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ABSTRACT

This paper studies the links between productivity, innovation and research at the firm level.
We introduce three new features: (i) A structural model that explains productivity by innovation
output, and innovation output by research investment; (ii) New data on French manufacturing firms,
including the number of European patents and the percentage share of innovative sales, as well as
firm-level demand pull and technology push indicators; (iii) Econometric methods which correct for
selectivity and simultaneity biases and take into account the statistical features of the available data:
only a small proportion of firms engage in research activities and/or apply for patents; productivity,
irmovation and research are endogenously determined; research investment and capital are truncated
variables, patents are count data and innovative sales are interval data.

We find that using the more widespread methods, and the more usual data and model
specification, may lead to sensibly different estimates. We find in particular that simultaneity tends
to interact with selectivity, and that both sources of biases must be taken into account together.
However our main results are consistent with many of the stylized facts of the empirical literature.
The probability of engaging in research (R&D) for a firm increases with its size (number of
employees), its market share and diversification, and with the demand pull and technology push
indicators. The research effort (R&D capital intensity) of a firm engaged in research increases with
the same variables, except for size (its research capital being strictly proportional to size). The firm
innovation output, as measured by patent numbers or innovative sales, rises with its research effort
and with the demand pull and technology indicators, either directly or indirectly through their effects
on research. Finally, firm productivity correlates positively with an higher innovation output, even
when controlling for the skill composition of labor as well as for physical capital intensity.
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1 Introduction

This paper proposes an original empirical approach to the problem of assessing both the
innovation impacts of research and the productivity impacts of innovation and research.
Building upon previous studies, it is also an attempt to confirm and summarize our
main findings in these studies.! We consider a model summarizing the process that
goes from the firm decision to engage in research activities to the use of innovations in
its production activities. In specifying this model, we take advantage of new sources of
data available for French manufacturing firms, and in estimating it, we try to correct for
various selectivity and simultaneity biases that affect many research and development
(R&D) and patent studies (for a survey of such studies, see Cohen and Levin, 1989,
and Mairesse and Sassenou, 1991).

More precisely, we introduce three new features in the analysis. Firstly, we explic-
itly account for the fact that it is not innovation input (R&D) but innovation output
that increases productivity. Firms invest in research in order to develop process and
product innovations, which in turn may contribute to their productivity and other
economic performances. Our model thus includes three relationships: the research re-
lation linking research to its determinants, the innovation equation relating research to
Innovation output measures, and the productivity equation relating innovation output
to productivity. The first relation corresponds in fact, as we shall see, to two equations,
respectively accounting for the R&D investment decision and for its size.

Second, in addition to the more usual information on the firm current accounts,
balance sheets and employment numbers, and in addition to the firm R&D expenditures
collected by the annual Survey on Research, we use new data on innovation output in
French manufacturing. These are the number of European patents applications which
have been matched to the firm data, and the share of firm innovative sales (i.e., firm
sales from the new products introduced in the last five year period), which we gathered
from the 1990 French Survey on Innovation in manufacturing. From this survey, we
also obtained two new indicators proxying for demand conditions and technological
opportunities {or ”demand-pull” and "technology push” indicators). Last, we have
been able to construct a firm average market share variable and diversification index,
based on detailed data by lines of business from the Annual Firm Survey.

Thirdly, we estimate our model using econometric methods that can deal with the
many problems inherent to this model and to the nature of the data. Most studies on
innovation are, for example, potentially affected by selectivity biases. Only a minority
of firms are engaged in (formal) R&D activities, so that studics restricted to these
firms are prone to such biases. Also only relatively few firms have patents, and thus
analyses limited to them may be similarly biased. In addition, patents being count data
and the percentages of innovative sales being recorded as interval data, both require

'See Cuneo and Mairesse (1984}, Mairesse and Cuneo (1984), Crepon and Mairesse (1993), Hall
and Mairesse (1995), Crepon and Duguet (1996), Crepon, Duguet and Kabla (1996), Crepon and
Duguet (1997). All these studies like the present one concern French manufacturing and are based on
fir;n level microdata.



specific econometric methods to handle them. Finally, there is the major issue of the
endogeneity of innovative input and output, and more generally of the simultaneity in
our model. R&D is endogenous in the innovation equation and patents or innovative
sales are endogenous in the productivity equation. The disturbances in the equations
of our model, reflecting in part unobserved variables and firm effects, are also likely to
be correlated.

We treat all these estimation problems by relying on methods which do not seem
to have been previously applied in the research and innovation literature. We take
care of selection and of the specific nature of variables by using a generalized tobit
specification for R&D investment, a heterogeneous count data specification for patents,
and an ordered probit specification for the interval data on innovative sales. Qur model
thus amounts to a system of non-linear equations with limited dependent and count
data variables, and we deal with simultaneity in this system by using a two-stage
estimation procedure. The first stage amounts to applying the method of moments
(M-estimation) to the reduced form equations, and we rely in the second stage on the
method of asymptotic least squares (ALS-estimation) to retrieve consistent estimates
of the structural parameters. This procedure requires relatively few assumptions on
the distributions of the disturbances and is flexible enough with modest computational
cost.

In order to be able to identify and estimate our model, we have of course to make
some a priori assumptions on its overall structure and the specification of individual
equations. As will be explained, these assumptions seem rather reasonable; however
we cannot really test them. Clearly, the main drawback of our study in this respect is
the cross-sectional nature of our data and estimates.

The organization of our paper is as follows. To keep its exposition simple, we
focus on the main points in the text, and give further explanations and results in
three appendices. The definition of variables and the econometric specification of the
model are explained in section 2, the main results discussed in section 3, and some
very brief concluding comments given in section 4. The construction of the sample and
the definition of variables are presented at some length in Appendix A, the estimation
methods are detailed in Appendix B, and our estimates are compared with those based
on the potentially biased more widespread methods in Appendix C

2 The model: definition of variables and economet-
ric specification

Figure 1 lays out a schematic diagram showing the general structure of our model.2
1t consists of four equations, two for research, one for innovation and one for produc-
tivity, which we shall present in turn, each of them requiring a different econometric
treatment. We consider in fact two versions of the model, and for each a ‘basic’ and
an ‘extended’ specification. In the first version of the model ‘innovation output’ is
measured by the number of patents and in the second by the share of innovative sales.
The extended specification includes the technology push and demand pull indicators

2See Pakes and Griliches (1884) for a similar diagram.



as explanatory variables in the research and innovation equations and two indicators
of skill composition as controls for "labor quality’ in the productivity equation, while
the basic specification does not.

2.1 The research equations

'To depict the firm research behavior, we rely on a generalized tobit model (Heckman,
1976, 1979), with two equations, the first equation accounting for the fact that the firm
is engaged in research activities (or that we observe that it is), and the second one for
the magnitude or intensity of these activities.

More precisely, we assume that there exists a latent dependent variable g} for the
firm ¢ given by a first equation:

g; = Zoibo + ug (0)

where zy; is a vector of explanatory variables, b, the associated coefficient vector and
ug; an error term, and where g expresses some decision criterion, such as the expected
present value of the firm profit accruing to research investment. We observe that the
firm invests in research if g} is positive or larger than some constant threshold, overall
or industry specific (provided x, contains a constant term or industry dummies, which
is the case for all our equations in this analysis). Actually only a small proportion
of French manufacturing firms engage in formal research activities and report R&D
expenditures, though many more have some form of innovative activities.

We then assume that a latent or true intensity of research &} for firm i is determined
by a second equation:

kY = 2aby + uyy (1)

with &k} = &; , the actual research capital per employee of firm ¢ when this firm does
research (that is when g} is larger than the industry threshold), where both k; and &?
are expressed in logarithms, and where z,; is the vector of explanatory variables, b;
the corresponding coefficient vector and u,; is a disturbance that summarizes omitted
determinants and other sources of unobserved heterogeneity. Note that the explanatory
variables in the two equations need not be the same, but that without good a priori
reason to do otherwise we actually include the same set of variables (zq = z;) in both
equations.

Finally, because k} is only observable when g/ is larger than the industry threshold,
we have also to specify their joint distribution in order to get an estimable model.
We thus assume the joint normality of the disturbances in the two equations (i.e., the
generalized tobit model assumption):

Uo; \ iid N 0 ag Jeledeleg]
Uy 0 ' PTaT (T%

where oy and o, are the standard errors of wug; and wy; and p is their correlation
coefficient. The first equation is in fact a probit equation which is not fully identifiable,
and we can only estimate the parameter vector by /o which is equivalent to normalizing
the standard error oy = 1.
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In the implementation of our model we prefer to use a stock measure of research
rather than a flow measure, and we have estimated our actual research capital (per
employee) variable k; for the firm based on the sum of firm i deflated and depreciated
past R&D spending ( ‘deflated in 1990 prices’ and ‘depreciated’ at a given 15 percent
yearly rate, as described in Appendix A). We also experimented with using a flow
measure for research, with little change to the results.?

The explanatory variables we are able to measure are most of the ones usually con-
sidered in the literature on R&D determinants, (in the ‘Schumpetarian tradition’): size,
market share, diversification, and demand conditions and technological opportunities.*
More precisely, they are:

1 g2 ¢3 1 2 3 ol o2 18
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where [; is employment, s}’ the average market share and d; the equivalent number
of industry segments, these three variables being expressed in logarithms (like &; and
kf the observed and latent research capital per employee). The 8,’s and the LS,
k = 1,2,3, are two sets of demand pull and technology push dummies. The 57
are eighteen industry dummies equal to one if firm 4 belongs to industry j and zero
otherwise.”

The average market share and the diversification index are computed from the
firms’ sales decomposition by lines-of-business, or product lines or industry segments,
as given by the Firm Annual Survey. For each firm, we have the decomposition of sales
into the different industry segments at the so called level 600 of the French industry
classification (NAP 600). We first compute the firm’s total sales for each industry
segment at level 600 in which it operates, and then a market share for each of these
industry segments. Thus a diversified firm has several market shares, one per industry
segment, and in order to get an overall market share indicator s¥ for the firm as a whole,
we compute a weighted average, where the weight of each segment is its share in the
total sales of the firm. Firm diversification is usually characterized by the Herfindahl
index h; of its lines of business, where h; equals one when the firm is not diversified
and decreases with increasing diversification. We find it more telling, though, to use
as our diversification index d; the inverse of the Herfindah! index. This index d, can
be interpreted as the equivalent number of industry segments if all the firm’s segments
had the same size, and it is bounded between one, if the firm is not diversified, and the
real number of different segments, when they have equal weights.

3This is not of course too surprising, our analysis being basically a cross-sectional one (and the
cross-sectional correlations between the stock and flow measure of rescarch being very high).

4See in particular Cohen and Levin {1989), who discuss the importance of demand, technological
opportunity and appropriability as determinants of research and innovative activity. They consider
them, however, mostly at the industry level, while we try to characterize themn here at the firm level
and introduce dummies to control for industry differences.

In a previous paper, Crepon, Duguet and Kabla (1996) also used an indicator of imitation measured
at the sub-industry level as a proxy for (the lack of) appropriability. We thought this proxy was
somewhat too problematic and preferred not to include it in this new analysis.

SNote that these dummies replace the constant term, since for all ¢ we have E 1 S7 = 1. Each

industry is thus allowed to have a different intercept (i.e., a different threshold and a different average
research capital).



The demand pull and technology push dummies 61, 6, and 83, and 7, 7sand 74 are
obtained from the 1990 Innovation Survey. They respectively express whether, in the
opinion of the firm, demand and technology factors had a ‘weak’, ‘moderate’ or ‘strong’
influence on its innovative activities over the last five year period 1986-90, relative to
an answer of ‘no’ influence.”

2.2 The innovation equations

The next equation in our model is an innovation function, whose exact formulation
depends on whether we proxy innovation output by the number of patents n; or by the
share of innovative sales ;.

2.2.1 The patent equation

Patents being observed as integer numbers, we specify the patent equation as a hetero-
geneous count data process with an expectation n} conditional on research and other
variables given by:

n; = E(nlk], To:, o i, ba) = exp (axk! + zoiby + Un; ) (2a)

where k7 is our latent research variable, zs; is a vector of other explanatory variables
(supposedly exogenous), and us; is the error or heterogeneity term, about which we
do not need to make any specific distributional assumption.” QOur patent variable, like
our research capital variable, is also a stock measure; it is simply the total number
of Eurcpean patents applied by the firm over the five year 1986-1990 period. The
coeflicient o is the elasticity of the expected patent numbers relative to research
capital, a measure of the impacts or returns to research on innovation output, while b,
is the vector of coefficients for x3. As exogenous variables z, we take:

_ 1 ¢2 ¢3 1 _2 3 ol o2 18
2 = (b, dir 81,687,637}, 72,73, 81, 8%, S19)

with the same notations as above. Note that we thus explicitly assume that market
share and diversification do not enter directly in the innovation equation, but only
indirectly through research. This imposes some a priori structure on the model, which
seems reasonable enough, and which helps identification by allowing us to take the
two market share and diversification variables as instruments. By contrast, it does not
seem unlikely that demand pull and technology push factors could affect innovation
output both directly and indirectly.

Including size in the equation also allows us to test whether the effect of firm size
on mmnovation output passes completely through the size of the research activities, i.e.,
or whether there is ‘constant returns to firm size’. For convenience sake, we normalize
our patent equation so that n, and »n} are in fact the actual and expected number of

®Note that we keep only tliree dummies to characterize demand pull or technology push, the
answer ‘uo’ dummy adding up to one with them, and thus being redundant (exactly collinear) with
the constant or the set of industry dummies.

" Actually, we estimate the patent equation (more precisely the corresponding reduced form equa-
tion) by maximizing the pseudo log likelihood function corresponding to the assumption of a negative
binomial nseudo distribution (cee Avnendie BB anbeeetion B.2.2)



patents per employee (just as k; and k¥ are the actual and expected research capital
per employee), and hence the coefficient of ; in the equation estimates the deviation
to constant returns to firm size.

2.2.2 The innovative sales equation

The French Innovation Survey, on which we rely to construct the demand and tech-
nology indicators, also provides information on the percentage share of firm innovative
sales.® The firm is asked what is approximately the percentage share of its 1990 sales
which comes from products launched in the market in the last five years 1986 to 1990,
the firm having to answer on a four point scale: 0-10%, 10-30%, 30-70% and 70-100%.
The underlying (unobserved) true share of sales £} can be viewed as another innovation
intensity variable, where innovation is measured by a number of sales weighted inno-
vations (instead of the number of patents). Since the share is only known by intervals,
we specify the innovative sales equation as an ordered probit model:

t: = Otkk;-* + iL‘gibg + Uog; (Qb)

where #7 is the underlying (unobserved) true share expressed in logarithm and the
explanatory variables are the same as for the patent equation, and where we assume
that the error term us; is normally distributed with mean zero and variance rr% .Note

that all the parameters are identifiable (including %), since the threshold values are
known.

2.3 The productivity equation

Our last relationship is the productivity equation, for which we take, as most usually
done, an augmented Cobb-Douglas production function with physical capital, employ-
ment, skill composition, and innovation output. In this equation innovation cutput
1s measured cither by expected patents per employee In(n}) or by the latent share of
mnovative sales 7 , both in logs. We have

q; = CK]IH(TLI) + 1‘355)3 + Uy (3(1)

or
¢ = ot} + x3:by + ug; (3b)

where g; is the logarithm of labor productivity defined as log-value added per employee,
and where the vector of the factors of productivity, other than innovation output, xs;
18:

Tz = (li,Ci,Ei,AiaSilu va T 5118)

with ¢; being the logarithm of physical capital per employee (and physical capital the
gross book value of fixed assets adjusted for inflation), and with E; and A; being re-
spectively the shares of engineers and administrators in the total number of employecs.

*There are in fact two questions in the Survey, one for total sales and one for export sales; in this
study, we only use the [ormer,



The coefficient o; is the elasticity of total factor productivity with respect to innova-
tion output, while b3 consists of the following coefficients: the elasticity of scale (more
precisely its deviation from unity), that of physical capital, and the skill composition
parameters, reflecting percentage differences in efficiency of skilled labor (engineers and
administrators) relative to ‘unskilled’ labor.? Note that by having expected patents in-
stead of actual patents in the productivity equation, we do not restrict estimation to
the subsample of firms with at least one patent, but use all the sample observations.
Note also that we do not make a specific distributional assumption for the disturbance
ug; 1n the productivity equation.

2.4 The overall model and its estimation

Taken together, the research, innovation, and productivity equations form a recursive
nonlinear system, for which we have two versions, one with patent counts and the
other with the share of innovative sales. The first two equations are the same in the
two versions:

g; = Tosbo + uy (0}
ki = xyby 4wy (1)

while the two last equations re respectively the following:

In ’I’.‘:= =lnE (ndk:, Zg, U,Q) = Of}{k; + 3721‘1)2 + Ug; (28.)
¢ = arlnn] + x303 + ug (3a)
and:
t7 = gk + zobs + uy (2b)
G = oty + Tyby + uy (3b)

In both versions, we allow for arbitrary correlations among the disturbances wo,, wi, usz;
and usz;. In estimating this system of equations, we want to take account of the nature
of the available data: research investment and hence research capital are truncated,

YThe precise interpretation of the skill composition parametets is the following, Asswne that labor
corrected for quality ( ‘skill composition’) should enter in the production function as :
L* = fuly+ fele+ faLla

instead of uncorrected labor (total employment) :
L=Ly+Lg+L,u

where subscript U stands for ‘unskilled’ production workers , subscript E for engineers, and subscript
L= fu(L—=Lg-~La)+ feLg+ faLa
A for administrators. We can write:  L* = fuL {1+ (fe/fu — VLpg/L+ (fa/fuv —1)LA/L}
InL*~ Infy+InL4+ppE+p,A
and thus the coefficients of E and A in the production function are :

bsp = (0Q/0L)uy and bsq =~ (0Q/3L)j,



patents are count data and innovative sales are interval data. We also endeavor to take
mto account the fact that research capital is endogenous in the innovation equations,
and innovation output endogenous in the productivity equation. Thus we hope to avoid
the potentially most serious selectivity and simultaneity biases.

This of course argues for the use of some kind of simultaneous equations system
estimator. Using maximum likelihood would be impossible. The joint distribution
of observable variables does not have a closed form, and numerical integration seems
intractable {considering the number of integrals involved and the large size of the
sample). We have to rely on another (possibly less efficient ) method of estimation.
We could have chosen the generalized method of moments (GMM), but preferred to
implement the asymptotic least squares method (henceforth, ALS).

Three arguments favor the ALS method.!” First, the efficiency comparisons that
have been made by Lee (1981) for a number of models show that in a number of
situations the asymptotic least squares method is more efficient in large samples.!!
Second, the computational cost is less: while optimal GMM requires at least two steps,
each of them involving all the sample observations, ALS requires two steps as well, but
the second one only involves the number of auxiliary parameters estimated in the first
step. Third, ALS can be easily generalized to more complicated systems, providing
an unified and tractable framework for the estimation of limited dependent variables

systems.'* The application of the ALS method to our model is thoroughly explained
in Appendix B.

3 The results

3.1 Simple statistics

Table 1 presents some simple statistics for the variables in our model for two samples
of firms: the full sample of firms (N=6145) for which we could match the different data
sources we use, and the subsample of those firms (N=4164), reporting in the Innovation
Survey that they have made, during the 1986-1990 period, some kind of innovation
(either minor or major, new for the market or only for the firm, either product, process,
organizational, or marketing). Only these firms were asked to answer the questions on
the share of innovative sales, and on the importance of demand pull and technology
push. Although the subsample of these firms, which we designate as the innovation
sample, is about two thirds of the full sample in size, and its average characteristics are
a little different from that of the full sample, the comparable estimations we performed
on both samples are quite close. We will only comment here on the main estimates we
get with the innovation sample, for which we have the innovative sales, demand and
technology variables. In Appendix C, however, we document all estimates for both

WFor details on this method of estimation, see Gouriéroux, Monfort, and Trognon (1985) or
Gouriéroux and Monfort (1996).

Hlee's study (1981) does not experiment with the generalized tobit and the count data models.
However, in all the cases he considers, including probit, simple tobit, censored models, and linear
regression, ALS is more efficient.

"Note also that the Chamberlain’s PI matrix method for panel data is in the ALS class (sce
Chamberlain 1982 and Crepon and Mairesse 1996).
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samples.?

Of particular interest in Table 1 are the variables relating to research and patents.
Only about 11 percent of the firms in the full sample and about 15 percent in the
innovation sample are R&D-doing firm, and only about 12 percent of the firms in the
full sample and about 16 percent in the innovation sample have at least one patent,
and half of these in fact having no more than two patents.* It is also noteworthy that
the overlap between Ré&D-doing and patenting firms is about 50 percent in the two
samples, i.e., half of the R&D-doing firms have patents and half of the patenting firms
do R&D.

Looking at the other variables, we see that the innovating firms are slightly larger
than those in the full sample, with a median number of employees of 85 versus 69, and
are more productive and more capital intensive by about respectively 5 percent and
10 percent at the median. The firms in the two samples tend to have very low market
shares, less than half a percent at the median, and to be not diversified, about 70
percent being in fact concentrated in one industry at the level 600 of the classification.
Their shares of engineers and of administrators are in the same range, with a first
quartile of about 2 percent and a third quartile of about 6 percent.

The variables we use from the Innovation Survey are summarized in Figures 2, 3
and 4. Figure 2 shows the distribution of the answers to the question about the share
of innovative sales that comes from products launched on the market between 1936
and 1990. From this figure one can see that the distribution is skewed, with close to 17
percent of the firms deriving more than 30 percent of their sales from newly introduced
products. Figures 3 and 4 show the breakdown of the answers to the two key questions
about the influence of market demand conditions and technology developments, on
which our demand pull and technology push indicators are based. It is clear that a
larger fraction of firms overall believe that market demand is a stronger force than
technological opportunity, but it is still true that over half the firms view technology
as at least moderately important in propelling them to innovate. The important thing
about these two charts is that they show that we do have sizable variability in our two
‘exogenous’ indicators.

The following two subsections of the paper present the results of estimating our
model by the ALS method. We first present estimates for a simple specification (the
basic model), comparing them, when possible, to the results found in the literature
as recently summarized by Cohen and Klepper (1996, henceforth CK96). We shall
then present estimates for an extended specification (the extended model), where we
add the Innovation Survey demand pull and technology push indicators in the research
and innovation equations, and the two shares of engineers and administrators variables
roughly controlling for skill in the productivity equation.

13Note that one can assume that the share of innovative sales is nil, or at least belongs to the smaller
interval from 0% to 10%, for those firms which are in the full sample but not in the innovation sample
{i.e., since they did not report any kind of innovation). This is what we do for the estimations for the
full sample presented in Appendix C.

14This is of course in the precise sense we give to these expressions here. The R&D doing firms are
those which have reported R&D expenditures at least three vears in the 1986-1990 five year period
(and for which we have computed a R&D capital measure), and the patenting firms are those that
have been granted European patents (one at least), over the same 1986-1990 five year period.
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3.2 The basic model: a first look at the estimates

The preferred ALS estimates of the model in its basic form are presented in Table 2 for
the innovation survey sample. The other more conventional econometric estimates of
the basic model, for both the innovation sample and the full sample, as well as for the
subsamples of firms reporting R&D expenditures and/or having one or more patents,
are shown and discussed in Appendix C. The two first columns of Table 2 give the
estimates of the research equations (common to both the patent and the innovative sales
versions of our model), while the two middle columns give the estimates for the patent
equation and the productivity equation with patents, and the two last columns give
them for the innovative sales equation and the productivity equation with innovative
sales. Columns 1 to 4 thus provide the estimates for the patent version of the model,
and columns 1, 2, 5 and 6 the estimates for the innovative sales version.

Looking first at the decision to engage in R&D (probit column) shows that the
probability of doing R&D (and reporting it) increases significantly with the firm size
(number of employees), and also with their market share and diversification. The in-
crease with size is familiar in the literature and corresponds to Cohen and Klepper
(1996) stylized fact 1.1 The finding that market share and diversification, after con-
trolling for size and sector, are associated with a higher probability of undertaking
R&D is newer, but very plausible too, agreeing with the Schumpeterian conjectures.!¢
The order of magnitude of the estimates are such that a doubling of the number of
employees or the equivalent number of activities or market share, for a firm at the
median in our sample would augment its probability of doing R&D by about 8, 6 and
5 percent respectively.!’

Looking then at the R&D intensity equation shows that the R&D intensity of the
firms engaging in R&D does not depend on their size (i.e., the elasticity of R&D capital
to size is one). This agrees similarly with CK96 stylized facts 2 and 3. Note however
that this result holds only in the presence of the market share variable (i.e., if we do
not include it, the estimated elasticity of R&D capital to size is of about 1.3). Contrary
to size, market share and diversification appear to have a quite significant and large
impact on the firm R&D effort, besides that on their decision to invest in research.'”
A doubling of market share or of the equivalent number of activities for an R&D doing

1*Cohen and Klepper (1996) ‘STYLIZED FACT 1: The likelihood of a firm reporting positive R&D
effort rises with firm size and approaches one for firms in the largest size ranges’ (p. 928).

¥6See Crepon, Duguet and Kabla (1996) for similar results. However, they used total sales as the
firm size variable, which most likely explains why they tend to find much lower (or even negative)
estimates for the market share variable, and higher estimates for size.

"We have: [0.40 In(2)] 0.30 = 0.08 ; [0.29 In(2)] 0.30 = 0.06 and [0.22 In(2)] 0.30 = 0.05 , where
.30 is the density of the normal distribution at the median value for the right hand side of the probit
(0.76).

'%Cohen and Klepper (1996) ‘STYLIZED FACT 2: Within industries, among performers of R&D,
R&D rises monotonically with firm size across all firm size range...” (p. 928) and ‘STYLIZED FACT
3: Among R&D reporting firms, in most industries there is no evidence of a systematic relationship
between firm size and the elasticity of R&D with respect to firin size across the full range of firm
sizes. Also, in most industries it has not heen possible to reject the null hypothesis that R&D varies
proportionately with size across the entire firm size distribution’ {p. 929).

YBy contrast to ours, most past studies did not find clear effects of cither market share or diversi-
fication (Cohen and Levin, 1989},
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firm in our sample would correspond to an increase of about 20 to 25 percent of its
R&D capital-labor ratio.?"

Considering next the patent equation and the innovation intensity equation, we find
that, once the differences in R&D effort are taken into account, there is no significant
impact of the firm size on its innovation output, be it the average number of patents
(cumulated number per employee) or the percentage of innovative sales.?!Since all three
R&D intensity, patent and innovation intensity equations exhibit constant returns to
scale, we can also state that the numbers of patents and (sales weighted) innovations
per dollar of R&D do not differ significantly with the firm size (or the scale of their
R&D programs). This result is at variance with CK96 stylized fact 4.22 Note however
that we also find decreasing returns for the patent equation when we limit the analysis
to the firms with positive numbers of patents and exclude the many firms with zero
patents (see Table 5 in Appendix C).23

Whereas firm size has no impact, that of R&D Intensity is quite strong: for patents
the elasticity of the firm R&D capital intensity is about 0.9 {not significantly different
from umity), and it is of about 0.4 for innovative sales. A 10 percent increase of R&D
intensity will thus have an impact of the same order of magnitude on the firm total
number of patents and of nearly 5 percent on its innovative sales (or total number of
sales weighted innovations).

Finally, the estimates of the productivity equation confirm the results we are accus-
tomed to find in cross-sectional regressions when knowledge capital is simply proxied
by an R&D capital variable (see Table 7 in Appendix C).** We find constant returns
to scale and a physical capital elasticity of about 0.2, while the estimated elasticity
of knowledge capital is 0.13 when proxied by the number of patents and is 0.10 when
proxied by the share of innovative sales or the number of sales weighted innovations.?°

3.3 The extended model: a further look at the estimates

The ALS estimates of the model in its extended version are given in Table 3, in the
same format as for the basic version, but with six additional rows in the research

2'We have: 0.36 In(2) = 0.25 and 0.30 In(2) = 0.21.

I'This is true even when the market share variable is not included in the R&D equation.

“Cohen and Klepper (1996) ‘STYLIZED FACT 4: Among R&D performing firms, the number of
patents and innovations per dollar of R&D decreases with firin size and/or the level of R&D, and
among all firms, smaller firms account for a disproportionately large number of patents and innovation
relative to their size’ (p. 930).

*'Bound, Cummins, Griliches, Hall and Jaffe (1984), who include non-patentees in their large
sample of U.S. manufacturing firms, find as we do, constant returns to size in their patents to R&D
relationship.

21Gee Table 7 in Appendix C. Examples of such results for France can also be found in Cuneo and
Mairesse (1984), Mairesse and Cuneo (1983), Crepon and Mairesse (1993), Hall and Mairesse (1995),
Mairesse and Hall (1996). For a general survey, see Mairesse and Sassenou (1991).

25 As explained in Appendix A, our labor, physical capital and value added variables are corrected
for R&D double counting. Our estimated elasticities of knowledge capital are thus not affectod by
downward biases due to such double counting and should not be given an excess return interpretation,
as wsnaily done when corrections cannot be made, These biases are mainly due to the lack of correction
of the labor variable ( the ecmplovees working in research activities being included in the total number
of caiployees) and tend o be much more severe for cross-sectional estinates snch as ours,
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and innovation equations for the weak, moderate and strong types of answers which
define our demand pull and technology push indicators (relative to the no answers),
and with two other rows in the productivity equation for our two skill composition
variables: the shares of engineers and administrators (relative to the other categories
of employees). With the exception of the elasticity of knowledge capital (proxied by
patents or innovative sales) in the productivity equation, all previous estimates of the
basic specification are practically unchanged by the inclusion of these new variables.
Thus we shall not comment again on these estimates, but shall only discuss the new
ones.

Both market demand and technological opportunities, as measured here by our
two indicators based on the firm’s own assessment, appear to have positive effects
on the firm R&D engagement and on its intensity (in addition to the market share,
diversification and size variables). These effects tend to increase across types of answers,
as should be expected, from weak to moderate and from moderate to strong. However,
although all twelve effects (three types of answers of the two indicators in the two
research equations) are indeed positive, only five of them are statistically different
from zero (at the conventional 5 percent level of confidence): one for the strong demand
pull dummy in the probit equation, and the four others for the moderate and strong
technology push dummies in both the probit and tobit equations.

These significant effects are very sizable, and specially so in comparison to that of
the other variables. Consider for example an interquartile difference in market share
(from 0.1 percent to 1.0 percent), such difference, ‘other things equal’, would imply a
15 percent higher probability of doing R&D for a firm at the median of our sample,
and a 80 percent higher R&D capital intensity for an R&D doing firm: these effects are
about the same size than the respective effects of a ‘strong’ technology push. A similar
interquartile difference in the equivalent number of firm lines of business (from 1 to
2) correspouds to a 6 percent higher R&D probability and a 20 percent higher R&D
capital intensity: these effects arc roughly two third and one third of the respective
effects of a ‘moderate’ technology push, which are themselves about two third of the
effects of a ‘strong’ technology push.?¢

The estimated effects of the demand pull and technology push indicators on patent-
ing are very different from their effects on R&D. The effects of the three demand pull
dummies are statistically insignificant (and small} and the effects of the technology
push dummies are negative, with both the ‘moderate’ and ‘strong’ effects being large
and just significant at the 5 percent confidence level. Such results are a little surprising.
‘They are, however, conditional on a given R&D intensity, since the patents equation
controls for firm differences in R&D capital intensity, and thus do not mean that the
total effects of demand and technology are negative or negligible. These total effects
are about equal to the sum of the estimated coefficients in columns 2 and 3 of Table
3, the R&D capital elasticity estimated in the patents equation being close to one.
Adding these two columns together shows that. the total effects of market demand and
technological opportunities on patenting are in fact similar; they are insignificant for
the moderate and weak values of both indicators, but significant and large for their
‘strong’ value, with an order of magnitude of one more patent for a firm with two

I . . e . , . . . .
**The computation of these different effects both on the R&D doing probabifity and R&D capital
" [T e [
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patents.?”

The fact that innovative output is not always patented or all patentable, and all
product patents are not exploited, is one reason for considering the innovative sales
variable besides the number of patents. Indeed, in contrast to the effects found on
patenting, both demand pull and technology push indicators have positive effects on
innovative sales, and significantly so for the ‘strong’ demand pull dummy and all three
technology push dummies. These direct effects are for most of them larger than the
indirect ones going through increased R&D investment.?® The direct and indirect
effects of a ‘strong’ demand pull thus correspond to respective increases of about 5 and
1 percent of the share of innovative sales for a firm with a (nearly) median share of 10
percent.?” The comparable figures for a, ‘strong’ technology push are of about 4 and 3
percent.

Our two skill composition variables enter very significantly the productivity equa-
tion, with a large positive coefficient of about 1.7 for both. This implies that the
productivity of engineers and that of administrators are at the margin much higher,
by a factor of 2.7, than the productivity of the other categories of employees; these dif-
ferences, as might be expected, are actually roughly consistent with the corresponding
differences in wages and labor costs. The important point is that the estimated elas-
ticities of knowledge capital decrease by one third when we include controls for skill 3!
The estimated elasticity of the number of patents in the last five year 1s about 0.09
(instead of 0.13), and that of the last five year sales weighted number of innovations
about 0.06 (instead of 0.10). This means, for example, that an interquartile difference
in the number of patents (from 1 to 6) corresponds to a 16 percent higher productivity,
or roughly one third of the interquartile range of productivity.3? Similarly a difference

#"These are computed as: 2[exp(0.41+0.07)-1] = 1.2 and 2[exp(0.91-0.48)-1] = 1.1.

“*Note that the estimated R&D capital elasticity is of about 0.30 in the innovative sales equation
(0.45 in the basic version) while is it is slightly above one in the patents equation (0.90 in the basic
version).

?These are computed as 10 [exp(0.40)-1] = 4.9 and 10 {exp[(0.41)(0.30)] -1} = 1.3 respectively.

W These are computed as 10 [exp(0.33)-1] = 3.9 and 10 {exp([(0.91)(0.30)] -1} = 3.1 respectively.

31This is also what we find when we proxy knowledge capital by an R&D capital variable. See
Mairesse and Cuneo (1985) and Crepon and Mairesse { 1993).

The decrease in the estimated elasticity of knowledge capital reflects its positive correlation with
skill. This correlation raises a delicate problem of interpretation of whether knowledge capital and
skill are substitutahle factors as the Cobb-Douglas specification assumes (within the limits of an
approximation) or complementary factors. If the first hypothesis is approximately true, our lower
estimates (when controlling for skill composition) are the appropriate ones. If the second hypothesis
is more relevant and in the extreme case where knowledge capital and skill are perfect complements,
our higher estimates (when not controlling for skill composition) would be the right ones. However
this would mean that increases in firm research efforts and knowledge capital do not by themselves
result in increased productivity, but must be accompanied by related increases in skill (not to mention
other likely conditions in reality}, On the basis of the cross-sectional information available to us, it
does not seemn reliable enough to estimate the degree of substitutability between knowledge capital and
skill using a more general production function than the Cobh-Douglas. In Crepon Mairesse (1993),
we estimate a translog production function but do not view it as a better approximation of the
‘true average production function’. Instead we consider that including the square and cross-product
terms ( in the logs of the factors) is a convenient way to account for some heterogeneity in the firm
production function (by allowing between- firm differences in factor elasticities and expressing simply
these differences as linear functions in the logs of the fuctors).

2The interauartile ranee of los-productivity for the innovation sample is of 0 47=-10003147/106) or
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in innovative sales from the lowest share interval to the highest share ( say from 10 to

70 percent) corresponds to a 13 percent higher productivity, or roughly one fourth of
the productivity interquartile range.

4 Conclusion

In this paper we have tried both to summarize and confirm the main results of previous
studies, which intended to assess the innovation impacts of research and the produc-
tivity impacts of innovation and research. We have introduced three new features in
the analysis concerning the model, the data and econometric methods. We consider a
four equations model that relates productivity to innovation output, innovation out-
put to research, and research to its determinants. We take advantage of new data
on French manufacturing firms: the number of European patents and the percentage
share of innovative sales, as well as an average market. share variable, a diversification
index, and two indicators proxying for the influence of ‘demand pull’ and ‘technology
push’ factors on research and innovation. We use appropriate econometric methods
taking into account selectivity and simultaneity, as well as the statistical nature of the
data: only a small proportion of firms engage in research activities and/or apply for
patents; productivity, innovation and research are endogenously determined; research
investment and capital are truncated variables, patents are count data and innovative
sales are interval data.

We find that using the more widespread methods, and the more usual data and
model specification, may lead to appreciably different estimates. We find in particular
that simultaneity tends to interact with selectivity, and that both sources of biases
must be taken into account together. However, our main results are consistent with
many of the stylized facts of the empirical literature. The probability of engaging in
research (R&D) for a firm increases with its sive (number of employees), its market
share and diversification, and with the demand pull and technology push indicators.
The research effort (R&D capital intensity) of a firm engaged in research increases
with the same variables, except for size (its research capital being strictly proportional
to size). The firm innovation output, as measured by patent numbers or innovative
sales, rises with its research effort and with the demand pull and technology indicators,
either directly or indirectly through their effects on research. Finally, firm productivity
correlates positively with an higher innovation output, even when controlling for the
skill composition of labor as well as for physical capital intensity.

In order to identify and estimate our model, we have made a number of assump-
tions on its overall structure and the specification of the individual equations, which
seem rather reasonable. We have assumed for example that the market share and
diversification variables only belong to the research equations (not to the innovation
and productivity equations), and are exogenous in the model.*® The main problem of
our analysis arises from cross-sectional nature of our data and estimates. We know in

47 percent (see Table 1).

¥ Likewise we have assumed that our demand pull and technology push indicators do not helong to
the productivity equation and that our skill indicators only belong to this equation, all four variables
being exogenous,
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particular that time-series type estimates of R&D capital elasticity in the patent equa-
tion and in the productivity equation are much smaller and even not significant (see
for example Crepon and Duguet 1997 for the patent equation and Cuneo and Mairesse
1984 or Hall and Mairesse 1995 for the productivity equation). It is not clear actually
which type of estimates should be preferred. As a general rule cross-sectional estimates
tend to be much less fragile than time-series ones, and indeed our cross-sectional es-
timates in this study seem quite plausible.** One should of course, as usual, do more
investigations to go farther and deeper, and in particular one should try to gather
firm panel data, which will be richer than our mainly cross-sectional data here, and
to implement a dynamic model, which could give a better description of the complex
relations between research, innovation and productivity.

HTime-series estimators control for firm correlated effects, which can take care of fixed or slowly
changing omitted variables, while cross-sectional estimators may he affected by the potentially severe
biases arising from such correlated effects.. Conversely, biases from measurement errors in variables or
timing errors which will be negligible for cross-sectional estimators will tend to be much magnified in
the time dimension of the data and to strongly affect time-series estimators. It is also more problematic
to assume that a variable is exogenous or predetermined in the cross-sectional dimension of the data
than in its time dimension, but difficult in the two dimensions to find instruments which will be both
relevant and good. For a discussion of these issues in the context of the identification and estimation
of the production funetion. see NMairesse (199M and Griliches and Madresse (1067
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Table 1: Descriptive Statistics for the Full and Innovation Samples

Sample Full: 6145 firms Innovation: 4164 firms
Statistics Q1 [ Me Q3 % Ql [ Me Q3 %
R&D capital per employee* 89.9 | 192.1 { 460.2 | 10.7 || 89.1 | 192.1 | 461.9 | 15.3
K; (1990)

Number of employees 39 69 183 | 100 || 43 85 242 | 100
L; (1990)

Market share (%) 01 ] 03 1.0 | 100 || 0.1 [ 0.4 1.3 | 100
8; x 100 (1988}

Equivalent number of activities 1.2 | 16 20 1274 1.2 1.6 2.0 | 29.8
D; (1988)

Number of patent applications 1 2 5 11.6 1 2 6 16.1
N; (1986-1990)

Value added per employee* 184 | 231 322 | 100 || 196 | 243 314 | 100
Q: (1990)

Physical capital per employee* 104 | 182 322 | 100 | 123 | 208 | 353 | 100
C; {1990)

Engineers/Employment (%) 23| 37 6.3 [ 732 24| 3.8 6.6 |79.1
E; = 100 (1990)

Administrative/Employment (%) | 1.8 | 3.1 54 | 657 1.8 3.1 54 | 72.2
A; x 100 (1990)

Q1 : first quartile, Me : median,

* Thousands of 1990 FRF.

3 : third quartile.
% : percentage of firms included in the computations.
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Table 2: Basic Model (Innovation sample)

Left-hand variables :

Logarithm of research capital per employee (k;)
Number of patents per employee (n,)
Logarithm of innovation intensity ()
Logarithm of value added per employee (¢;)
(standard errors between parentheses)

Model R&D Patents Innovation
Probit Tobit Ty 5 ti q;

R&D capital per employee - - (.881 - 0.431 -

k; (0.111) (0.057)

Number of patents per employee - - - 0.130 - -

n; (0.017)

Innovation intensity - - - - — 0.104

t; (0.016)

Market share 0.221 | 0.365 - - - -

8 {0.031) | (0.054)

Equivalent number of activities | 0.294 | 0.300 - - -

d; (0.102) | (0.134)

Number of employees 0.398 | -0.001 | -0.021 { -0.017 | -0.033 | 0.011

¥ (0.038) | (0.068) | (0.059) | (0.012) | (0.029) (0.005)

Physical capital per employee - - - 0.206 - 0.212

i (0.007) (0.007)

Optimal asymptotic least squares, with 13 industry dummies.
Sample of 4164 manufacturing firms .
T The regression is equivalent to the number of patents per employee.
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Table 3: Extended Model (Innovation sample)

Left-hand variables:

Logarithm of research capital per employee(k;)
Number of patents per employeef(n;)
Logarithm of innovation intensity (¢;)
Logarithm of value added per employee (g;)
(standard errors between parentheses)

Model R&D Patents Tnnovation
Probit | Tobit n; ¢ i q;

R&D capital per employee - - 1.078 - 0.304 -

k; (0.166) (0.064)

Number of patents per employee - - - 0.089 - -

ny (0.015)

Innovation intensity - - - - - 0.065

t; (0.015)

Market share 0.221 | 0.356 - - -

8 (0.031) | (0.053)

Equivalent number of activities | 0.302 | 0.333 - - - =

d; (0.103) | (0.142)

Number of employees 0.387 | -0.043 | -0.066 | -0.014 | -0.002 | 0.007

l (0.040) | (0.066) | (0.073) [ (0.007) | (0.028) | (0.004)

Physical capital per employee - - - 0.194 - 0.198

¢ (0.007) (0.007)

Engineers/Personnel - - - 1.614 - 1.649

s (0.123) (0.123)

Administrative/Personnel - - - 1.744 - 1.765

F; (0.143) (0.142)

Demand pull :

~ weak (81 ;) 0.261 | 0377 | -0.071 - -0.040 -
(0.192) [ (0.308) | (0.332) (0.150)

- moderate (63 ;) 0.191 | 0.342 | -0.068 - 0.164 -
(0.170)1(0.277) 1 (0.315) {0.137)

— strong (83,;) 0.343 | 0412 | 0.074 - 0.399 -
(0.164) 1(0.272} ] (0.304) (0.133)

Technology push :

- weak (71,;) 0.173 | 0.173 | -0.237 - 0.229 -
(0.120) [ {0.207) | (0.254) {0.089)

— moderate (T3,;) 0.322 | 0.604 | -0.540 - 0.268 -
(0.113) | (0.198) | (0.255) (0.092)

- strong (73.:) 0.444 | 0.907 | -0.483 - 0.333 -
(0.117)1(0.202) | (0.277) (0.105)
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A APPENDIX: Data construction

We have constructed our data set by merging various sources of information, using the
firm national identification code SIREN (for ‘Systéme Informatique de Répertoire des
ENtreprises’).

A.1 Accounting and employment data

The information on the firm current accounts and balance sheets, and on the number
of employees, comes primarily from the SUSE files ( ‘Systéme Unifié de Statistiques
d’Entreprises’}. From them, we mainly extracted the firm value added, its fixed assets
gross bookvalue (at the beginning of year) and its total number of employees (average
over the year), and we simply computed our labor, productivity and physical capital
intensity variables as {; =number of employees, ¢; = value added per employee, and
¢; = physical capital per employee. Physical capital is the fixed assets gross bookvalue,
approximately adjusted for inflation on the basis of an estimated average age of fixed
assets derived from the net to gross book value ratio (see for example Crepon and
Mairesse, 1993). These variables are taken in logarithms in our model. Table 1 in
the text shows that the ‘median firm’ in the innovation sample has 85 employees, a
value added per employee of 243 thousands 1990 FRF (FRench Franc), and a physical
capital per employee of 208 thousands 1990 FRF (a current approximation being 1 US
Dollar = 5 FRF). These numbers are 5 to 15 percent lower for the median firm in the
full sample.

The information on the distribution of employees by occupational categories is
taken from the ‘Enquéte sur la Structure des Emplois’ (ESE). Based on previous work
and some experiments, we only kept here two main indicators of the importance of
management in the firm: the shares F; and A; of engineers and administrators (ad-
ministrative executives) in total employment (see Crepon and Mairesse, 1993). Table
1 in the text shows that the median shares of engineers and administrators are about 3
to 4 percent for the 65 to 80 percent of the firms which actually have engineers and/or
administrators among their personnel.

The average firm market share variable and diversification index are computed
from the detailed information provided by the ‘Enquéte Annuelle d’Entreprises’ (EAE).
'This is the main annual firm survey in France, which among other information gives the
decomposition of the firm sales in its different lines of business, or industry segments at
the ‘level 600 of the French industrial classification (NAP 600 in the ‘Nomenclature des
Activités et Produits’). We have in fact only considered the decomposition of domestic
sales for the 227 different ‘level 600’ industry segments pertaining to manufacturing.*

Let S;x be the sales of firm ¢ for its product & in the industry segment or market
k,S = Zk: Sik and Sp = 3 5, , are respectively the overall sales of finin 4 (over all its

35The decomposition for non manufacturing sales is also available, but it secins of a lesser quality,
and we did not use it.



26

products) and the overall sales on market k (over all firms).* The market share s, of
firm ¢ on market & and the share of product & in firm i total sales are thus equal to:

Sik = Sz',lc/Sk and bi‘k = Si,k/Si
Note that we have 3 b;x = 1 for each firm ¢ , but that we have not s 3 s; i for each
- .

market k , since we thought indeed more appropriate to compute the tﬁrm product
market share s; , relative to the total of sales in this market Sy for all the firm available
in the EAE data files, and not only for those firms that we could keep in our samples,
after merging all the data sources we used.

‘Then for each diversified firm ¢ we defined the weighted average market share s¥
and the diversification index d; as:

w 1 2

s¥ = ;bl‘k X six and i h; = ; b
with d; being the inverse of the Herfindahl concentration index h; of the firm sales.
For a non diversified firm (i.e., with only one & ), we of course have s* = s; and
di = h; = 1. For a diversified firm with n product lines of equal weights (i.e., bip=1/n
withk=1,..,n ), we have: s’ =s,, forallk (=1,...,n),andd; =n (or by = 1/n ).
The diversification index d; for the firm 7 can be interpreted as the equivalent number
of product lines with equal sales, such as its sales Herfindahl concentration index would
the same as the one observed h;. The higher the d;, the higher the diversification of
the firm (and the lower the h; and the concentration of its sales).

In the model we introduce both variables s* and d; in logarithms. We can see in
Table 1 that only about 30 percent of the firms are diversified at the industry level 600,
and only 25 percent of these have an equivalent number of product lines of 2 or more
(see third quartile Qy). We can also see that most of firms have very small market
shares, only 25 percent having a market share higher than 1 percent (see Q).

Note finally that we include in all the equations of the model a full set of 18 industry
dummies (or 17 plus the constant) : S}, 57,...5/% with ¥1¥ 57 = 1. These are
defined at a higher level of classification (‘level 40" of the NAP) than the average
market share and diversification variables, on the basis of the firm main industrial
activity (with the highest market share).

A.2 Research and Development data

The Research and Development (R&D) data come from the annual firm research expen-
ditures survey conducted by the ‘Ministére de la Recherche’ since 1974. For this study,
we kept mainly the information on the firm total R&D which we ‘convert’ in 1990
prices using an overall manufacturing R&D deflator.?” From the firm total deflated

3¢ More precisely, the decomposition of sales is given for the firm total and export sales, and hence
by difference for the firm domestic sales, and we thought preferable to use the decomposition of total
sales to construct the diversification index, and that of domestic sales to construct the average market
share variable. Hence, in fact S;, denotes here the total sales of firm ¢ for its product & in the
computation of d;, and the domestic sales of firm ¢ for its product k in the computation of 1.

$TWe computed this R&D deflator based on the decomposition of the overall Manufacturing R&D
spending (for all the Manufacturing firms in the survey), in its labor, materials and physical investment

caompaonent<. and an the ecorroanondine o andd e Ty,
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R&D expenditures series, Ry for firm ¢ in year ¢ , we simply compute the R&D capital
K (at the beginning of year ¢ ), by the so-called ‘permanent inventory method’, i.e.,
by the following iterative formula:

Ky =(1-6)Kg—1y + Rie—1)

which assumes a geometric depreciation of R&D capital at the constant rate é. Con-
sistently with previous studies on French manufacturing (see for example Cuneo and
Mairesse, 1984, or Crepon and Duguet, 1997), we adopt a depreciation rate é of 15%.
For the firms which have regularly invested in R&D since 1974, we take Ki¢qy =
5 x R4 as starting value. This assumes an R&D constant pre-sample growth rate
v of 5% (i.e., Kiqay = Rizay/ (7 +8) ). For the firms which have engaged in R&D in a
latter year 7, the starting value at the beginning of this year is zero (X;; = 0). Note
however that we consider here that a firm has engaged consistently in R&D activities
if it has reported R&D expenditures for a least three years in the period 1986-1990,
which is the relevant period for our innovative sales variable and our demand pull and
technology push indicators (see below); we have only computed the firm R&D capital
in this case.*® Actually the choice of starting value and that even of the depreciation
rate in the computation of R&D capital has little consequence on the estimated elas-
ticities of interest in our model, for such cross-sectional estimates as ours. It affects
however the absolute value of R&D capital (such as the sample median or average)
and hence the estimated impact of a given difference in R&D investment or capital (in
dollar terms).

We have also used the information on research employees, and on the physical
investment and materials components of total R&D expenditures, also available in the
annual survey, to correct our labor, physical capital and value added variables for R&D
double counting. The number of employees working in research activities is deducted
from the total number of employees; the gross book value of fixed assets used in research
activities (estimated on the basis of the physical investment component) is similarly
subtracted from the total gross book value of fixed assets. The accounting value added
measure is also corrected by adding back R&D expenditures (materials) which are
expensed out in the firm standard current accounts. As discussed in particular in
Cuneo and Mairesse (1984) and Hall and Mairesse (1995), the estimated elasticities of
knowledge capital (either patents, innovative sales or R&D capital) in the productivity
cquation are thus not affected by R&D double counting biases, and thus should not be
given an excess return interpretation, as usually done when the corrections cannot be
made.

To summarize, g; is a research dummy equal to 1 if firm ¢ has reported R&D for at
least three years in the period 1986-1990, 0 otherwise; and k; is the log of R&D capital
at the beginning of year 1990 for an R&D doing firm ¢ (if g; = 1). We see in Table
1 that relatively few firms are consistently engaged in R&D, even in the innovation
sample. Only about 15% of the firms in this sample are R&D doing firms with a
median R&D capital of about 190 thousand ‘1990 FRF".

W Note also that for the few R&D doing firms which had a one or two years of interruption in
reporting to the research survey. we simply interpolate their R&D expenditures for these years,
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A.3 Patent data

The patent numbers come from the European PATent (EPAT) data base. Since the
firm ID codes SIREN were not available in this data base, it has been necessary to
carefully match SIREN and firm names.?® We have taken as our patent variable n; the
total numbers of patents applied by the firm i during the five year period 1986-1990.
We have considered the number of patents applied rather than the number of patents
granted, which is often viewed as a more appropriate measure of innovation output.
However these two measures should be practically equivalent for our cross-sectional
type estimates.

As in the case of R&D, Table 1 shows that relatively few firms have applied for
an European patents in five years, even in the innovation sample. About 16% of the
firms in this sample have applied for at least a patent in the 1986-1990 period, with a
median number of patents of two and a third quartile of six. Also only about half of
them (50%) are R&D performers, and conversely half of the R&D firms have applied
for at least a patent in five years. For similar numbers in U.S. manufacturing, see
Bound et al. (1984).

A.4 Innovation data

'The information on the share of innovative sales and on the demand conditions and
technological opportunities is provided by the 1990 Innovation survey performed by
SESSI (Service des Statistiques Industrielles).® Actually this information is based
on questions that are only asked in the survey to the ‘innovating firms’, which make
up our innovation sample. The innovating firms are those which answered ‘yes’ to
at least one of the following eight questions: did you performed in the five last years
(between January st 1986 and December 31 1990) an innovation of the following type:
(i) product improvement; (ii) new product for the market; (iii) product imitation (i.e.,
new for the firr but not for the market); (iv) technological breakthrough; (v) process
improvement; (vi) packaging innovation (explicitly excluded from i, ii and iii in the
questionnaire); (vii) organizational innovation linked to the introduction of technolog-
ical change and (vili) marketing innovation. About 60% of the French manufacturing
firms have innovated according to this definition (a little more in our own sample which
consists of slightly larger firms in average).

The Innovation survey which was conducted in 1991 for all manufacturing firms
with more than 20 employees, achieved an excellent coverage {all firms of more than
900 employees and more than 80% of the sales of the smaller firms). Our own full
sample (N=6145) corresponds to roughly one third of the firms actually surveyed; this
is reasonable considering we had to match several different data sources.*! Detailed

39This work has been performed at INSEE by J.-C. Bussy, C. Carpentier, P. Corbel and 1. Kabla
(1996), with the collaboration of INPI (Institut National de la Propriété Industrielle). See INSEFE
studies in Fconomics and Statistics nol. {1996), which also present a number of studies using the
matched EPAT data set.

For a presentation of the survey and its questionnaire, see Francois (1991).

1We also had to do a very modest amount of cleaning to eliminate of few ‘outliers’, which is
necessary when analyzing firm level micro data (see Hall and Mairesse, 19495, for some details).
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information on the 1990 Innovation survey can be found in Frangois (1991) and Auzeby
and Francois (1992), and studies using it in SESSI (1994).

The share of innovative sales is based on a question asking innovating firms what
percentage of their 1990 sales percentage of sales is imputable to new products launched
between 1986 and 1990. Firms answered on an interval scale: 0-10%, 10-30%, 30-70%
and more than 70%. We can see from Figure 2 that more than the half of innovating
firms have less than 10% of innovative sales, while less than 3% have more than 70%
of innovative sales.

The firm level demand pull and technology push indicators are respectively based on
the two following questions: ‘Do you consider that in your firm innovation is determined
through the impetus given by the market (relationships with customers, competitors)?’
and ‘ Do you consider that in your firm innovation is determined by technology specific
dynamics?’. Firms answered on a four point scale: ‘no’, ‘weakly’, ‘moderately’ and
‘strongly’. Figures 3 and 4 show that the market demand plays a moderate or strong

role for about 85% of innovating firms while technology plays such a role for about
60% of them.
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B APPENDIX: Method of estimation

The key idea of the method of estimation is to estimate reduced form coeflicients in
each of the equation of the model separately, and infer from these auxiliary parameters
the structural form parameters of the model using a minimum distance estimator or
so called Asymptotic Least Squares method, henceforth ALS (see Malinvaud 1970,
Gourieroux, Monfort and Trognon 1985, Gourieroux and Monfort 1996, chapter 9). The
intuition is the same as that of indirect least squares, although ALS is more general.
We have thus two estimation problems: first, estimating the reduced form parameters
and their joint covariance matrix; then, estimating the structural form parameters
in a consistent (and efficient) way. The first problem is solved by interpreting the
maximum likelthood and pseude maximum likelihood estimators of the reduced form
equations as specific M-estimators (i.e., Maximization-estimators, see Gourieroux and
Monfort 1996, chapter 8). The second problem comes down to writing explicitly the
relationships between the structural and reduced form parameters ( or the parameters
of interest and auxiliary parameters).

B.1 Reduced form estimation

Once we have written the reduced form of the model, the estimation problem becomes
that of a series of single equation, and we can apply the estimation method which is
most appropriate for each equation, i.e., a maximum likelihood or pseudo maximurm
likelihood method. We can thus write:

Vi € argrr}yaka (), k=123
k

where -, is the reduced form parameter in equation k& and L, denotes the likelihood
or pseudo likelihood function. The problem remains to estimate the joint covariance
matrix of the 4,’s. We can solve it by considering that our cstimators can also be
defined globally by:

T1 3
¥ €argmax L () withy=| v, | and L(v) = > L ()
Vs k=1

Maximizing I according to -y gives exactly the maximum likelihood and pseudo
maximum likelihood estimators. This property arises from the separability of L (y) with
respect to the 7,’s.*? These estimators can be interpreted as M-estimators. Under the
usual regularity conditions for M-estimators:

VN(FE=7) = N0,

00

with asymptotic covariance matrix:

QO=Jtrjt

121f such separability does not hold, we can always assume that it does by reparametrizing in the
first step of the estimation (changing the names of the reduced form parameters in each equation so
that they be different), and imposing the cross-equations constraings ouly in the sccond step. The

methiod de tharg cnite oeneral
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and
ol AL

O*L
I=Ek [5 (7o) oy (’YD)} , J=EE {—W (%)}
where v, denotes the true value of parameter v , and the expectations are taken with

respect to the distributions of the exogenous variables (index Z) and of the endogenous
variables (index 0).

The I matrix and the J matrix can be estimated by their sample counterparts:

aL < 1 & 9L
Fo —“Z )
ay ) 8737

where N is the sample size. Note that since the objective function is separable, the
off-diagonal terms (the cross derivatives) in J (and J) are equal to zero.

Finally, we can use as the estimator of the covariance matrix of the estimated
reduced form parameters:

Q=J1J!

Through € (and I ), the correlations between the perturbations of the different equa-
tions of the model are taken into account, without making specific distributional as-
sumptions on their joint distribution.

B.2 Actual Implementation
B.2.1 The research equations

The research equations are already reduced form equations that we directly estimate by
maximum likelihood.*® If we denote the reduced form first order parameters: mq = by
and m, = by, we have v, = (mg, 7,01, p) , with o normalized to 1.

B.2.2 The patent equation

The reduced form of the patent equation is given by:

%
E (n:lk], @o;, uni; g, bo) = exp {z;miak + Tobo + aguy; + g}

which can also be written as:

E (ni]k], z2:, v2i; ¥o) = exp {z2ima + v2; }

where zy; is the vector of exogenous variables, grouping x; and xy; variables without
replication so that zy; is full column rank (of dimension ry), 7, is the corresponding
reduced form parameter vector, and vy, = apuy; + uy; the reduced form error term.
This is a count data model with heterogeneity term exp (vy;). Note that even if the
structural cquation is not heterogeneous, the reduced form equation will be (which is
a general argument in favor of heterogeneous count data models). We do not need

$3This is done with a SAS-IML program (%TOBITGEN),based on a Newton-Raphson algoritlun
with Levenberg-Marquardt modifications and analytical second order derivatives {(see Crépon- Duguet
1995, and Crépon- Duguet-IKabla, 1996).
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any specific distributional assumption on uy; to estimate this model, only that the
expectation of exp (vy;) is constant (overall or by industry) and its variance finite,
and can apply the pseudo maximum likelihood method (see Gourieroux, Monfort and
Trognon 1984). Based on our previous experience, we used a pseudo log likelihood
function based on the negative binomial pseudo distribution.*

B.2.3 The innovative sales equation
The latent reduced form of the innovative sales equation is given by:
t; = Tumiag + Taiba + gty + Uy

which we can write as:
t; = z9;mo + v

Since uy and uy are both assumed to be normal v = aguy + ue Is also normal
and we can estimate this equation as a ordered probit model. Since our observed
indicator corresponds to known intervals of the underlying share of innovative sales ¥,
vy = (mh, 03)" is fully identifiable.

B.2.4 The productivity equation

In the first version of the model with patents, the reduced form of the productivity
equation can be written as:

¢ = or InE (n;|k], 20, vei; 7o) + T3:b3 + ug;
and in the second version with innovative sales as:
G = o] + xybs + u,
Both educed form equations can thus written as:
Qi = 20iTa0er + T3;b3 + vo;0p + ug;
or:
G = 23,73 + Vg

We simply estimate these equations by ordinary least squares (OLS), with a robust
covariance matrix.*®

44The negative binomial pseudo log likelihood is concave with respect to the parameter 75 so that the
maximum is unique. We carried on the estimation using a SAS-IML program (Yt\PMVBNEG), based
on a Newton-Raphson algorithm with analytical second order derivatives (see Crepon and Duguct
1995 and 1997).

13 The OLS estimator can be viewed as a pseudo-maximum likelihood estimator with a normal
psewdo-distribution.
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B.3 Structural form estimation

B.3.1 The relation between the reduced form and structural form para-
meters

The patent equation can be written under the two equivalent forms:
E (na|k], 29, tigs; 0k, bg) = exp {zymiak + Toba + cviy + ug} = exp {zoime + vz, }

Vi = 1, PN ,N where Vo = Qs + Uos.
Taking the logarithms of both expressions gives:

ZoMy = TyMiag + Tabo

€11 T2 291
zy = : y Ty = : y o X2 =
{(NV,r1) (N kz2) (N,r2)
TN Ton 29N
We can define the two exclusion matrices Jo; and Jy» (made of zeroes and ones)
simply indicating if the variables in zp are in z; or zs:

Joy such as  29Jp, = 14
(re,m)
Jog such as  z3Jes = 2o
(ra.ka)

and write:
29Ty = 2o (Jnmag + Jozbs)

Since z; is full column rank, this implies:

Ty = Joymag + Jaoby = Haf3, (1)

with

Hy = (Jami|Jxn), By= ( oK )

b2

The same relation applies for the innovative sales equation, since:
t; = TyMag + Togby + gty + Uy = 2oy + Uy
The productivity equation can now be written as:
G = ZoiTaQy + Tagby + vy + Uz = 23,73 + Uy

or:
Ty = JaaMoay + Jaghy = Hsf,
with:
Gy )
Hy = (J:527F2U33)- /6’3 = s A3 Ty =y, gy Jyy =
(

by ran) {ra,k3)
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B.3.2 Asymptotic least squares

The estimates of the reduced form parameters 7 being consistent and asymptotically
normal, we can apply ALS to estimate our structural parameters 3 ,where:

_ (B _( X
ﬁ_(ﬁ3) and 7m=| m

Ty

The true values of the 3 and 7 are assumed to be such that we have the exact relation:
g(8,m)=0.

In the traditional ALS terminology the structural parameters 3 are also called the
interest parameters and the reduced form parameters = the auxiliary parameters. The
basic idea of ALS is to use the estimate 7 of w obtained in a first step and compute
in a second step an estimate B of 4 such that g (B, 7?) is as ‘close to zero’ as possible.
That is, we solve the program:

f = argming (8,7) O lg(8,7)

where ¥ is a metric. Whatever ¥ | B is consistent if 7 is consistent, and it is asymptot-
ically efficient for ¥ given by:

%) dq
U = Valo (8,7) = 52 (8,7) 055 (8,7)

where §0 = Vg, (7) is the covariance matrix of 7. Since we need an estimate of 3 to
estimate the optimal metric ¥*, we can estimate 3 in two steps.
In the first step, we can use for ¥ the Euclidean metric ( ¥ = Id ), and estimate

3 as: R
8= argmﬁing(ﬂfr)'g (8, %)

In our case, this is simply OLS applied to:

72\ [ Hy 0 3 =
(2)-(% &)(&)re-mre

with ﬁz = (JQ{?T”JQQ), ﬁg = (J32ﬁ2‘1]33), j‘I\ = dlag (ﬁk)and residual w = g(ﬁ,ﬁ')
We thus have:

T T

8= (H H) o ( iy )

and the asymptotic distribution of 3 is:

VN (8- 8) NL N (0,%)

—+00

with: .
(09" 09\ O 8g 08¢ Jg (D¢ dg

-1
B (%aﬁ') 0p o' o O (55567)




Replacing /3, m and (2 by their consistent estimates 8, # and § ,we are now able to
compute an estimated ¥* such that:

¥ = 22 (3.7) 0% (3,7)

with

ag . - J21aK Id'r‘z 07‘2,7‘3
(97r’ (ﬁ’ ﬂ-) - ( 07‘3,7'1 —J32(11 Idr;;

In the second step, we can then compute the corresponding optimal ALS estimator 5
such that:

f* = argming (0,7) b*lg (8,7)

which in our case reduces to GLS applied to equation 2. We thus have:

g = (Ef@*—lﬁ)“l - ( ?:2 )

T3

and the asymptotic distribution of 3* is:

VN (B -8) % N(0,%%)

N—+oco

where ¥* can be estimated by:

s _ |99 (3 2y g1 99 (5 -
2= 55 09 ¥ 55 (29)

-1
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C APPENDIX: An assessment of biases likely to
arise in innovation and productivity studies

We have tried in this study to correct for selectivity and simultaneity biases and to
take into account the specific features of the data, by using appropriate econometric
methods. However, it is of interest to assess the magnitude of these biases and the
effects of neglecting to consider the nature of the data, when we use more widespread
methods. The following subsections thus present a series of estimates, which we ob-
tained using ordinary least squares(OLS), two stages least squares (2SLS), maximum
likelihood {ML} or pseudo maximum likelihood (PML), and first and second steps
asymptotic least squares (ALS) estimators. We only present these estimates for the
basic specification of the equations in our model, but for both the full and innovation
samples, and when appropriate for the subsamples of R&D doing firms or patenting
firms or both. Depending on the equation and samples or subsamples, these estimators
fail to take into account selectivity, and/or simultaneity, and/or the specific nature of
R&D, patents or innovative sales variables.

C.1 The research equations

Table 4 compares the OLS estimates of the research intensity equation for the sub-
samples restricted to the R&D doing firms (with positive R&D expenditures) to the
corresponding ML estimates for our generalized tobit specification (the tobit part) for
the full and innovation samples (with both R&D and non R&D doing firms). While
the ML and OLS estimates are about the same for both samples or subsamples (for
the right and left panels of the Table), they do significantly differ between themselves.
If we had considered only the evidence conveyed by OLS for the R&D firms we would
have concluded that the firm R&D intensity decreases significantly with its size and
is independent of diversification. Actually we found quite the opposite: firm R&D
intensity does not depend on size and increases significantly with diversification.

C.2 The patent equation

Table 5 compares the different types of estimates of the patent equation we can consider
on the complete samples (full and innovation samples), positive R&D subsamples,
positive patents subsamples and both positive R&D and patents subsamples. The PML
estimators (assuming a negative binomial pseudo distribution of the disturbances) can
be computed in all cases, while the OLS and 2SLS estimators can be only for the
positive patents subsamples (i.e., of firms with at least one patent). Note that we
include an R&D duminy in the equation when we consider these estimators for a
sample or subsample with non R&D firms. We also present both the first step and
second steps ALS estimates for the complete samples. Note that the second step ALS
estimates are estimated independently of the productivity equation and thus can differ
from our preferred ones. Comparing them in Table 2 and Table 5 for the innovation
sample, we can verify that they are in fact quite close.

As in the case of the research intensity equation we see that the same estimates
vary very little across the full and innovation samples or subsamples. By contrast
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the different types of estimates can differ significantly between themselves. Both our
findings that patents do not depend on size, but are strongly related to R&D intensity
with an elasticity of about one, are at variance with the other estimates (other than
ALS). The OLS and PML estimates indicate a much lower R&D elasticity of about
0.4 in all cases and a negative dependence on size for all the subsamples with positive
patents, while the 2515 are too imprecise to let us say much about them. Ignoring both
selectivity ( the fact that most of the firms do not patent) and simultaneity thus result
in large downward biases. The fact that OLS, 2SLS and PML are about the same for the
positive patents subsamples tend to show that selectivity is a more severe problem.'®
The fact the PML and ALS estimates differ for the complete samples (coupled with
the inaccuracy of the 2SLS estimates for the subsamples) seem also to indicate that
simultaneity (the endogeneity of R&D) interacts with selectivity. Simultaneity matters
and can be dealt with, only if selectivity is taken into account.

C.3 The innovation sales equations

Table 6 shows the different types of estimates of the innovative sales equation that we
have been able to compute on the complete samples and positive R&D subsamples.
Since only the ‘innovating’ firms had to declare their share of innovative sales (see Ap-
pendix A, subsection A.4), in order to compute these estimates for the full sample and
the corresponding positive R&D subsample (in the left panel of the Table), we assumed
that in fact the percentage share of innovative sales of the ‘non innovating’ firms lies in
the first interval from 0 to 10%. Note also that in order to compute the OLS and 2SLS
estimates, we have simply assumed that the value of the innovative sales variable was
equal to the interval center, that is 5%, 20%, 50% and 85%. Despite such invention of
the missing or exact values of our equation right hand side variable, the corresponding
estimates for the full and innovation samples and subsamples remain close as in the
case of the other equations, and the OLS estimates do not differ significantly from the
ML ordered probit estimates, nor the 2SLS, which again are very imprecise.’

As for the patent equation, the OLS and ML estimates indicate a much lower R&D
elasticity than our ALS estimates, of about 0.1 instead of 0.3 or 0.4, and the 25LS
estimates are so inaccurate that they do not statistically differ from zero. Likewise the
OLS, 25LS and ML estimates are about equivalent (both for the complete samples and
positive R&D subsamples), but differ markedly from our preferred ALS estimates (on
the complete samples). Again this suggests that simultaneity interacts with selectivity
and that the two must be taken care of together.

10 Clearly what matters is to take into account the zero patents, not the fact that the number of
patents are count data.

17 Comparing our preferred estimates in Table 2 to the corresponding second step ALS estimates
(i.e., estimated independently of the productivity equation) on the innovation sample in Table G,
shows that they are a little different, although not statistically so considering their standard errors:
the estimated R&D capital elasticity is about 0.4 in Table 2 as against about 0.3 in Table 6
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C.4 Productivity equation

The last three Tables 7, 8 and 9 present the different types of estimates for the pro-
ductivity equation, respectively using as proxy for knowledge capital, the more usual
R&D capital variable and our two newer innovation output variables: the number of
patents and innovative sales {number of sales weighted innovations). What we see in
these Tables largely confirm the remarks we just made as concerns the research and
innovation equations, though with some exceptions.

The estimates of the same type are about the same in the full and innovation
samples and in the positive R&D or positive patents subsamples. The second step
ALS estimates, which are estimated independently of the research equations, are close
enough to our preferred estimates in Table 2. There is, however, the surprising excep-
tion of the estimated innovative sales elasticity: about 0.5 in Table 9 {for the innovation
sample), which is too large, as compared to the more reasonable 0.1 in Table 2. This
is also one of the only two cases where we find significant differences between our first
step and second step ALS estimates: a smaller 0.2 first step estimates of innovative
sales elasticity as against the 0.5 too large second step estimate.?® The 2SLS estimates
tend to be very imprecise and to give implausible values of all parameters, and in
particular much too high values of the elasticity of knowledge capital. As they do for
R&:D elasticity in the patent and innovative sales equations, the OLS estimates tend
to indicate a smaller elasticity of knowledge capital than the ALS estimates. This is
the case when knowledge capital is measured in terms of number of patents and inno-
vative sales (number of sales weighted innovations), but not surprisingly when we use
an R&D capital measure. As before this points to the need to account explicitly for
both selectivity and simultaneity.

18The second case is that of the ALS estimates of R&D capital elasticity in Table 7: the first step
estimates are about 0.05 in the full and innovation samples, as compared to about 0.10 in the full
sample or about (1,15 in the innovation sample for the second sten estimates,
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Table 4: Research and Development Equation

Dependent variable: logarithm of research capital per employee (k;)
(standard errors between parentheses)

Sample Full Innovation

Variable l; | 8; [ d; L I 8; 1 d;

Generalized tohit: 6145 firms® 4164 firms®

(maztmum likelihood)

— probit part 0.412 | 0.244 | 0.323 | 0.398 | 0.221 | 0.294
{0.038) [(0.030) | (0.097) | (0.038) | {0.031) { (0.102)

— tobit part -0.005 | 0.378 | 0.321 | -0.001 | 0.365 | 0.300
{0.067)1(0.053) | (0.142) | (0.068} | (0.054) | (0.146)

657 firms 636 firms
OLS -0.198 { 0.232 | 0.136 | -0.188 | 0.231 | 0.130

(0.056) | (0.046) | (0.131) | (0.056) | (0.047) | (0.134)

All regressions include 18 industry dummies.
a. Correlation among the residuals, 7 =0.698 (0.074).
b. Correlation among the residuals, 3 =0.709 (0.074).



Table 5: Patent Equation

Dependent variable: number of patents per employee (n;)

(standard errors between parentheses)

Sample Full Innovation
Variable k| 8] g ke | 0] g
All observations 6145 firms 4164 firms
Pseudo maximum likelihood 0.410 | 0.118 | 1.334 || 0.421 | 0.076 | 1.203
(negative binomial) {0.075) | (0.055) | (0.169) || (0.074) | (0.057} | (0.164)
Asymptotic least squares 0.854 | —(.042 * 0.745 | -0.049 *
{first step: OLS) (0.240) | (0.069) (0.251)1(0.072)
Asymptotic least squares 1.055 | -0.051 * 0.979 | -0.065 *
(second step: GLS) (0.149) | (0.069) {0.155) | (0.071)
Positive patents 712 firms 669 firms
Ordinary least squares 0.426 | -0.493 | 0.310 }| 0.427 | -0.481 | 0.298
(0.042) | {0.029} | (0.078) || (0.043) | (0.031) | (0.082)
Two stages least squares 1.154 | -0.313{ 0.806 || 1.158 | -0.255 [ -1.139
(0.735) [ (0.205) 1 (1.256) || (0.799) | (0.269) | (1.691)
Pseudo maximum likelihood 0.385 | -0.325 | 0.291 || 0.385 {-0.319| 0.281
(rnegative binormial) (0.052}1(0.042) | (0.115) || (0.052) | (0.043) | (0.116)
Positive R&D 657 firms 636 firms
Pseudo maximum likelihood (0.485 | 0.005 * 0.487 | 0.005 *
(negative binomial) (0.073) | (0.070) (0.073) | (0.070)
Positive Patents and R&D 341 firms 332 firms
Ordinary least squares 0.442 | -0.357 * 0.443 1 -0.361 *
(0.051)}(0.047) (0.052) | (0.047)
Two stages least squares 0.466 | -0.358 * 0.467 | -0.362 *
(0.212} ] (0.047) (0.215) | (0.048)
Pseudo maximum likelihood 0.412 | -0.248 * 0.415 | -0.235 *
{negative binomial) (0.051) | (0.046) (0.052) [ (0.051)

All regressions include 18 industry dummies
Instruments for 25LS: I;, s;, d; and the 18 industry dummies.

 The coefficient reported is the coefficient of the logarithm of the number of
employees minus unity which measures departure from constant returns.
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Table 6: Innovation Intensity Equation

Dependent variable: logarithm of innovations percentage in sales (¢;)
(standard errors between parentheses)

Sample Full Innovation
Variable kB & a0 kB ] L]
All observations 6145 firms 4164 firms

Ordinary least squares* 0.111 | 0.096 | 0.430 || 0.114 { 0.060 | 0.306
(0.025) | (0.010) [ (0.039} || (0.029) 1 (0.013) | {0.046)

Two stages least squares™ | 4.615 | 0.0563 | 1.630 || 2.803 | 0.064 | 0.780
(4.328) [ (0.290) | (1.891) || (3.359) | (0.327) | (2.009)

Maximum likelihood? 0.127 | 0.164 | 0.549 || 0.136 | 0.079 | 0.361
(0.041) | (0.019) | (0.065) || (0.037) | (0.018) | (0.059)

Asymptotic least squares | 0.434 | 0.048 * 0.260 | 0.016 *

(first step: OLS) {0.162) | (0.044) (0.119) | (0.031)
Asymptotic least squares | 0.461 | 0.047 * 0.280 | 0.015 *
(second step: GLS) (0.090) 1 (0.044) (0.066) | {0.031)
Positive R&D 657 firms 636 firms
Ordinary least squares® 0.107 | 0.049 * 0.121 | 0.043 *
(0.033) | (0.030) (0.033) | {0.030)
Two stages least squares™ | 0.108 | 0.049 * 0.094 | 0.044 *
(0.168) | (0.030) {0.169) | (0.030)
Maximum likelihood? 0.128 | 0.053 * 0.142 | 0.046 *
(0.036) | (0.032) {0.036) | (0.032)

All regressions include 18 industry dummaes.

Instruments for 2SLS: [;, s;, d; and the 18 industry dummies.

* The logarithm of the interval center was taken as the dependent variable.
t Ordered probit estimates (with known thresholds).
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Table 7: Productivity Regression with Research Capital

Dependent variable: logarithm of value added per employee (g;)
(standard errors between parentheses)

42

Sample Full Innovation

Variable ki C; LL I a; ki Cq li I i

All observations 6145 firms 4164 firms

Ordinary least squares 0.119 j 0.213 | 0.009 | 0.159 0.119 | 0.207 | 0.007 | 0.158
(0.010) | (0.005) | (0.004) | {0.010) i (0.010) | (0.006}|(0.005) | (0.016)

Two stages least squares | 9.679 | -0.073| 0.306 {-0.343 | 7.219 |-0.174} 0.360 | -0.801
(11.052) | (0.284) | (0.593) | (3.356) || (10.475) | (0.485) ; (0.812) | (4.141)

Asymptotic least squares| 0.065 | 0.204 | -0.027 * 0.048 | 0.207 | -0.030 *

(first step: OLS) (0.014) {(0.006) | (0.007) (0.028) | (0.007) | (0.008)

Asymptotic least squares| 0.119 | 0.206 | -0.019 * 0.149 | 0.207 |-0.034 *

(second step: GLS) (0.014) | (0.006) | (0.007) (0.019) 1(0.007) | (0.007)

Positive R&D 657 firms 636 firms

Ordinary least squares 0.154 | 0.096 | 0.009 * 0.155 | 0.098 | 0.007 *
(0.012) | (0.021) (0.011) (0.012) |{0.022)|(0.011)

Two stages least squares | 0.407 | -0.046 | 0.025 * 0.419 |-0.062| 0.023 *
(0.098) |(0.061)((0.015) (0.103) | (0.068) | (0.016)

All regressions include 18 industry dummies.
Instruments for 2SLS: {;, ¢, s;, d; and the 18 industry dummies.



Table 8: Productivity Regression with Patents

Dependent variable: logarithm of value added per employee (g;)
(standard errors between parentheses)

Sample Full Innovation

Variable Ty Cj I li 1] T4 C; l ’li g;

All observations 6145 firms 4164 firms

Ordinary least squares 0.040 | 0.219 | 0.016 | 0.089 || 0.044 | 0.217 | 0.014 |} 0.094
(0.011) | (0.005) | (0.004) | (0.015) || (0.011) | {0.007) | (0.005) | (0.015)

Two stages least squares | 3.197 | 0.171 | 0.208 | 0.417 || 1.596 { 0.207 | 0.102 | 0.457
(1.132) 1 (0.028) | (0.136) | (0.688) || (0.556) | (0.017) | (0.092) | (0.426)

Asymptotic least squares| 0.066 | 0.208 | -0.026 * 0.113 | 0.207 | -0.025 *

{first step: OLS) {0.021) | (0.006) | (0.007) (0.029)}(0.007) | (0.009)

Asymptotic least squares| 0.142 | 0.208 | -0.026 * 0.166 | 0.207 | -0.030 *

(second step: GLS) (0.020) | {0.006) | (0.010) (0.027) | (0.007) | (0.012)

Positive Patents 712 firms 669 firms

Ordinary least squares 0.055 | 0.213 | 0.045 * 0.056 | 0.214 | 0.038 *
{0.012) | (0.020) | (0.012) {0.013) | (0.020} ] (0.012)

Two stages least squares | 0.866 | 0.047 | 0.436 * 0.769 | 0.079 | 0.373 *
(0.492) 1 (0.114) | (0.239) (0.448)(0.010) | (0.212)

All regressions include 18 industry dummies.
Instruments for 25LS: I, ¢;, s;, d; and the 18 industry dummies.

Table 9: Productivity Regression with Innovation Intensity

Dependent variable; logarithm of value added per employee (g;)
(standard errors hetween parentheses)

Sample Full Innovation
Variable ti l C; l I; i C; l {;
All observations 6145 firms 4164 firms
Onrdinary least squares* 0.035 | 0.219 | 0.018 || 0.035 | 0.220 | 0.019
(0.005) | (0.005) | (0.004) i (0.005) | (0.007) | (0.004)
Two stages least squares* | 0.643 | 0.165 | -0.059 || 0.773 | 0.186 | -0.044
(0.094) | (0.013) | (0.014) || (0.154) | (0.016) ] (0.017)
Asymptotic least squares | 0.057 | 0.208 [--0.031 | 0.228 | 0.207 | -0.034
(first step: OLS) (0.050) | {0.006) | (0.008) || (0.121) | (0.007) | (0.010)
Asymptotic least squares | 0.308 | 0.209 | ~0.047 | 0.542 | 0.207 | -0.043
(second step: GLS) (0.051)1(0.006) | (0.014) || (0.116) | (0.007) | (0.017)

All regressions include 18 industry dummies.
Instruments for 2SLS: [;, ¢, s;,

d; and the 18 industry dummies.
* The logarithm of the interval center was taken as the right-hand variable.
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