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Lignin exhibited numerous advantages such as plentiful functional groups, good
biocompatibility, low toxicity, and high carbon content, which can be transformed into
composites and carbon materials. Lignin-based materials are usually environmentally
friendly and low cost, and are widely used in energy storage, environment, electronic
devices, and other fields. In this review article, the pretreatment separation methods
like hydrothermal process are illustrated briefly, and the properties and categories of
technical lignin are introduced. Then, the latest progress of lignin-based composites
and lignin-derived carbon materials is summarized. Finally, the current challenges and
future developments were suggested based on our knowledge. It is expected that this
review paper favored the applications of composites and lignin-derived carbon materials
in the future.
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INTRODUCTION

Cellulose, lignin, and hemicellulose are the main chemical components of plant fiber raw materials
(Li S.X. et al., 2019; Yang et al., 2019; Liu W. et al., 2020; Liu H. et al., 2021; Liu K. et al., 2021; Liu W.
et al., 2021; Wang et al., 2021). Among these three components of lignocellulose, lignin is the only
amorphous aromatic polymer (Figure 1A; Deuss et al., 2015; Xu J. et al., 2020; Ma et al., 2021b).
Previously, the production of Kraft lignin and soda lignin was mainly used as a dye to provide a
heat source for the burning section of the alkali recovery in the pulp and paper industry (Li et al.,
2016; Xu et al., 2021). Given that lignin is a rich natural resource, increasing attention is paid to
the research, development, and utilization of lignin in today’s increasingly scarce resources (Upton
and Kasko, 2016; Li X. et al., 2019; Li et al., 2021). The structure of lignin is relatively complex
than other biomass; therefore, it has a broad research prospect to develop appropriate methods for
separation and refinery of lignin, conduct detailed research, and then unitize it to prepare materials
rationally (Ragauskas et al., 2014; Chen et al., 2016; Meng L.Y. et al., 2019; Chen et al., 2020b; Ma
et al., 2020).

Lignin is composed of three kinds of structural units such as syringl unit (S), guaiacol unit (G),
and p-hydroxyphenyl unit (H) (Figure 1B; Decostanzi et al., 2019; Chen et al., 2020c; Shi and Ma,
2019; Liu K. et al., 2021). In the previous literatures, the lignin of softwoods is mainly G-type units;
meanwhile, hardwoods are mainly G-type and S-type units. There are more abundant types of
lignin in gramineous plants, including G, S, and H-type units. They are connected by ether bonds
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(about 60–70%) and carbon–carbon bonds (about 30–40%).
Among them, all the alkyl-aryl ether bonds (β-O-4 and α-O-4),
the β-β’ linkages, and the β-5 linkages are predominant between
above three structural units (Figure 1C; Zheng et al., 2021).
The structure composition and interunit linkages of lignin are
also closely related to the external factors such as the growing
environment of plants. Therefore, the different structural units,
different linkage, and the complex relationship between lignin
and glycan in the cell wall endow lignin one of the most
complex natural polymers in nature. Lignin molecules contained
a variety of active functional groups both on the benzene ring and
the side chain, including aliphatic hydroxyl (Al-OH), phenolic
hydroxyl (Ph-OH), carboxyl (-COOH), carbonyl (-C = O), and
methoxy groups (-OCH3), determining the chemical properties
and reactivity of lignin. The chemical properties of lignin allow
it and its derivatives to be used as materials for value-high.
Furthermore, considering the high carbon content of lignin, it
is also an ideal carbon material precursor (Shi and Ma, 2019).
Lignin-derived carbon materials are widely used in various fields
like energy storage, adsorbent, and catalyst carriers (Suhas et al.,
2007; Saha et al., 2014).

In this review article, we focus on the current achievements of
lignin-based materials. The categories of lignin were introduced
briefly. Then, the lignin-based materials like lignin-based
hydrogels, flocculants, and resin adhesive, and lignin-plastic
composites are summarized. In addition, the lignin-derived
carbon materials such as activation carbon, carbon fibers, and
carbon dots are discussed in detail. Finally, the existed problems
and future trends of lignin-derived materials are proposed as
well. It is expected that the lignin-based materials are promising
applications in various fields.

THE SEPARATION METHODS AND
COMPOSITIONS OF LIGNIN

Lignocellulose is one of the most abundant biomass resources,
mainly composed of 40–50% cellulose, 20–30% hemicellulose,
and 25–35% lignin (Lievonen et al., 2016). According to statistics,
about five thousand million tons of lignin has been produced
globally every year (Chio et al., 2019; Meng Y. et al., 2019).
Chemical structures of lignin varied among different plants
species, such as softwoods, hardwoods, and grasses (Boerjan
et al., 2003). Lignin does not stand for a single substance, but
for a group of substance that have common properties in plants
(Garcia Calvo-Flores and Dobado, 2010). The separation of
lignin, based on the raw materials, can be divided into three
types of separation from plant raw materials, separation from
pulp, and separation from pulp waste liquid. Based on the
separation principle, the first one is to remove the cellulose
and hemicellulose by dissolution, leaving the insoluble residue
of lignin. Meanwhile, the second is to dissolve the lignin,
leave the insoluble residue of cellulose and hemicellulose, and
recover lignin from the solution (Zhao and Abu-Omar, 2021).
Bjorkman proposed a classic method for separating lignin
by extraction after ball milling as early as 1953, resulting
in the production of milled wood lignin. The milled wood

lignin is closed to natural lignin, but in view of the yield
is low, so it is often used to study the structure of lignin
(Wang et al., 2009). Therefore, it is always a challenge to find
a clean and efficient process to separate and recover lignin
components with high yield and high structural integrity. Now,
the research on biomass refining became a hot direction, which
is to separate and extract lignin from biomass feedstock by
pretreatment to make it easier for subsequent conversion and
further applications. Numerous efforts have been devoted to
find the potential pretreatment methods, and various methods
have been explored, such as physical, chemical, physicochemical,
and biological methods (Hochegger et al., 2019). For example,
hydrothermal pretreatment is an environmental-friendly method
for biomass separation. Sun et al. (2014) developed an integrated
strategy including hydrothermal pretreatment and alkaline post-
treatment, studied the changes of linkages during process, and
obtained the highest yield of lignin up to 79.3%. These findings
are beneficial to understand depolymerization and maximize
the potential utilizations of lignin. In addition, there have been
noticeable advances using novel solvents like ionic liquids, which
are called “green solvents.” Since no toxic chemicals are formed
and almost 100% can be recycled, it is considered that the
ionic liquid pretreatment is a green solvent. Sun et al. (2019)
applied a microwave-assisted ionic liquid approach to decrease
the resistance of biomass in biorefinery and led to a high yield of
lignin and efficient extraction of biomass. Deep eutectic solvent
(DES) pretreatment is another new blooming green strategy
for reducing biomass recalcitrance. Shen et al. (2019) employed
biomass-derived DES including biomass-derived chemicals to
deconstruct the structure of Eucalyptus for lignin valorization.
Ma et al. (2021a) used microwave-assisted DES pretreatment
to improve the lignin extractability and valorization of poplars.
After DES pretreatment, the enzymatic saccharification rations
were significantly increased, indicating that this microwave-
assisted DES method could reduce the biomass recalcitrance and
promote the lignin valorization. There have been series of review
papers that summarize lignin extracted methods (Azadi et al.,
2013; Chio et al., 2019). Herein, we mainly discuss the common
industrial lignin.

In the paper industry, the four main methods of separating
technical lignin (or pulping) are the Kraft pulping, sulfite
pulping, soda pulping, and organosolv pulping processes. The
obtained lignin types are Kraft lignin, lignosulfonate, soda
lignin, and organosolv lignin, respectively (El Mansouri and
Salvado, 2006). Due to the different processing methods, these
four technical lignins have different structures, compositions,
and properties. Kraft lignin is the residue of sulfate pulping
in paper production, which is precipitated by adjusting the
pH value of black liquor (Huang et al., 2017). The structure
of Kraft lignin is highly modified and soluble in alkaline
solution and organic solvents with high polarity (Chakar
and Ragauskas, 2004). Lignosulfonate is sulfonated lignin,
which is removed from the wood raw materials by sulfite
pulping. Lignosulfonate is soluble in acidic solution, alkaline
solution, and organic solvents with high polarity. Even though
they contain sulfur, these two kinds of lignin have different
characteristics, and the molecular weight of lignosulfonate is
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FIGURE 1 | (A) Typical structure of lignocellulose (Zhu et al., 2020). (B) Precursors and (C) common interunit linkages (Luis Espinoza-Acosta et al., 2018).

higher (Vishtal and Kraslawski, 2011). Soda lignin (or Alkaline
lignin) is generally free of sulfur, which has a relatively lower
molecular weight (Woermeyer et al., 2011). Organic solvents
lignin is collected by organosolv pulping process, which has
the characteristics of high purity, high homogeneity, and low
molecular weight (Li and Takkellapati, 2018; Yu and Kim, 2020).
However, the process includes the necessary solvent recovery
steps, increasing the cost (Zhao and Abu-Omar, 2021).

THE FABRICATION AND PROPERTIES
OF LIGNIN-BASED MATERIALS

Owing to its good biocompatibility, ecological friendliness, and
low toxicity, lignin is widely explored for high-value materials
instead of burning (Si, 2019; Huang et al., 2020; Liu R. et al.,
2020). The aromatic properties also make it possible to replace
phenol to prepare phenolic resin adhesives (Pang et al., 2020; Pei
et al., 2020). Herein, the synthesis and properties of lignin-based
materials with various applications are described.

Lignin-Based Hydrogels
Hydrogel is a kind of hydrophilic three-dimensional network
gel, which can swell and hold large amounts of water.
Forest biomass materials such as cellulose and hemicellulose
are widely used in the preparation of hydrogels (Liu et al.,
2017; Du et al., 2019; Li et al., 2020). Moreover, lignin
is in its infancy as strength modifier, adhesive agents, or
other functional fillers in hydrogels for lignin fractionation,
wearable electronics, UV shielding, and biomaterials (Thakur and
Thakur, 2015). Dai et al. (2019) fabricated a lignin-contained
cellulose hydrogel for lignin fractionation. In this hydrogel,

alkaline lignin was employed to play as a functional cross-
linker to simultaneously improve the mechanical performances
and realize specific absorbed or filtered. This lignin-cellulose
hydrogel showed a reliable way to integrate lignin materials
and lignin fractionation. Han et al. (2021) developed a
polyvinyl alcohol (PVA) hydrogel with lignin-silver hybrid
nanoparticles, which exhibited exceptional compressibility. As a
strength modifier of hydrogel, lignin-silver hybrid nanoparticles
provided strong hydrogen bonds and facilitated the electron
transfer. Considering these outstanding traits of this PVA/lignin-
silver hybrid nanoparticle hydrogel, this hydrogel could be
used as a pressure-sensitive sensor to monitor signals. After
demethylation, the phenolic hydroxyl groups of lignin have been
released, which not only made the lignin with adhesion property
but also improved the reducibility. Qian et al. (2021) took full
advantage of this to reduce graphene oxide and develop a catechol
lignin/reduced graphene oxide/sodium alginate/polyacrylamide
double network hydrogel with integrated conductive, adhesive,
and UV-blocking performance. The obtained hydrogel exhibited
great potential in flexible electronic skin. Gao et al. (2021)
designed a nanosilver immobilized glycine decorated lignin
hydrogel as a catalyst, which showed outstanding catalytic
performance of p-nitrophenol reduction. Amino modified
lignin hydrogel networks played a role for catalyst carrier
with abundant anchoring sites to disperse and stabilize the
silver nanoparticles. After 10 cycles, the obtained catalyst can
still maintain a catalytic efficiency of 98%, and there is no
obvious collapse of the structure as well as the leaching of
nanosilver can be ignored.

For the biomedical field, Zhang et al. (2020) assembled
a biomimetic lignin/poly(ionic liquids) composite hydrogel
by supramolecular interactions for the application of
wound dressing. The resultant hydrogel exhibited satisfying
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mechanical strength, self-healing properties, bactericidal
activity, and anti-oxidant activity. Lignin as reinforcement
and antioxidant improved the mechanical enhancement and
antioxidant activity of the hydrogel. Besides, lignin-based
hydrogels have been used for the controlled release of drug
(Witzler et al., 2018). Borisenkov et al. (2016) synthesized a
hemicellulose and lignin composite hydrogel for drug delivery.
Pectin was embedded in the hydrogel to form hydrophilic
supramolecular complexes, which was employed to deliver
β-glucuronidase and estrogens.

In addition, due to the changes of solubility, lignin can be
used as pH-sensitive ingredient to form pH-responsive hydrogel
in shape memory and controlled release (Figueiredo et al.,
2017; Jin et al., 2018). Dai L. et al. (2020) prepared an all-
lignin-based pH-stimuli-responsive hydrogel for the actuator.
Herein, the kraft lignin was crosslinked with poly(ethylene glycol)
diglycidyl ether to build this lignin hydrogel. As shown in
Figure 2A, the lignin-based hydrogel bended spontaneously as
the pH changes. Therefore, a mimetic behavior to hook up a wire
has been achieved by adjusting pH (Figure 2B). These studies
demonstrated that the use of lignin in hydrogel can contribute to
areas such as electronics manufacturing, wearable devices, drug
delivery, and actuators.

Lignin–Phenol–Formaldehyde Resin
Adhesive
From the perspective of the structural characteristics of
lignin, it is also a high-value approach to prepare lignin–
phenol–formaldehyde resin adhesive. Pang et al. (2017) studied
the relationships between structure and property of two
technical lignins in synthesis and performance of lignin–phenol–
formaldehyde resin adhesive. They were obtained from acidic
and alkaline organosolv pulping of bamboo. After purification,
they were both characterized thoroughly, and the structural
features were compared. The results showed that the long-chain
hydrocarbon derivatives presented in lignin would affect the
synthesis of lignin–phenol–formaldehyde resin.

Depolymerization, activation, phenolate, and demethylation
are the common pre-treatment processes to release the phenolic
hydroxyl group of lignin (Naseem et al., 2016; Wang et al.,
2018; An et al., 2019; Gan and Pan, 2019). For example, Ma
et al. (2018) investigated a catalytic oxidative depolymerization
process for increasing the content of phenolic hydroxy groups
of Kraft lignin. Hydrogen peroxide and copper sulfate were used
as catalysts in this process. After reaction, the phenolic hydroxyl
content increased from 1.55 to 2.66 mmol g−1, and both the
molecular weight and polydispersity decreased. The resultant
lignin was used to synthesize lignin–phenol–formaldehyde resin
with 50% substitution rate, whose various indexes all achieved the
national standards. Base-catalyzed depolymerization of softwood
Kraft lignin was used to release the phenolic hydroxyl of lignin
to substitute phenol in resins (Solt et al., 2018). Modified
renewable lignin-based phenols could replace phenol even at
a high degree of substitution of 70%. As shown in Figure 3,
Li et al. (2018) employed NaOH/urea aqueous solution to
depolymerize the alkali lignin to prepare low molecular weight
lignin derivatives, so as to further prepare lignin–phenol–
formaldehyde resin. After depolymerization treatment process,
phenyl-propane trimers were mainly obtained, and the phenolic
hydroxyl group content increased from 0.07 to 0.12 mmol g−1.
The resultant depolymerized alkali lignin–phenol–formaldehyde
resin displayed fast curing rate, low formaldehyde emission,
and high bonding strength. Microbes such as the brown-rot,
white-rot, and soft-rot fungi were also investigated for the
demethylation of Kraft lignin (Venkatesagowda and Dekker,
2020). Demethylation by the action of enzymes removed the
O-methyl/methoxy of lignin and produced the demethylated
Kraft lignin enriched in vicinal-hydroxyl groups, which has
potential in lignin–phenol–formaldehyde resin. These studies
demonstrated that the depolymerized lignin derivatives can
replace phenol in the preparation of phenolic resin.

Lignin-Based Flocculants
Lignin can be employed to treat wastewater. However, most
of them suffered from poor solubility, chemical inactivity, and

FIGURE 2 | (A) pH-responsive deformation of the lignin-based hydrogel by adding HCl and KOH solution; (B) Actuating performance of the lignin-based hydrogel for
being hooked up (Dai L. et al., 2020).
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FIGURE 3 | Schematic diagram of NaOH/urea aqueous solution to depolymerize the alkali lignin to prepare low molecular weight lignin derivatives (Li et al., 2018).

low molecular weight. Therefore, various chemical modification
methods have been utilized to lignin to improve the flocculation
performance (Wang et al., 2020b). Guo et al. (2018) developed
an environmentally friendly lignin-based flocculant with
improved flocculation by grafting the cationic acrylamide
and dimethyl diallyl ammonium chloride monomers onto
the alkaline lignin. The flocculation performance of the
obtained lignin-based flocculant was low affected by pH.
Moreover, the addition of Ca2+ and Mg2+ could significantly
enhance the flocculation performance. Chen et al. (2020a)
employed enzymatic hydrolysis lignin as raw materials,
using polyacrylamide and methylacryloyloxyethyltrimethyl
ammonium chloride as graft agent to synthesize a lignin-based
cationic flocculant (L-CPA). The resultant L-CPA could self-
assemble into octopus-like nanospheres, which endowed the
high flocculation efficiency under the pH condition of 5–9.
A small flocculant could be used to flocculate kaolin suspension.
Such cheap, environmentally friendly, and technically feasible
lignin-based flocculant exhibited a broad prospect in wastewater
treatment process. Wang et al. (2020a) designed a lignin-based
flocculant by mild copolymerization of lignosulfonate and
[2-(methacryloyloxy) ethyl] trimethylammonium chloride
solution. By changing the reaction conditions, two classes of
flocculant were obtained, which were suitable for simulated dye
wastewater (removal rate up to 95%), kaolin (turbidity removal
rate up to 99.2%), and Escherichia coli suspensions (bacterial

removal rate up to 97.5%), respectively. Anionic lignin-based
flocculant was also prepared (Aldajani et al., 2021). Aldajani
et al. (2021) prepared a hydrolyzed anionically modified lignin-
acrylamide flocculant and investigated the different properties
of polymer on the suspension’s attributes such as zeta potential,
relative turbidity, flocs strength, and recoverability. Through the
combination of many of its functional groups, namely, amide,
carboxyl, and hydroxyl, it is observed that this lignin-based
flocculant had a deeper adsorption on alumina particles than
other polymers. These studies exhibited that the production and
application of high-efficiency lignin-based flocculants are of great
significance for resource conservation, low carbon footprint, and
wastewater reuse.

Lignin-Plastic Composites
In past decades, billions of tons of non-biodegradable plastics
have been produced, which is a significant source of pollution.
As an abundant natural polymer, lignin could be integrated into
plastics to fabricate high-value biodegradable materials with
economic competitiveness (Sen et al., 2015; Kazzaz et al., 2019).
Therefore, the preparation of composite materials by mixing
lignin with various plastics had attracted attention. For example,
Cerro et al. (2021) produced a poly(lactic acid) (PLA)/lignin
nanoparticle composite containing cinnamaldehyde (Ci) for
packaging and biomedical applications, which exhibited a better
UV-light barrier property and biodegradable performance.
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Herein, lignin nanoparticles are used as fillers to enhance
the mechanical strength of polymer composites. The toxicity
of PLA/lignin composites has been studied as well, and the
results showed normal blood parameters after a single dose
of composites. Xiong et al. (2020) produced a composite by
blending poly(butylene adipate-co-terephthalate) (PBAT) and
Eucalypt hydrothermal lignin (Figure 4A). Two strategies
were followed to improve the performance of composites,
including methylated lignin replaced neat lignin as filler,
and twin-screw extrusion was used as preparation method.
The obtained PBAT/lignin composite materials exhibited
a price advantage, in which the cost was significantly
reduced by 36%.

Three-dimensional (3D) printing is a method of shape
rendering. The ideal materials for 3D printing need to have
good extrudability. The unique structures of lignin such as ether
groups, β-O-4′ linkages, and oxygenated aromatic bonds endow
it suitable to incorporate into conventional plastic materials to
build hybrid materials by 3D printing with more environmentally
friendly and better printability (Nguyen et al., 2018b). A study
reported that organosolv hardwood lignin was mixed with nylon
as 3D printing ink, and the lignin was found to improve the
printability by reducing the melt viscosity and enhance the
stiffness and tensile strength of the structure (Nguyen et al.,
2018a). The proposed mechanism was lignin domains forming
hydrogen bonds with the plastic matrix. This study came up with
a new strategy of using biomass lignin as a feedstock for valuable
3D printing materials. Sutton et al. (2018) reported renewable,
modified lignin-containing photopolymer resins for 3D printing
by stereolithography. Compared to conventional photoactive
resins, the lignin-containing resins displayed satisfied ductility, in
which the lignin content can reach up to 15%. High print quality
and visual clarity were obtained as shown in Figure 4B of the
photographs of formulations with different lignin content. These
studies showed that lignin is cheap and eco-friendly as a feedstock
for plastic composites.

LIGNIN-DERIVED CARBON MATERIALS

Carbon materials were extensively applied in numerous
fields such as energy storage and conversion, environmental
applications, and catalyst (Dong et al., 2020). Generally, carbon
materials are derived from petroleum-based chemicals by
carbonization treatment, which is non-renewable, non-cyclable,
and less environmentally friendly (Shi and Ma, 2019). Lignins
are ideal raw materials as carbon precursors due to the low
cost and high carbon content. It is of great significance to
protect the environment, save resources, and develop the
economy harmoniously.

Lignin-Derived Activated Carbons
Due to the high cost of producing activated carbon from coal, the
production of activated carbon from lignocellulosic feedstock has
attracted much attention (Jiao et al., 2021). A series of chemical
activators like KOH and K2CO3 was adopted. For example, He
et al. (2021) chose lignin-based pitch from black liquor as carbon
precursor and KOH as chemical activator to synthesize porous
activated carbon materials. The activation temperature on the
lignin-derived active carbon was also explored. It was found
that the maximum specific surface area and total pore volume
reached the values of 3652 m2 g−1 and 2.35 cm3 g−1 under the
activation temperature of 850◦C. In addition, the ability of the
lignin-derived activated carbon to absorb gaseous benzene has
also been studied, and the adsorption performance exhibited that
the carbon could be a good candidate for absorbing. As shown in
Figure 5, Xu Q. Q. et al. (2020) employed sodium lignosulfonate
(SLS) and ionic liquid ([Amim]Cl) to produce a new polymeric
ionic liquid [Amim]LS and NaCl. The mixture was used as a
precursor to prepare N-doped porous carbon material via direct
carbonization without other activations. Herein, NaCl played the
role of temple and activation agent. The obtained lignin-based
porous carbon achieved a nitrogen content of 4.68%. Under the
carbonization temperature of 700◦C, a good energy density of

FIGURE 4 | (A) Preparation of a composite by blending PBAT and Eucalypt hydrothermal lignin via two strategies (Xiong et al., 2020); (B) Digital photos of 0%, 5%,
and 10% lignin (from top to bottom) exhibiting the effect on print quality (Sutton et al., 2018).
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FIGURE 5 | Schematic diagram of [Amim]LS precursors for N-doped porous carbon material fabrication (Xu Q. Q. et al., 2020).

7.99 Wh kg−1 at the power density of 25 W kg−1 and cycling
stability of 90.3% after 20000 cycles are shown. There are also
some studies on the lignin-derived carbon with hierarchical
porous architectures (Zhang et al., 2015a,b). Xi et al. (2021)
obtained lignin-derived porous carbons with microstructural
characteristics, high graphitization, high specific surface area, and
hierarchical porosity for fabrication composites to alleviate the
expansion and pulverization phenomena of lithium-ion batteries.
Such lignin-derived porous carbons facilitated dispersing/coating
of SnO2 and increased the reversible specific capacity from
64 to 620 mAh g−1. Wan et al. (2021) converted lignin
to carbon materials with 3D hierarchical porous structures.
After phosphoric acid plus hydrogen peroxide (PHP) oxidation
pretreatment and KOH activation, the carbonized lignin reached
a high surface area of 3094 m2 g−1 and pore volume of 1.72 cm3

g−1. The electrochemical measure results showed that the lignin-
based carbon achieved a specific capacitance of 352.9 F g−1 at
0.5 A g−1, indicating an outstanding rate performance of this
carbon electrode.

Lignin-Derived Carbon Fibers
Lignin can be used as a cheap precursor in the preparation
of carbon fibers instead of petroleum-based polymers by
electrospinning technique and carbonization (Garcia-Mateos
et al., 2019). Lignin-based carbon fibers with different functions
can be obtained by adjusting the parameters of electrospinning,
the template selected, and the materials loaded. For example,
Ma et al. (2021c) prepared carbon nanofibers using lignin and
polyvinylpyrrolidone as carbon precursor by electrospinning,
peroxidation, carbonization, and pickling processes. Zinc
nitrate hexahydrate was added and pyrolyzed to produce zinc
oxide, which was used as a template to produce abundant
micropores, resulting in the high specific surface area of
1363 m2 g−1. In view of the high specific surface area and

abundant N/O groups, these lignin-derived carbon fibers with
a specific capacitance of 289 F g−1 were seen as potential
candidates for supercapacitor electrodes. Furthermore, the
assembled symmetrical supercapacitor displayed outstanding
cycling stability. Liu and Ma (2020) employed lignin as a
renewable carbon source with polyacrylonitrile (PAN) and
urea to prepare N-doped carbon nanofibers and then coated
with polyaniline (PANI) for energy storage. The obtained
lignin-based carbon fiber electrode displayed exceptional
properties, including large specific surface areas of 483.1 m2

g−1, uniform pore size distribution of 9.1 nm, and specific
capacitance up to 199.5 F g−1 at 1 A g−1. Eighty-two
percent of the initial capacitance was maintained after 1000
charge/discharge at 4 A g−1. Dai Z. et al. (2020) developed
a N,O co-doped carbon nanofibers (E-CNFs) from waste
lignin and PAN by facile esterification and electrospinning
method. The lignin esterification reaction was displayed in
Figure 6, and the resultant esterified lignin had a low glass
transition temperature for higher heteroatom content and better
wettability of carbon nanofibers. E-CNF electrode exhibited a
high capacitance of 320 F g−1 at a current density of 1 A g−1.
An outstanding energy density of 17.92 Wh kg−1 at the power
density of 800 W kg−1 was achieved by E-CNF symmetric
supercapacitors.

In addition to energy storage, lignin-derived carbon fibers
have been used in the field of catalysis as well. Lignin-based
Pt supported carbon fiber electrocatalysts were prepared
for alcohol electro-oxidation (Garcia-Mateos et al., 2017).
Lignin/ethanol/phosphoric acid/platinum acetylacetonate
solutions were chosen as precursors for electrospinning. After
thermostabilization and carbonization at 900◦C, carbon fibers
with porous structure and Pt particle loading were obtained.
Among them, the addition of phosphorus improved the
oxidation resistance, avoided the oxidation of the lignin-
based carbon fibers in the preparation process, and led to the
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FIGURE 6 | Illustration diagram of lignin esterification reaction (Dai Z. et al., 2020).

generation of microporous architectures, which were beneficial
to enhance the catalyst performance in the electro-oxidation of
methanol and ethanol.

Lignin-Derived Carbon Dots
Carbon dot is a novel type of carbon nanomaterial, which
was found in 2004 (Xu et al., 2004; Kang et al., 2020). Zhang
et al. (2019) prepared carbon quantum dots with bright green
fluorescence by a simple one-pot route. Alkali lignin was
employed as a precursor. Chao et al. (2021) employed lignin-
derived carbon dots as photothermal thermogenesis materials to
enhance wood-derived evaporation system. Herein, the lignin-
derived carbon dots were obtained by hydrothermal method.
An evaporation performance of 1.18 kg m−2 and efficiency
up to 79.5% were achieved. Yang et al. (2020) developed
a green approach to prepare sulfur-doped carbon dots by
hydrothermal treatment of lignin. The obtained lignin-derived
carbon dots possessed sulfur-containing groups, exhibiting good
fluorescence with a quantum yield up to 13.5% and outstanding
stability in acidic environments with a wide pH range of 0–5.0.
Therefore, this lignin-derived carbon dots were successfully used
in detection of Sudan I in acidic conditions.

CONCLUSION AND PERSPECTIVES

With the intensive investigation of lignin-based materials, the
great development potential has been revealed in various

fields. More and more efforts should be devoted on lignin-
based materials and lignin-derived carbon materials. Further
perspectives in lignin-based materials and lignin-derived carbon
materials are proposed as follows.

(1) The low reactivity, solubility, and compatibility with
conventional polymers of technical lignin enhance the
difficulty of lignin to be a candidate to fabricate materials.
Through chemical modification and careful design, these
problems are partially or fully worked out, which expands
the application of lignin in composite materials.

(2) Lignin does not stand for a single substance, but for
a group of substances that have common properties in
plants. Lignin is heterogeneous in nature, and it usually
has heterogenous molecular weights, different functional
groups, and different proportions of structural units. It is
not conducive to repeatability, uniformity, and scalability
of lignin-based materials. The obtained uniform lignin
product via fractionation process may be one of the
solutions for this problem.

(3) For lignin-derived activated carbon materials, chemical
activators such as KOH and H3PO4 are often used to
increase the specific surface area and the number of
pores. However, most of these chemical activators are
highly corrosive to the instrument and not recoverable.
Therefore, it is vital to adopt green activators or design
physical approaches for preparation of lignin-derived
activated carbon.
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(4) The morphologies of lignin-derived carbon materials are
always disordered and uncontrollable. It is necessary
to design hierarchical porous architectures according to
different applications.

(5) For lignin composite materials, more advanced
technologies and strategies should be developed, like 3D
printing and screen process. In addition, other applications
of lignin-derived materials should also be designed, such
as nanogenerators, thermal management, biomedical
field, and so on.
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