
International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

432

Computationally Efficient Hybrid Method for the Numerical Solution of

the 2D Time Fractional Advection-Diffusion Equation

Fouad Mohammad Salama
School of Mathematical Sciences,

Universiti Sains Malaysia, Penang, Malaysia.

Corresponding author: fuadmohd321@gmail.com

Norhashidah Hj. Mohd Ali
School of Mathematical Sciences,

Universiti Sains Malaysia, Penang, Malaysia.

E-mail: shidah_ali@usm.my

(Received September 12, 2019; Accepted January 4, 2020)

Abstract

In this paper, a hybrid method based on the Laplace transform and implicit finite difference scheme is applied to obtain

the numerical solution of the two-dimensional time fractional advection-diffusion equation (2D-TFADE). Some of the

major limitations in computing the numerical solution for fractional differential equations (FDEs) in multi-dimensional

space are the huge computational cost and storage requirement, which are 𝑂(𝑁2) cost and 𝑂(𝑀𝑁) storage, 𝑁 and 𝑀 are

the total number of time levels and space grid points, respectively. The proposed method reduced the computational

complexity efficiently as it requires only 𝑂(𝑁) computational cost and 𝑂(𝑀) storage with reasonable accuracy when

numerically solving the TFADE. The method’s stability and convergence are also investigated. The Results of numerical

experiments of the proposed method are obtained and found to compare well with the results of existing standard finite

difference scheme.

Keywords- Fractional advection-diffusion equation, Laplace transform, Finite difference scheme, Stability,

Convergence.

1. Introduction
Fractional differential equations (FDEs) have received much interest over the last two decades due

to its wide applications in many scientific branches. A detailed discussion of fractional calculus

and its applications can be found in (Oldham and Spanier, 1974; Samko et al., 1993; Miller and

Ross, 1993; and Podlubny, 1999). Here, the TFADE is considered as a useful tool for describing

the transport dynamics in complex systems which are governed by anomalous diffusion and non-

exponential relaxation patterns (Zhuang et al., 2011).

In recent years, several finite difference methods have been developed to solve fractional

advection-diffusion equations (FADEs). Chen et al. (2008) presented implicit and explicit finite

difference schemes for solving the fractional reaction-subdiffusion equation. The schemes had been

proven to be stable and convergent using a Fourier analysis. Shen et al. (2011) established

numerical explicit and implicit difference schemes for the solution of the space-time Riesz-Caputo

FADE. They proved that the explicit scheme is conditionally stable, whereas the implicit scheme

is unconditionally stable. Later, Gao and Sun (2015) proposed a combined compact difference

scheme to solve the TFADE in one dimension. The time fractional derivative was defined in the

Caputo sense. The Fourier analysis technique was employed to prove the stability and convergence

of the method. Balasim and Ali (2017) derived standard point and explicit group iterative finite

mailto:fuadmohd321@gmail.com
mailto:shidah_ali@usm.my

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

433

difference schemes to compute the numerical solution of the TFADE. The group methods were

proved to be stable and convergent using matrix analysis. Mardani et al. (2018) suggested a

numerical method based on finite difference scheme and meshless method for solving the one-

dimensional TFADE. Vong et al. (2018) presented a second order finite difference schemes to solve

FADE. They utilized weighted and shifted Grunwald-Letnikov formulas to discretize the Riemann-

Liouville fractional derivatives. Recently, Zhang et al. (2019) suggested implicit and explicit

difference schemes to solve the time-space FADE in one dimension. Both schemes have first order

accuracy in time and space.

In this paper, we study the following two-dimensional problem of the form

𝐷0
𝐶

𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) = 𝑎1

𝜕2𝑢

𝜕𝑥2
+ 𝑎2

𝜕2𝑢

𝜕𝑦2
− 𝑏1

𝜕𝑢

𝜕𝑥
− 𝑏2

𝜕𝑢

𝜕𝑦
+ 𝑓(𝑥, 𝑦, 𝑡) (1)

over a region Ω = {(𝑥, 𝑦)| 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇}, with the initial and boundary

conditions

𝑢(𝑥, 𝑦, 0) = 𝑝(𝑥, 𝑦), (2)

𝑢(𝑥, 0, 𝑡) = 𝑝1(𝑥, 𝑡), 𝑢(𝑥, 𝐿, 𝑡) = 𝑝2(𝑥, 𝑡),
𝑢(0, 𝑦, 𝑡) = 𝑝3(𝑦, 𝑡), 𝑢(𝐿, 𝑦, 𝑡) = 𝑝4(𝑦, 𝑡), (3)

where, 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are positive constants, and 𝐷0
𝐶

𝑡
𝛼 is the Caputo fractional derivative of order

𝛼, 0 < 𝛼 < 1.

One of the major challenges in computing the numerical solution for time fractional differential

equations (TFDEs) is the nonlocal property of the fractional operator. This means that the computed

values of the solution on all preceding time levels need to be stored to obtain the solution values

on the present time level. This needs a substantial size of memory, especially for multi-dimensional

problems. On the other hand, the computational cost of numerically solving the TFDEs using

standard finite difference schemes is of 𝑂(𝑁2) (Gong et al., 2014; Gong et al., 2015; Jiang et al.,

2017) which is computationally very expensive and time consuming. For more information about

the computational complexity of FDEs, please refer to (Gong et al., 2015). On the contrary, the

computational cost of numerically solving time-dependent partial differential equations (PDEs) is

of 𝑂(𝑁), and the solution outcomes need to be saved on a fixed number of time levels (Gong et al.,

2014; Jiang et al., 2017). The main aim of this study is to obtain an economical computational

solution for the 2D TFADE (1). The Laplace transform will be employed to approximate the time

fractional derivative and reduce the TFADE (1) to its corresponding PDE. The implicit difference

scheme will then be applied to solve the resulting PDE, which reduces the computational work and

memory usage significantly.

The rest of this paper is arranged as follows. Basic preliminaries and definitions are given in section

in section 2. In section 3, we explain the formulation of the hybrid method for the problem (1).

Unconditional Stability and convergence of the numerical scheme are proven in section 4. In

section 5, we briefly review an existing standard finite difference scheme for numerically solving

the TFADE (1). The computational complexities of both standard and hybrid methods are also

discussed in this section. Section 6 explores the performance of the hybrid method versus the

standard scheme through numerical experiments. Finally, conclusions are illustrated in section 7.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

434

2. Preliminaries
Here we introduce some basic definitions and preliminaries which are utilized further in this paper.

Definition 2.1 (Podlubny, 1999). The Caputo fractional derivative of order 𝛼 of a function 𝑓(∙) is

given by

𝐷 𝑓(𝑥, 𝑦, 𝑡)𝑡
𝛼

0
𝐶 =

1

Γ(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝑥, 𝑦, 𝜉)

(𝑡 − 𝜉)𝛼+1−𝑛
𝑑𝜉

𝑡

0

, 𝑛 − 1 < 𝛼 < 𝑛.

Definition 2.2 (Zill, 2012). For 𝑡 ≥ 0, the Laplace transform of a function 𝑓(∙) is given by

ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0

,

where, 𝐹(𝑠) is the Laplace transform of 𝑓(𝑡).

Definition 2.3 (Podlubny, 1999). The Laplace transform of Caputo fractional derivative is given by

ℒ{ 𝐷 𝑓(𝑡)𝑡
𝛼

0
𝐶 } = ∫ 𝑒−𝑠𝑡

∞

0

(𝐷 𝑓(𝑡)𝑡
𝛼

0
𝐶)𝑑𝑡 = 𝑠𝛼𝐹(𝑠) −∑𝑠𝛼−𝑘−1𝑓(𝑘)(0), 𝑛 − 1 ≤ 𝛼 ≤ 𝑛

𝑛−1

𝑘=0

, 𝑛 ∈ ℕ

In line with that, we have

ℒ{ 𝐷 𝑓(𝑡)𝑡
𝛼

0
𝐶 } = 𝑠𝛼𝐹(𝑠) − 𝑠𝛼−1𝑓(0), 0 < 𝛼 ≤ 1.

Corollary 2.1 (Zill, 2012). Let 𝑓′(𝑡) be a continuous function on [0,∞), then the Laplace transform

of the function 𝑓′(𝑡) is provided as follows

ℒ{𝑓′(𝑡)} = 𝑠𝐹(𝑠) − 𝑓(0).

3. Formulation of the Hybrid Method
The nonlocal property of the time fractional derivative in (1) necessitates the solution outcomes on

all the preceding time steps to be saved to obtain the solution on the current time step. To overcome

this issue, we convert the TFADE (1) to a partial differential equation (PDE) by approximating the

Caputo time fractional derivative using the Laplace transform method and linearization property

proposed by Ren et al. (2016) and utilized by Bishehniasar et al. (2017) for an analytic solution as

follows

ℒ{ 𝐷 𝑢(𝑥, 𝑦, 𝑡)𝑡
𝛼

0
𝐶 } = 𝑠𝛼𝑈(𝑥, 𝑦, 𝑠) − 𝑠𝛼−1𝑢(𝑥, 𝑦, 0),

 = 𝑠𝛼[𝑈(𝑥, 𝑦, 𝑠) − 𝑠−1𝑢(𝑥, 𝑦, 0)], (4)

where, 𝑈(𝑥, 𝑦, 𝑠) is the Laplace transform of 𝑢(𝑥, 𝑦, 𝑡).

Since 0 < 𝛼 < 1, the term 𝑠𝛼 can be linearized as follows

𝑠𝛼 ≈ 𝛼𝑠 + (1 − 𝛼). (5)

Substituting (5) into (4), we obtain

ℒ{ 𝐷 𝑢(𝑥, 𝑦, 𝑡)𝑡
𝛼

0
𝐶 } ≈ 𝛼𝑠[𝑈(𝑥, 𝑦, 𝑠) − 𝑠−1𝑢(𝑥, 𝑦, 0)]

 +(1 − 𝛼)[𝑈(𝑥, 𝑦, 𝑠) − 𝑠−1𝑢(𝑥, 𝑦, 0)]. (6)

Applying the inverse Laplace transform, Eq. (6) is reduced to

𝐷 𝑢(𝑥, 𝑦, 𝑡)𝑡
𝛼

0
𝐶 ≈ 𝛼

𝜕𝑢(𝑥,𝑦,𝑡)

𝜕𝑡
+ (1 − 𝛼)[𝑢(𝑥, 𝑦, 𝑡) − 𝑢(𝑥, 𝑦, 0)]. (7)

By utilizing (7), the original 2D TFADE (1) is simplified to the following PDE

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

435

𝜕𝑢

𝜕𝑡
= 𝐴1

𝜕2𝑢

𝜕𝑥2
+ 𝐴2

𝜕2𝑢

𝜕𝑦2
− 𝐵1

𝜕𝑢

𝜕𝑥
− 𝐵2

𝜕𝑢

𝜕𝑦
− (𝑟 − 1)𝑢(𝑥, 𝑦, 𝑡) + (𝑟 − 1)𝑝(𝑥, 𝑦)

 +𝑟𝑓(𝑥, 𝑦, 𝑡), (8)

over the region Ω = {(𝑥, 𝑦)| 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇}, with the initial and boundary

conditions

𝑢(𝑥, 𝑦, 0) = 𝑝(𝑥, 𝑦), (9)

𝑢(𝑥, 0, 𝑡) = 𝑝1(𝑥, 𝑡), 𝑢(𝑥, 𝐿, 𝑡) = 𝑝2(𝑥, 𝑡),
𝑢(0, 𝑦, 𝑡) = 𝑝3(𝑦, 𝑡), 𝑢(𝐿, 𝑦, 𝑡) = 𝑝4(𝑦, 𝑡), (10)

where, 𝐴1 =
𝑎1

𝛼
, 𝐴2 =

𝑎2

𝛼
, 𝐵1 =

𝑏1

𝛼
, 𝐵2 =

𝑏2

𝛼
 and 𝑟 =

1

𝛼
.

Now, we obtain an approximate numerical solution for the original TFADE (1) by computing the

numerical solution of the simplified PDE (8). Let ℎ𝑥 = 𝐿/𝑀𝑥 and ℎ𝑦 = 𝐿/𝑀𝑦 be the uniform

spatial grid sizes in 𝑥 and 𝑦 directions, respectively, and 𝜏 = 𝑇/𝑁 be the time step size with 𝑀𝑥,

𝑀𝑦 and 𝑁 being positive integers. Define the mesh points 𝑥𝑖 = 𝑖ℎ𝑥, 𝑦𝑗 = 𝑗ℎ𝑦, 0 ≤ 𝑖 ≤ 𝑀𝑥, 0 ≤

𝑗 ≤ 𝑀𝑦, and 𝑡𝑘 = 𝑘𝜏, 0 ≤ 𝑘 ≤ 𝑁.

Define 𝑢𝑖,𝑗
𝑘 as the numerical solution at the point (𝑥𝑖, 𝑦𝑗 , 𝑡𝑘). Based on the forward in time and

centered in space discretizations about the point (𝑥𝑖 , 𝑦𝑗, 𝑡𝑘), the implicit finite difference scheme

for solving (8) is given as

𝑢𝑖,𝑗
𝑘+1 − 𝑢𝑖,𝑗

𝑘

𝜏
= 𝐴1 (

𝑢𝑖+1,𝑗
𝑘+1 − 2𝑢𝑖,𝑗

𝑘+1 + 𝑢𝑖−1,𝑗
𝑘+1

ℎ𝑥
2) + 𝐴2 (

𝑢𝑖,𝑗+1
𝑘+1 − 2𝑢𝑖,𝑗

𝑘+1 + 𝑢𝑖,𝑗−1
𝑘+1

ℎ𝑦
2)

 −𝐵1 (
𝑢𝑖+1,𝑗
𝑘+1 − 𝑢𝑖−1,𝑗

𝑘+1

2ℎ𝑥
) − 𝐵2 (

𝑢𝑖,𝑗+1
𝑘+1 − 𝑢𝑖,𝑗−1

𝑘+1

2ℎ𝑦
) − (𝑟 − 1)𝑢𝑖,𝑗

𝑘+1

 +(𝑟 − 1)𝑢𝑖,𝑗
0 + 𝑟𝑓𝑖,𝑗

𝑘+1 + 𝑂(𝜏 + ℎ𝑥
2 + ℎ𝑦

2). (11)

After some rearrangement and neglecting the higher order terms, the following implicit finite

difference approximation is obtained

(1 + (𝑟 − 1)𝜏 + 2𝑠𝑥 + 2𝑠𝑦)𝑢𝑖,𝑗
𝑘+1 = (𝑠𝑥 −

𝑐𝑥

2
) 𝑢𝑖+1,𝑗

𝑘+1 + (𝑠𝑥 +
𝑐𝑥

2
) 𝑢𝑖−1,𝑗

𝑘+1 + (𝑠𝑦 −
𝑐𝑦

2
) 𝑢𝑖,𝑗+1

𝑘+1 +

 (𝑠𝑦 +
𝑐𝑦

2
) 𝑢𝑖,𝑗−1

𝑘+1 + 𝑢𝑖,𝑗
𝑘 + (𝑟 − 1)𝜏𝑢𝑖,𝑗

0 + 𝑟𝜏𝑓𝑖,𝑗
𝑘+1, (12)

𝑢𝑖,𝑗
0 = 𝑝(𝑥𝑖, 𝑦𝑗), (13)

𝑢𝑖,0
𝑘 = 𝑝1(𝑥𝑖, 𝑡𝑘), 𝑢𝑖,𝑀𝑦 = 𝑝2(𝑥𝑖, 𝑡𝑘)

𝑢0,𝑗
𝑘 = 𝑝3(𝑦𝑗, 𝑡𝑘), 𝑢𝑀𝑥,𝑗

𝑘 = 𝑝4(𝑦𝑗 , 𝑡𝑘) (14)

in which 1 ≤ 𝑖 ≤ 𝑀𝑥 − 1, 1 ≤ 𝑗 ≤ 𝑀𝑦 − 1, 0 ≤ 𝑘 ≤ 𝑁 − 1, 𝑠𝑥 =
𝐴1𝜏

ℎ𝑥
2 , 𝑠𝑦 =

𝐴2𝜏

ℎ𝑦
2 , 𝑐𝑥 =

𝐵1𝜏

ℎ𝑥
, 𝑐𝑦 =

𝐵2𝜏

ℎ𝑦
.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

436

4. Stability and Convergence
In this section, we utilize the Fourier method (Ali et al., 2017) to prove the stability and convergence

of the numerical scheme (12). Suppose that 𝑢𝑖,𝑗
𝑘 is the approximate solution of the exact solution

𝑈𝑖,𝑗
𝑘 of Eq. (12). Then the error is represented as

ℰ𝑖,𝑗
𝑘 = 𝑈𝑖,𝑗

𝑘 − 𝑢𝑖,𝑗
𝑘 . (15)

Next, Eq. (12) can be written by error form as

−(𝑠𝑥 −
𝑐𝑥
2
)ℰ𝑖+1,𝑗

𝑘+1 − (𝑠𝑥 +
𝑐𝑥
2
)ℰ𝑖−1,𝑗

𝑘+1 + (1 + (𝑟 − 1)𝜏 + 2𝑠𝑥 + 2𝑠𝑦)ℰ𝑖,𝑗
𝑘+1

−(𝑠𝑦 −
𝑐𝑦

2
) ℰ𝑖,𝑗+1

𝑘+1 − (𝑠𝑦 +
𝑐𝑦

2
) ℰ𝑖,𝑗−1

𝑘+1 = ℰ𝑖,𝑗
𝑘 + (𝑟 − 1)𝜏ℰ𝑖,𝑗

0 . (16)

For 𝑘 = 0,1,… ,𝑁 − 1, define the following grid function

ℰ𝑘(𝑥, 𝑦) =

{

 ℰ𝑖,𝑗

𝑘 , 𝑥
𝑖−

Δ𝑥

2

< 𝑥 < 𝑥
𝑖+

Δ𝑥

2

, 𝑦
𝑗−

Δy

2

< 𝑦 < 𝑦
𝑗+

Δy

2
,

0, 0 ≤ 𝑥 ≤
Δ𝑥

2
 𝑜𝑟 𝐿 −

Δ𝑥

2
≤ 𝑥 ≤ 𝐿,

0, 0 ≤ 𝑦 ≤
Δy

2
 𝑜𝑟 𝐿 −

Δy

2
≤ 𝑦 ≤ 𝐿,

 (17)

where, ℰ𝑘(𝑥, 𝑦) can be expanded in Fourier series as

ℰ𝑘(𝑥, 𝑦) = ∑ 𝜙𝑘(𝑙1, 𝑙2)𝑒
2𝐼𝜋(

𝑙1𝑥

𝐿
+
𝑙2𝑦

𝐿
)
,∞

𝑙1,𝑙2=−∞
 (18)

in which 𝐼 = √−1, and

𝜙𝑘(𝑙1, 𝑙2) =
1

𝐿
∫ ∫ ℰ𝑘(𝑥, 𝑦)

𝐿

0

𝐿

0
𝑒−2𝐼𝜋(𝑙1𝑥/𝐿+𝑙2𝑦/𝐿)𝑑𝑥𝑑𝑦. (19)

From the Parseval equality and 𝑙2 norm, we have

‖ℰ𝑘‖
2

2
= ∑ ∑ ℎ𝑥ℎ𝑦|ℰ𝑖,𝑗

𝑘 |
2𝑀𝑦−1

𝑗=1
𝑀𝑥−1
𝑖=1 = ∑ |𝜙𝑘(𝑙1, 𝑙2)|

2∞
𝑙1,𝑙2=−∞

. (20)

Based on the analysis above, suppose that

ℰ𝑖,𝑗
𝑘 = 𝜙𝑘𝑒𝐼𝛽𝑖ℎ𝑥𝑒𝐼𝛾𝑗ℎ𝑦 , (21)

where, 𝛽 = 2𝜋𝑙1/𝐿, 𝛾 = 2𝜋𝑙2/𝐿.

Substituting (21) in (16), yields

𝜙𝑘+1 =
1

1+(𝑟−1)𝜏+𝜌1+𝐼𝜌2
𝜙𝑘 +

(𝑟−1)𝜏

1+(𝑟−1)𝜏+𝜌1+𝐼𝜌2
𝜙0, (22)

where,

𝜌1 = 4𝑠𝑥 sin
2 (

𝛽ℎ𝑥

2
) + 4𝑠𝑦 sin

2 (
𝛾ℎ𝑦

2
), (23)

𝜌2 = 𝑐𝑥 sin(𝛽ℎ𝑥) + 𝑐𝑦 sin(𝛾ℎ𝑦). (24)

Proposition 1. Suppose 𝜙𝑘+1 (𝑘 = 0,1,… ,𝑁 − 1) satisfy (22), then

|𝜙𝑘+1| ≤ |𝜙0|, 𝑘 = 0,1,… ,𝑁 − 1. (25)

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

437

Proof. Using mathematical induction, take 𝑘 = 0 in (22)

|𝜙1| = |
1 + (𝑟 − 1)𝜏

1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2
| |𝜙0| ≤ |𝜙0|

Now, assume that

|𝜙𝑠| ≤ |𝜙0|, 𝑠 = 1,2,… , 𝑘 (26)

From (22) and (26), we obtain

|𝜙𝑘+1| ≤ |
1

1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2
| |𝜙𝑘| + |

(𝑟 − 1)𝜏

1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2
| |𝜙0|

 ≤
1

|1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|
|𝜙0| +

(𝑟 − 1)𝜏

|1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|
|𝜙0|

 =
1 + (𝑟 − 1)𝜏

|1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|
|𝜙0|,

and as 1 + (𝑟 − 1)𝜏 ≤ |1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|, then

|𝜙𝑘+1| ≤ |𝜙0|.

According to (20) and (25), we obtain

‖ℰ𝑘+1‖
2

2
= ∑ |𝜙𝑘(𝑙1, 𝑙2)|

2
∞

𝑙1,𝑙2=−∞

≤ ∑ |𝜙0(𝑙1, 𝑙2)|
2

∞

𝑙1,𝑙2=−∞

= ‖ℰ0‖2
2.

Therefore, we have

‖ℰ𝑘+1‖
2
≤ ‖ℰ0‖2

, 𝑘 = 0,1, … ,𝑁 − 1,

which means that the implicit scheme is unconditionally stable.

Next, we utilize an analogous approach as that used to discuss the stability to prove the convergence

of the implicit scheme.

Let the truncation error at the point (𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) be denoted by 𝑅𝑖,𝑗
𝑘 . From (11) there is a positive

constant 𝐶1 such that for all 𝑖, 𝑗 and 𝑘, we have

|𝑅𝑖,𝑗
𝑘 | ≤ 𝐶1(𝜏 + ℎ𝑥

2 + ℎ𝑦
2). (27)

Suppose that 𝑢𝑖,𝑗
𝑘 is the approximate solution of the exact solution 𝑈𝑖,𝑗

𝑘 . The exact solution at time

level 𝑘 + 1 can be written as

−(𝑠𝑥 −
𝑐𝑥
2
)𝑈𝑖+1,𝑗

𝑘+1 − (𝑠𝑥 +
𝑐𝑥
2
)𝑈𝑖−1,𝑗

𝑘+1 + (1 + (𝑟 − 1)𝜏 + 2𝑠𝑥 + 2𝑠𝑦)𝑈𝑖,𝑗
𝑘+1

−(𝑠𝑦 −
𝑐𝑦

2
)𝑈𝑖,𝑗+1

𝑘+1 − (𝑠𝑦 +
𝑐𝑦

2
)𝑈𝑖,𝑗−1

𝑘+1

= 𝑈𝑖,𝑗
𝑘 + (𝑟 − 1)𝜏𝑈𝑖,𝑗

0 + 𝑟𝜏𝑓𝑖,𝑗
𝑘+1 + 𝜏𝑅𝑖,𝑗

𝑘+1. (28)

The error can be defined as

𝐸𝑖,𝑗
𝑘 = 𝑈𝑖,𝑗

𝑘 − 𝑢𝑖,𝑗
𝑘 . (29)

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

438

By subtracting (12) from (28), the following error equation is obtained

−(𝑠𝑥 −
𝑐𝑥
2
)𝐸𝑖+1,𝑗

𝑘+1 − (𝑠𝑥 +
𝑐𝑥
2
)𝐸𝑖−1,𝑗

𝑘+1 + (1 + (𝑟 − 1)𝜏 + 2𝑠𝑥 + 2𝑠𝑦)𝐸𝑖,𝑗
𝑘+1

−(𝑠𝑦 −
𝑐𝑦

2
)𝐸𝑖,𝑗+1

𝑘+1 − (𝑠𝑦 +
𝑐𝑦

2
)𝐸𝑖,𝑗−1

𝑘+1

= 𝐸𝑖,𝑗
𝑘 + (𝑟 − 1)𝜏𝐸𝑖,𝑗

0 + 𝜏𝑅𝑖,𝑗
𝑘+1, (30)

where,

𝐸𝑖,𝑗
0 = 0, 0 ≤ 𝑖 ≤ 𝑀𝑥 , 0 ≤ 𝑗 ≤ 𝑀𝑦,

𝐸0,𝑗
𝑘 = 𝐸𝑀𝑥,𝑗

𝑘 = 0, 0 ≤ 𝑗 ≤ 𝑀𝑦, 0 ≤ 𝑘 ≤ 𝑁, (31)

𝐸𝑖,0
𝑘 = 𝐸𝑖,𝑀𝑦

𝑘 = 0, 0 ≤ 𝑖 ≤ 𝑀𝑥, 0 ≤ 𝑘 ≤ 𝑁.

Then, we define the following discrete functions for 𝑘 = 0,1,… ,𝑁 − 1

𝐸𝑘(𝑥, 𝑦) =

{

𝐸𝑖,𝑗
𝑘 , 𝑥

𝑖−
ℎ𝑥
2

< 𝑥 < 𝑥
𝑖+

ℎ𝑥
2

, 𝑦
𝑗−

ℎ𝑦

2

< 𝑦 < 𝑦
𝑗+

ℎ𝑦

2

,

0, 0 ≤ 𝑥 ≤
ℎ𝑥

2
 𝑜𝑟 𝐿 −

ℎ𝑥

2
≤ 𝑥 ≤ 𝐿,

0, 0 ≤ 𝑦 ≤
ℎ𝑦

2
 𝑜𝑟 𝐿 −

ℎ𝑦

2
≤ 𝑦 ≤ 𝐿,

 (32)

and

𝑅𝑘(𝑥, 𝑦) =

{

𝑅𝑖,𝑗
𝑘 , 𝑥

𝑖−
ℎ𝑥
2

< 𝑥 < 𝑥
𝑖+

ℎ𝑥
2

, 𝑦
𝑗−

ℎ𝑦

2

< 𝑦 < 𝑦
𝑗+

ℎ𝑦

2

,

0, 0 ≤ 𝑥 ≤
ℎ𝑥

2
 𝑜𝑟 𝐿 −

ℎ𝑥

2
≤ 𝑥 ≤ 𝐿,

0, 0 ≤ 𝑦 ≤
ℎ𝑦

2
 𝑜𝑟 𝐿 −

ℎ𝑦

2
≤ 𝑦 ≤ 𝐿,

 (33)

𝑖 = 1,2, … ,𝑀𝑥 − 1, 𝑗 = 1,2,… ,𝑀𝑦 − 1, 𝑘 = 0,1, … ,𝑁 − 1.

𝐸𝑘(𝑥, 𝑦) and 𝑅𝑘(𝑥, 𝑦) can be expanded in Fourier series as

𝐸𝑘(𝑥, 𝑦) = ∑ 𝜆𝑘(𝑞1, 𝑞2)𝑒
2𝐼(𝑙1𝑥/𝐿+𝑙2𝑦/𝐿)∞

𝑙1,𝑙2=−∞
, 𝑘 = 0,1, … ,𝑁 − 1 (34)

𝑅𝑘(𝑥, 𝑦) = ∑ 𝜓𝑘(𝑞1, 𝑞2)𝑒
2𝐼(𝑙1𝑥/𝐿+𝑙2𝑦/𝐿)∞

𝑙1,𝑙2=−∞
, 𝑘 = 0,1, … ,𝑁 − 1 (35)

in which

𝜆𝑘(𝑙1, 𝑙2) =
1

𝐿
∫ ∫ 𝐸𝑘(𝑥, 𝑦)

𝐿

0

𝐿

0
𝑒−2𝐼(𝑙1𝑥/𝐿+𝑙2𝑦/𝐿)𝑑𝑥𝑑𝑦, (36)

𝜓𝑘(𝑙1, 𝑙2) =
1

𝐿
∫ ∫ 𝑅𝑘(𝑥, 𝑦)

𝐿

0

𝐿

0
𝑒−2𝐼(𝑙1𝑥/𝐿+𝑙2𝑦/𝐿)𝑑𝑥𝑑𝑦. (37)

By utilizing the 𝑙2 norm and the Parseval equality, we have

‖𝐸𝑘‖
𝑙2
2
= ∑ |𝜆𝑘(𝑙1, 𝑙2)|

2∞
𝑙1,𝑙2=−∞

, (38)

‖𝑅𝑘‖
𝑙2
2
= ∑ |𝜓𝑘(𝑙1, 𝑙2)|

2
. ∞

𝑙1,𝑙2=−∞

 (39)

Based on the analysis above, we assume that the solution of Eq. (30) has the following forms

𝐸𝑖,𝑗
𝑘 = 𝜌𝑘𝑒𝐼𝛽𝑖ℎ𝑥𝑒𝐼𝛾𝑗ℎ𝑦 , 𝑅𝑖,𝑗

𝑘 = 𝜙𝑘𝑒𝐼𝛽𝑖ℎ𝑥𝑒𝐼𝛾𝑗ℎ𝑦 . (40)

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

439

Substituting (40) into (30), yields

𝜆𝑘+1 =
1

1+(𝑟−1)𝜏+𝜌1+𝐼𝜌2
𝜆𝑘 +

(𝑟−1)𝜏𝜆0+𝜏𝜓𝑘+1

1+(𝑟−1)𝜏+𝜌1+𝐼𝜌2
, (41)

where. 𝜌1 and 𝜌2 are mentioned before.

Proposition 2. Suppose 𝜆𝑘+1 (𝑘 = 0,1,… , 𝑁 − 1) form the solution of (41), then there is a positive

constant 𝐶 so that

|𝜆𝑘+1| ≤ 𝐶2(𝑘 + 1)𝜏|𝜓
1|. (42)

Proof. Since 𝐸0 = 0, and using (35) we have

𝜆0 = 𝜆0(𝑙1, 𝑙2) = 0. (43)

According to (37) and (39), there is a positive constant 𝐶2 such that

|𝜓𝑘| ≤ 𝐶2|𝜓
1|. (44)

We use mathematical induction to prove (42). For 𝑘 = 0 in (41) and using (43), we get

𝜆1 =
1

1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2
𝜏𝜓1.

As 1 < |1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|, and from (44), we have

|𝜆1| ≤ 𝜏|𝜓1| ≤ 𝐶2𝜏|𝜓
1|.

Now, assume that

|𝜆𝑠| ≤ 𝐶2𝑠𝜏|𝜓
1|, 𝑠 = 1,2,… , 𝑘 (45)

From (41), (44) and (45) we have

|𝜆𝑘+1| ≤ |
1

1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2
| |𝜆𝑘| + |

1

1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2
| 𝜏|𝜓𝑘+1|

 ≤
1

|1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|
𝐶2𝑘𝜏|𝜓

1| +
1

|1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|
𝐶2𝜏|𝜓

1|

 =
1

|1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|
𝐶2(𝑘 + 1)𝜏|𝜓

1|.

As 1 < |1 + (𝑟 − 1)𝜏 + 𝜌1 + 𝐼𝜌2|, then for all values

|𝜆𝑘+1| ≤ 𝐶2(𝑘 + 1)𝜏|𝜓
1|.

According to (27) and (39), we obtain

‖𝑅𝑘‖
2
≤ √𝑀𝑥𝑀𝑦ℎ𝑥ℎ𝑦𝐶1(𝜏 + ℎ𝑥

2 + ℎ𝑦
2) = 𝐿𝐶1(𝜏 + ℎ𝑥

2 + ℎ𝑦
2). (46)

For 𝑘 = 0,1,… ,𝑁 − 1, and in view of proposition 2, (38), (39) and (46)

‖𝐸𝑘+1‖
2
≤ 𝐶2(𝑘 + 1)𝜏‖𝑅

1‖2 ≤ 𝐿𝐶1𝐶2(𝑘 + 1)𝜏(𝜏 + ℎ𝑥
2 + ℎ𝑦

2),

observing that (𝑘 + 1)τ ≤ 𝑇, 𝑘 = 0,1,… , 𝑁 − 1, we have

‖𝐸𝑘+1‖
2
≤ 𝐶(𝜏 + ℎ𝑥

2 + ℎ𝑦
2),

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

440

in which 𝐶 = 𝐶1𝐶2𝐿𝑇. This means that the implicit scheme (12) is convergent with order of

convergence 𝑂(𝜏 + ℎ𝑥
2 + ℎ𝑦

2).

5. Review of a Standard Scheme
In this section, an existing standard implicit finite difference scheme for solving (1) is introduced

for comparison. As stated in section 1, solving TFDEs using standard finite difference methods is

time-memory consuming, especially for multi-dimensional problems. A significant reason for this

is the considerable computational complexity of those methods. Consequently, the computational

complexity for both standard and present methods would be analyzed in this section. The

computational complexity is determined by the total number of arithmetic operations to be

performed accompanied by the memory requirement for each method.

Balasim (2017) derived a standard implicit finite difference scheme for solving problem (1). The

author utilized the following discretization formula proposed by Lin and Xu (2007) to approximate

the time fractional derivative

𝐷 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘+1)𝑡
𝛼

0
𝐶 =

𝜏−𝛼

Γ(2 − 𝛼)
∑𝑏𝑠(𝑢𝑖,𝑗

𝑘−𝑠+1 − 𝑢𝑖,𝑗
𝑘−𝑠)

𝑘

𝑠=0

+ 𝑂(𝜏2−𝛼),

where, 𝑏𝑠 = (𝑠 + 1)
1−𝛼 − 𝑠1−𝛼.

So, the fully discrete scheme for solving the TFADE (1) can be given as

𝜏−𝛼

Γ(2 − 𝛼)
∑𝑏𝑠[𝑢𝑖,𝑗

𝑘−𝑠+1 − 𝑢𝑖,𝑗
𝑘−𝑠]

𝑘

𝑠=0

= 𝑎1 (
𝑢𝑖+1,𝑗
𝑘+1 − 2𝑢𝑖,𝑗

𝑘+1 + 𝑢𝑖−1,𝑗
𝑘+1

ℎ𝑥
2) + 𝑎2 (

𝑢𝑖,𝑗+1
𝑘+1 − 2𝑢𝑖,𝑗

𝑘+1 + 𝑢𝑖,𝑗−1
𝑘+1

ℎ𝑦
2)

 −𝑏1 (
𝑢𝑖+1,𝑗
𝑘+1 − 𝑢𝑖−1,𝑗

𝑘+1

2ℎ𝑥
) − 𝑏2 (

𝑢𝑖,𝑗+1
𝑘+1 − 𝑢𝑖,𝑗−1

𝑘+1

2ℎ𝑦
) + 𝑓𝑖,𝑗

𝑘+1 + 𝑂(𝜏2−𝛼 + ℎ𝑥
2 + ℎ𝑦

2).

For simplification, the standard scheme above can be simplified as (Balasim, 2017)

(1 + 2𝑠1 + 2𝑠2)𝑢𝑖,𝑗
𝑘+1 = (𝑠1 −

𝑐1
2
)𝑢𝑖+1,𝑗

𝑘+1 + (𝑠1 +
𝑐1
2
)𝑢𝑖−1,𝑗

𝑘+1 + (𝑠2 −
𝑐2
2
)𝑢𝑖,𝑗+1

𝑘+1

 + (𝑠2 +
𝑐2
2
)𝑢𝑖,𝑗−1

𝑘+1 + 𝑢𝑖,𝑗
𝑘 +∑𝑏𝑠[𝑢𝑖,𝑗

𝑘−𝑠 − 𝑢𝑖,𝑗
𝑘−𝑠+1]

𝑘

𝑠=1

 +𝑣𝑓𝑖,𝑗
𝑘+1, (47)

where. 𝑣 = 𝜏𝛼Γ(2 − 𝛼), 𝑠1 =
𝑎1𝑣

ℎ𝑥
2 , 𝑠2 =

𝑎2𝑣

ℎ𝑦
2 , 𝑐1 =

𝑏1𝑣

ℎ𝑥
, 𝑐2 =

𝑏2𝑣

ℎ𝑦
. The standard implicit scheme was

also proven to be unconditionally stable and convergent in the same study using Fourier analysis

method.

As can be seen from Eq. (47), computing the numerical solution at each unknown time level

necessitates the storage of the solution values at all previous time levels. This means that there are

𝑁𝑀𝑥𝑀𝑦 solution values to be saved in the memory. With 8 bytes required to store each value, and

disregard the memory usage of the coefficients, initial condition and source term, the standard

method (47) requires about 8𝑁𝑀𝑥𝑀𝑦 bytes memory space. For instance, it requires 800 GB with

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

441

𝑀𝑥 = 10240, 𝑀𝑦 = 10240 and 𝑁 = 1024. According to Eq. (12), conversely, one can see that

the solution requires to be stored only at two-time levels, 𝑘 and 𝑘 + 1. This indicates that we have

only 2𝑀𝑥𝑀𝑦 solution outcomes to be stored in the memory. Therefore, the hybrid method needs

only 16𝑀𝑥𝑀𝑦 bytes of memory space. So, the hybrid method’s memory requirement is of 𝑂(𝑀)

which is much smaller than the standard method of 𝑂(𝑁𝑀), where 𝑀 = 𝑀𝑥𝑀𝑦.

On the other hand, the expensive computational cost for implementing standard finite difference

schemes is another issue that needs to be addressed. In order to obtain 𝑢𝑖,𝑗
𝑘+1, the computation of

the right-hand side of (47) must be performed. Assuming that the coefficients (1 + 2𝑠1 + 2𝑠2),
(𝑠1 − 𝑐1/2), (𝑠1 + 𝑐1/2), (𝑠2 − 𝑐2/2), (𝑠2 + 𝑐2/2) and 𝑏𝑠 are computed and stored in advance, it

requires (6 + 𝑘) additions and (6 + 𝑘) multiplications to obtain each grid point 𝑢𝑖,𝑗
𝑘+1, 𝑘 =

0,1,2,… ,𝑁 − 1. Each time level involves (𝑀𝑥 − 1)(𝑀𝑦 − 1) grid points. So, for each time level

𝑘, (12 + 2(𝑘))(𝑀𝑥 − 1)(𝑀𝑦 − 1) arithmetic operations are required to be implemented. As 𝑘 =

0 → 𝑁 − 1, and based on (47), the total computational cost for the standard method is

12𝑁(𝑀𝑥 − 1)(𝑀𝑦 − 1) + 2(1 + 2 +⋯+𝑁 − 1)(𝑀𝑥 − 1)(𝑀𝑦 − 1)

 = 12𝑁(𝑀𝑥 − 1)(𝑀𝑦 − 1) + 2(
𝑁(𝑁 − 1)

2
) (𝑀𝑥 − 1)(𝑀𝑦 − 1)

 = (𝑁2 + 11𝑁)(𝑀𝑥 − 1)(𝑀𝑦 − 1).

On the contrary, the (𝑖th,𝑗th) grid point of time level 𝑡𝑘+1 in (12) needs 6 additions and 9

multiplications ignoring the computation of the coefficients. With (𝑀𝑥 − 1)(𝑀𝑦 − 1) spatial points

at each time level, there are 15(𝑀𝑥 − 1)(𝑀𝑦 − 1) arithmetic operations. Since there are 𝑁 time

levels, the whole computational cost of the present method is about 15𝑁(𝑀𝑥 − 1)(𝑀𝑦 − 1). Thus,

the hybrid method’s computational cost is of 𝑂(𝑁) which is much less expensive than standard

method of 𝑂(𝑁2). With the assumption that the times taken for addition and multiplication

operations to be executed are approximately the same, the hybrid method is expected to perform

faster than the standard method. The memory requirement and computational cost for the standard

and hybrid methods are summarized in Table 1.

Table 1. Memory requirement and computational cost for the standard and hybrid methods

Method Memory requirement (bytes) Computational cost

Standard method [1] 8𝑁𝑀𝑥𝑀𝑦 (𝑁2 + 11𝑁)(𝑀𝑥 − 1)(𝑀𝑦 − 1)

Hybrid method 16𝑀𝑥𝑀𝑦 15𝑁(𝑀𝑥 − 1)(𝑀𝑦 − 1)

6. Numerical Experiments
In this section, computational experiments are provided to illustrate our considerations. Standard

scheme (47) and hybrid method developed in section 3 are considered to solve problem (1). The

accuracy of these methods is evaluated by maximum absolute error and average absolute error. The

hybrid method is shown to be precise and computationally efficient tool for computing the

numerical solution of the TFADE (1). The numerical experiments are implemented in Mathematica

11.3 software and it is run on Windows 10 operated by Intel Quad Core Processor with 8 GB of

RAM.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

442

The maximum error between the numerical solution and the exact solution of (1) is defined as

follows:

𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 = max
1≤𝑖≤𝑀𝑥−1,1≤𝑗≤𝑀𝑦−1

|𝑈𝑖,𝑗
𝑁 − 𝑢𝑖,𝑗

𝑁 |. (48)

Example 1. We solve the following two-dimensional problem

𝐷 𝑢(𝑥, 𝑦, 𝑡)𝑡
𝛼

0
𝐶 =

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
−
𝜕𝑢

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
+
𝑡1−𝛼(sin 𝑥 + sin 𝑦)

Γ(2 − 𝛼)

 +𝑡(sin 𝑥 + cos 𝑥 + sin𝑦 + cos 𝑦),

with the initial and boundary conditions

𝑢(𝑥, 𝑦, 0) = 0,
𝑢(𝑥, 0, 𝑡) = 𝑡 sin 𝑥 , 𝑢(𝑥, 1, 𝑡) = 𝑡(sin 𝑥 + sin 1),
𝑢(0, 𝑦, 𝑡) = 𝑡 sin𝑦 , 𝑢(1, 𝑦, 𝑡) = 𝑡(sin 𝑦 + sin1),

and the exact solution is 𝑢(𝑥, 𝑦, 𝑡) = 𝑡(sin𝑥 + sin𝑦).

We use Laplace transform to approximate Caputo time fractional derivative. Hence, the above

problem is converted to the following system:

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
−
𝜕𝑢

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
− (𝑟 − 1)𝑢(𝑥, 𝑦, 𝑡)

+ 𝑟 (
𝑡1−𝛼(sin 𝑥 + sin 𝑦)

Γ(2 − 𝛼)
+ 𝑡(sin 𝑥 + cos 𝑥 + sin𝑦 + cos 𝑦)),

𝑢(𝑥, 𝑦, 0) = 0,
𝑢(𝑥, 0, 𝑡) = 𝑡 sin 𝑥 , 𝑢(𝑥, 1, 𝑡) = 𝑡(sin 𝑥 + sin 1),
𝑢(0, 𝑦, 𝑡) = 𝑡 sin𝑦 , 𝑢(1, 𝑦, 𝑡) = 𝑡(sin 𝑦 + sin1),

For the numerical solution of this problem, the solution domain is discretized for different time

steps of 10, 15, 20 and 25 for the time discretization (0 < 𝑡 < 1), and for space discretization,

we assume ℎ𝑥 = ℎ𝑦 = 1/40 in both 𝑥 and 𝑦 directions. Table 2 shows the computed values of

CPU time (in seconds), memory space requirement (in bytes), maximum absolute error (Max)

and average absolute error (Ave) in both standard and hybrid methods when 𝛼 = 0.15, 0.35. The

numerical results demonstrate that the hybrid method has (24.64 − 47.79)% less computational

time than the standard method, whereas the memory space requirement was (8 − 20)% less,

with almost the same degree of accuracy. Figure 1 shows the computational time consumed by

both standard and hybrid methods when 𝛼 = 0.15, 0.35. It can be observed that the hybrid

method’s results show a significantly less CPU time compared to the standard method at various

values of time steps and is in addition to the considerable savings in the memory space usage

too. This is in line with the theoretical analysis of computational complexity in the previous

section.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

443

Table 2. Comparison between standard and hybrid methods at ℎ𝑥 = ℎ𝑦 = 1/40 for Example 1

𝑁 Method CPU time (sec) Memory usage

(bytes)

Ave Max

𝛼 = 0.15

10 Standard 408 128000 1.2450E-3 2.9435E-3

 Hybrid 161 25600 1.1977E-3 2.4731E-3

15 Standard 672 192000 1.2458E-3 2.9460E-3

 Hybrid 217 25600 1.2019E-3 2.4819E-3

20 Standard 954 256000 1.2469E-3 2.9495E-3

 Hybrid 266 25600 1.2016E-3 2.4810E-3

25 Standard 1250 320000 1.2466E-3 2.9500E-3

 Hybrid 308 25600 1.1996E-3 2.4766E-3

𝛼 = 0.35

10 Standard 295 128000 1.2528E-3 2.9618E-3

 Hybrid 141 25600 2.9037E-3 6.0473E-3

15 Standard 489 192000 1.2452E-3 2.9444E-3

 Hybrid 196 25600 2.9036E-3 6.0475E-3

20 Standard 672 256000 1.2461E-3 2.9475E-3

 Hybrid 237 25600 2.9056E-3 6.0521E-3

25 Standard 926 320000 1.2495E-3 2.9566E-3

 Hybrid 262 25600 2.9049E-3 6.0504E-3

Figure 1. CPU time versus total number of time levels 𝑁 of Example 1

Example 2. Let us consider the following two-dimensional problem

𝐷 𝑢(𝑥, 𝑦, 𝑡)𝑡
𝛼

0
𝐶 =

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
−
𝜕𝑢

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
+ 0.5Γ(3 + 𝛼)𝑡2𝑒𝑥+𝑦 ,

with the initial and boundary conditions

𝑢(𝑥, 𝑦, 0) = 0,
𝑢(𝑥, 0, 𝑡) = 𝑡2+𝛼𝑒𝑥, 𝑢(𝑥, 1, 𝑡) = 𝑡2+𝛼𝑒𝑥+1,
𝑢(0, 𝑦, 𝑡) = 𝑡2+𝛼𝑒𝑦, 𝑢(1, 𝑦, 𝑡) = 𝑡2+𝛼𝑒𝑦+1,

and the exact solution 𝑢(𝑥, 𝑦, 𝑡) = 𝑡2+𝛼𝑒𝑥+𝑦.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

444

In the second example, we use various time steps of 12, 16, 20 and 24 for the time discretization

(0 < 𝑡 < 1), and for space discretization, we assume ℎ𝑥 = ℎ𝑦 = 1/45 in both 𝑥 and 𝑦 directions.

Table 3 exhibit the computed values of CPU time, memory space usage, maximum absolute error

and average absolute error by both standard and hybrid methods when 𝛼 = 0.75, 0.95. The

numerical results demonstrate that the hybrid method has (28.07 − 45.45)% less computational

time than the standard method, whereas the memory space usage is almost (8.33 − 16.66)% less,

without jeopardizing the accuracy of the numerical solutions. In view of Figure 2, it is noted that

the CPU time taken for the hybrid method to be implemented is significantly less compared to the

standard method. This verifies that the hybrid method has less computational complexity than the

standard method.

Table 3. Comparison between standard and hybrid methods at ℎ𝑥 = ℎ𝑦 = 1/45 for Example 2

𝑁 Method CPU time (sec) Memory usage

(bytes)

Ave Max

𝛼 = 0.75

12 Standard 550 194400 4.1777E-3 8.7862E-3

 Hybrid 250 32400 3.1003E-3 6.3767E-3

16 Standard 783 259200 2.0939E-3 4.7569E-3

 Hybrid 295 32400 4.5832E-4 1.3858E-3

20 Standard 972 324000 9.0666E-4 2.7076E-3

 Hybrid 339 32400 2.5940E-3 5.7599E-3

24 Standard 1318 388800 4.6009E-4 1.5967E-3

 Hybrid 370 32400 4.0356E-3 8.7668E-3

𝛼 = 0.95

12 Standard 531 194400 1.5750E-2 3.2758E-2

 Hybrid 235 32400 1.7109E-2 3.5792E-2

16 Standard 733 259200 1.1017E-2 2.2900E-2

 Hybrid 292 32400 1.1852E-2 2.4761E-2

20 Standard 886 324000 8.1787E-3 1.6989E-2

 Hybrid 306 32400 8.6629E-3 1.8067E-2

24 Standard 1009 388800 6.3019E-3 1.3121E-2

 Hybrid 323 32400 6.5240E-3 1.3579E-2

Again, we utilize Laplace transform to approximate Caputo time fractional derivative. Hence,

the above problem is converted to the following system:

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
−
𝜕𝑢

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
− (𝑟 − 1)𝑢(𝑥, 𝑦, 𝑡) + 0.5𝑟Γ(3 + 𝛼)𝑡2𝑒𝑥+𝑦,

𝑢(𝑥, 𝑦, 0) = 0,
𝑢(𝑥, 0, 𝑡) = 𝑡2+𝛼𝑒𝑥, 𝑢(𝑥, 1, 𝑡) = 𝑡2+𝛼𝑒𝑥+1,
𝑢(0, 𝑦, 𝑡) = 𝑡2+𝛼𝑒𝑦, 𝑢(1, 𝑦, 𝑡) = 𝑡2+𝛼𝑒𝑦+1.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

445

Figure 2. CPU time versus total number of time levels 𝑁 of Example 2

7. Conclusion
In this paper, the Laplace transform is combined with a fully implicit finite difference scheme for

solving the 2D-TFADE. The proposed method has the utility of low computational complexity as

it requires only 𝑂(𝑀) memory space and 𝑂(𝑁) computational cost, where 𝑁 and 𝑀 are the total

number of time levels and space grid points, respectively. A comparison between a standard

implicit scheme and the proposed method has revealed that the proposed method is accurate and

superior to the standard method, in terms of the computational time and storage requirement. The

unconditional stability and convergence of the numerical scheme are proved using the Fourier

series analysis

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgements

The authors extend their sincere appreciation to the editor and reviewers for their time and valuable suggestions. The

authors also gratefully acknowledge the financial support from Universiti Sains Malaysia Research University Grants

(1001/PMATHS/8011016).

References

Ali, U., Abdullah, F.A., & Mohyud-Din, S.T. (2017). Modified implicit fractional difference scheme for 2D

modified anomalous fractional sub-diffusion equation. Advances in Difference Equations, 2017(1), 185.

doi:10.1186/s13662-017-1192-4.

Balasim, A.T., & Ali, N.H.M. (2017). New group iterative schemes in the numerical solution of the two-

dimensional time fractional advection-diffusion equation. Cogent Mathematics & Statistics, 4(1),

1412241.

Balasim, A.T. (2017). Fractional group iterative methods for two dimensional time-fractional differential

equations. PhD Thesis. Universiti Sains Malaysia, Penang, Malaysia.

International Journal of Mathematical, Engineering and Management Sciences

Vol. 5, No. 3, 432-446, 2020

https://doi.org/10.33889/IJMEMS.2020.5.3.036

446

Bishehniasar, M., Salahshour, S., Ahmadian, A., Ismail, F., & Baleanu, D. (2017). An accurate approximate-

analytical technique for solving time-fractional partial differential equations. Complexity, 2017, 1-12.

Chen, C.M., Liu, F., & Burrage, K. (2008). Finite difference methods and a Fourier analysis for the fractional

reaction–subdiffusion equation. Applied Mathematics and Computation, 198(2), 754-769.

Gao, G.H., & Sun, H.W. (2015). Three-point combined compact difference schemes for time-fractional

advection–diffusion equations with smooth solutions. Journal of Computational Physics, 298, 520-538.

Gong, C., Bao, W., Tang, G., Jiang, Y. & Liu, J. (2014). A parallel algorithm for the two-dimensional time

fractional diffusion equation with implicit difference method. The Scientific World Journal, 2014, 1-8.

Gong, C., Bao, W., Tang, G., Jiang, Y., & Liu, J. (2015). Computational challenge of fractional differential

equations and the potential solutions: a survey. Mathematical Problems in Engineering, 2015, 1-13.

Jiang, S., Zhang, J., Zhang, Q., & Zhang, Z. (2017). Fast evaluation of the Caputo fractional derivative and

its applications to fractional diffusion equations. Communications in Computational Physics, 21(3), 650-

678.

Lin, Y., & Xu, C. (2007). Finite difference/spectral approximations for the time-fractional diffusion equation.

Journal of Computational Physics, 225(2), 1533-1552.

Mardani, A., Hooshmandasl, M.R., Heydari, M.H., & Cattani, C. (2018). A meshless method for solving the

time fractional advection–diffusion equation with variable coefficients. Computers & Mathematics with

Applications, 75(1), 122-133.

Miller, K.S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential

equations. Wiley, New York.

Oldham, K.B., & Spanier, J. (1974). The Fractional Calculus. Academic Press, New York.

Podlubny, I. (1999). Fractional differential equations. Academic Press, New York.

Ren, J., Sun, Z.Z., & Dai, W. (2016). New approximations for solving the Caputo-type fractional partial

differential equations. Applied Mathematical Modelling, 40(4), 2625-2636.

Samko, S.G., Kilbas, A.A., & Marichey, O.I. (1993). Fractional integrals and derivatives: theory and

applications. Gordon & Breach, Yverdon.

Shen, S., Liu, F., & Anh, V. (2011). Numerical approximations and solution techniques for the space-time

Riesz–Caputo fractional advection-diffusion equation. Numerical Algorithms, 56(3), 383-403.

Vong, S., Shi, C., & Lyu, P. (2018). A study on a second order finite difference scheme for fractional

advection–diffusion equations. Numerical Methods for Partial Differential Equations, 35(2), 493-508.

Zhang, F., Gao, X., & Xie, Z. (2019). Difference numerical solutions for time-space fractional advection

diffusion equation. Boundary Value Problems, 2019(1), 14.

Zhuang, P., Gu, Y., Liu, F., Turner, I., & Yarlagadda, P.K.D.V. (2011). Time‐dependent fractional

advection–diffusion equations by an implicit MLS meshless method. International Journal for

Numerical Methods in Engineering, 88(13), 1346-1362.

Zill, D.G. (2012). A first course in differential equations with modeling applications. Brooks Cole, Boston.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

