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Drought induced stress is often a bottleneck of agricultural crop production. Invariably,

field crops across all agro-ecological regions succumb to it with an yield penalty.

Drought massively affects the growth and harvestable yield in crops and has become an

imminent problem necessitating breeding of tolerant crops. It induces myriad changes

of biochemical, molecular, and physiological nature that manifest into aberrant plant

morphology. The response to drought in plants incites a signaling cascade that involves

perception and translation of drought signal leading to concomitant modulation of gene

expression and de novo osmolyte synthesis. The intricate patterns of expression of

these genes vary from early induction to late responsive genes. While one class of

genes codes for products imparting osmotolerance and protection to plants, the second

class predominantly modulates target gene expression by an intricate signal transduction

mechanism. This review summarizes both canonical and non-canonical cascades of

drought stress response in plants, delineating the mechanism in rice (Oryza sativa) and

emphasizes hydropenia induced lipid signaling.
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INTRODUCTION

Altered physiological conditions disrupt cellular homeostasis and orchestrate stress in plants.
Invariably, plants during their growth period are exposed to multiple stresses such as drought,
shading (low light intensity), low temperature, salinity, flooding, heat, oxidative stress, and heavy
metal toxicity (Shivakumara et al., 2017; Shivaraj et al., 2017). All these stresses, individually
or in combination eventually hamper productivity of the crops (Fang and Xiong, 2015; Joshi
et al., 2016; Gupta et al., 2017). Amongst all, drought i.e., hydropenia is the most devastating
environmental stress (Gaspar et al., 2002) and impacts multiple morphological changes that are
visible in all “Phenological stages of plant/crop growth” (Zhang et al., 2017). It decreases crop
stand in field (Lambers et al., 2008) and reduces harvestable yield and economic harvest in crops
(Thirunavukkarasu et al., 2017; Van Gioi et al., 2017). It is estimated that drought will impact
30% global loss of crop yield by 2025 (Zhang, 2011). With climate change looming large, water
deficit has become a cardinal issue of agriculture as climate models have predicted an increase in
severity and frequency of drought (Walter et al., 2011; IPCC, 2012). Additionally, the growing water
scarcity/mis-management of the available water is amajor threat to sustainable domestic, industrial,
and agricultural development (Hamdy et al., 2003).
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Edaphologically, drought in crops results from short-fall
in the required precipitation leading to reduced available
water in the soil. Additionally, dry atmospheric condition
increases water loss from plants by evapo-transpiration. Aside
the precipitations, drought depends on evapo-transpiration, soil
water holding capacity, crop water requirements, and ability of
plants to efficiently utilize available water (Toker et al., 2007).
Multiple molecular (Pornsiriwong et al., 2017) and cellular
responses (Comas et al., 2013; Chen et al., 2017; Pornsiriwong
et al., 2017) become operative with on-set of drought in
plants. Nevertheless, tolerence to drought amongst crops shows
variation between and/or within the crops. Depending upon the
exhibited symptoms, effect of drought on plants are classified as
slight, moderate, severe, and very severe on the basis of relative
water content (RWC) (Gigon et al., 2004). While plants are able
to withstand slight stress by evoking tolerance mechanism, mild
drought induces regulation of water loss and uptake in plants
allowing maintenance of relative water content (RWC) with
minimally altered photosynthetic capacity and quantum yield.

IMPACT OF DROUGHT ON PLANT
GROWTH AND YIELD

Drought hinders plant growth/development with commensurate
reduction in accumulation of biomass. Farooq et al. (2009) and
Li et al. (2009) identified that the consequences of drought in
crop plants range from reduced (i) cell division and expansion,
(ii) leaf size and stem elongation, (iii) perturbed water/nutrient
relations and stomatal oscillations, and (iv) diminished water
use efficiency (WUE) (Farooq et al., 2009; Li et al., 2009).
With on-set of water deficit, abscisic acid (ABA) biosynthesis
is stimulated in plants which reduces stomatal conductance
and transpirational losses (Yamaguchi-Shinozaki and Shinozaki,
2006). Cell division and cell enlargement in drought stressed
plants is negatively affected as water potential/cellular turgor
is lost, and photosynthesis decreases (Farooq et al., 2009; Taiz
and Zeiger, 2010). These massive physiological changes in plants
reduce root, shoot, and flower fresh/dry weight (Liu et al., 2011)
with maximum reduction in total leaf area (Farooq et al., 2010).
It also affects crop phenology and induces early transition from
the vegetative to the reproductive phase (Desclaux and Roumet,
1996) leading to altered crop growth cycle.

Hydropenia has pronounced negative effect on crop yield.
Particularly, drought during silking stage in maize reduces
total biomass accumulation by 37%. It also reduces yield by
negatively affecting at grain-filling stage (reduction by 34%) and
at maturity (by 21%) (Kamara et al., 2003). In rice, drought-
induced physiological changes such as stomatal closure decreases
intake of CO2 and eventually decreases photosynthesis (Flexas
et al., 2005) due to reduction in carbon capture that imbalances
the source and sink partitioning of photosynthets, reduces the
phloem loading, reduces assimilate translocation and dry matter
partitioning (Farooq et al., 2009). Additionally, photorespiration
becomes operative which leads to decline in the carbon fixation in
rice. In C3 plants, such as rice, Rubisco is the key enzyme in CO2

assimilation and acts either as carboxylase or as an oxygenase

depending upon the internal concentration of CO2/O2 in leaf.
At moderate water stress with closed stomata, Rubisco acts as
an oxygenase as prevailing cellular O2 concentration is higher
than CO2 concentration. This increase in photorespiration due to
drought at the “Expense of carbon-fixation” (Ghannoum, 2008)
leads to yield reduction in rice.

CANONICAL MECHANISMS OF DROUGHT
RESISTANCE IN PLANTS

Plants evoke myriad morphological and biochemical adaptations
at whole-plant and cellular-levels to ward off stresses of drought.
Noteworthy, among them are the three canonical mechanisms
such as (i) drought escape, (ii) drought avoidance, and (iii)
drought resistance (Yamaguchi-Shinozaki and Shinozaki, 2006).
Drought escape is the mechanism that invigorates plants to
complete their life cycle before drought sets in, so that the seeds
enter in to dormancy before the dry conditions prevail e.g., desert
plants saving themselves from extinction. However, “Drought
avoidance mechanism in plants involve maintaining high water
status/cellular hydration” either by absorbing more water from
soil or by reducing loss of water by transpiration. In contrast,
drought tolerance is the ability of plants to continue normal
cellular metabolism and growth activity at low water potential
despite prevailing stress condition and/or ability to recover fast
after stress. A crop is considered tolerant, only if it survives
drought with minimal yield penalty. These plants maintain the
cellular turgor through osmotic adjustment and protoplasmic
resistance (Mitra, 2001) by accumulation of free proline (Munns,
2005).

MOLECULAR MECHANISM OF DROUGHT
TOLERANCE: RICE AS A MODEL

In response to drought, plants activate three main categories
of genes that canonically modulate biochemical/physiological
and/or molecular pathways (Dash et al., 2014). They are (1)
genes involved in “protection of membranes; water and ion
uptake/transport” imparting cellular tolerance (2) regulatory
genes involved in signaling/transcriptional control, and (3) novel
genes of unknown function reported to impart drought tolerence.
Plants extrinsically perceive environmental stress and transfer the
signal through cascades of molecules. These signaling molecules
trigger the expression of specific genes leading to appropriate
physiological/biochemical responses (Shinozaki and Yamaguchi-
Shinozaki, 2007; Golldack et al., 2014; Hu and Xiong, 2014).
A number of genes/transcription factors showing differential
expression to drought have been identified in plants (Yamaguchi-
Shinozaki and Shinozaki, 2006; Joshi et al., 2016). These are
known to be involved in cellular responses such as “stress
perception and transcriptional regulation” of drought responsive
genes (Lata and Prasad, 2011). These genes code for “Protein
kinases, phytohormones, transcription factors” (Lata et al., 2015),
osmoprotectants and “late embryogenesis abundant (LEA)”
proteins (Varshney et al., 2011; Golldack et al., 2014; Todaka et al.,
2015; Sah et al., 2016) imparting tolerance to dehydration.
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Perceived response to drought in plants is broadly categorized
into ABA-dependent or ABA-independent pathway. In rice,
ABA-Responsive cis-Elements (ABRE;PyACGTGG/TC) are
enriched compared to Arabidsopsis and soybean (Maruyama
et al., 2011) and in response to drought, ABA concentration
dramatically increases in vegetative parts. Increased ABA
triggers (i) stomatal closure, (ii) stress proteins and metabolites
accumulation (protect cells during stress), and (iii) H2O2

accumulation in guard cells that signals reduction in water loss
from the plant (Mustilli et al., 2002; Kwak et al., 2003; Wang and
Song, 2008). The ABA independent pathway, elucidated earlier,
involves H2O2 mediated stomatal closure in rice (Huang et al.,
2009).

The signaling mechanism to drought in plants involves
sensing and relaying of dehydration signal from plasma
membrane to the nucleus (Sanders et al., 1999; Ramanjulu and
Bartels, 2002). This is accomplished through several protein
phosphorylation mechanisms involving kinases viz. the mitogen
activated protein kinases (MAPKs) and receptor-like kinases
(RLKs) (Das and Pandey, 2010; Tena et al., 2011; Seybold
et al., 2014). In rice, “DROUGHT-HYPERSENSITIVEMUTANT1
(DSM1)”—a protein kinase—scavenges the reactive oxygen
species (ROS) produced under drought stress. The dsm1mutants
are hypersensitive to drought during seedling and panicle
development stage (Ning et al., 2010). The stress-responsive
RLK genes such as stress induced protein kinase 1 (OsSIK1),
growth under drought kinase (GUDK) were found to be induced
by drought stress in rice. While, rice overexpressing OsSIK1
showed tolerance to drought (Ouyang et al., 2010); GUDK
phosphorylates apetala 2/ERF37 (OsAP37) that activates stress-
regulated genes (Ramegowda et al., 2014) in rice.

Several, transcription factors (TFs) regulating hydropenia
signaling in rice has also been elucidated. Most of these TFs bind
to cis-regulatory elements and belong to “AP2/ERF, bZIP, NAC,
MYB, WRKY, bHLH, NF-Y, and CAMTA” families (Umezawa
et al., 2006; Licausi et al., 2013; Castilhos et al., 2014; Shao
et al., 2015). Over-expression of these TFs in rice showed
increased ability of plant to withstand drought. Notably, DREB
(dehydration-responsive element-binding protein) transcription
factors act as key players in ABA independent pathway of
drought tolerance. Among DREBs, DREB1/CBF, and DREB2
are involved in drought stress (Srivasta et al., 2010; Nakashima
et al., 2014). The transgenic rice plants expressing DREB1A yield
more compared to the non-transgenic plants (Datta et al., 2012)
under drought condition. Similarly, over-expression of NAC
transcription factors (NAP and ONAC022) “reduce rate of water
loss and transpiration, decrease number of open stomata and
increase proline content” in rice (Hong et al., 2016). Nevertheless,
at vegetative stage, they impart “enhanced tolerance to high
salinity, drought, and cold” while increase yield despite drought
in flowering stage (Liang et al., 2014).

Besides drought responsive elements, proteins have been
identifed in hydropenia (Goyal et al., 2005). Accumulation of
LEA have been detected in seeds as well as in vegetative tissues
(Ingram and Bartels, 1996; He et al., 2012; Liu et al., 2013).
Expression of LEA protein encoding genes,OsEM1 andOsLEA3-
1 enhances tolerance of rice under water deficit (Xiao et al.,

2007; Yu et al., 2016). Similarly, high cuticular wax in many
crops imparts tolerance to drought (Xue et al., 2017). Crops
having more cuticular wax than reduced/ non-waxy crops show
drought-tolerance and higher yield (Zhou L. et al., 2013; Guo
et al., 2016) due to strong correlation between the wax content
and WUE (Zhu and Xiong, 2013). Recently, waxy crystal-spare
leaf 1 (OsWSL1) is reported to be involved in cuticular wax
accumulation in rice (Yu et al., 2008) and grain lenght 1-
6 (OsGL1-6) has been identified to synthesize fatty aldehyde
decarbonylase required for formation of wax in epidermis and
in vascular bundles (Zhou L. et al., 2013). Mutants defective
in OsGL1 are sensitive to drought as they accumulate less
cuticular wax (Mao et al., 2012). DEEPER ROOTING 1 mutant
(DRO1) governing root architecture and drought stress have been
identified in rice. DRO1 controls cell elongation at the root tip
and changes the angle of root growth to downward direction (Uga
et al., 2013) to fetch more water for growth.

Hydropenia induced abscisic acid (ABA) production also
induces de novo expression of both structural and functional
genes. Yamaguchi-Shinozaki and Shinozaki (2006) proposed
operation of two pathways; (i) ABA-dependent pathway and (ii)
ABA independent pathway. While the former pathway involves
expression of genes “that may or may not require protein
biosynthesis” the latter does not involve ABA for their induction.
MYB and MYC transcription factors represent ABA dependent
pathway while bZIP transcription factors don’t require ABA
synthesis and the target genes containing “abscisic acid response
elements (ABREs) with core ACGT-containing G-box” (Chaves
et al., 2003). The ABA independent pathway involves the “Water-
deficit-inducible genes” that do not require ABA for their
induction. The promoters of these genes contain a conserved
“Dehydration responsive element (DRE)” and are induced by
external stimuli (Yamaguchi-Shinozaki and Shinozaki, 2006).

LIPID SIGNALING IN DROUGHT STRESS:
THE NON-CANONICAL MECHANISM

Besides activation of TFs/proteins; lipids are also involved
in abiotic stress tolerance in plants (Okazaki and Saito,
2014; Hou et al., 2016). Seminal discoveries have elucidated
lipid signaling in response to drought (Darwish et al.,
2009; Golldack et al., 2014) in plants. Lipids such as wax,
cutin, and suberin directly contribute to the alleviation of
drought (Samuels et al., 2008) by reduction of cellular
dehydration (Okazaki and Saito, 2014) and lipid metabolism
(Gigon et al., 2004). It is reported (Kosma et al., 2009;
Seo et al., 2011) that ABA treatment increases layers of
these hydrocarbons in plants. While, overexpression of wax
biosynthetic genes increases tolerance to drought (Yang et al.,
2011; Luo et al., 2013; Zhou L. et al., 2013; Zhou M. et al.,
2013), plants depleted of wax are less tolerant to drought
(Qin et al., 2011; Seo et al., 2011; Mao et al., 2012; Zhu
and Xiong, 2013). Lipid signaling in plants includes generation
of “Inositol phosphate, lysophospholipids (LPLs), phosphatidic
acid (PA), oxylipins, sphingolipids, diacylglycerol (DAG), free
fatty acids (FFA), and N-acylethnolamine” that are generated
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FIGURE 1 | Model depicting the network of various phospholipases and lipid mediators during drought stress. Black line-induction, blue line-inhibition. PLA,

Phospholipase A; PLC, Phospholipase C; PLD, Phospholipase D; DAG, Diacyl glycerol; DAG-PPi, Diacyl-glycerol pyrophosphate; PL, Phospholipid; Lyso PL,

lysophospholipids; FFA, Free fatty acid; InP3, Inositol 1,4,5-trisphosphate; PI5-kinase, Phosphatidylinositol 4-phosophate 5-kinase; PtInP, Phosphatidylinositol

monophosphate; PtInP2, Phosphatidylinositol 4,5-bisphosphate; PtdOH, Phosphatidic acid, and X-OH- Free head group.

from phospholipids (Munnik and Testerink, 2009; Saucedo-
García et al., 2015). The mechanism involves generation of
phosphatidic acid (PA) by rapid activation of phospholipase C
(PLC) and phospholipase D (PLD) enzymes (Munnik et al.,
1998, 2000; Pical et al., 1999). The enzyme PA kinase, by
a attenuation mechanism, reduces phosphatidic acid (Munnik
et al., 1996, 2000; Pical et al., 1999) to produce diacyl-glycerol
pyrophosphate (DAGPP). Similarly, hyperosmotically stimulated
cells change concentration of phosphatidylinositol phosphate,
phosphatidylinositol 4,5-bisphosphate (Einspahr et al., 1988; Cho
et al., 1993; Pical et al., 1999) and/or their novel isomers (Dove
et al., 1997) to adjust to hydropenia.

The action of phospholipases and lipid intermediates
depicting their role during drought is summarized in Figure 1.
It reveals DAG and Inositol-3-phosphate are produced by
PLC. InP3 increases the Ca2+ concentration in cytosol (Staxen
et al., 1999). Consequently, Ca2+ and PtInP2 stimulate PLD
(Wang, 2000; Zheng et al., 2000). The activated PLD generates
phosphatidic acid from phospholipids. Cellular homeostasis of
PtdOH is maintained by the opposing actions of kinsases and
phosphatases that interconvert DAG, phosphatidic acid, and
DAG-PPi in plants. Thus, the pool of phosphatidic acid acts
as an important hub of lipid signaling/biosynthesis (Liscovitch
et al., 2000). However, PLD directly does not alter activity
of PLA but oxylipin synthesis is inferred to be activated by
PLD (Wang, 2000). On the contrary, LysoPL produced by PLA

directly inhibits PLD activity (Ryu et al., 1997) that maintains
phospholipid homeostasis in plants.

With climate change looming large over modern intensive
agriculture, frequency and severity of drought is predicted
to increase. The erratic precipitation will cause large scale
disruption in shallow rainfed rice agro-ecosystems leading to
significant reduction in economic harvest. Thus, development
of drought tolerant varieties by altering cellular homeostasis
of lipids/proteins/carbohydrates is necessary for ensuring
enhanced crop production in rainfed agro-ecological regions
with unpredictable climatic conditions.
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