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Supporting gold nanoparticles have shown to be extremely active for many industrially

important reactions, including oxidations. Two representative examples are the oxidation

of alcohols and alkanes, that are substrates of industrial interest, but whose oxidation is

still challenging. This review deals with these reactions, giving an insight of the first studies

performed by gold based catalysts in these reactions and the most recent developments

in the field.
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INTRODUCTION

Heterogeneous catalysis by gold nanoparticles is now a “hot topic,” as it can have applications in
several industrially and environmentally important oxidation reactions (Thompson, 1998, 1999,
2006; Bond and Thompson, 1999, 2000; Sanchez et al., 1999; Haruta and Daté, 2001; Bond, 2002;
Haruta, 2002, 2003, 2004, 2005; Ma et al., 2003; Corti et al., 2005; Bond et al., 2006; Hashmi and
Hutchings, 2006; Carabineiro and Thompson, 2007, 2010; Corma and Garcia, 2008; Della Pina
et al., 2008a, 2012; Hashmi and Rudolph, 2008; Song et al., 2010; Della Pina and Falletta, 2011;
Pradal et al., 2011; Tsukuda et al., 2011; Mallat and Baiker, 2012; Rudolph and Hashmi, 2012;
Takei et al., 2012; Liu X. Y. et al., 2013; Zhang and Ding, 2013; Majdalawieh et al., 2014; Takale
et al., 2014; Alex and Tiwari, 2015; Biener et al., 2015; Freakley et al., 2015; Ishida et al., 2016;
Pflasterer andHashmi, 2016; Fang et al., 2017; Scurrell, 2017; Shahzad et al., 2017; Kim, 2018; Saldan
et al., 2018; Zhao and Jin, 2018). Catalytic oxidations can be classified into two types (Sokolovskii,
1990): complete (or total) oxidation, used for catalytic destruction of various toxic compounds, and
selective oxidation, used for organic compounds in fine chemistry, aiming at the synthesis of desired
chemical products. Gold catalysts proved to be efficient for both types of oxidations (as shown on
references cited above), including oxidation of CO, hydrogen production by water-gas shift (WGS),
hydrogen purification by selective oxidation of CO in the presence of H2 (preferential oxidation,
PROX), oxidative decomposition of volatile organic compounds (VOCs), selective oxidation of
alcohols, hydrocarbons and sugars, among many others.

Gold nanoparticles also showed to be very good catalysts for the synthesis of fine chemicals,
especially in selective oxidation (Biella et al., 2002a,b; Carrettin et al., 2002; Abad et al., 2005; Della
Pina et al., 2008b, 2012; Hereijgers and Weckhuysen, 2009; Choudhary and Dumbre, 2011; Wu
et al., 2011a,b,c; Biradar and Asefa, 2012; Xie et al., 2012; Wang H. et al., 2013; Sharma et al.,
2016; Giorgi et al., 2017). This increasing interest is linked to environmental issues related with the
need of more efficient processes and with new methods for synthesis of nanoparticles. As widely
known in catalysis by gold, the need of small sized nanoparticles is mandatory (see references
cited in the first paragraph). Gold can be a quite efficient catalyst, allowing high activities and
selectivities, in some cases in solvent-free conditions, and without the use for harsh conditions
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(powerful oxidants, high temperatures and pressures), allowing
mild conditions to be used (Biella et al., 2002a, 2003c; Pattrick
et al., 2004; Moreno et al., 2013; Liu et al., 2014a; Villa et al.,
2015b; Giorgi et al., 2017; Zhao and Jin, 2018).

Selective oxidation processes are used to activate raw
materials and transform them into useful products and chemical
intermediates (Carabineiro and Thompson, 2007, 2010). Some
examples of such raw materials are alkanes and alcohols, which
are of industrial interest, but are often characterized by low
conversions and the formation of unwanted by-products. This
review paper refers to the oxidations of those substrates, referring
the first studies performed with gold based catalysts and the
latest developments achieved so far, and it also includes a brief
introduction about the main methods used for the preparation of
this kind of catalysts.

GOLD CATALYST PREPARATION
METHODS

There are several techniques described in the literature to obtain
well-dispersed gold nanoparticles on several supports. The most
common, leading to efficient catalysts, are referred below.

Sol-Immobilization (COL)
Colloidal Au can be synthesized in solution in the presence of
an excess of stabilizing (capping) agents/ligands or surfactants
(which can be as thiols, amines, polymers, phosphines, etc).
This provides control of the size and shape of the formed
nanoparticles, preventing them from agglomerating. Colloids
prepared by reduction of chloroauric acid by citric acid, NaBH4,
or other reducing agents, can be used to prepare gold on carbon
or oxide supports, by deposition from the colloid, to give good
dispersions of gold (Carabineiro and Thompson, 2010). The 1%
Au/carbon prepared by this method by Rossi’s group (Bianchi
et al., 2000, 2003; Porta et al., 2000, 2002; Biella et al., 2002a,b,
2003a,b; Porta and Rossi, 2003; Comotti et al., 2004, 2005;
Beltrame et al., 2006; Della Pina et al., 2007, 2008a,b, 2012; Chen
et al., 2008) was distributed by the World Gold Council as a
reference catalyst for the scientific community (World-Gold-
Council, 2003). Other authors, including Carabineiro and co-
authors, also successfully used this method to prepare active
Au/carbon materials (Onal et al., 2004; Demirel-Gulen et al.,
2005; Demirel et al., 2007b,c; Li B. D. et al., 2009; Zhu et al., 2010;
Rodrigues et al., 2011, 2012a,b; Carabineiro et al., 2013; Ribeiro
et al., 2017a,b; Tofighi et al., 2017).

Usually, a stabilizing agent is used in excess in order
to effectively stabilize the nanoparticles. Then the colloids
are deposited on the surface of the support to synthesize a
heterogeneous catalyst. Thus, the stabilizing agent present in
the colloidal solution might also form bonds with the support,
and that can be detrimental as it might (partially) block the
active metal sites (Donoeva and De Jongh, 2018). Also, the
presence of stabilizing agents on the surface makes it more
complicated to interpret catalytic results, since one does not
know the effects they might have on the reaction (Niu and Li,
2014). Polyvinylpyrrolidone (PVP) is one of the most commonly

used stabilizing agents (Onal et al., 2004; Demirel-Gulen et al.,
2005; Demirel et al., 2007b,c; Shi et al., 2010; Wu J. et al., 2010;
Zhu et al., 2010; Rodrigues et al., 2011, 2012b; Behera and Ram,
2012; Prati andVilla, 2012; Carabineiro et al., 2013; Koczkur et al.,
2015; Du et al., 2016; Louie et al., 2017; Ribeiro et al., 2017a,b;
Tofighi et al., 2017). Thus, the, removal of these compounds,
used in the preparation, is of crucial importance. Usually, they
are removed by decomposition at ∼300◦C (Onal et al., 2004;
Demirel-Gulen et al., 2005; Demirel et al., 2007b,c; Zhu et al.,
2010; Rodrigues et al., 2011, 2012b; Carabineiro et al., 2013;
Ribeiro et al., 2017a,b; Tofighi et al., 2017). However, UV light,
ozone and solvothermal treatments can also be used (Niu and
Li, 2014). The progresses on this method have been recently
reviewed (Prati and Villa, 2014).

Impregnation (IMP) and Double
Impregnation (DIM)
Impregnation (IMP) is the classical method used to prepare
supported metal catalysts and consists of simply impregnating
a support with a solution of a metal salt. This usually
involves suspending the support in a larger volume of
solution, from which the solvent is then removed. An
alternative variation is the so-called incipient wetness (IW)
technique, in which the pores of the support are filled with
the solution.

Common gold precursors like chloroauric acid (HAuCl4)
or auric chloride (AuCl3 or Au2Cl6) are usually used but
complex salts, such as potassium aurocyanide (KAu(CN)2) and
the ethylenediamine complex [Au(en)2]Cl3, are also alternatives.
Traditional supports are silica, alumina and magnesia, but
titania, alumina, boehmite (AlO(OH)), ferric oxide (α-Fe2O3)
and magnesium hydroxide can also be used (Bond and
Thompson, 1999). After drying, the precursor needs calcination
at temperatures as high as 800◦C. Reduction by hydrogen at
250◦C, aqueous oxalic acid at 40◦C or aqueousmagnesium citrate
(Bond and Thompson, 1999) is also needed.

Conventional impregnation techniques are not so adequate
for gold catalysts as they result in large gold particles, which
are more likely to be inactive (Bamwenda et al., 1997; Bond
and Thompson, 1999; Lee and Gavriilidis, 2002; Carabineiro and
Thompson, 2007, 2010; Carabineiro et al., 2010g; Santos et al.,
2010). Moreover, it is difficult to obtain high dispersions of gold.
Also, during calcination, the gold particles experience severe
agglomeration as HAuCl4 interacts only weakly with the support
(Haruta, 1997; Lee and Gavriilidis, 2002; Meyer et al., 2004;
Carabineiro and Thompson, 2007). An example is displayed in
Figure 1a. A transmission electron microscopy (TEM) image
shows a 400 nm particle of Au on a ceria support.

The presence of chloride is detrimental, since it increases
the mobility of Au on the support, leading to the sintering
of gold particles (Oh et al., 2002; Kung et al., 2003; Bond
et al., 2006; Carabineiro and Thompson, 2007, 2010; Carabineiro
et al., 2010g). Gold and chloride ions combine to form bridges,
favoring the growth of the particles upon heating (Hargittai et al.,
2001; Schulz and Hargittai, 2001). The early use of classical
impregnation techniques was the main reason why Au was
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FIGURE 1 | TEM images of Au/CeO2 prepared by traditional impregnation (a) and double impregnation (b). Adapted from Carabineiro et al. (2010e,g), Copyright

(2010), with permission from Elsevier.

thought for so long to be inactive for catalysts, in comparison
with other noble metals, like Pt and Pd.

However, Datye and co-workers reported an alternative
impregnation method for supporting gold on alumina using
HAuCl4 (Xu et al., 2003). Since impregnation under acidic
conditions leads to poor dispersion of Au and the resulting
catalysts are not very active, a two-step procedure has been
developed: In the first step, gold chloride was adsorbed on
alumina from an acidified solution. After washing off the
excess gold precursor, the solid was treated with strong base
to convert the chloride to an adsorbed hydroxide. Drying
and calcining at 400◦C yielded a catalyst with gold particles
having an average diameter of 2.4 nm, with good activity,
and stability to hydrothermal sintering. This new method is
a successful impregnation preparative route for gold catalysts,
allowing them to have durability at least until 600◦C, since no
chloride is present.

Also Bowker et al. refer the use of a double impregnation
method (DIM) that removes chloride (Soares et al., 2006; Bowker
et al., 2007). Briefly, this method consists in impregnating
the support with an aqueous solution of the gold precursor
(HAuCl4) and then with a solution of Na2CO3, under constant
ultrasonic stirring, followed by washing with water and drying
in an oven overnight at 120◦C. These authors used this method
to prepare Au/TiO2 materials, and state that it represents
an environmentally and economically favorable route to the
production of highly active gold catalysts. This method has
been used with great success for other supports, such as metal
oxides and carbon materials by Carabineiro et al. (2010a,b,c,e,f,
2011a,b, 2012a,b, 2013, 2016), Bastos et al. (2012), Rodrigues
et al. (2012b), Silva C. G. et al. (2014), Soria et al. (2014), Pérez
et al. (2016). One example is shown in Figure 1b, where much
smaller and better dispersed gold nanoparticles are seen on ceria.
However, the sol immobilization method is better for carbon
catalysts (Rodrigues et al., 2012b; Carabineiro et al., 2013), as
stated above.

Co-Precipitation (CP)
This is one of the simplest ways to prepare gold catalysts
and it was one of the first to be used (Haruta et al.,

1987; Bond et al., 2006; Carabineiro and Thompson, 2007).
Its discovery was by serendipity in 1987: Haruta’s group
mixed HAuCl4, iron nitrate and sodium carbonate, and
produced a Au/Fe2O3 composite with low Au nanoparticle
size (Haruta et al., 1987). Back then, classical impregnation
was the method often used to prepare PGM catalysts,
and it did not work when used for gold, as said above.
Haruta’s Au/Fe2O3 material showed unprecedented catalytic
activity for CO (and hydrogen) oxidation, being active at
sub-ambient temperatures, a range of temperatures never
reached before for this reaction (Haruta et al., 1987) [as
gold exhibits low affinity for CO adsorption below 200◦C
(Vigneron and Caps, 2016)].

The method is still widely applied (Sreethawong et al., 2011;
Liu R. et al., 2013; Tran Thi Minh et al., 2013; Wang H. et al.,
2013; He et al., 2016; Ilieva et al., 2016; Liu et al., 2016; Mishra
et al., 2016; Li et al., 2018; Patil et al., 2018). It consists on
having an aqueous solution of HAuCl4 and water-soluble metal
salts, such as a nitrate, being poured into an aqueous alkaline
solution (Na2CO3 and/or NH4OH) and stirred for a fewminutes.
The two hydroxides (or hydrated oxides) are then precipitated
simultaneously. After aging for about 1 h, the precipitates are
washed several times with water and filtered. The hydroxide
and/or carbonate mixture is dried overnight and calcined to
obtain powder catalysts (Lee et al., 2001; Seker and Gulari, 2002;
Carabineiro and Thompson, 2007). Then a reduction step is
necessary. It is possible that some catalysts prepared by this
method contain a significant concentration of Na+ and Cl−

ions, if a metal chloride is used as precursor. Both can act as a
catalyst poison (Haruta, 1997; Bond and Thompson, 1999; Oh
et al., 2002; Bond et al., 2006; Carabineiro and Thompson, 2007,
2010; Carabineiro et al., 2010g; Zhang et al., 2013). However,
alkali have also been reported to enhance the activity of Au
catalysts (Broqvist et al., 2004; Huang et al., 2011a,b; Li Y.
et al., 2011; Nepak and Srinivas, 2015; Ribeiro et al., 2017a,b;
Rodriguez et al., 2018). An understanding of the effect of
residual Na would be an excellent way to advance gold research
(Veith, 2016). The applicability of this technique is limited
to metal hydroxides or carbonates that can be co-precipitated
with Au(OH)3.
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Deposition Precipitation (DP)
This method is convenient and can be used for producing
commercial gold supported catalysts (Haruta, 2003; Carabineiro
and Thompson, 2007) and applied to the widest range of different
support materials (Wolf and Schüth, 2002). It was discovered
also by Haruta’s group in 1991 (Tsubota et al., 1991) and is still
widely used (Moreau et al., 2005; Sangeetha et al., 2009;Wei et al.,
2010; Tran et al., 2011; Sanada et al., 2013; Soria et al., 2014;
Zahoranova et al., 2015; Zamaro et al., 2015; Pérez et al., 2016;
Priecel et al., 2016; Carabineiro et al., 2017; Chen B. B. et al.,
2017; Kyriakou et al., 2017; Martins et al., 2017; Rodrigues et al.,
2017a,b; Vourros et al., 2017; Yu et al., 2017; Jin et al., 2018). The
precursor to the active species is brought out of solution in the
presence of a suspension of the support, usually by raising the pH
in order to precipitate a hydroxide. The surface of the support
acts as nucleating agent, and most of the active precursor ends
up being attached to the support. After the pH of an aqueous
solution of HAuCl4 is adjusted with NaOH, to a fixed point in
the range of 6–10, a metal oxide support can be immersed in
the solution. The partially hydrolysed species [Au(OH)nCl4−n]−

(n = 1–3) then react with the surface of the support. Aging
for about 1 h results in the deposition of Au(OH)3, exclusively
on the surface of the metal oxide support, if the concentration
and temperature are properly chosen (Haruta, 1997; Bond and
Thompson, 1999; Carabineiro and Thompson, 2007).

The influence of the pH on the particle size of Au is
remarkable, as above pH 6, the main species of Au in solution
are transformed from AuCl−4 to [Au(OH)nCl4−n]− (n = 1–3),
and the mean particle diameters of Au in the calcined catalysts
become smaller than 4 nm (Haruta, 1997). Several authors claim
that a pH ranging from 7 to 8 is preferable depending on
the oxide support (Wolf and Schüth, 2002; Kung et al., 2003;
Wang et al., 2003; Zahoranova et al., 2015), since at this pH,
the value of n is close to 3, and at lower values of pH, there
is less hydrolysis of the Au–Cl bond. However, Bond and co-
workers (Moreau et al., 2005) showed that pH 9 was the optimum
value to be reached during deposition precipitation for Au/TiO2

catalysts, and that value has been used by Carabineiro and co-
authors to prepare different Au/oxide catalysts (Soria et al.,
2014; Pérez et al., 2016; Carabineiro et al., 2017; Kyriakou et al.,
2017; Martins et al., 2017; Rodrigues et al., 2017a,b; Vourros
et al., 2017). Some examples of catalysts thus obtained are
shown in Figure 2. At that pH, the main species in solution
are anionic Au complexes, with almost no chloride, while at
lower values, the Au complexes contain chloride, Au particles
are larger, and activities lower. However, the optimum pH range
for precipitation that also assures an efficient metal utilization
(>90%) depends on the isoelectric point of the supporting
material (Prati and Villa, 2012).

An alternative method for adjusting the pH is to use urea
(Bond and Thompson, 1999; Dobrosz et al., 2005; Zanella et al.,
2005; Gluhoi and Nieuwenhuys, 2007; Hugon et al., 2010). This
consists in the slow decomposition of urea in the solution.
Hydroxyl ions are generated slowly and uniformly throughout
the liquid phase, and their concentration is always low because
they are consumed almost as soon as they are formed. Louis
and co-workers found that the use of urea yielded the same gold

particle sizes as those obtained using NaOH (2–3 nm), and no
sodium poison was introduced (Zanella et al., 2005).

A constraint of the deposition-precipitation is that it is not
very suitable for activated carbon (Prati and Martra, 1999;
Haruta, 2003; Carabineiro and Thompson, 2007, 2010; Prati
and Villa, 2012) or zeolites (Lin and Wan, 2003), due to
their high isoelectric point [although some recent publications
showed better results for these materials, especially after an acidic
treatment (Cardenas-Lizana et al., 2015; Behravesh et al., 2017)].
Deposition-precipitation has the advantage over co-precipitation
in that all of the active component remains on the surface of the
support and none is buried within it (Bond and Thompson, 1999;
Wang et al., 2003; Carabineiro and Thompson, 2007). Also, it
gives narrower particle size distributions, but it is recommended
that the support should have a surface area of at least 50 m2/g
(Bond and Thompson, 1999; Carabineiro and Thompson, 2007).

Liquid-Phase Reductive Deposition (LPRD)
This method was first used by Sunagawa et al. and consists of
mixing a solution of the gold precursor (HAuCl4) with a solution
of NaOH with stirring at room temperature (Sunagawa et al.,
2008). The resulting solution is aged for 24 h, in the dark, at
room temperature, to complete the hydroxylation. Then, the
appropriate amount of support is added to the solution and, after
ultrasonic dispersion for 30min, the suspension is aged in the
oven at 100◦C overnight. The resulting solid is washed repeatedly
with distilled water for chloride removal and dried in the oven at
100◦C, overnight.

The selective reductive deposition is performed by adsorption
of the gold ions onto the surfaces where the reduction
takes place. Thus, the initial adsorption is the key feature
of this technique, and the key points are precise control of
the metal complex by adjusting solute conditions, such as
composition and structure of the metal complex; storing of
the suspension until the equilibrium composition is attained,
and aging the suspension at a controlled temperature. This
method was later used by Carabineiro and co-authors to
successfully prepare Au nanoparticles supported on various
carriers (Carabineiro et al., 2010c,g, 2012b; Santos et al.,
2010, 2014; Rodrigues et al., 2012b; Soria et al., 2014;
Pérez et al., 2016).

Ion-Exchange
In this method, ions on the surface of the support are replaced
by gold ions. The procedure is especially effective with zeolites.
But the introduction of catalytically active species into the cavities
of these materials, as opposed to placing them on their external
surface, presents certain difficulties, namely the lack of suitable
cations or cationic complexes (Bond and Thompson, 1999).
Nevertheless, different kinds of Au/zeolite systems have been
prepared this way (Kang and Wan, 1995, 1997; Horvath et al.,
2001; Chen et al., 2005; Magadzu et al., 2007; Tuzovskaya et al.,
2007; Bogdanchikova et al., 2008; Sierraalta et al., 2008; Qi et al.,
2012; Sanada et al., 2013; Zeng et al., 2014; Zamaro et al., 2015;
Emayavaramban et al., 2016b; Chen B. B. et al., 2017).

Pitchon and co-workers have developed a novel method for
preparing supported gold catalysts based on the direct anionic

Frontiers in Chemistry | www.frontiersin.org 4 November 2019 | Volume 7 | Article 702

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Carabineiro Alcohol and Alkane Oxidation Using Au

FIGURE 2 | TEM images of Au/Al2O3 (a), Au/Fe2O3 (c), and Au/TiO2 (e) along with the corresponding size distribution histograms of gold nanoparticles (b,d,f). Used

with permission from Martins et al. (2017). Copyright (2017) Wiley.

exchange (DAE) of the gold species with the hydroxyl groups of
the support (Ivanova et al., 2004, 2006a,b; Dobrosz et al., 2005;
Dobrosz-Gomez et al., 2009; Azizi et al., 2010; Liao et al., 2012).
An aqueous solution of HAuCl4 is added to the support, heated
to 70◦C and aged for 1 h. The slurry is then filtered, washed with
warmwater, dried in an oven at 120◦C, overnight, and calcined in
air at 300◦C, for 4 h. In order to completely remove the chloride
ions, these authors take a fraction of the catalyst after drying and
wash it with a concentrated solution of ammonia. However, this
may be a dangerous procedure, since gold oxide and ammonia
sometimes produce fulminating gold, which is explosive (Fisher,
2003; Bond et al., 2006; Carabineiro and Thompson, 2007, 2010;
Steinhauser et al., 2008).

Photochemical Deposition (PD)
This method allows metal deposition over semiconductor
materials, with simultaneous reduction of metal ions by the
electrons of the conduction band (Carabineiro et al., 2010d).
This process can be enhanced by addition of “sacrificial electron

donors” (such as formaldehyde, methanol or 2-propanol)
that can supply an almost unlimited amount of electrons.
Photodeposition takes place at, or near, the photoexcited sites,
leading to an enhanced dispersion. The gold precursor is
usually dissolved in water and a sacrificial electron donor,
mixed with the support, sonicated and photodeposited using
a UV lamp.

This method has been used for preparation of gold catalysts,
mostly on TiO2 (Wang et al., 1998, 2011; Chan and Barteau, 2005;
He et al., 2006; Ruvarac-Bugarcic et al., 2008; Hidalgo et al., 2009,
2011; Sangeetha et al., 2009; Yang et al., 2009; Yogi et al., 2009;
Carabineiro et al., 2010d; Kydd et al., 2010; Murcia-Mesa et al.,
2010; Tanaka et al., 2012, 2014; Mei et al., 2013; Song et al., 2015;
Negishi et al., 2017). Carabineiro et al. used it for the first time to
deposit Au on ZnO supports (Carabineiro et al., 2010c,d). Other
authors also prepared Au/ZnO (Naknam et al., 2009; Fernando
et al., 2016; Wang X. W. et al., 2016; Andrade et al., 2017), and
Au on other supports, such as CeO2, C3N4, CdS, ZrO2, CuCrO2,
quartz, etc. (Boitsova et al., 1999; Kydd et al., 2010; Kominami
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et al., 2011; Chiu et al., 2014; Jiang et al., 2015; Singh and Pal,
2015; Xue et al., 2015).

Ultrasonication (US)
This method is similar to PD but without photodeposition;
instead the sample is sonicated during 8 h (Carabineiro et al.,
2010c). The procedure was a serendipitous discovery made
by Carabineiro et al. when attempting to prepare gold on
zinc oxide by PD [the ZnO support used was prepared by
chemical vapor deposition, ZnOCVD, according to a previously
described procedure (Bacsa et al., 2009)]. The Au/ZnO sample
was supposed to be sonicated for 30min (then following the
photodeposition step), but it was left in the fume hood and
sonicated for 8 h. After that time, the mixture showed a deep
purple color, similar to the samples prepared by other methods.
So, it was washed and dried normally. The obtained material
(Au/ZnOCVD US) was tested for CO oxidation and turned
out to be the most active catalyst of the study (Carabineiro
et al., 2010c). A TEM image with the respective histogram
of size distribution is shown in Figure 3. US was also used
by the same authors to prepared Au on Fe2O3 (Carabineiro
et al., 2012a), MgO (Carabineiro et al., 2011b), CuO, NiO,
La2O3, and Y2O3 materials (Carabineiro et al., 2011a), however
the results obtained were not as good as those on Au/ZnO
(Carabineiro et al., 2010c).

Vapor-Phase Methods and Grafting
These methods are similar, differing only if a solvent is present
or not. In the vapor-phase method (Chemical Vapor Deposition),
a stream of a volatile compound of gold is transported onto
a high area support by an inert gas and it reacts chemically
with the surface of the support to form a precursor to the
active species (Haruta, 1997; Carabineiro and Thompson, 2007,
2010). The most widely used gold precursor is AuCl3 or
HAuCl4, but other substances have also been used, mainly to
prevent chloride contamination. Gold particles have successfully
been incorporated into TiO2, WO3, and MoO3 thin films
using a single step process by this technique (Manna et al.,
2016). Recently, it was shown that chemical vapor deposition
can be used to synthesize gold nanocrystals with various
morphologies, such as prisms, icosahedrons, and 5-fold twinned
decahedrons on silicon substrates (Manna et al., 2016). The
advantage of this method is that high-quality anisotropic crystals
of gold can be produced without the need for surfactants
or templates.

In Physical Vapor Deposition, gold is vapourized from a target
under vacuum and deposited on an oxide support or carbon
under high vacuum conditions (Carabineiro and Thompson,
2010). The 3M company in Minnesota (USA) has found that
very active gold nanocatalysts can be prepared this way on a
wide range of supports, including some that are water soluble
or not suitable for deposition-precipitation, like SiO2 (Brey
et al., 2005; Brady et al., 2006). This method is low-cost,
has great reproducibility, does not need washing and thermal
treatment steps, as do those materials resulting from solution
preparation methods, and has no toxicity hazards. Recently, gold

nanoparticles with high thermal stability (up to 600◦C) were
supported on Al2O3, using this technique (Smirnov et al., 2016).

In the grafting method, a gold complex in solution reacts
with the surface of a support, forming species convertible to
a catalytically active form. Thus, gold phosphine complexes
have been grafted onto the surface for a number of freshly
precipitated wet hydroxides (Yuan et al., 1997; Kozlova
et al., 1998, 1999; Bond and Thompson, 1999; Kozlov
et al., 1999, 2000; Olea and Iwasawa, 2004; Carabineiro
and Thompson, 2007), since they have many surface –OH
groups reactive to the Au compounds. Vacuum-drying at
room temperature and temperature-programmed calcination
in air follows, causing simultaneous transformation of both
precursors to gold particles and oxides, respectively, under their
chemical interactions by temperature-programmed calcination.
Au–phosphine complexes are choice candidates for metal
precursors because they thermally decompose to Au metal in a
temperature range similar to that used for the transformation
of wet metal hydroxides to oxides. Moreover, the phosphine
ligands are expected to retard the growth to large Au metallic
particles. Gold can be deposited on SiO2, MCM−41, SiO2-Al2O3,

and activated carbon, as nanoparticles with high dispersion by
the gas-phase grafting of an acetylacetonate complex of gold,
while liquid-phase preparation methods are not that effective
with these supports (Okumura et al., 2003).

Bi- and Tri-Metallic Gold Catalysts
Since gold is already established on its own, more advances are
always expected when it is combined with other metals, in order
to increase its activity/selectivity (Carabineiro and Thompson,
2007). Gold-based bimetallic catalysts showed great potential
for many important chemical transformation reactions, owing
to their good activity and high selectivity under relatively mild
conditions, in reactions such as selective oxidation, selective
hydrogenation, C-C coupling and photocatalysis, as recently
reviewed (Zhao and Jin, 2018). There are many cases in
the literature of bimetallic gold catalysts prepared by several
techniques, as shown in several recent reviews (Kharisov et al.,
2009; Li B. D. et al., 2009; Shah et al., 2012; Zhao et al.,
2013; Hutchings, 2014; Freakley et al., 2015; Villa et al., 2015c;
Alshammari et al., 2016; Louis, 2016; Priecel et al., 2016; Zhang L.
et al., 2016).

Post-treatment and Storage
After preparing the gold-based catalyst, a variety of post-
treatment conditions can be used, including calcination or
reduction (Tsubota et al., 1998; Kozlov et al., 1999; Boccuzzi
et al., 2001; Fu et al., 2003; Moreau et al., 2005; Bond et al.,
2006; Ivanova et al., 2006a; Carabineiro and Thompson, 2007,
2010; Huang et al., 2011b; Carabineiro et al., 2012b; Ayastuy
et al., 2016, 2017). It is worth to note that many catalysts are
used effectively without any need of such treatments. In fact,
there are times when reduction or calcination is even detrimental
(Bond and Thompson, 2000; Moreau et al., 2005). The size of
the gold particles can also influenced by the thermal treatment
(Bond et al., 2006; Carabineiro and Thompson, 2007, 2010).
Nevertheless, samples prepared by the sol-method described
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FIGURE 3 | (a) TEM image of Au/ZnOCVD prepared by US (support prepared by chemical vapor deposition) and (b) Au nanoparticle size distribution. Reprinted from

Carabineiro et al. (2010c), Copyright (2010), with permission from Elsevier.

above, are often heat treated to decompose the organic scaffold
(Onal et al., 2004; Demirel-Gulen et al., 2005; Demirel et al.,
2007b,c; Li B. D. et al., 2009; Zhu et al., 2010; Rodrigues et al.,
2011, 2012b; Ribeiro et al., 2017a,b; Tofighi et al., 2017).

It is recommended that “as prepared” samples are stored
in a refrigerator at 0◦C and that calcined catalysts should also
be kept cold, and that, after drying, samples are kept in a
vacuum desiccator in the dark, with reduction being performed
immediately before use (Zanella and Louis, 2005; Lee et al., 2007;
Wu et al., 2008; Raphulu et al., 2009; Carabineiro and Thompson,
2010; Wei et al., 2010; Tran et al., 2011).

SELECTIVE OXIDATION USING GOLD
CATALYSTS

Prati and Rossi’s group studied the liquid phase oxidation of
several organic substrates (alcohols, sugars, aldehydes, amines,
imines, etc.), showing that Au/carbon was the preferred catalyst
(Prati and Rossi, 1998; Prati and Martra, 1999; Bianchi et al.,
2000, 2003, 2005; Porta et al., 2000, 2002; Biella et al., 2002a,b,
2003a,b,c; Porta and Rossi, 2003; Comotti et al., 2004, 2005; Porta
and Prati, 2004; Prati and Porta, 2005; Beltrame et al., 2006; Della
Pina et al., 2007, 2008a,b, 2012; Della Pina and Falletta, 2011; Prati
and Villa, 2012, 2014; Prati et al., 2012, 2018;Wang D. et al., 2013;
Villa et al., 2015b,c; Dimitratos et al., 2016; Jouve et al., 2018;
Motta et al., 2018), compared to silica, alumina or titania (Porta
et al., 2000, 2002). The method dealing with immobilization
of colloidal particles (COL) was one of the best preparation
procedures used (Prati and Martra, 1999; Villa et al., 2013b; Prati
and Villa, 2014; Jouve et al., 2018), and narrow nanoparticle size
distribution was obtained (around 3–6 nm). Carbon supports are
naturally microporous thus providing a protection for the small
Au nanoparticles, allowing to limit their diameter.

Gold catalysts also showed better resistance to deactivation
and poisoning. These are limiting factors in liquid
phase oxidation (Bond et al., 2006; Carabineiro and Thompson,
2007, 2010).

ALCOHOL OXIDATION

The liquid phase oxidation of alcohols is a good example of a
selective oxidation reaction, important in both academia and
industry, which is an interesting path for obtaining fine chemicals
and intermediates (Besson and Gallezot, 2000; Sheldon and
Van Bekkum, 2001; Mallat and Baiker, 2004; Enache et al.,
2006; Dimitratos et al., 2012; Guo et al., 2014; Ranveer et al.,
2015; Olenin et al., 2018; Torbina et al., 2018). It has been the
subject of important research, due the need to use renewable
biomass-derived feedstocks and replace toxic oxidants by more
environmentally friendly ones. In the past, oxidation reactions
were carried out with the use of strong oxidants, like KMnO4,
Jones reagent (chromium trioxide in diluted sulfuric acid),
pyridine dichromate and RuO4, which increased the costs and
produced large amounts of toxic wastes (Zhao et al., 1998;
Tojo and Fernández, 2006). A large decrease in the amounts of
chemical waste and pollution can be obtained if those oxidants
are replaced by “greener” ones (like molecular oxygen and H2O2)
(Dimitratos et al., 2012).

Gold catalysts have successfully been used in the oxidation
of alcohols, as shown by several reviews (Besson and Gallezot,
2000; Prati and Porta, 2005; Bond et al., 2006; Hashmi and
Hutchings, 2006; Hutchings et al., 2006; Carabineiro and
Thompson, 2007, 2010; Edwards et al., 2007; Ishida and Haruta,
2007; Fristrup et al., 2008; Della Pina and Falletta, 2011;
Della Pina et al., 2012; Dimitratos et al., 2012; Takei et al.,
2012; Hutchings, 2014; Freakley et al., 2015; Sharma et al.,
2016). Gold based materials have also been successfully used
in alcohol photooxidation (Nizova and Shulpin, 1992; Zhang
et al., 2012; Yu et al., 2014; Luken et al., 2015; Chen et al., 2016;
Chasse and Hallett-Tapley, 2018).

Oxidation of Diols
The first report on the use of gold nanoparticles on carbon and
alumina was released in 1998 by Prati and Rossi, referring to
alcohol oxidation (Prati and Rossi, 1998). The materials were
prepared by IMP and DP. In that work, ethane-1,2-diol and
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SCHEME 1 | Examples of diols used in selective oxidation reactions and

respective products.

propane-1,2-diol were oxidized to the respective monoacids, in
an alkaline (aqueous) solution, with high selectivity (Scheme 1).
Gold was highly selective for the mono-oxidation of ethane-
1,2-diol to glycolate, compared to Pt and Pd. For propane
1,2-diol, the gold catalyst allowed to obtain only lactate (total
selectivity). Au catalysts also showed very good stability in
recycling tests, higher than the Pt and Pd materials. These
results are very important due to the industrial interest for
glycolic acid and lactic acid. In fact, the usual chemical synthesis
methods involves toxic and corrosive reagents, high-pressure
equipment and alternative fermentation processes (used for lactic
acid production), which show low productivity and complicated
problems with purification (Bond et al., 2006; Carabineiro and
Thompson, 2007).

Subsequent studies by the same group (Prati and Martra,
1999; Bianchi et al., 2000; Porta et al., 2000, 2002; Biella et al.,
2003c; Porta and Rossi, 2003; Comotti et al., 2005) confirmed that
Au/carbon was very active in the selective oxidation of 1,2-diols
to α-hydroxyacids, in mild conditions, much better than mono-,
di-, and tri-metallic Pd-, Pt-, and Bi-based catalytic systems, as
Au showed more selectivity and more resistance to poisoning.
Nevertheless, it requires strong alkaline conditions, which also
enhanced selectivity. Au/carbon was also the most stable in
recycling tests, without deactivation or leaching being observed.

Oxidation of Polyalcohols
Mixed Au–PGM/C were also tested by the same group in
the selective oxidation of the polyalcohol d-sorbitol (Scheme 2)
to gluconic and gulonic acids (Dimitratos and Prati, 2005;
Dimitratos et al., 2005b; Prati and Porta, 2005). Bimetallic
catalysts showed a resistance to poisoning and improved
selectivity compared to monometallic. The addition of Au, after
Pd or Pt being added and reduced, produced the best results
(Dimitratos and Prati, 2005). Au and Au/Pt showed selectivities
of 60% and 62%, respectively, to gluconate/gulonate (Dimitratos
and Prati, 2005; Dimitratos et al., 2005b; Prati and Porta, 2005).

The oxidation of glycerol is also a very important reaction.
The glycerol molecule has many functionalizations, is obtainable
from sustainable bio-sources, like sunflower crops and rapeseed,
from which several products can be formed by oxidation
(Scheme 3), and it is important that the process allows selectivity
to distinct products aiming at making their use as chemical
intermediates economically viable (Hutchings, 2005; Villa et al.,

SCHEME 2 | d-Sorbitol oxidation reactions.

2015b; Prati and Villa, 2017). Glyceric acid and dihydroxyacetone
(Scheme 3) can be used as chemical intermediates in the industry
of fine chemistry, namely in pharmaceuticals (Zhou et al.,
2008). To date, these molecules are commercially obtained
using either expensive and polluting oxidation processes (like
glyceraldehyde) or by microbial (incomplete) fermentation
by Gluconobacter oxidans (like dihydroxyacetone) (Pagliaro
et al., 2007, 2009; Zhou et al., 2008; Hu et al., 2010;
Ciriminna et al., 2014). As glycerol has a high boiling point,
its selective oxidation is often carried out using water as
liquid medium and O2 as oxidant ((Porta and Prati, 2004);
Carabineiro and Thompson, 2007).

Glyceraldehyde is the major product obtained from glycerol
oxidation, using Pt or Pd catalysts on activated carbon, with
a small amount of dihydroxyacetone (Garcia et al., 1995). The
main disadvantage of catalysts that are based on these metals
is that they tend to deactivate after some reaction time, due
to poisoning by oxygen (Besson and Gallezot, 2000; Porta
and Prati, 2004). Au catalysts are more resistant to oxygen
poisoning compared to PGMs, permitting the use of high oxygen
partial pressures (Prati and Rossi, 1998). However, they require
the use of a basic medium to ensure a good conversion of
glycerol (Carrettin et al., 2003; Hutchings et al., 2006; Zope
et al., 2010; Villa et al., 2015b). Moreover, their activity (and
selectivity) are also dependent of Au nanoparticle size which is
also dependent on the method of preparation method and on
the support.

Hutchings and co-workers published some studies dealing
with glycerol oxidation in the liquid phase using Au/charcoal
(Carrettin et al., 2002), Au/activated carbon (Carrettin et al.,
2003) or Au/graphite (Carrettin et al., 2002, 2003, 2004).
Before that, glyceraldehyde could be obtained with a selectivity
of 70–80% using Pt catalysts (Garcia et al., 1995). However,
Hutchings and co-workers (Carrettin et al., 2002, 2003,
2004; Hutchings et al., 2006) showed that glycerol oxidation
could yield glyceric acid (Scheme 3) with high conversion
and total selectivity, for 1% Au/charcoal or 1% Au/graphite
catalysts, in mild conditions (60◦C, 3 h, using water as
solvent) (Carrettin et al., 2002). Without NaOH, Au/C was
inactive and the formation of undesirable C-1 products
(like formic acid, Scheme 3) was eliminated when NaOH
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SCHEME 3 | Reactions of glycerol oxidation under basic conditions (adapted with permission from Villa et al., 2015b). Copyright (2015) American Chemical Society.

was added (Carrettin et al., 2003). It was proposed that
the base aided the initial dehydrogenation by abstraction
of the H of the primary OH group of glycerol and, thus,
allowing to overcome the rate limiting step of the oxidation
(Carrettin et al., 2003).

Claus’s group also investigated this reaction using gold
catalysts on carbon supports [carbon black (Demirel-Gulen
et al., 2005; Demirel et al., 2007a,b,c), activated carbon (Demirel
et al., 2007a,b) and graphite (Demirel-Gulen et al., 2005)] and
oxides [Al2O3 (Demirel-Gulen et al., 2005), MgO (Demirel-
Gulen et al., 2005), TiO2 (Demirel-Gulen et al., 2005; Demirel
et al., 2007a), and CeO2 (Demirel et al., 2007a)]. The oxide
materials were prepared by DP using urea, while the carbon
materials were prepared by COL. The carbon black gave better
results than activated carbon or graphite (Demirel-Gulen et al.,
2005; Demirel et al., 2007a,b,c). Results showed that the oxidation
of glycerol is structure-sensitive reaction, as the selectivity to the
glyceric acid product increased up to 75% with decreasing Au
nanoparticle size (down to the best value of 3.7 nm) on carbon
black (Demirel-Gulen et al., 2005). The selectivity to glyceric
acid product was 40% for smaller Au nanoparticles (2.7 nm), but
the glycolic acid selectivity increased from 15 to 36% (Demirel-
Gulen et al., 2005). This showed that the nanoparticle particle

size of the Au/carbon catalysts could play an important role in
the reaction.

Porta and Prati studied these reactions on Au/carbon
catalysts, namely activated carbon (Porta and Prati, 2004;
Bianchi et al., 2005; Prati and Porta, 2005; Jouve et al.,
2018) and graphite (Porta and Prati, 2004). Au on activated
carbon was more active than Au on graphite. Well-dispersed
nanoparticles on activated carbon of 6 nm, were not able to
maintain the preliminary selectivity up to full conversion,
but larger (>20 nm) nanoparticles were able to maintain
constant selectivity during the reaction time (Porta and
Prati, 2004). This showed that gold nanoparticle size was
not the only issue, but other factors, such as preparation
method (with COL being better than IMP), and temperature
(since an increase in the temperature promoted glyceric acid
oxidation to tartronic acid, Scheme 3) could also play an
important role. 92% of selectivity was found at full conversion
(Porta and Prati, 2004).

The same group also used gold on (multi-walled) carbon
nanotubes (CNTs) (Prati et al., 2011, 2016) and carbon nanofibers
(CNFs) (Prati et al., 2011; Wang D. et al., 2013; Villa et al.,
2016). It was shown that the basicity of CNFs led to an activity
increase, but the selectivity was mostly linked to the nature of
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the surface groups, as the selectivity to C-3 products was best
for surfaces with basic and hydrophobic nature, but surfaces
more hydrophilic led to an increase of the products of C–C bond
cleavage (Prati et al., 2011).

Au nanoparticles were also supported on CNFs with different
degrees of graphitization (Wang D. et al., 2013). The CNF surface
containing a larger amount of ordered graphitic layers led to gold
nanoparticles preferentially immobilized on the (111) plane, with
more facet area. Higher C-3 product selectivity was found on the
(111) surface, showing that larger Au nanoparticles were more
selective toward C-3 products compared to the smaller ones.

Addition of nitrogen to CNFs also had positive results (Villa
et al., 2016). Au nanoparticles trapped within N-functionalized
CNFs were more efficient for glycerol oxidation and promoted
selectivity for di-acid products, while Au nanoparticles trapped
on the surface produce the molecule derived from C–C cleavage
as a major by-product.

Nitrogen doped CNTs were also used (Prati et al., 2016).
The introduction of nitrogen functionalities was performed by
high temperature treatment (600◦C) in the presence of NH3.
The turnover frequency (TOF, moles of product per mol of Au
catalyst per time) obtained for N-doped CNTs was 853 h−1,
much higher than the 182 and 186 h−1 obtained for pristine and
oxidized CNTs, respectively. The selectivity to glycerate was 68%
for the N-doped material and 55% for the pristine sample (for
90% conversion).

Carabineiro and co-authors compared several metals (Pt, Pd,
Ir, Rh, and Au) on activated carbon as catalysts for glycerol
oxidation, showing, for the first time, that that Rh could
be an active catalyst for this reaction, although having high
sensitivity to oxygen poisoning, as other PGMs (Rodrigues et al.,
2011). IMP and COL were used as preparation methods. Not
surprisingly, IMP yielded an inactive Au material. However, the
Au catalyst prepared by the COL exhibited a high activity with
only 0.32% Au loading, reaching a full glycerol conversion in
∼3 h, in the standard conditions tested (with ∼60% selectivity
to glyceraldehyde). In contrast, only 44% was achieved with the
reference Au/C catalyst (supplied by the World Gold Council,
consisting on 0.8% Au on carbon black).

The same authors also tested Au nanoparticles supported on
(multi-walled) CNTs prepared by different methods (Rodrigues
et al., 2012a,b). COL was the most suitable method, yielding
47% selectivity toward glyceric acid (Rodrigues et al., 2012a,b).
This reaction was also studied on Au nanoparticles deposited
on carbon xerogels with different mesopore sizes (prepared by
condensation of resorcinol and formaldehyde at different values
of pH) by the COL method (Rodrigues et al., 2012c). It was
found that larger pores (20 nm) enhanced the oxidation toward
dihydroxyacetone, whereas smaller pores (5 nm) favored the
formation of glyceric acid (Scheme 3).

Prati and co-workers also tested Au on metal oxides
(Al2O3, MgO, MgAl2O4 spinel) prepared by DP and COL
(Bogdanchikova et al., 2017). In terms of materials prepared
by DP, Au/Al2O3 was more active than Au/MgO, but for
catalysts prepared by COL, Au/MgO was more active than
Au/alumina. Au/MgAl2O4 spinel showed high activities, similar
to materials prepared by both methods. The same group also

used a weak basic anion resin as support for Au nanoparticles
(Villa et al., 2010).

Those authors also studied mono- and bimetallic Au catalysts
on activated carbon (Bianchi et al., 2005), graphite (Dimitratos
et al., 2005a), acidic (SiO2, MCM-41, H-mordenite and sulphated
ZrO2), and basic (MgO and NiO) oxide supports (Villa et al.,
2015a), using the COL method. Bimetallic materials were more
active than the monometallics, showing a synergistic effect
between Au and Pt or Pd (Bianchi et al., 2005; Dimitratos
et al., 2005a). This effect was especially significant for Pt, as
it could be poisoned before full conversion. Au–Pd/C catalysts
showed better selectivity to glyceric acid than Au–Pt/C. Pd
mainly promoted the obtention of tartronic acid and Pt of
glycolic acid. The total selectivity to glyceric acid was larger
for Au–Pd/C compared to Au/C and Pd/C. At 30◦C, authors
obtained a very high selectivity to glyceric acid of 69% at 90%
conversion with Au–Pd/C (Bianchi et al., 2005). Graphite based
materials were less active (Dimitratos et al., 2005a). In terms of
gold on oxides, it was found that basic MgO and NiO supports
increased not only the activity, but also the reactions of C–
C bond cleavage, thus decreasing the selectivity to the wanted
products. However, the acidic supports led to a higher selectivity
to products of C-3 oxidation. Au/MCM-41, in particular, showed
a high selectivity to glyceraldehyde (Villa et al., 2015a). It is
now widely accepted that the glycerol oxidation mechanism
includes oxidative dehydrogenation. The β-hydride abstraction
is enhanced if a base is present, this being the limiting step of
the reaction (Besson and Gallezot, 2000; Mallat and Baiker, 2004;
Dimitratos et al., 2012; Villa et al., 2015a).

Recently, activated carbon supported Au-Pt and Bi-Au-Pt
materials were prepared by IMP by Prati’s group (Motta et al.,
2018). The materials were used for the oxidation of glycerol
in a base free medium in mild conditions. Au-Pt/C had 68%
selectivity to glyceric acid, while Bi-Au-Pt/C led to the secondary
alcohol oxidation, with a selectivity of 48% to dihydroxyacetone,
at 28% conversion, which is among the best values found in the
literature so far.

Oxidation of Aminoalcohols
Prati’s group showed that aminoalcohols can be transformed
into aminoacids by oxidation in slightly alkaline conditions
with a high selectivity (Biella et al., 2002a; Prati and Porta,
2005; Gaiassi and Prati, 2009). Au nanoparticles deposited on
activated carbon (Biella et al., 2002a; Prati and Porta, 2005;
Gaiassi and Prati, 2009), MgO (Gaiassi and Prati, 2009), TiO2

(Biella et al., 2002a; Gaiassi and Prati, 2009) and Al2O3 (Biella
et al., 2002a) were used. Au was again amazingly better than
othermetals. The reason is that the free amino group can strongly
interact with other metals, like Pd and Pt. Aminoalcohols (serinol
and ethanolamine, Scheme 4) were also be oxidized to the
corresponding polyols (glycerol and ethylene glycol), using Au
on Al2O3, TiO2, MgAl2O4, and MgO (Villa et al., 2013a) by the
same group.

Oxidation of Aliphatic Alcohols
Hutchings and co-workers also used Au/carbon catalysts for
the oxidation of geraniol (Scheme 5) (Hutchings et al., 2006).
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Cis- and trans-citral were the main products, but at higher
conversions, many products such as β-pinene, limonene, γ-
terpinene, linalool, nerol, and some traces of geranic acid were
identified (structures seen in Scheme 5).

Corma and co-workers reported 2–5 nm sized Au
nanoparticles on nanocrystalline ceria (∼5 nm), as being
very active, selective and recyclable for the oxidation of several
alcohols (like n-hexanol, 3-octanol, 1-octen-3-ol, shown in
Scheme 6), to the corresponding carbonyl products, using O2,
atmospheric pressure, in the absence of any solvent and base

SCHEME 4 | Examples of aminoalcohols used in selective oxidation reactions.

(Abad et al., 2005, 2006a,b, 2008; Corma and Garcia, 2008).
Au/ceria was highly selective for the oxidation of allylic alcohols
to unsaturated ketones and was active without solvent and base
(Abad et al., 2006b). Selected results can be found in Table 1. As
an example, 1-octen-3-ol (Scheme 6) oxidation yielded mostly
1-octen-3-one, with a 90% selectivity, but Pd/ceria showed 58%
selectivity (due to isomerization promotion and of C=C bond
hydrogenation, yielding saturated ketones as a by-products)
(Abad et al., 2006a).

Au-Pd nanoparticles were dispersed on titania/graphene
oxide (GO) composites and used for the selective oxidation of
several alcohols, including n-octanol, shown in Scheme 6 (Wang
et al., 2015). Similar, yet slightly better results (TOF = 228 h−1)
were achieved for the Au-Pd/titania/GO composite, compared to
the Au-Pd/titania material (TOF= 207 h−1).

Oxidation of Cycloalcohols
Tatsumi and co-workers (Wang H. et al., 2013) studied
the selective oxidation of cycloalcohols, like cyclohexanol,
cyclooctanol, cyclododecanol, 4-methyl cyclohexanol

SCHEME 5 | Possible products obtained in geraniol oxidation.
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SCHEME 6 | Examples of aliphatic alcohols used in selective oxidation reactions.

TABLE 1 | Catalytic activity of gold on ceria for the oxidation of several alcohols to

the corresponding α,β-unsaturated carbonyl compounds (Abad et al., 2005;

Corma and Garcia, 2008).

Substrate Conversion (%) Selectivity (%)

1-Octen-3-ol >99 90

3-Octen-2-ol 96 91

2-Octen-1-ol 90 91

3-octanol 97 >99

n-hexanol >99 >99

(Scheme 7) to aldehydes/ketones with O2 over Au nanoparticles
on CuO, MnO2, NiO, CoOx, Fe2O3, Cr2O3, and Al2O3, TiO2

and SiO2. The catalytic activity of Au catalysts was greatly
influenced by the support and the preparation method. The best
results were obtained for Au/CuO co-precipitated at pH 10. The
reaction might occur via oxidative dehydroxylation by direct
β-CH elimination. The conversion and selectivity to ketone were
above 99% for cyclooctanol and cyclododecanol. Introduction
of a base greatly increased the catalyst stability. The reaction
occurred via an integrated oxidation mechanism, involving the
lattice oxygen of CuO.

Buonerba et al. obtained good results in the oxidation of
2-thiophenemethanol. The structures are shown in Scheme 7,
using gold nanoparticles incarcerated in nanoporous syndiotactic
polystyrene matrices (Buonerba et al., 2012). As syndiotactic
polystyrene has a crystalline nanoporous structure, which favored
the easy and selective access of the reagents to the gold
catalyst located inside the polymer matrix, it was considerably
accountable for the good activities found. Results suggested
that the active catalysts were the ∼9 nm twinned defective
nanoparticles, present in large numbers.

Au-Pd nanoparticles were dispersed on titania/graphene
oxide composites and used for the selective oxidation of
cyclohexanol (Scheme 7) (Wang et al., 2015). Better results (TOF
= 4,700 h−1) were achieved for the Au-Pd/titania/GO composite,
compared to the Au-Pd/titania material (TOF= 4,130 h−1).

Corma and co-workers reported 2–5 nm sized Au
nanoparticles on nanocrystalline ceria (∼5 nm), as being
very active, selective, and recyclable for the oxidation of
2,6-dimethylcyclohexanol (Scheme 7), using O2, atmospheric

pressure, in the absence of any solvent and base (Abad
et al., 2005). 78% conversion with 94% selectivity to
2,6-dimethylcyclohexanone was achieved in 2.5 h reaction time.

Oxidation of Aromatic Alcohols
The first report on the use of a gold catalyst for alcohol oxidation
dates from 1992 and deals with the oxidation of an aromatic
alcohol (4-methoxybenzyl alcohol, shown in Scheme 8) to the
corresponding aldehyde, performed by a [Au(IO5(OH))2]5−

complex (Dengel et al., 1992).
Corma and co-workers reported 2–5 nm sized Au

nanoparticles on nanocrystalline ceria (∼5 nm), as being very
active, selective and recyclable for the oxidation of several alcohols
(like 2-phenylethanol, cinnamyl alcohol, 3,4-dimethoxybenzyl
alcohol, 3-phenyl-1-propanol, vanillin alcohol, 2-hydroxybenzyl
alcohol, shown in Scheme 8), using O2, atmospheric pressure,
in the absence of any solvent and base (Abad et al., 2005,
2006a,b, 2008; Corma and Garcia, 2008). Selected results are
shown in Table 2. Milder conditions are needed and better
results are obtained for the oxidation of cinnamyl and 3,4-
dimethoxybenzyl alcohols to the corresponding acids, than to
the corresponding aldehydes.

Wu X. C. et al. (2016) used nanocomposites of graphene
quantum dots and Au nanoparticles immobilized on Fe3O4

nanoparticles (GQDs/Au/Fe3O4 ternary composites with
superparamagnetic properties being easy to remove from the
reaction mixture) for the solvent-free oxidation of aromatic
alcohols (containing an aromatic benzyl group) with air as
oxidant. Materials showed good catalytic performance with the
aromatic alcohols being oxidized to the corresponding aldehydes
with high selectivity (>99%) and conversion.

Au-Pd nanoparticles were dispersed on titania/graphene
oxide composites and used for the selective oxidation of
benzyl alcohol, 4-methoxy benzyl alcohol, cinnamyl alcohol, 1-
phenylethanol, shown in Scheme 8 (Wang et al., 2015). Results
are shown in Table 3. The resulting optimized catalyst showed
activities compared to the Au-Pd/TiO2 material prepared by COL
(although much better for 4-methoxy benzyl alcohol), but the
GO composite was more stable and could reused for three cycles
without loss of activity.
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SCHEME 7 | Examples of cycloalcohols used in selective oxidation reactions.

SCHEME 8 | Examples of aromatic alcohols used in selective oxidation reactions.
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TABLE 2 | Catalytic activity of gold on ceria for the oxidation of several alcohols to

the corresponding carbonyl compounds (Abad et al., 2005).

Substrate (S) Time (h) Conversion

(%)

Product Selectivity (%)

2-phenylethanola 2.5 92 acetophenone 97

cinnamyl alcohola 7 66 cinnamaldehyde 73

cinnamyl alcoholb 3 >99 cinnamylic acid 98

3,4-

dimethoxybenzyl

alcohola

7 73 3,4-

dimethoxybenzaldehyde

83

3,4-

dimethoxybenzyl

alcoholb

2 >99 3,4-

dimethoxybenzylic

acid

>99

3-phenyl-1-

propanola
6 70 3-phenylpropyl

3-phenylpropanoate

98

vanillin alcoholb 2 96 vanillin 98

2-hydroxybenzyl

alcoholb
2 >99 2-

hydroxybenzaldehyde

87

aSubstrate (4.85 mmol), Au/CeO2 (0.5mol %), 353K, p = 1 atm O2 (flow: 25 mL min
−1 ).

bSubstrate (0.4 mmol), Au/CeO2 (0.66mol %), H2O (5mL), Na2CO3 (0.3 g), 323K, p =

1 atm O2 (flow: 25 mL m
−1).

TABLE 3 | Alcohol oxidation for supported Au-Pd Catalysts (Wang et al., 2015).

Substrate Catalyst TOF (h−1)

benzyl alcohol Au-Pd/TiO2

Au-Pd/TiO2/GO

10,300

10,400

4-methoxy benzyl alcohol Au-Pd/TiO2

Au-Pd/TiO2/GO

12,800

15,000

cinnamyl alcohol Au-Pd/TiO2

Au-Pd/TiO2/GO

3,360

4,070

1-phenylethanol Au-Pd/TiO2

Au-Pd/TiO2/GO

6,000

6,390

Tatsumi and co-workers (Wang H. et al., 2013) studied
the selective oxidation of cycloalcohols, like benzyl alcohol, 2-
methyl benzyl alcohol, 4-methyl benzyl alcohol, cinnamyl alcohol
(Scheme 8) to aldehydes/ketones with O2 over Au nanoparticles
on CuO, MnO2, NiO, CoOx, Fe2O3, Cr2O3, and Al2O3, TiO2

and SiO2. A larger amount of methyl groups lead to an activity
increase. The catalytic of Au catalysts was greatly influenced by
the support and the preparation method. The best results were
obtained for Au/CuO co-precipitated at pH 10. The reaction
might occur via oxidative dehydroxylation by direct β-CH
elimination. Giorgi et al. also showed that Au/alumina could
also be efficiently used in the oxidation of benzylic (and allylic
alcohols) under O2, in good yields (68–99%) and with excellent
selectivity (ca. 100%) (Giorgi et al., 2017).

Buonerba et al. obtained good results in the oxidation of
cinnamyl alcohol, indanol, and α-tetralol (secondary alcohols).
The structures are shown in Scheme 8, using gold nanoparticles
incarcerated in nanoporous syndiotactic polystyrene matrices
(Buonerba et al., 2012). As said above, the crystalline nanoporous
structure of syndiotactic polystyrene favored access of the
reagents to the gold catalyst located inside the polymer matrix,

improving activity. The active catalysts were the abundant∼9 nm
twinned defective nanoparticles.

Miyamura et al. also proved the catalytic activity of polymer-
supported gold for “greener” liquid phase selective oxidation of
several aromatic alcohols, like phenylmethanol (benzyl alcohol)
and 1-phenylethanol (Scheme 9) and cyclopentanol (Scheme 7)
(Miyamura et al., 2007). Those materials showed higher activity
than Au on metal oxides. Choudhary and Dumbre also tested
similar aromatic alcohols, using a Au/MgO catalyst prepared
by DP (Choudhary and Dumbre, 2011). The highest activity
was found for the oxidation of 4-methoxy benzyl alcohol
(Scheme 8) with 68% conversion (and a 95% selectivity to the
aldehyde). Fristrup and co-workers discussed the substituted
benzyl alcohols aerobic oxidationmechanism and concluded that
the rate-determining step involved hydride abstraction, that is,
the formation of a partial positive charge in the benzylic moiety
(Fristrup et al., 2008).

Among aromatic alcohols, the already referred benzyl alcohol
(Scheme 9) and methylbenzyl alcohol (Scheme 10) are low
toxic naturally produced examples. Their partial oxidation can
yield benzaldehyde (Scheme 9) and acetophenone (Scheme 10),
respectively. These products have a large importance in industrial
organic synthesis (since they are precursors to other organic
compounds, ranging from plastic additives to pharmaceuticals).

Gold catalysts have been successfully used for oxidation of
benzyl alcohol to benzaldehyde (Choudhary et al., 2005, 2007,
2009; Hutchings et al., 2006; Su et al., 2007; Mitsudome et al.,
2009; Zhu et al., 2010; Prati et al., 2011; Xie et al., 2012; Xu
et al., 2012; He et al., 2013; Wang H. et al., 2013; Yu et al.,
2013; Alhumaimess et al., 2014; Hong et al., 2014; Morad et al.,
2014; Movahed et al., 2014; Silva T. A. G. et al., 2014; Nepak
and Srinivas, 2015; Ferraz et al., 2016; Sun et al., 2016; Giorgi
et al., 2017; Liu et al., 2018; Gualteros et al., 2019). Other
formed by-products can be toluene, benzene and benzoic acid
(Prati et al., 2011; Wang et al., 2015), as seen in Scheme 8.
Choudhary et al. (Choudhary et al., 2005, 2007, 2009; Choudhary
and Dumbre, 2009a,b, 2010, 2011) were one of the first groups
to study this oxidation reaction. They used Au on MgO, BaO,
CaO, and SrO (alkaline earth oxides), Al2O3, In2O3, Ga2O3, and
Tl2O3 (group IIIa metal oxides), TiO2, U3O8, Cr2O3, Fe2O3,
CoOx, MnO2, CuO, ZnO, NiO, Y2O3, and ZrO2 (transition
metal oxides), Ce2O3, La2O3, Sm2O3, Eu2O3, Tb2O3, Er2O3

Nd2O3, and Yb2O3 (rare earth metal oxides) prepared by DP,
for the liquid-phase oxidation of benzyl alcohol to benzaldehyde.
The Au/TiO2 and Au/ZrO2 catalysts showed high activity and
selectivity for the reaction.

Other authors used Au on CuO (Wang H. et al., 2013),
MnO2 (Alhumaimess et al., 2014), TiO2 (Ferraz et al., 2016), and
titanate nanotubes (Nepak and Srinivas, 2015). Su et al. found
that gold on Ga3Al3O9 can be very efficient and active for the
benzyl alcohol oxidation at room temperature (Su et al., 2007).
Carabineiro and co-authors used gold on different metal oxide
supports by DP (Al2O3, Fe2O3, ZnO, and TiO2) (Martins et al.,
2017). The obtained materials were tested for the benzyl alcohol
oxidation using tert-butyl hydroperoxide (TBHP) as oxidant,
for 1 h, under microwave irradiation, at 100◦C. The materials
exhibited good activity for benzaldehyde formation, with no
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SCHEME 9 | Reactions of benzyl alcohol oxidation.

traces of by-products. The use of microwave is regarded as
much more effective, when compared with conventional heating,
usually with similar yields achieved in a shorter time and at
lower temperatures (Varma, 2007; Dudley et al., 2015). Other
authors also used TBHP (Choudhary andDumbre, 2009a,b, 2010;
Choudhary et al., 2009; Li H. R. et al., 2009; Peneau et al.,
2013; Zhang B. et al., 2016; Martins et al., 2017; Ndolomingo
and Meijboom, 2017; Gogoi et al., 2018; Kashani et al., 2018)
and H2O2 (Zhan et al., 2012, 2013; Hallett-Tapley et al., 2013;
Moreno et al., 2013; Santonastaso et al., 2014; Tang et al., 2014;
Long and Quan, 2015; Mehri et al., 2015; Restrepo et al., 2015a,b;
Emayavaramban et al., 2016a; Zhang B. et al., 2016; Gogoi et al.,
2018; Khawaji and Chadwick, 2018; Tareq et al., 2018) as oxidants
for alcohol oxidation reactions, although more studies deal with
the use of oxygen (Besson and Gallezot, 2000; Prati and Porta,
2005; Bond et al., 2006; Hashmi and Hutchings, 2006; Hutchings
et al., 2006; Carabineiro and Thompson, 2007, 2010; Ishida and
Haruta, 2007; Fristrup et al., 2008; Della Pina and Falletta, 2011;
Della Pina et al., 2012; Dimitratos et al., 2012; Takei et al., 2012;
Hutchings, 2014; Freakley et al., 2015; Sharma et al., 2016).

Recently, gold nanoparticles on alumina, silica and titration,
prepared by DP with urea, for the oxidation of benzyl alcohol,
in the absence of solvent, with low metal (0.08–0.05 mol%
of Au) loadings, using O2 as oxidant (Gualteros et al., 2019).
A small amount of base was enough to activate the catalyst.
Au/Al2O3 showed a good catalytic performance (TOF= 443,624
h−1 at 100◦C) for 0.08 mol% Au loading, in optimized
conditions, being the most stable material, being stable up to
5 cycles.

Carbon materials have also been utilized. Hutchings and co-
workers used Au/activated, which showed high selectivity at low
conversion (Hutchings et al., 2006). Benzyl alcohol oxidation
was also studied on Au/CNT and Au/CNF by Prati’s group
(Prati et al., 2011). Gold on carbon xerogels (Xu et al., 2012)
and on graphene derivatives (Xie et al., 2012; Yu et al., 2013;
Movahed et al., 2014) has also been reported. Carabineiro and
co-authors also tested the liquid phase selective oxidation of
benzyl alcohol on Au/activated carbon and Au/C3N4 (Zhu et al.,

SCHEME 10 | Oxidation of 1-phenylethanol to acetophenone.

2010). The catalyst without oxygen showed negligible activity for
oxidation reactions, showing that the metal only is ineffective
for the activation of molecular oxygen. Also it was found
that the oxidation activity depended on the amount of oxygen
containing species of the catalyst, suggesting that the oxygen
sites are where molecular oxygen adsorption and activation
take place.

Bimetallic Au-Pd (Hong et al., 2014; Morad et al., 2014; Silva
T. A. G. et al., 2014; Sun et al., 2016) and trimetallic Au-Pd-
Pt (He et al., 2013) catalysts have also been reported by several
authors. They showed significant enhanced activity, compared to
monometallic Au and Pd materials. The addition of Pt promoted
the selectivity to benzaldehyde, suppressing toluene formation
(He et al., 2013).

The oxidation of 1-phenylethanol (methylbenzyl alcohol) to
acetophenone (phenylthenone), shown in Scheme 10, has also
been studied on gold catalysts (Abad et al., 2005; Miyamura et al.,
2007; Haider et al., 2009; Mitsudome et al., 2009; Ni et al., 2009;
Wang et al., 2010; Buonerba et al., 2012; Hosseini-Monfared
et al., 2013; Imura et al., 2016; Wang S. et al., 2016; Martins
et al., 2017). For example, Corma and co-workers reported that
Au/ceria catalysts showed a TOF value of 12,480 h−1, at 160
◦C, with >99 % selectivity, for this reaction (Abad et al., 2005).
That value was larger than the reported for Pd on hydroxyapatite
(9,800 h−1), as reported by Mori et al. (2004).

Takato and co-workers (Mitsudome et al., 2009) observed
that a hydrotalcite supported nanoparticle (Au/HT) was a good
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heterogeneous catalyst for the oxidation of 1-phenylethanol
under mild conditions. The turnover number (TON, mol
of product per mol of Au catalyst) and TOF were 200,000
and 8,300 h−1, respectively. Moreover, the catalyst could be
effortlessly filtrated and recycled without much loss of activity
and selectivity. Imura et al. used surface clean Au nanoflowers
and Au nanoparticles supported on γ-Al2O3 (Imura et al., 2016).
The formation rate of acetophenone on nanoflowers was 10-fold
higher than on (spherical) nanoparticles with a similar diameter.

As referred above, Buonerba et al. used gold nanoparticles
incarcerated in nanoporous syndiotactic polystyrene matrices
to study the oxidation of several alcohols, suggesting that
nanoparticles of ∼9 nm diameter were the active catalyst
(Buonerba et al., 2012). High yields (96%) of acetophenone were
obtained in 1 h, at 35◦C. Haider et al. used Au nanoparticles
on CuMg2Al1Ox and also found higher activity for gold
particles of ca. 9 nm, with yields near 90%, at 90◦C for 1 h
(Haider et al., 2009).

Hosseini-Monfared et al. used gold nanoparticles with
a similar size (8 nm average) dispersed in 1-n-butyl-3-
methylimidazolium tetrafluoroborate ionic liquid and found
100% selectivity to acetophenone, with intermediate α-hydroxy
carbon radical formation (Hosseini-Monfared et al., 2013). The
TON was 200. This value could be increased with the addition
of N-hydroxyphthalimide, but at a cost of a selectivity drop
to 58%. Tests were carried out at 100◦C, under 4 bar of O2,
without any base. However, the use of molecular oxygen should
be undertaken with proper safety precautions, as reported by
other authors (Bay et al., 2016).

Wang et al. used gold nanoparticles supported on a
layered double hydroxide and obtained a acetophenone around
100%, using O2, atmospheric pressure, room temperature, 2 h
conditions (Wang et al., 2010). Upon 6 recycling cycles, the
activity dropped to 97%. The gold nanoparticles had sizes
in the 1–5 nm range. Furthermore, Ni et al. reported an
efficient H2O2-Au approach for the 1-phenylethanol oxidation
under solvent free conditions, which was considered as a
“green” oxidation of heterogeneous metal complexes (Ni
et al., 2009). For example, the Au/TiO2 catalyst obtained
a conversion of 99%, and the yield of acetophenone was
between 98 and 100%, which means that the formation of
well-dispersed Au nanoparticles, together with a beneficial
interaction with the TiO2 support, is the major factor for
obtaining high activity in the H2O2 mediated oxidation
of 1-phenylethanol.

Nickel-containing layered double hydroxides supporting
atomic precise Au-25 nanoclusters were reported by other
authors (Wang S. et al., 2016). The catalysts exhibited
excellent activity for selective oxidation of 1-phenylethanol
to acetophenone, with O2, under base-free conditions. The
highest activity showed a TOF of 118,500 h−1 in a solvent-
free environment and could be applied for a wide range of
alcohols. The material could be recycled 5 times without mich
loss of activity.

Carabineiro and co-authors used gold loaded on different
metal oxide supports (Al2O3, Fe2O3, ZnO, and TiO2), by DP, in
the oxidation of 1-phenylethanol, using TBHP as oxidant, under
microwave irradiation (Martins et al., 2017). Those catalytic

SCHEME 11 | Oxidation of cyclohexane to cyclohexanol and cyclohexanone.

systems exhibited good activity in the formation of acetophenone
(Figure 4, left). No traces of by-products were found. Adding
Au increased the alcohol conversion from 5% (TiO2) to 91%
(Au/TiO2), which was the best result obtained in this study.
Au/TiO2 recyclability was tested up to a maximum of 10 cycles
and the catalytic activity was very high in the initial 4 cycles
(Figure 4, right). The loss of activity was due to a large increase
in gold nanoparticle size and gold leaching (in the 10th cycle).

ALKANE OXIDATION

Hydrocarbons, in particular alkanes, are the main components
of gas and oil. The C-H bond(s) of these compounds can
be transformed into C-OH or C=O groups that will lead
to the production of high added value products that will
have applications in fine chemistry. The selective oxidation
of hydrocarbons is a very important reaction taking place in
industrial processes based on petroleum, since the oxygenated
compounds produced can be used as intermediates for organic
synthesis (Kalvachev et al., 1999). However, it is difficult to
activate such bonds in these very stable compounds, and that
prevents that they are more commonly used in the synthesis
of other important products (Weissermel and Arpe, 1993;
Derouane et al., 1998, 2005; Clark andMacquarrie, 2002; Sheldon
et al., 2007).

Oxidation of Cyclohexane
A good example with increasing industrial importance is the
oxidation of cyclohexane to cyclohexanol and cyclohexanone
(Scheme 11), that are important compounds to be used in the
production of caprolactam and adipic acid, utilized in the nylon-
6 and nylon-66 polymers manufacture. These products can also
be used as solvents, homogenizers, and stabilizers (Carabineiro
and Thompson, 2007). The cyclohexanol and cyclohexanone
mixture is also called KA (ketone-alcohol) oil. The industrial
process for KA oil production includes a homogeneous cobalt
catalyst and O2 as oxidant, at high temperature (150◦C), with
products being formed at low yields (4–12%), with only 80–85%
selectivity (Weissermel and Arpe, 1993; Whyman, 2001; Clark
and Macquarrie, 2002; Mears and Eastman, 2004; Derouane
et al., 2005). Thus, there is a need for more effective systems to
be used under milder conditions (Weissermel and Arpe, 1993;
Schuchardt et al., 2001; Clark and Macquarrie, 2002; Shulpin,
2009; Kirillov and Shul’pin, 2013).

Shulpin first studied the (photo)oxidation of cyclohexane with
oxygen (Lederer et al., 1992; Nizova and Shulpin, 1992; Shulpin
and Nizova, 1993) and oxidation of other alkanes with H2O2

(Shul’pin et al., 2001), using gold chloride compounds. Not much
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studies on cyclohexane oxidation have been done afterwards with
gold complexes, apart from the work of Carabineiro and co-
authors (Peixoto De Almeida et al., 2013; Carabineiro et al.,
2018). Moreover, the oxidation of other alkanes (with gold
complexes) is also scarce (Nikitenko and Shestakov, 2013).

The first reports dealing with the selective oxidation of
cyclohexane to cyclohexanone and cyclohexanol using Au
supported catalysts were reported by Suo and co-workers in 2004
(Lu et al., 2004, 2005; Zhao et al., 2004). The initial studies were
carried out using a calcined Au/ZSM-5 catalyst, with O2, without
solvent (Zhao et al., 2004). Authors reported that this catalyst
was very active and could be used up to two cycles without
much loss of activity. The yield decreased with temperature (from
140 to 180◦C), and also the total selectivity of cyclohexanol and
cyclohexanone (at 180◦C) (Zhao et al., 2004). Those authors
studied this reaction over a Au/MCM-41 catalyst, also in the
absence of solvent, with 1 MPa O2, at 140–160◦C, for 6–8 h (Lu
et al., 2004, 2005). The conversion was ∼16% and the selectivity
to cyclohexanone up to ∼76%. Authors claimed that their work
was the first reporting such excellent values of conversion and
selectivity for these reaction systems. The catalyst could be
recycled for at least three times, without much loss of conversion
and selectivity (Lu et al., 2004, 2005).

In 2005; Hutchings et al. showed that Au/graphite could also
be used to promote this reaction, using TBHP as initiator (Xu
et al., 2005; Hutchings et al., 2006). A modest activity at 70◦C and
0.3 MPa O2 was reported, with high selectivities to cyclohexanol
and cyclohexanone only for very low conversions, after 17 h of
reaction (Xu et al., 2005). The work of those authors was the only
reference to Au/carbon combination for cyclohexane oxidation
for some time.

In 2013; Carabineiro et al. tested gold nanoparticles on several
carbon supports: activated carbon (AC), carbon xerogels—two
different samples, one with smaller mesopore width (13.6 nm),
prepared at pH = 6 (CX), and another with larger width
(32.3 nm), prepared at pH = 5.5 (CXL), carbon nanotubes
(CNT), microdiamonds (MD) and nanodiamonds (ND) in
powder (NDPW) and liquid dispersion (NDLIQ), graphite (GR),
and silicon carbide (SC) (Carabineiro et al., 2013). Gold was
loaded by DIM and COL. The materials were tested at room
temperature and atmospheric pressure, using a “green” oxidant
(H2O2). Au/CNT-COL was the most active catalyst (Figure 5),
with a yield of 3.6% and a TON of ∼171 (6 h reaction). The
yield is similar to the industrial process (which needs high
amounts of a Co catalyst and 150◦C), but has the advantage of
being obtained at room temperature and much lower amount of
catalyst (Au catalyst/substrate molar ratio below 1 x 10−3), being
thus “greener.” Also very high selectivity toward the formation
of cyclohexanol and cyclohexanone was obtained, without any
by-products. The 3.6% yield obtained for this sample is similar
to that reported by Hutchings and co-workers (3.7%) for 1% Au
on graphite (Xu et al., 2005). But these authors needed 0.3 MPa
O2, 17 h reaction and 70◦C, and the total selectivity for KA oil
was 23.1%. Only for low conversions (∼1%), higher selectivities
(∼91.6%) could be obtained, under the same conditions, with
with 0.5% Au and with TBHP as additive (Xu et al., 2005).
Therefore, the results of Carabineiro et al. (2013), showing

a higher selectivity and a similar yield are more favorable,
environmentally friendly and adequate for industry.

It was shown that an acidic medium could have a
promoting effect as also found in previous studies dealing with
homogeneous (Nizova et al., 2002; Shul’pin et al., 2004; Alegria
et al., 2007; Silva et al., 2008, 2010, 2011; Fernandes et al.,
2009; Mishra et al., 2009), and supported complexes (Mishra
et al., 2008) and other metal catalysts (Kirillov and Shul’pin,
2013). The used pyrazine carboxylic acid might activate the metal
center by protonation of a ligand, causing further unsaturation,
enhance the oxidation capacity of metal complexes, and stabilize
the peroxide preventing decomposition and promoting the
formation of peroxo (or hydroperoxo)-complexes (Carabineiro
et al., 2018). The recycling tests showed that the best catalyst was
able to maintain the high activity up to five cycles, with very high
selectivity and no leaching.

Liu et al. used Au nanoparticles on CNT composites for
the photocatalytic oxidation of cyclohexane, achieving ∼14.6%
conversion with a selectivity of∼86.9% to cyclohexanol, using air
and visible light, at room temperature (Liu et al., 2014a). Other
authors also used Au nanoparticles on carbon quantum dots as
photocatalysts, achieving a conversion of 63.8% and a selectivity
of 99.9% to cyclohexane and cyclohexanone, using H2O2, at
room temperature, under visible light (Liu R. H. et al., 2014).
Kang and co-workers also tested the photocatalytic oxidation of
cyclohexane using Au on carbon nitride (C3N4) and obtained
10.54% conversion and 100% selectivity to cyclohexanone
without the need of initiator or oxidant, under visible light (Liu
et al., 2014b). Authors showed that C3N4 could photocatalyse
water oxidation to generate H2O2, which would then act
as oxidant.

More recently, Mayani et al. reported on Au, Pd and and Au-
Pd anchored carbon composites with 25 and 170 nm size carbon
cages, synthesized using nano-silica sphere templates and fuel
oil from pyrolysis of pitch residue as carbon source (Mayani
et al., 2016). Such materials were used for cyclohexane oxidation
at room temperature and atmospheric pressure, using H2O2

as oxidant, in N2 atmosphere. The most active catalyst (Au-
based) showed a yield of 7.7% after 4 h reaction, superior to
Pd- and Au-Pd- based analogs. Recyclability did not show much
activity loss.

Metal oxides have also been referred as supports for Au for
the same reaction (Zhu et al., 2005; Xu et al., 2007a,b, 2008;
Carneiro et al., 2009, 2011; Li et al., 2009a,b; Xie et al., 2009, 2011;
Hereijgers and Weckhuysen, 2010; Wu P. P. et al., 2010; Wan
et al., 2011; Wu et al., 2011a,b,c, 2016b; Alshammari et al., 2012,
2015, 2016; Conte et al., 2012; Sun et al., 2012; Sannino et al.,
2013; Wang C. H. et al., 2013; Zhou et al., 2014; Gui et al., 2015;
Liu et al., 2015; Mohamed, 2015; Chen L. F. et al., 2017; Martins
et al., 2017). Most studies were carried out using O2 as oxidant
(Zhu et al., 2005; Xu et al., 2007a,b, 2008; Li et al., 2009a; Xie et al.,
2009, 2011; Hereijgers and Weckhuysen, 2010; Wu P. P. et al.,
2010; Wan et al., 2011; Wu et al., 2011a,b,c, 2016b; Alshammari
et al., 2012; Sun et al., 2012; Wang C. H. et al., 2013; Zhou et al.,
2014; Gui et al., 2015; Chen L. F. et al., 2017). Many reports
refer the use of TiO2 based materials (Carneiro et al., 2009,
2011; Hereijgers andWeckhuysen, 2010; Alshammari et al., 2012;
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FIGURE 4 | (Left) Comparison of the acetophenone yield obtained by microwave assisted 1-phenylethanol oxidation with TBHP, using Au nanoparticles supported at

different oxides and the metal oxides as catalysts. Conditions: 100◦C, 1 h, 10W microwave, 600 rpm. (Right) Recyclability of the Au/TiO2 affecting the yield of

acetophenone for the microwave assisted oxidation of 1-phenylethanol. Conditions: 100◦C, 1 h, 10W microwave, 600 rpm. Copyright (2017) Wiley. Adapted with

permission from Martins et al. (2017).

FIGURE 5 | Dependence of the overall TON (moles of cyclohexanol + cyclohexanone per mole of Au nanoparticles loaded on the carbon material) of the products on

the type of support and impregnation method. Reaction conditions: CH3CN (3.0mL), cyclohexane (5.0 mmol), npyrazinecarboxylicacid/ncatalyst (50), room temperature, 6 h.

Reprinted from Carabineiro et al. (2013). Copyright (2013), with permission from Elsevier.

Sun et al., 2012; Sannino et al., 2013; Zhou et al., 2014; Martins
et al., 2017). Interestingly, for the photo-oxidation of cyclohexane
with air, the photocatalytic activity of TiO2 (Hombikat) was not
enhanced by Au deposition, as shown by Mul and co-workers
(Carneiro et al., 2009, 2011). The reason is that the deposition of
gold caused a large decrease in the amount of OH- groups of the
support, suggesting that such moieties were more determinant
for the catalytic activity than the presence or absence of Au
(Carneiro et al., 2009).

However, the photocatalytic cyclohexane partial oxidation in
the gas-phase was effectively achieved on Au/TiO2 (Sannino
et al., 2013). The products obtained were cyclohexanol,
cyclohexanone, and CO2. Authors showed that an increase
in the Au content, could revert the process selectivity from
cyclohexanol (75%) to cyclohexanone (80%).

Mohamed also reported on the photocatalytic oxidation
of cyclohexane, with H2O2 as oxidant, using gold on reduced

graphene oxide (Au/rGO), titania nanotubes (Au/TNT)
and titania nanotubes-multi-walled carbon nanotubes
composites (Au/TNT–CNT), under UV irradiation (Mohamed,
2015). Both Au/rGO and Au/TNT–CNT can promote
the oxidation with conversions ranging from 6 to 9.0%
and selectivities from 60 to 75% for cyclohexanone, with
the latter giving the best result. The oxidation followed a
radical-chain mechanism.

Silica-based materials have also been used (Zhao et al., 2005;
Zhu et al., 2005; Xu et al., 2007b, 2008; Li et al., 2009a; Wu
et al., 2011a,b,c, 2016b; Wang C. H. et al., 2013; Zhou et al.,
2014; Gui et al., 2015; Saxena et al., 2016; Chen L. F. et al.,
2017). Au/mesoporous silica showed high catalytic activity and
selectivity for cyclohexane oxidation using O2 in solvent-free
conditions (Zhu et al., 2005; Wu et al., 2011a,b,c, 2016b). Li et al.
used Au nanoparticles (3–8 nm) on SBA-15, under an O2/N2

atmosphere (Li et al., 2009b). At 1.0 MPa and 150◦C, when the
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reaction time increased from 3 to 6 h, conversion also rose from
15 to 20%, but with an overall decline of selectivity to KA-oil.

Cyclohexane oxidation was also tested over a Au/SiO2 catalyst,
with propylene carbonate significantly enhancing the reaction of
cyclohexane oxidation to 21.9% conversion, while maintaining
a high selectivity of 83.2% toward KA oil, using O2 as oxidant
and TBHP as initiator, at 140◦C, for 2 h (Gui et al., 2015).
The effect of propylene carbonate can be attributed to its
high polarity and it can facilitate the reaction by promoting
the decomposition of cyclohexyl hydroperoxide. Recycling tests
showed no significant changes in the conversion of cyclohexane
and selectivity to KA oil up to four reaction cycles, with no Au
leaching. Gold nanoparticles on amorphous silica were used and
gave a 22.7% conversion and 80.6% selectivity to cyclohexanol
and cyclohexanone, under dipolar non-hydrogen bond donor
acetone solvent, at 150◦C, 1.5 MPa O2, after 3 h (Wang C. H.
et al., 2013).

Silica-titania supported gold catalysts were tested at 150◦C,
1.5 MPa O2 and 3 h reaction, achieving a 91.7% selectivity with
a conversion of 8.4% (Xu et al., 2007b). In similar conditions, Au
on TiO2/MCM-41 was promising for the cyclohexane oxidation,
achieving a TOF of 29,145 h−1 with ∼9.9% conversion of
cyclohexane (Zhou et al., 2014). Gold nanoparticles on silica-
alumina were also used, in the absence of any solvent and
initiator, achieving a 9.8% conversion and a 88.8% selectivity to
KA oil, at 150 ◦C, 1.5 MPa O2, after 3 h (Xu et al., 2008).

Gold nanoparticles (<2 nm diameter) were highly dispersed
and well-confined in the hybrid shells of silica nanospheres,
through the anchorage of organic functional groups, under a
condensation process (Chen L. F. et al., 2017). The materials
exhibited good catalytic activity for solvent-free catalytic
oxidation of cyclohexane with 94.8% selectivity to KA oil and
adipic acid, at 150◦C, 1.5 MPa O2, after 3 h.

Saxena et al. encapsulated gold nanoparticles by silica,
further encapsulated them with zeolites (MCM-22 and ZSM-
5) nanoshells and used the resulting material for the oxidation
of cyclohexane, at 150◦C, under 1 MPa O2 pressure, in a
solvent-free system, for 2 h (Saxena et al., 2016). Au@MCM-22
exhibited the highest TON (1788) and TOF (596 h−1) among the
analyzed samples, due to a higher concentration of strong acid
sites. The nano-capsules acted as bifunctional catalysts, with the
nanoparticles prevented from agglomeration during synthesis or
catalytic applications, and the zeolitic-shell enhanced conversion
and reusability of the nanocatalysts.

Alshammari et al. compared Au/CaO, Au/MgO, Au/ZrO2,
Au/TiO2, Au/Al2O3 (Alshammari et al., 2012, 2016). A
conversion of over 25 %, with 70% selectivity to KA oil, was
achieved over a Au/TiO2 (anatase) catalyst, in the temperature
range of 100◦C, at 10 bar O2, with TBHP as initiator. The high
activity of this material was due to the smaller size (2 nm) of
Au nanoparticles.

9.07% conversion of cyclohexane and 91.90% selectivity
to KA oil were obtained using 3.0% /Co3O4 as catalyst, at
150◦C, after 3 h, with 1.5 MPa O2 (Wan et al., 2011). Under
similar conditions, 0.2% Au/Al2O3 achieved 12.6% conversion,
with 84.7% selectivity to the ketone and alcohol mixture
(Xu et al., 2007a).

SCHEME 12 | Proposed reaction mechanism or oxidation of cyclohexane to

cyclohexanol and cyclohexanone in supported gold nanoparticles. Reprinted

from Carabineiro et al. (2013). Copyright (2013), with permission from Elsevier.

Au nanoparticles supported on Cr-based metal-organic
frameworks (MOFs), and other oxides, like TiO2 and Fe2O3,
prepared by DP with urea, were used for the reaction
using O2, without solvent and initiator (Sun et al., 2012).
The best result was 30.5% conversion, 26.7% yield, with
87.7% selectivity to KA oil, for Au on a Cr-MIL-101 type
of MOF.

Gold nanoparticles were successfully supported on Al2O3,
Fe2O3, ZnO, and TiO2 by Carabineiro and co-authors by DP
(Martins et al., 2017). Their catalytic activity was assessed for
the oxidation of cyclohexane at 60◦C, atmospheric pressure,
using H2O2 or TBHP (environmentally friendly oxidants). The
results showed that Au nanoparticles were very active with no
traces of by-products being detected under optimized conditions.
Au/Al2O3 was the least active material (1.3% yield with TBHP),
possibly due to its lower reducibility (shown by TPR). The
yields achieved with Au/TiO2 and Au/ZnO were 4.0 and 3.2%,
respectively (with TBHP). However, Au on Fe2O3 (with H2O2)
showed a yield of 13.5% and was the best result obtained. It seems
that, under those conditions, Au+ initial oxidation state (shown
by Au/Fe2O3 and Au/TiO2) was more suitable for the oxidation
of cyclohexane than Au0 (found on Au/ZnO and Au/Al2O3),
as it lead to higher yields of cyclohexanol and cyclohexanone,
in shorter reaction times. Notably, these yields were obtained
at 60◦C and atmospheric pressure, with low catalyst loads (Au
catalyst to substrate molar ratio = 4 × 10−3), not requiring
the presence of acid (as it was an inhibitor for these systems),
being this more environmentally friendly. This system showed
an almost exclusive unusual cyclohexanol formation by control
of the reaction time (4 h). Catalyst recycling showed that the
material was able to maintain high activity for 3 cycles (Figure 6),
with not much leaching. The loss of activity shown for the 5th
cycle is most likely due to adsorbed species on the surface, as
shown by thermogravimetric experiments.

It has been controversially debated if Au acts as catalyst or
as promotor of the oxidation reaction (Della Pina et al., 2012).
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Some authors believe that gold behaved as a real catalyst, as 10%
conversion and 90% selectivity were obtained for with Au/TiO2-
SiO2, but not on the support with no gold (Xu et al., 2007b, 2008).
Nevertheless, Hereijgers and Weckhuysen studied the same
reaction on Au/SBA-15, Au/Al2O3, and Au/TiO2, concluding
that it follows a pure radical pathway with typical autoxidation
products, being fully inhibited when radical scavengers are
present (Hereijgers and Weckhuysen, 2010). However, Liu et al.
demonstrated that gold/hydroxyapatite had high activity and
that no reaction occurred in the support with no gold, although
radical initiators, like TBHP, were needed (Liu et al., 2011).
Hutchings and co-workers, when using Au/MgO catalysts,
suggested an intermediate scenario, that is, Au could indeed
accelerate the reaction and not need initiators (thus behaving
like a real catalyst), but the acceleration took place when the
amount of some species were increased (C6H11-OOH or C5H11-
OO•), which promoted the catalytic processes by a radical chain
mechanism (Conte et al., 2012).

Several authors report that the oxidation of cyclohexane by
H2O2, catalyzed by metallic systems, proceeds mainly though a
radical mechanism involving both C- and O-centered radicals
(Alegria et al., 2007; Silva et al., 2008, 2009, 2010, 2011, 2013).
Therefore, by analogy with the proposed mechanisms for several
metallic systems (like Cu, Fe, Re, V) (Shulpin et al., 1993;
Shul’pin et al., 2004; Nizova et al., 2002; Kopylovich et al.,
2003, 2011; Shul’pin, 2003; Tanase et al., 2005, 2008; Alegria
et al., 2007; Kozlov et al., 2007; Mishra et al., 2008, 2009; Silva
et al., 2008, 2009, 2010, 2011, 2013; Di Nicola et al., 2009;
Fernandes et al., 2009, 2011; Kirillova et al., 2009b; Shul’pina
et al., 2009; Nesterov et al., 2012), a metal-catalyzed (and pyrazine
carboxylic acid-assisted) decomposition of H2O2 was proposed
by Carabineiro et al. (2013), shown in Scheme 12, based on what
was observed by other authors (Quintanilla et al., 2012). Water
can catalyze H+-shift steps leading the formation of HO• from
H2O2 (Kirillova et al., 2009a,b, 2011; Kuznetsov and Pombeiro,
2009). As suggested by Hutchings and co-workers for Au/MgO
(Conte et al., 2012), gold can increase the reaction rate due to an
increase in CyOOH or CyOO• species.

Bimetallic Au/Pd catalysts on carbon based materials showed
inferior activity than gold on the same supports (Mayani et al.,
2016), and the same happened on TiO2 supports (Alshammari
et al., 2015, 2016). However, Au-Ag/TiO2 showed better
activity than Au/TiO2 (Alshammari et al., 2015). Also Au-Pd
nanoparticles (on MgO) showed a significant positive influence
on the overall catalytic performance, inhibiting the production
of unwanted by-products (Liu et al., 2015). Au-Ag alloy catalysts,
withmetal nanoparticles immobilized onmesoporous silica, were
also used (Wu et al., 2016a). A high catalytic activity and a high
KA oil selectivity (>95%) were observed, due to the electronic
structure modification caused by the synergistic effect of Au-Ag
alloy nanoparticles.

Oxidation of Other Alkanes
Gold catalysts have also been used also in other alkane oxidation
reactions. As an example, Au on SiO2, SBA-15, Al2O3, ZSM-
5, TiO2, ZrO2, CeO2, and Nb2O5 catalysts were used for the
selective oxidation of methane to methanol with O2 (Hereijgers

FIGURE 6 | Effect of the Au/Fe2O3 recycling on the yield of cyclohexanol and

cyclohexanone for the cyclohexane oxidation. Reaction conditions:

cyclohexane (0.25M), catalyst (10 mmol of Au on iron oxide, 0.4 mol% vs.

substrate), H2O2 (1.2M), in acetonitrile, at 60◦C, for 4 h. Copyright (2017)

Wiley. Adapted with permission from Martins et al. (2017).

and Weckhuysen, 2011). Although all of them showed small
gold nanoparticles, for temperatures above 250◦C, very low
activity was found, showing they were not active for this reaction.
However, other authors (Kulikova and Shestakov, 2008) showed
that Au nanoparticles, stabilized by a 1-dodecanethiol monolayer,
were able to oxidize methane in a dichloromethane medium, to
originate methanol and ethane. Au/SiO2 was also used to oxidize
methane in ionic liquids, using K2S2O8 as oxidant, at 90◦C, to
produce methanol (Li T. et al., 2011).

Au-Ba/TS-1 catalysts (0.11% Au, Ti:Si ratio = 3:100) were
found to be very selective toward the formation of acetone (90%),
isopropanol (5%), and CO2 (5%) from propane, O2 and H2, at
170◦C, after 0.5 h (Bravo-Suarez et al., 2008). Biradar and Asefa
showed that SBA-15 supported Au nanoparticles were able to
oxidize n-hexane (Biradar and Asefa, 2012). A 95% conversion,
with a 92% selectivity to 2-hexanone and 8% selectivity to
2-hexanol, at 70◦C, after 8 h reaction, using with TBHP as
oxidant, were obtained (Biradar and Asefa, 2012). Larger alkanes
are more difficult to oxidize, as shown by Hutchings and
co-workers, that obtained very low conversion (∼1%) in the
oxidation of n-decane, with azobisisobutyronitrile, at 90◦C, with
1.2 MPa O2, using a Au/ceria catalyst, even for 20 h reaction
(Lloyd et al., 2011).

Recently, the aerobic oxidation of several alkanes
(cyclohexane, propane, ethane and methane) to the
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corresponding alcohols, over Au55 (∼1 nm size) nanoparticles
with icosahedron symmetry, was investigated using density
functional theory calculations (Staykov et al., 2018). Authors
estimated that alkane hydroxylation proceeds through a
two-step radical reaction mechanism. First, a hydrogen
atom is abstracted from the alkane yielding a surface
hydroxyl group and an alkyl radical. Then a reaction
between the alkyl radical and hydroxyl radical takes place
on the gold surface, being the rate limiting step for the
overall oxidation.

CONCLUSIONS

The obvious conclusion is that gold catalysts are very efficient
for alcohol and alkane oxidation. The gold nanoparticle
size and type of support continues to play a critical role,
with smaller nanoparticles being more active, as in many
other reactions. Gold has shown to be more active and
selective than other noble metal catalysts. Gold on carbon
is a very good catalyst for several reactions, but also
gold on reducible oxides. However, composite supports
and bimetallic gold catalysts are now emerging as new
promising materials.

Looking into the future, gold nanoparticles have the potential
to become very active catalysts leading to potential application
of these reactions in industry, allowing them to occur in much
milder and “greener” conditions. Nevertheless, the issue of
durability might hinder such applications. The use of composite
materials might be the way to overcome these challenges and
obtain more active, selective and durable materials with potential
industrial importance.
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Preparation of Au nanoparticles on Ce-Ti-O supports. Stud. Surf. Sci. Catal.
175, 457–461. doi: 10.1016/S0167-2991(10)75084-9

Frontiers in Chemistry | www.frontiersin.org 22 November 2019 | Volume 7 | Article 702

https://doi.org/10.1016/j.jcat.2017.07.014
https://doi.org/10.1016/j.apcata.2005.08.029
https://doi.org/10.1016/S0920-5861(99)00315-6
https://doi.org/10.1023/A:1009065812889
https://doi.org/10.1023/A:1022176909660
https://doi.org/10.1016/j.cattod.2005.02.003
https://doi.org/10.1016/S0920-5861(01)00476-X
https://doi.org/10.1023/A:1025808024943
https://doi.org/10.1006/jcat.2001.3497
https://doi.org/10.1016/S1381-1169(02)00618-0
https://doi.org/10.1016/S0020-1693(03)00040-9
https://doi.org/10.1021/acscatal.5b01586
https://doi.org/10.1016/j.apcata.2012.05.029
https://doi.org/10.1006/jcat.2001.3290
https://doi.org/10.1016/j.apsusc.2007.12.060
https://doi.org/10.2174/1570179413666161031114833
https://doi.org/10.1081/CR-100101171
https://doi.org/10.1016/S0920-5861(01)00522-3
https://doi.org/10.1142/p450
https://doi.org/10.1007/BF03216579
https://doi.org/10.1016/j.cattod.2007.01.021
https://doi.org/10.1039/b800620b
https://doi.org/10.1016/j.jcat.2004.07.009
https://doi.org/10.1002/chem.201101034
https://doi.org/10.1007/s10562-009-0251-1
https://doi.org/10.1016/j.apcata.2010.04.001
https://doi.org/10.1007/s12274-010-0068-7
https://doi.org/10.1186/1556-276X-6-435
https://doi.org/10.1039/c2ra00724j
https://doi.org/10.1016/j.jcat.2010.05.011
https://doi.org/10.1016/S0167-2991(10)75124-7
https://doi.org/10.1016/j.apcata.2013.07.035
https://doi.org/10.1002/cctc.201701886
https://doi.org/10.1016/j.mcat.2017.04.009
https://doi.org/10.1016/j.jcis.2016.06.072
https://doi.org/10.1016/S0167-2991(10)75084-9
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Carabineiro Alcohol and Alkane Oxidation Using Au

Carabineiro, S. A. C., Silva, A. M. T., Dražić, G., Tavares, P. B., and Figueiredo,
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