S = 78.5%,

TON = 31

7 Fe@CNT-100 Cyclohexane, 125
◦

C, 8 h,

1.5MPa O2

X = 39.7%, S = 49.7%,

TON = 299

8 M-PW12O40 Cyclohexene, 100
◦

C,

72 h, H2O2

X = 75%, Y = 61%

9 Al2O3@Fe2O3 Cyclohexanone, 80
◦

C,

24 h, H2O2

TON = 71

10 Mn-HTS Cyclohexanone, 90
◦

C,

9 h, 0.6Mpa, O2

X = 68%, S = 93%,

TON = 713

11 Mn- HMTS Cyclohexanone, 90
◦

C,

8 h, 0.6Mpa, O2

X = 64%, S = 94%,

TON = 887

12 TS-1 Cyclohexanone, 80
◦

C,

8 h, H2O2

X = 53%, S = 33%,

TON = 34

13 FePO-1-2 Cyclohexanone, 75
◦

C,

10 h, 0.1Mpa, O2

X = 72%, S = 96%,

TON = 42

14 TIPO-1 Cyclohexanone, 80
◦

C,

8 h, H2O2

X = 92%, S = 66%,

TON = 49

15 MnAPO-5 Cyclohexanone,

85
◦

C,72 h, TBHP

X = 100%, S = 100%,

TON = 566

16 NH4SnPMo12O40 Cyclohexanone, 90
◦

C,

20 h, H2O2

X = 100%, S = 56

17 HNi1.5PMo12 Cyclohexanone, 90
◦

C,

20 h, H2O2

Y = 31%

18 CoPMo12O40 Cyclohexanone, 90
◦

C,

20 h, H2O2

Y = 75.5%

19 H3+xPMo12−xVxO40 Cyclohexanone, 70
◦

C,

12 h, 0.41MPa, air

X = 16%, S = 42%,

20 K6P2Mo6W12O62 Cyclohexanol, 90
◦

C,

20 h, H2O2

Y = 59%

thickness and evaluated for cyclohexane oxidation. They found
that Fe@CNT showed highest catalytic performance (Table 2,
#7) ascribing to the thin walls of CNTs and confined electron-
donating metals, which will help the electron transfer on the
CNTs surfaces (Yang et al., 2016). Besides, the Fe filling can
enhance the electronic property of the graphene sheets. Ni@CNT
has lower activity due to the weaker interaction with carbon.

POMs were reported highly active for oxidation reaction to
synthesize AA with a TON values as high as 29,550 (Luo et al.,
2018) The exceptional performance of POMs was possibly due
to the fact that POMs played the roles of co-catalysts, active
metal sites stabilizer and electronic structure regulator in the
oxidation process (Banerjee et al., 2012; Tahar et al., 2015).
Keggin type POMs, were the most studied type POMs for

liquid phase oxidation, due to their high resistance to oxygen
donors and strong oxidizing power (Wang et al., 2015; He et al.,
2016; Yu et al., 2017). Pisk et al. (2019) reported Merrifield
resins supported Mo- or W- based Keggin POMs as catalysts
to oxidize cyclohexene to AA with 46 and 61% yield (Table 2,
#8). They found the W based POMs are more active than Mo
based catalysts. They proposed Baeyer-Villiger oxidation type of
mechanism for this process (Figure 3A).

Cyclohexanone Oxidation to AA
Patra et al. (2013) developed a method to encapsulate γ -Al2O3

nanoparticles by a thin shell of α-Fe2O3. The resulting material
showed high surface area and meso-porosity due to self-
aggregation of tiny spherical nanocrystals as confirming by SEM
images. These catalysts displayed low TON for the oxidation of
cyclohexanone to AA in water (Table 2, #9), because only the
surface Fe center took part in the reaction. A single layer of Fe
center on the surface of the core was believed to enhance the
performance of the catalysts.

Mn-HTS catalysts displayed the good performance with 68%
cyclohexanone conversion, 93% AA selectivity (Table 2, #10)
(Zou et al., 2015a). Mn-HTS, with high oxidation states, had
less BrØnsted acid sites than Lewis acid sites which favored the
formation of enolate from the keto-form of cyclohexanone (Zou
et al., 2015a). The recycled catalysts were shown to maintain
the same Mn and Ti content in about 15 cycles of reuse. They
also noticed that the use of acetic acid as the co-solvent can
form CH3COOOH as oxidizing species and thus improve the
reaction rate and AA selectivity. Some other groups also noticed
the same phenomenon and claimed that the reaction proceed
via a radical-chain autoxidation mechanism, rather than a redox
mechanism in the presence of acetic acid (Shimizu et al., 2003;
Cavani et al., 2011). On the other hand, acetic acid can stabilize
the H2O2 and prevent the decomposition (Chavan et al., 2002;
Shimizu et al., 2003). Gao’s group prepared Mn-HMTS catalyst
by a one-step hydrothermal approach with tunable textural
properties (Table 2, #11, TON = 887) (Gao et al., 2019). They
noticed that the textural and physicochemical properties of Mn-
HMTS can be easily tuned by modifying the amounts of the
template agent. Free-radical mechanism was proposed, since Mn
species acted as a promoter for both radical intermediates and
enol formation from cyclohexanone (Gao et al., 2019). Xia’s
group also studied TS-1 catalysts for cyclohexanone oxidation
reaction by combining density function theory (DFT) calculation
with experimental studies (Table 2, #12) (Xia et al., 2015). DFT
calculations indicated that H2O2 molecule was absorbed and
activated at the tetrahedral Ti sites.

Phosphonate based metal catalysts have immense potential
to be used as ecofriendly catalysts due to the high durability
and thermal stability (Zhao et al., 2006; Deng et al., 2011; Dutta
et al., 2012; Mahdavi and Hasheminasab, 2015; Xiao et al., 2016;
Rezaei et al., 2017). Bhanja et al. (2016) synthesized an organic-
inorganic hybrid iron phosphonate materials (FePO-1-2) via
a hydrothermal synthesis route. This material displayed high
activity for the cyclohexanone oxidation due to the high surface
acidity as well as the framework redox FeII/III sites (Table 2,
#13). They also observed that water show more remarkable

Frontiers in Chemistry | www.frontiersin.org 6 March 2020 | Volume 8 | Article 185

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yan et al. Heterogeneous Catalysts for Adipic Acid Synthesis

FIGURE 3 | Proposed (A) Baeyer-Villiger oxidation type of mechanism, (Pisk et al., 2019) (B) radical chain autoxidation mechanism, (Cavani et al., 2011) (C) redox

mechanism (Amitouche et al., 2018) of cyclohexanone oxidation to AA.

promotion effect and good AA selectivity due to the higher
polarity than other solvents (Bhanja et al., 2016). There was
only very slight decrease of the AA yield after six consecutive
reactions. The XRD results suggested there was only minor
decrease in the crystallinity and BET surface area. There was
no detectable Fe leaching from the catalyst. Later, the same
group developed a oxyfluorinated titanium phosphate material
(TIPO-1,Table 2, #14) (Bhanja et al., 2018). Thismaterial showed
a 92% cyclohexanone conversion and 66% selectivity to AA.
A Mn incorporating aluminophosphate material (MnAPO-5)
was synthesized by Chatterjee’s group (Chatterjee et al., 2018).
A complete conversion of cyclohexanone and AA selectivity
were obtained (Table 2, #15). The detected ε-caprolactone as
intermediate by 1HNMR. They proposed a reaction pathway that
ε-caprolactone formed by Baeyer-Villiger oxidation and then the
ring undergoes oxidative C-C bound cleavage to give AA. No
leaching of Mn was detected at the end of each run.

Mouheb et al. (2018) synthesized Keggin-type POMs (Table 2,
#16) and revealed that the active species for cyclohexanone
oxidation might be the peroxo-polyoxometalates (Mouheb et al.,
2018). On the other hand, more unidentified products formed
when cyclohexanol was used as substrate. This catalyst can

be reused at least 3 times without regeneration. Amitouche
et al. (2018) synthesized Keggin heteropolyacid catalyst. They
disclosed the pathways to different H3PMo12O40 reduced
state and the transformation into peroxomolybdate complexes
(Amitouche et al., 2018). As shown in Figure 3B, the H-
abstraction at the carbon next to the oxygen in cyclohexanone
can be promoted in the presence of active species, and the
production of radical reacted with oxygen and formed cyclohexyl
hydroperoxide (Zou et al., 2015a). The ketonyl radical underwent
ring opening via C–C cleavage and formed OHC–(CH2)4-C(O)
radical species (Amitouche et al., 2018). The last step was
oxidation that lead to the formation of AA. H3−2xNixPMo12O40

catalysts showed AA yield of 31% (Table 2, #17) (Tahar et al.,
2015). The results showed that the AA yield was sensitive to
the chemical composition and the x value. H3−2xCoxPMo12O40

(x: 0–1.5) catalysts were prepared using the cationic exchange
method (Benadji et al., 2013). The cobalt salts were more
effective than parent acid to oxidize cyclohexanone (X =

76%) and cyclohexanol (X = 53%) because the Co-based
POMs acted as acidifying and oxidizing agent (Table 2, #18).
H3+xPMo12−xVxO40 catalyzed cyclohexanone oxidation via a
redox mechanism and the reoxidation of the reduced POM
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was the rate-limiting step (Table 2, #19) (Cavani et al., 2011).
However, when an acetic acid was used as additive, a radical chain
autoxidationmechanism prevailed. Themetal composition of the
POMs affected the relative importance of the two mechanism
(Figures 3B,C). The radical chain autoxidation mechanism was
more selective to AA than the redox mechanism, because in the
radical chain autoxidation mechanism there was no intermediate
of partially oxidized products (lighter acids and CO2) formed
(Cavani et al., 2011).

Anderson and Dawson type POMs were also reported
active for oxidation reactions. Luo et al. (2018) synthesized a
POMs nanoclusters with butterfly-shaped β isomer. This catalyst
displayed good activity (TON: 29,550) toward AA in solvent
free condition. When cyclohexanol was used as substrate, the
AA yield was lower than the cyclohexanone. The recycle ability
study indicated that there was an appreciable loss of AA yield
after three runs. Dawson-type POMs (P2M18) have potential
to have oxidation properties since they have more elements
with a high oxidation state than that of the Keggin anion
(Moudjahed et al., 2016). Moudjahed et al. (2016) prepared
Dawson-type POMs which showed an AA yield of 69% in the
KA oil oxidation reaction (Table 2, #20). 31P NMR spectroscopy
of used POMs confirmed the formation of “peroxo-POMox” as
active intermediate species.

CONCLUSION

Based on the critical review, biomass-based AA provides
important and alternative routes for future development of
nylon industry. At present, selective oxidation of sugars and
derivatives to relevant aldaric acids is the key challenge in
this area. Future work should be focused on finding more
effective and inexpensive materials to achieve this chemistry.
The progress and potential significance of nanostructured solid
catalysts and POMs catalysts for oxidation of cyclohexane,
cyclohexene, cyclohexanol and cyclohexanone to produce AA
with green oxidants have been critically revised in this paper.
This work summarized and discussed catalysts synthesis and

structural characterization, the oxidation reaction mechanism,
as well as catalyst durability. The POMs with dual redox and
acidity properties display high catalytic activity and selectivity
for cyclohexane/cyclohexene/cyclohexanone/cyclohexanol
oxidation. Important accomplishments in this research area
could be further achieved by the efficient catalyst design,
and a deep understanding of both redox and radical based
oxidation mechanisms.

Fundamental understanding of catalysts deactivation and
oxidant utilization efficiency improvement should be the
focusing efforts in the future study. The economic and
environment analysis of the new green processes are needed to
systematically study to see if the green processes has the potential
to replace in the current industrial process. This work provides
guidance for further investigation on metal nano catalysts for
the efficient, green, safe, sustainable, ecofriendly and economical
route of AA production and oxidation processes for many other
value-added fine chemicals production.
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