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ABSTRACT

This paper attempts to provide the user of linear multiple regression
with a battery of diagnostic tools to deteniuine which, if any, data points
have high leverage or influence on the estiiiation process and how these

possibly discrepant data points differ from the patterns set by the rrajori-ty

of the data. The point of view taken is that when diagnostics indicate the

presence of ariomolous data, the choice is open as to whether these data are

in fact unusual and helpful, or possibly harmful and thus in need of modifica-

tions or deletion.

The methodology developed depends on differences, derivatives, and

decompositions of basic regression statistics. There is also a discussion of

how these techniques can be used with robust and ridge estimators. An example

is given showing the use of diagnostic methods in the estimation of a cross-

couriUy savings rate model.
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1. INTRODUCTION

1.1 General Goals

Economists and other model builders have responded willingly to major

opportunities that have appeared in the past two decades - a rapidly growing

deirand for policy guidance and forecasts from government and business, and

the purely intellectual goal of advancing the state of knowledge through
model development. The fundamental enabling condition has been the ability
to produce more intricate models at decreasing unit cost because of advances

in computer technology. A large econometric model twenty years ago had

twenty equations: today a large model has a thousand equations. It is not

only larger mode's, but also larger data sets and more sophisticated
functional forms and estimators that have burgeoned.

The transition from slider'ule and desk calculator to the large scale

digital computer has happened with startling speed. The benefits have, in

our opinion, been notable and at times exciting we know a great deal more

about the economy and can provide more intelligent guidance as a direct

result of increased computational power. At the same time, thereare

hidden costs of current approaches to quantitative economic research via

computer which ought to be recognized.

One major cost is that, today, the researcher is a great deal further

away from data than he was, perforce, in the heyday of the desk calculator.

If there are a great many equations to estimate or thousands of observations

for a few equations, there is a natural tendency to use the computer for what

it does well: process data. A tape arrives and after a frustrating day or

two is accessible by a computer program (often a regression package, plain or
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fancy). Then estimation and hypothesis testing get underway until some

satisfactory conclusion is obtained. It is not misguided nostalgia to

point out that it was more likely, with the more labor intensive technology

of the past, for the researcher to uncover peculiarities in the data.

Nor do we counsel a return to the golden past. What concerns

us is that the Tsomethingt which has been lost in modern practice is

valuable and is not recoverable from standard regression statistics.

Our first major objective is to suggest procedures that exploit computer

brawn in new ways that will permit us to get closer to the character

of the data and its relation to hypothesized and estimated models.

There is the related issue of reliability. Our ability to crunch

large quantities of numbers at low cost makes it feasible to iterate

many times with a given body of data until the estimated model meets

widely accepted performance criteria in terms of statistical measures

such as t statistics, Durhin-Watson statistics and multiple correlations,

along with theoretically approved coefficient signs and magnitudes.

The iterative process is not what the statistical theory employed was

originally all about, so that it behooves us to consider alternative

ways of assessing reliability, which is a second major objective of this

paper.

Another aspect of reliability is associated with questions of distance

from the data that were mentioned at the outset. Specifically, the

closer one is to the data, the more likely it is that oddities in the

data will he uncovered or failure of the model arid data to conform with

each other will be discernible, so that reliability can be increased

when the researcher has more intimate contact with the data. At the same
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time, this posses a dilejmia, since the researchermay then be excessively

prone to devise theories from data. This temptation, often referred to as

data mining, should be restrained. One sort of insurance against data

mining is to be a strict Baysian arid thus be guided by sensible rules for
combining prior and posterior information. Alteniatively the model
should be tested - repeatedly if possible - on bodies of data unavailable

at the time. Being a strict Baysian is not always practical nor is it

deemed to be universally desirable. As a general rule then, the most

practical safeguard lies with replication using previously unavailable data.

1.2 Pegression Diagnostics arid Model Input Perturbations

This paper presents a different approach to the analysis of linear

regression. While we will sometimes use classical procedures, the

principal novelty is greater emphasis on new diagnostic techniques.

These procedures sometimes lack rigorous theoretical support,

hut possess a decided advantage in that they will serve as yet unmet

needs of applied research. A significant aspect of our approach is

the development of a comprehensive set of diagnostics.

An important underlying concept is that of perturbing regression model

inputs and examining the model output response. We view model inputs broadly
to include data, parameters (to be estimated), error models and estimation

assumptions, functional forr and a data ordering in time or space or

over other characteristics. Outputs include fitted values of the

dependent variable, estimated parameter values, residuals and functions

of these (R2, standard errors, autocorrelations, etc.).

We plan to develop various types of input perturbations that will reveal

where model outputs are unusually sensitive. Perturbations can take the
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form of differentiation or differencing, deletion (of data), or a

change in estimation or error model assumptions.

The first approach to perturbation is "differentiation" (in a

broad sense) of output processes with respect to input processes, in

order to find a rate of change. This will provide a first order measure

of how output is influenced by input; differences would he substituted

for derivatives in discrete cases. If the rate of change is large, it

can be a sign of potential trouble. Generally, one would like to have

small input perturbations lead to small output deformations. We would

also use this idea to see how big a perturbation can be before everything

breaks down. Of course, a "good' model is generally responsive to anticipated

changes in input.

For example, one could 'differentiate" the model with respect to its

parameters to ascertain output sensitivity to small changes in the

parameters. (We could, for example, evaluate this parameter sensitivity

function at the estimated parameter values.) This might indicate some

of the more critical parameters in the model that deserve further

analysis.

A second procedure is to perturb the input data by deleting or

altering one data point and observe changes in the outputs. More generai]y

we can remove random groups of data points or, for time series, sequences

of data points. This is one way to search for parameter instability

over time. By deleting individual data points or collections of points

one can observe whether or not subsets of the data exert unusual influence

on the outputs. In particular, it is possible to establish if a minority

of the data behave differently from the majority of the data. The concept
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of discrepant behavior by a minority of the data is basic to the diagnostic

view elaborated in this paper.

The third approach will be to examine output sensitivity to changes

in the error model. Instead of using least squares, estimators such as

least absolute residuals would be applied which impute less influence

to large residuals. A more promising alternative for diagnostic purposes

is the Huher type error model [1]. Varying a parameter in the Huher model

provides a. way to examine sensitivity to charges in the error assumptions.

This area is related to recent research in robust statistics[17].

Another aspect of changed error assumptions is specific to time

series. Practicing econometricians are well aware that parameter estimates

change when the sample period is altered. While this might only

reflect expected sampling fluctuations, the possibility exists that the

population parameters are truly variable and should be modeled as a random

process. It is also possible that the population parameters are stable

hut mispecification causes sample estimates to behave as if they were a

random process. In either case explicit estimation methods for random

parameters based on the Kaimnan filter might reveal parameter instability

of interest from a diagnostic point of view.

Thile classical statistical methods in most social science contexts treat

the sample as a given and then derive tests about model adequacy, we take the

more eclec-tric position that diagnostics might reveal weaknesses in the data,

the model or both. Several diagnostic procedures, for example, are designed to

reveal unusual rows or outliers in the data matrix which by assumption

S has no formal distribution properties. If a suspect data row has been

located, the investigator faces several choices. One common practice is
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to introduce a di..mnny variable, especially when subsequent examination

reveals that an "unusual" situation could have generated that data row.

Alternatively the model may be respecified in a more complex way. Of

course the suspicious row might simply be deleted or modified if found

to be in error • In surrnary, the diagnostic approach leaves open the

question of whether the model, the data or both should be modified.

In some instances described later on, one might discover a discrepant

row and decide to retain it, while at the same time having acquired

a more complete understanding of the statistical est5ites relative

to the data.

1.3 Modeling Research Aims and Diagnostics

We reiterate here several principal objectives that diagnostics can

serve, from the modeler's perspective, in obtaining a clearer understanding

of regression beyond those obtainable from standard procedures. Some of

these are of recent origin or are relatively neglected and ought to be

more heavily emphasized. The three main modeling goals are detection

of disparate data seents, collinearity, and temporally unstable regression

parameters. It will become clear as this paper proceeds that overlaps

exist among detection procedures,

1.3.1 Leverage and Disparate Data

The first goal is the detection of data points that have disproportionate

weight, either because error distributions are poorly behaved or because

the explanatory variables have (multivariate) outliers. In either case

regression statistics, coefficients in particular, may be heavily dependent

on subsets of the data. (This draft is principally concerned with these
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aspects of diagnosis; the other topics are of equal importance. At this

stage of our research we are coming to a better understanding of the

scope of regression diagnostics and we shall rely heavily on the work

of others in describing these other methods.)

1.3.2 Collinearity

While exact linear dependencies are rare among explanatory variables

apart from incorrect problem formulation, the occurance of near dependencies

arises (all too) frequently in practice. While some collinearity can be

moderated by appropriate rescaling, in many instances ill-conditioning

remains. There are two separate issues, diagnosis and treatment. Since,

our main purpose is diagnosis, we are not presently concerned with what

to do about it, except to note that the more collinear the data, the

more prior information needs to be incorporated.

Collinearity diagnosis is experimental too, but the most satisfactory

treabnent we know of has been proposed by David Beisley [2], who builds

on earlier work of Silvey [3]. By exploiting a technique of numerical

analysts called the singular value decomposition, it is possible to

obtain an index of ill-conditioning and relate this to a decomposition

of the estimated coefficient variances. This relation enables the

investigator to locate which columns of the explanatory variable matrix,

associated with the index of collinearity, contribute strongly to each

coefficient variance. By thus joining Silvey's decomposition of the

covariance matrix to numerical measures of ill-conditioning, economists

now have an experimental diagncstic tool that enables an assessment of which

columns of the data matrix are prime sources of degradation in estimated

coefficient variances.
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1.3.3 Regression Parameter Variability in Time

A third major goal is the detection of systematic parameter variation

in time. Many statistical models assume that there exist constant but

unobservable parameters to be estimated. In practice, econometricians

often find this assumption invalid, Suspicions that there are more than

one set of population parameters can be aroused for a large number of

reasons: the occurance of an external shock that might be expected to

modify behavior significantly (a war, hyperinflation, price-wage controls,

etc.) is one possibility. Another is that a poorly specified relation might

exclude important variables which change abruptly. There is always the

possibility that aggregation weights [] may change over time and thereby

introduce variability in macro parameters even when micro parameters are stahl e.

An argument has been made by Lucas [23] that anticipated changes in government

policy will cause modifications in underlying behavior. Finally the parameters

may follow a random process and thus be inherently variable. When discrete

changes in parameters are suspected, and the sub-divisions of data where this

occurs is identifiable from outside information, the analysis of covariance in

the form discussed in Gregory Chow [5] or Franklin Fisher [6] is an appropriate

diagnostic that has been frequently applied. When the break point of points have

to be estimated, maximum likelihood estimators proposed by Quandt and Goldfeld

.7][8] are available.

An alternative diagnostic procedure has recently been suggested by

Brown, Durhin and Fvans [9]. They have designed two test statistics with

a time series orientation. From a regression formed by cumulatively adding

new observations to an initial subset of the data, one-step ahead

predictions are generated. Both the associated cumulated recursive lebidual s
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and their stuns of squares have well-behaved distributions on the null

hypothesis of parameter constancy.

1. Notation

We use the following notation:

Population Pegression Estimated Regression

YX+r

Y : nxl column vector for dependent variable same

X : nxp matrix of explanatory variables same

pxl cohutu vector of regression coefficients : estte of

nxl column error vector r : residual vector

Additional notation I

row of X matrix same

error variance I s2 estinated error variance

s estimated with

i row of data matrix and
Y vector deleted.

Other notation is either obvious or will be introduced in a specific

context not so obviously tied to the generic regression model.
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2. LEVERAGE POINTS AND DISPARATh DATA

2,1 Introduction

At this stage in the development of diagnostic regression procedures,

we turn to analysis of the structure of the X matrix through perturbation of its
rows. In the usual case, the X's are assumed to be a matrix of fixed numbers

and the matrix to have full column rank. Otherwise, statistical theory

suggests we ought to have little interest in the X matrix, except when

exper:imental design considerations enter. In actual practice, researchers

pay a great deal of attention to explanatory variables, especially in initial

investigatory stages. Even when data are experimentally generated,

peculiarities in the data can impact subsequent analysis, but when data

are non-experimental, the possibilities for unusual data to influence

estimation is typically greater,

To be more precise, one is often concerned that subsets of the data,

i.e., one or more rows of the X matrix and associated Y's might have a

disproportionate influence on the estimated parameters or predictions.

If, for example, the task at hand is estimating the mean arid standard

deviation of a univariate distribution, exploration of the data will

often reveal outliers, skewness or multimodal distributions. Any one of

these might cast suspicion on the data or the appropriateness of the

mean and standard deviation as measures of location and variability.

The original model may also be questioned and transformations of the

original data consistent with an alternative model may be suggested, for

instance. In the more complicated multiple regression context, it is corrTnon

practice to look at the univariate distribution of each column of X as well

as Y, to see if any oddities (outliers or gaps) strike the eye. Scatter
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diagrams are also examined. While there are clear benefits from sorting

out peculiar observations in this way, diagnostics of this type cannot

detect multivariate discrepant observations. That wea)-iess is what we

hope to remedy.

The benefits from isolating sub-sets of the data that might disproportion-
ately impact the estimated parameters are clear, but the sources of

discrepancy are diverse. First, there is the inevitable occurance of

improperly recorded data, either at the source or in transcription to

computer readable form, Second, observational errors are often inherent

in the data. While more appropriate estimation procedures than least squares

ought to be used, the diagnostics we propose below may reveal the unsuspected

existance or severity of observational errors. Third, outlying data points

may contain valuable information that will improve estimation efficiency.

We all seek the "crucial experiment", which may provide indispensible

information and its counterpart can be incorporated in non-experimental

data. Even in this situation, however, it is constructive to isolate
extreme points that indicate how much the parameter estimates lean on these

desirable data. Fourth, patterns may emerge from the data that lead to

a reconsideration and alteration of the initial model in lieu of suppressing

or modifying the anomolous data.

Before describing multivaria-te diagnostics, a brief two dimensional

graphic preview will indicate what sort of interesting situations might

be subject to detection. We begin by an examination of Figure 1, which

portrays the ideal null case of uniformly distributed and, to avoid statistical

connotations, what might be called evenly distributed X. If the variance of

X is small, estimates of will be unreliable, hut in these circumstances
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standard test statistics contain the necessary information,

In Figure 2, the point o is anomolous, but since it occurs near the

mean of X, no adverse leverage effects are inflicted on the slope estimate

although the intercept will be affected. The source of this discrepant

observation might be in X, Y or c, If the latter, it could be indicative

of heteroscedas-ticity or thick-tailed error distributions; clearly more

such points are needed to analyze those problems further, but isolating

the single point is constructive.

Figure 3 illustrates an instance of leverage where a gap arises

between the main body of data and the outlier, While it constitutes a

disproportionate amount of weight in the determination of , it might

be that benign third source of leverage mentioned above which supplies

crucially useful information. Figure is a more troublesome configuration

that can arise in practice. In this situation the estted regression

slope is almost wholly determined by the extreme point. In its absence,

the slope might be almost any-thing. Unless the extreme point is a crucial

and valid piece of evidence (which of course depends on the research

context), the researcher is likely to be highly suspicious of the estimate.

Given the gap and configuration of the main body of data, the estiiite

surely has less than n-2 degrees of freedom; in fact it might appear that

there are effectively two data points altogether, not n.

Finally, the leverage displayed in Figure 5 is a potential source of

concern since o and/or • will heavily influence but differently than the

remaining data. Here is a case where deletion of data, perhaps less

drastic downweighting, or model rformu1 ation is clearly indicated.



yi

Figure 1

— 13 —

Plots for Alternative

x.1

Configurations of 1)ta

Figure 2

x.1
Figure 5

0

y-.

x x1

0 yi

/

0

Figure 3
x.1

y.
0

Figure 4

x.1



— lL —

.
2.2 Residual Diaiostics

Traditionally the examination of functions of the residuals,

y. - y., and especially large residuals, has been used to provide

indications of suspect data that in turn may unduly affect regression

results. It is best to have a scalar covariance matrix, so that

detection of heteroscedasticity or autocorrelation (and later on, eliminating

them) is desirable.

Approximate normality is another desirable property in terms of estimation

efficiency and the ability to test hypotheses. Harmful departures from nonility

include pronounced skewness, multiple modes arid thick-tailed error distributions.

Even moderate departures from normality can noticeably impair estimation

efficiency. At the same time, large outliers in error space will often be

associated with modest—sized residuals in least squares estimates since the

squared error criterion heavily weights extreme values.

It will often be difficult in practice to distinguish between

heteroscedasticity and thick—tailed error distributions; to observe the

former, a number of dependent variable values must be associated with

(at least) several given configurations of explanatory variables. Otherwise,

a few large residual outliers could have been generated by a thick-tailed

error distribution or franents from a heteroscedastic distribution.

Relevant diagnostics have three aspects, two of which examine the

residuals and the third involving a change in error distribution assumptions.

The first is simply a frequency distribution of the residuals. If there
is evident visual skewness, multiple rrdes or a heavy tailed distribution,

the graph will prove infonmative. It is interesting to note that econaiiists

often look at time plots of residuals but seldczn at their frequency distrikution.
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The second is the normal probability plot, which displays the cumula-

tive normal distribution as a straight line whose slope measures the standard

deviation arid whose intercept reflects the mean. Thus departures from

normality of the cumulative residual plot will show up in noticeable departures

from a straight line. Outliers will appear inunediately at either end of the

cumulative distribution.

Finally, Denby and Mallows [17] and Welsch [18] have suggested plotting

the estimated coefficients and residuals as the error density or, equivalently,
as the loss function (negative logarithm of the density) is changed. One

family of loss functions has been suggested by Huber [1];

It? ItIc
p(t) S

_c2 ItI>c

which goes from least-squares (cx) to least absolute residuals (c0). This

approach is attractive because of its relation to robust estimation [1], but

requires considerable computation.

For diagnostic use the residuals can be modified in ways that will

enhance our ability to detect problem data. We first note that the
do not have equal variances because if we let H X(XTX)1XT, then

E[(YY)(YY)T] E[(IH)YYT(I_H)T]

(I-H) E(YYT)(I_H) a2(I-H)

since (I-H)2 I—H and (I-H)X 0. (See Theil [10] and Hoaglin and Welsch [13]

for a more detailed discussion.) Thus

var (r.) 2 (ib) (2.2.1)

where h1 is the diagonal element of H.
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Consequently a number of authors 111] have suggested that instead

of studying r., we should use the standardized residuals

r./s
(2.2.2)

where S2 is the estimated error variance.

For diagnostic purposes we might want to go further and ask
about the size of the residual corresponding to y when data point i has
been omitted from the fit, since this corresponds to a simple

pertutation of the data. That is, we base the fit on the remaining
n—i data points and then predict the value for y1. This residual is

yl - x
and has been studied in a different context by Allen [12]. Similarly

s2. is the estimated error variance for the "not i" fit, and the(1) _______________________

standard deviation of is estimated by 5(i)/i + x1(X1)X(1))x

We now define the studentized residual:

r
- I+X - -l

. (2.2.4)

(i) i (1) (1) i

Since the numerator and denominator in (2.2.4) are independent,

r1
has a t distribution with n-p--l degreees of freedom. Thus

we can readily assess the significance of any single studentized residual.

(Of course, r arid r will not be independent.) Perhaps even more

useful for our purposes is the fact that

r1/(s(1)v'1_h1) (2.2.5)
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and

2 2 1 226
(fl—P—l)S()

(n—p)s —
I—F;:

These results are proved easily by using the matrix identities in Appendix 1.

Tberefore we think that a good way to examine residuals is
to look at the studentized residuals, both because they have equal

variances and because they are easily related to the t-distribution.

However this does not tell the whole story, since some of the most

influential data points can have relatively small studentized residuals

(and very small r1).

To illustrate with the simplest case, regression through the origin, we
have

r. x.
1

(2.2.7)1 x.
1

- (i) xr/Z ? (2.2.8)
J,1

where (1) denotes an estimate obtained by removing the row

(data point) from the computation. Thus the residuals are related to the
change in the least-square estimate caused by deleting one row. But each contains
different information since large values of J - can be associated
with small fr. arid vice versa. Therefore we are lead to consider row
deletion as an important diagnostic tool, to be treated on at least an
equal footing with the analysis of residuals.

For multivariate linear regression (2.2.8) becomes

- (i) (XTX)_l xTr./(l_h.) (2.2.9)
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where the h. are the diagonal elements of H, the least-squares

proj ection matrix defined earlier. We will call this the "hat" matrix since
1

HY Y (2.2.10)

Clearly the hat matrix plays a crucial role not only in the studentized

residuals but also in row deletion and other diagnostic tools. We now develop some

inportant resUlts (based on the discussion in Hoaglin and Welsch [13]) relating to

this matrix.

2.3 The Hat Matrix

Geometrically Y is the projection of Y onto the p-dimensional

subspace of n-space spanned by the columns of X. The element h.. of H
1]

has a direct interpretation as the amount of leverage or influence exerted

by y. Thus a look at the hat matrix can reveal sensitive points
in the X space, points at which the value of y has a large impact
on the fit.

The influence of the response value y on the fit is most directly

reflected in its leverage on the corresponding fitted value y, and

this is precisely the infonnation contained in h1, the corresponding

diagonal element of the hat matrix. When there are two or fewer explaiiatory

variables scatter plots will quickly reveal any x-outliers, arid it is
not hard to verify that they have relatively large h values. When

p > 2, scatter plots may not reveal "multivariate outliers," which are

separated in p-space from the hulk of the x—points but do not appear as

outliers in a plot of any single explanatory variable or pair of them
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yet will be revealed by an examination of H . Looking at the diagonal

elements of H is not absolutely conclusive but provides a basic starting
point. Even if there were no hidden multivariate outliers, computing

and examining H (especially the h) is usually less trouble than

looking at all possible scatter plots.

As a projection matrix, H is syiiunetric and idempotent (H2 H).

Thus we can write

2h.. E h.. h. + h?. (2.3.1)' ii

and it is clear that 0 � h.. � 1. These limits are useful in11

understanding and iterpreting hj(Eh1), but they do riot yet tell us

when h1 is "large". It is easy to show, however, that the eigenvalues

of a proj ection matrix are either 0 or 1 and that the ninber of non-zero

elgenvalues is equal to the rank of the matrix. In this case rank (H)

rank (X) p and hence trace H p, that is,

n
E h. (2.3.2)

1=1

The average size of a diagonal element, then, is p/n. If we were designing

an experiment a desirable goal would be to have all the data points be about

equally influential or all h1 nearly equal. Since the X data is given
to us and we cannot design our experiment to keep the h1 equal, we will follow [13]

and say that h1 is a leverage point if h1 > 2pm. We shall see later that

leverage points can he both harmful and helpful.

S
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The quantity 2pm has worked well in practice and there is some

theoretical justification for its use. When the explanatory variables are

multivariate Gaussian it is possible to canpute the exact distribution of

certain functions of the h. Let )( denote the nx(p_l) matrix obtained by
centering the explanatory variables. Now

Y-Hy_Vy (2.3.3)

and thus the diagonal elements of the centered hat matrix are

h. — . (2.3.1-i)

thLet X(i) denote X with the i row removed and X(.) denote the centered

version of X , i.e. means based on all but the 1th observation have been
(1)

subtracted out. Finally note that

— n-l —
x—x —h-— (xj—x(i)) (2.3.5)

and

—
(x(.)—x1). (2.3.6)

Using (Al.l ) and (2.3.5)

h.1 l+y

n-i2 — - --1 Twhere y (—) (x.—x(.))(X(.) X()) (x1—x(.))

Again using (Al.l ) and (2.3.6)

- (fll) cY.

n
1÷(n—l)

2n
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where

-l — Ta (x1-x(1)) (X(.) X(.)) (X..-X(.))

The distribution of (n-2)a is well known since it is the Mahalanobis

distance between observation i and the mean of the remaining observations
[19, p. '480]. Thus

n(p-i) F . (2.3.7)(n-U(n-p) p—l,n-p

Reversing the above algebraic manipulations we obtain

a
1 n

L-
and

- (n—i)cx + 1hi-(1)
Solving for a gives

n (h.-1/n
anl \. i-h.

and from (2.3.7)

h.-l/n
1 a EL F (2.3.8)
1-h1 n n-p p-i,n-p

For nDderate p and moderate n the 95% point for F is near 2. Therefore,
a cut-off point would be

2(p—l)+ E

h1
>

n+p-2
n

(2.3.9)

which is approximated by 2pm.
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From equation (2.3.1) we can see that whenever h 0 or 1,

we have h.. 0 for all j i. These two extreme cases can be interpreted

as follows. If h 0, then y. must be fixed at zero - it is not affected

by y or by any other A point with x. 0 when the model is a

straight line through the origin provides a simple example.

When
h1 1, we have ; y1

- the model always fits this data

value exactly. This is equivalent to saying that, in some coordinate

system, one parameter is determined completely by y or, in effect, dedicated

to one data point. The following theorems are proved in appendix 3.

Theorem: If h1 1, there exists a nonsingular transformation, T

such that the least-squares estimates of a T have the following

properties: a1 y and {a}2 do not depend on y1.

Theorem: If X is nonsingular, then

det(XT. X . ) (1-h.) det(XTX) . (2.3.10)
Ci) (i) i

Clearly when h 1 the new matrix X(1) formed by deleting a row is singular

and we cannot obtain the usual least-squares estimates. This is extreme

leverage and does not often occur in practice.

.
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To complete our discussion of the hat matrix we give a few simple

examples. For the sample mean all elements of H are 1/n . Here

p = 1 and each h = p/n, the perfectly balanced case.

For a straight line through the origin

h.. x.x.I E (2.3.11)

n
and clearly E h1 p 1.

i=l

Simple linear regression is slightly more complicated but a few

steps of algebra give

(x. - )(x. -
= +

(2.3.12)

E (Xk -
k 1

n
and h. 2. We can see from (2.3.12) how x-values far fran x will

i=l
lead to large values of h. It is this idea in the multivariate case

that we attempt to capture by looking at elements of the hat matrix.

2.' Row Deletion Diagnostics

We now return to the basic formula

- (XX) x r1/(l-h1). (2..l)

TSince the variability of is measured by s((X X)) , a more useful measure

ofchangeis )ci)
DFBFrAS.. = / -1 (2..2)

s.vxTx)(i) jj



.
where we have replaced s by S() in order to make the denominator stochastically

independent of the numerator in the Gaussian case. To provide a

surrmary of the relative coefficient changes we suggest

NDFBTS1 \/ jl DFBrAS . (2..3)

The term has been incorporated to make NDFBAS more comparable across

data sets which may have different values of p and n. This normalizing
value was chosen because when X is an orthogonal matrix (but not necessarily

orthonormal)

x.. r.
DFBETAS.. z 1-j 1

x2. /1-h.tl .
and

h.

DFBFTAS. 1 r.
ij 1-h1 1

Since the average value of h1 p/n, a rough average value for h1/(l-h1)

is p/(n-p). Clearly (2.L.3) could be modified to reflect the fact that

some coefficients may be more important than others to the model builder

(e.g., including only the main estimates of interest).

Another obvious row deletion diagnostic is the change in fit

DFFIT. x. (-(.)) =
1-h1 r1 • (2 .. )

If we scale this by dividing by s(1)Awe have

_ .
1h1
______ r. (2.4.5)

Il_hi
1
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2

(2.4.6)

For across data set nonializatjon
we will multiply by v'P/p to obtain

/('2E)( h.)1 p 1-h1
A measure similar to this has been suggested by Cook [14].

Clearly DFFITS arid NDFBETAS agree in an orthogonal coordinate system.

When orthogonali-ty does not hold these two measures provide somewhat different
information. Since we tend to emphasize coefficients,our preference is for
NDFBETAS. -

Deciding when a difference like J( - J or other diagnostic

statistic is large will depend, in part, on how this information is being

used. For example, large changes in coefficients that are not of particular

interest might not overly upset the model builder while a change in an

important coefficient may cause considerable concern even though the change

is small relative to traditional estimation error.
We have used two approaches to measure the size of changes caused by

row deletion. The first, called external comparison, generally uses measures

associated with the quantity whose changes are being studied. For example,
the standard error of a particular coefficient would be used with

( -

The second method, called internal comparison, treats each set of

diagnostic values (e.g., - as a single data series
and then finds, for example, the standard deviation of this series as

a measure of relative size. As we have noted, all of the diagnostic measures
we have discussed so far are functions of r./v'l-h. arid in view of our discussion1 1
of studentized residuals, it is natural to divide this

by 5(i) to achieve a

reasonable scaling before making plots, etc.
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.
Once 5(.) has been used, the temptation arises to try to perform formal

*
statistical tests because we 1iow the distribution of r. In our opinion

this is not a very promising procedure because it puts too much emphasis

on residuals (although looking at studentized residuals is better than

using the raw residuals). We prefer to use external or internal

comparison to make decisions about which data points deserve further

attention except, of course, when we are looking specifically at the

studentized residuals as we did earlier. Using any Gaussian distributional

theory depends on the appropriateness of the Gaussian error distribution -

d tcJ:o we will return to atei

2. 5 ReessionStatiics

Most users of statistics realize that estiirtes like should

have some measure of variability associated with them. It is less
often realized that regression statistics like t, and F should

also he thought of as having a variability associated with them.

One way to assess this variability is to examine the effects of row

deletion on these regression statistics. We have focused on three:

ATSTAT. 1 - / I
s.e.() s.e.((.)).

AFSTAT F(afl 0) -
F(.)(ali 0)

•
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Again W(: should ask when a difference is large enough to merit attention.

For ex-ten-ial comparison we would compare to the standard deviation of

t, F, or R2:

Statistic Standard Deviation

t n-p 1/2

n-p-2

F (2(fl_p)2fl__\1/2
p(n_p_2)(n_p_L)J

2 1/2
R2 — (p—i)

(p+n-2)2(p+n-1)

However, we tend to view internal comparison as more appropriate for

regression statistics.

Studying the changes in regression statistics is a good second order

diagnostic tool because if a row appears to he overly influential on

other grounds, an examination of the regression statistics will show
if the conclusions of hypothesis testing would be affected.

There is, of course, room for misuse of this procedure. Data points

could he removed solely on the basis of their ability (when removed) to

increase F2 or some other measure. While this danger exists we feel

that it is often offset by the ability to study changes in regression statistics

caused by row deletion. Again we want to emphasize that changes in

regression statistics should not be used as aprinary diagnostic tool.
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S
2.6 Influence and Variance Decomposition

We now would like to consider perturbing our assumptions in a new

way. Consider the standard regression model (1.4) but with var(c)
replaced by a2/w1 for just the i data point. In words, we are

perturhing the homoscedasticity assumption for this one data point.

In appendix 2 we show that

T -iT
CX X) x.r.___ 11

w.1 (l-(l-w.)h.)

and it follows that

W. T 1T
CX X) x.r (2.6.2)

1

T
____ (X X) x.r.ii Ci)w. (2.6.3)1 2 1-h.w.0 (1—h.) 11 1

Equation (2.6.2) tells us about infinitesimal changes in caused by small

changes in w1 about the value 1 and similarly for (2.6.3). From the mean value

theorem we know that

(2.6.4)

where 5 is between 0 and 1. Any one of (2.6.2), (2.6.3) or (2.6.4) can be used

for diagnostic purposes. We have chosen to emphasize because of its

intuitive appeal and the fact that it is a compromise between (2.6.2) and (2.6.3).
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Formula (2.6.2) can also be considered as a function which represents the

influence of the 1th data point and can be linked to the theory of robust

estimation [15] and the jackknife [16].

If we let

s2 (2.6.5)

and

1

w
.

(2.6.6)

•l

then in appendix 2 we show that

r m 11
.2__ I sL (XWX)w. L w -1 1 w.-11

2r. T 1 2 1 T T— (X X) — s Cx x) x.x1(X X) . (2.6.7)

Since we would like to remove scale we define

DBVARS1

r
2
- [xTx' 4x1(xTx)_h]jj (2.6.8)

(n-p)s CX X)•
JJ

as the scaled infinitesimal change in the variance of j. As a suniiiaxy measure

over all of the coefficients we use

p
NDBVARS. a •z BVARS.. . (2.6.9)1 pjl 1]

where the n/p term is used to improve comparability across data sets.
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.
If we used row deletion instead of derivatives, our basic measure

would be

2 T' 2 T -l
s (X X).. — s . CX . x . )..

DFBVARS.. jj (i) (i) Ci)
(2.6.10)

2 (XTX)T
JJ

with suuniary measure

(
NDFBVARS.

ri p,
E

I

DFBVARS.. . (2.6.11)1 jl 13

The. measures so far discussed in this section include both the explanatory

variables and the response. If we wish to examine the X-matrix only, the second,

part of (2.6.8) provides a good way to do this. We notice that

r T T -l T -1
E (X X) x.x.(X x) (x X)
j1

and define
r -l -i1

L xTx) xx. (XTX) J
BETAVRD..

1 1 33
13 (XTX).

with suinaxy measure

p
NBErAVRD. = E BETAVPD..1 13

These measures provide a way to decompose the cross products matrix with respect

to the individual observations.

Again it is useful to look at the orthogonal X case. When orthogonality

holds
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2x..
BETAVRD.. 11 —

1] jj
arid

NBFTAVRD. h.1 1

Since h has a strong intuitive appeal it may be a better suJrniry value even

when orthogonality does not hold. We have chosen not to multiply NBFTAVRD

by n/p (the average value for hi), so it is not useful across data sets.

If we examine the formula for DFBVARS we see that this quality could

be positive or negative. As we might expect, in some cases downweighting a

da.ta point can inprove our estimate of the variance of a coefficient. (Down—

weighting corresponds to placing a minus sign in front of DFBVARS.) One of

the best ways to examine the tradeoffs of DFBETAS arid DFBVARS (or BFTAVRD)

is to make a scatter plot. A high leverage point with small values of DFBETAS

may be a "good" observation because it is helping to reduce the variance of
certain coefficients. The setting aside of all high leverage points is

generally not an efficient procedure because it fails to take account of the

response data.

2.7 More Than One Row at a Tfrie

It is natural to ask if there might be groups of leverage points that
we are failing to diagnose because we are only looking at one row at a time.
There are easily constructed examples where this can happen.

One approach is to proceed sequentially - remove the "worst" leverage

point (based perhaps on both NDFBLTAS and NBETAVRD), reexamine the diagnostic

measures arid remove the next "worst" observation, etc. This does not fully
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cope with the problem of groups of leverage points and just as stepwise

regression can be troublesome, so can sequential row deletion.

A straightforward induction argument shows that

6.. - h. .(k ,k ,. . .k )ij ij 1 2 t

det (I-H). k1,

det (I-H)k k 1l'2'"t
where H is the hat matrix for all of the data, h. (k1,. . . ,kt) denotes the

hat matrix for a regression with rows k1,.. .kt removed and the subscripts on I-H

denote a suiatrix formed by taking those rows and columns of I-H.

Even though all of these differences are based on H, multiple row deletion

will involve large amounts of computation. It is instructive to note that

1 h (k) -
(l-h1)(l-h,) - h-

lhk

(1-h1)
l -(l_(l)]

(1—h1) [1 —cor (rj,rk)]

The term cor (rI,rk) also appears when more rows are deleted and, in place of

looking at all possible subsets of rows, an examination of the correlation matrix

of the residuals for large correlations has provided useful clues to groups of

leverage points. This requires )iowing the off-diagonal values of H and -therefore

increases computational cost and perhaps storage requirements.
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2.8 Interface with Robust and Ridge Regression

It is natural to ask how the above diagnostics could or should be

used with some of the newer estimation methods like robust arid ridge regression.

The first question is whether we should do diagnostics or robust or ridge

first. There is no clear answer, but some sort of iterative procedure is

probably called for.

However, it is possible to perform regression diagnostics after using

either a robust procedure or a ridge procedure. In the robust case we can

make use of weights

p' (2.8.1)

where P is the robust loss function, R are the robust estimates of and

SR is a robust estimate of the scale of the residuals, y1-x1 (A canpiete

discussion of weights is contained in [20].) We now imdify the data by forming

a diagonal matrix of weights, W, and using AiY, Aix. This revised data is

then the input to regression diagnostics. If the robust estimation procedure

has been allowed to converge

A T
(XWX) XWY

will be close to and our procedures will accurately reflect what would happen

to locally. Of course they do not reflect what would happen if a data point

were deleted and then robust estimation applied.

The ridge estimator [21] is given by

RD (XTXtkI) xTy • (2.8.2)

There are many generalizations but most will fit into the following frame-

work. We assume that k has been chosen by sane means such as those listed
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in [21]. Then we form

rxl
x I I, Y :jA Iv•i A

L P<PJ LP

where is a pxl vector of zeros (prior values tines v in more general cases).

So we now have "new" data XA and A with nxp rows. Clearly

- (T T-
XA XA XA A • (2.8.3)

We now perform regression diagnostics using XA and A When we delete a

row with index n+j > n, it is equivalent to saying we do not want to "shrink"

that parameter estimate toward zero (or its prior). In the Bayesian context

dropping such a row is like setting the prior precision of to zero.

Plots of DFBETAS would then show the effects of such a process by looking

at those DFBFTAS values for index greater than n.

We can do sane diagnostics to decide if a ridge estimator is warTanted.

If we differentiate (2.8.2) with respect to k, then

3RD T -1
3k (X X +kI) (2.8.4)

and

RD T -1
(X X) (2.8.5)3k

o

Thus (2.8.5) provides infoniation about infinitesimal charges about kO.

If xTx were diagonal then (2.8.5) has ccmponents j/X where A. are the

elgenvalues. So large and/or A small would lead to a large value of

the derivative. Since the ridge estimator depends heavily on the scaling

of the explanatory variables, so does (2.8. Li.) and we recorimend scaling before

using this diagnostic measure.
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When diagnostics have been canpleted a few observations ny be suspect.

The rows can then be set aside and a new robust or ridge estimate caiiputed.

Diagnostics can -then be applied again. There are obvious limits of time and

money but we think that to passes through this process will often be r'th-
while.
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2.9 An Example: An Inter-Country Life Cycle Savings Function

Arlie Sterling of NIT has made available to us. data he has

collected on fifty countries in order to undertake a cross-sectional

study of the life cycle saving hypothesis. The savings ratio

(aggregate personal saving divided by disposal incane) is explained

by per capita disposable income, the percentage rate of change in per

capita disposable income and two population variables: per cent less
that 15 years old and per cent over 75 years old. The data are averaged

over the decade 1960-1970 to remove the business cycle or other short-term

fluctuations.

According to the life cycle hypothesis, savings rates should be

negatively affected if non-members of the labor force constitute a large

part of the population. Income is not expected to be important since

age distribution and the rate of income growth constitute the core of

life cycle savings behavior. The regression equation and variable

definitions are then:

SR1
cOEF.1 +

COEP.2*POP151
+

COEF.3*P0P751
+ COEF.4* INC.

+ COEF.5INGRO1 (2.9.1)

.
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SR1 the average aggregate personal savings rate in
country i from 1960-1970

POP15. = the average % of the population under 15 years
of age from 1960-1970

P0P751
= the average % of the population over 75 yearsof age from 1960-1970

INC1 the average level of real per capita disposable
income in country I from 1960-1970 measured in
U.S. dollars

INCROi the average % growth rate of INC. from
1960—1970.

A full list of countries, together with their numerical designation,
appears in Exhibit 1, and the data are in Exhibit 2. It is evident that

a wide geographic area and span of economic developnent are included. It is
also plausible to suppose that the quality of the underlying data is

highly variable. With these obvious caveats, the LS estimates of (2.9.1)

are shown in Exhibit 3. To coliment briefly, the R2 is not uncharacteristically

low for cross-sections, the population variables have correct negative signs -

COEF 3 has a small t statistic but COEF 2 does not - income is statistically

insignificant, while income growth reflected in COEF 5 is significant at

the 5 per cent level arid has a positive influence on the savings rate

as it should. Broadly speaking, these results are consistent with the

life cycle hypothesis.

The remainder of this section will be a guided tour through some

of the diagnostics discussed previously. The computations were performed

using SENSSYS (acronym for sensitivity system), a ThOLL experimental subsystem

for regression diagnostics. Orthogonal decompositions are used in the

least-squares regression computations and this makes it possible to get all

of the diagnostic measures in addition to the usual LS results in less than
twice the computer time for the LS results alone.
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David Jones and Steve Peters of the NBER Computer Research Center have

programmed SENSSYS. Both have actively participated in analytical and

empirical aspects of the research.

Only a selection of plots and diagnostics will be shown for two reasons.

One is that to provide the full battery of plots would be excessively tedious;

however, the missing plots and tables are readily obtainable. The other

reason is that we found these diagnostics to be among the ircre instructive

from examination of this and several other problems.

2.9.1 Residuals

The first plot, Exhibit '+, is a normal probability plot. Departure from

a fitted line (which represents a particular Gaussian distribution with mean

equal to the intercept and standard deviation equal to the slope) is not sub-

stantial in the main body of the data for these studentized residuals, but

Zambia (46) is an extreme residual which departs fran the line. Different

information, an index plot of the r1, appears in Exhibit 5 which reveals not

only Zambia, but possibly Chile (7) as well to be an outlier; each exceeds

2.5 tines the standard error.

2.9.2 Leverage and Diagonal Hat Matrix Entries

Exhibit 6 plots the h which, as diagnonals of the hat matrix, are indicative

of leverage points. Most of the h are small, but two stand out sharply: Libya

(49) and the United States (44). Two others, Japan (23) arid Ireland (21) exceed

the 2pm .20 criterion (which happens to be equal to the 95% significance level

based on the F distribution), but just barely. Deciding whether or not leverage

is potentially detrinental depends on what happens elsewhere in the diagnostic

analysis, although it should be recalled that it is values near unity that pose

the most severe problems, which has not happened here.
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2.9.3 Coefficient Perturbation

An overview of the effects of individual row deletion (see Exhibit 7)

is based on (2 Li.. 3) NDFBETAS, the square root of the scaled sum of the squared

differences between the full data set and row deleted coefficients. The measure

used is scaled approximately as the t distribution so that values greater than 2

are a potential source of concern. T countries that also showed up as possible

high leverage candidates, Libya (49) and Japan (23), also seem to have a heavy

influence on the coefficients while Ireland (21), a marginal high leverage candidate,

is also a marginal candidate for influencing coefficient behavior. Individual plots

of DFBEI'AS (2 . L1. 2) follow next, fran which the following table has been constncted

based on an examination of Exhibits 8-11.

Noticeably Large Effects on from Row Deletion

Population <15 Population >75 Income Incne Growth

Japan (23) Ireland (21) Libya (49)

Japan (23) Japan (23)

The countries that stand out in the individual coefficients are perhaps,

not surprisingly, the two that appeared in the overall measure. Ireland, in

addition, appears once. Except on the incane variable, the comparatively large

values are just about one LS standard error for each particular coefficient.

2.9.4 Variation in Coefficient Standard E'rors

Exhibit 12 is a surruliary measure of coefficient standard error variations

as a consequence of row deletions, designated as NDFBVARS in (2.6.9). Since

these standard errors involve both error variance and elements from (XTX) 1,
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large values indicate simultaneous or individual extremes in residuals or

multivariate outliers in the X matrix. These quite numerous candidates

include:
Index Country
7 Chile

21 Ireland

23 Japan

37 Southern Rhodesia

United States

Zambia

L9 Libya

Of these seven countries, six appeared previously, while the only new

candidate is Southern Rhodesia. Libya had both high leverage and large

coefficient changes, Ireland and Japan had noticeable coefficient changes,

while Chile and Zambia possess large residuals. Thus this particular

diagnostic may have some use as a comprehensive measure.

Plots for percent changes in the individual coefficient standard

errors are shown in Exhibits 13-16. Large individual changes (here taken to

be in excess of 25%) appear for the United States with a 7% change for

the income variable, while the deletion of Libya increases the standard error

for the same variable by nearly 85%.

2.9.5 Change in Fit

The standardized change in fit, DFFITS (2..6), with a row deleted,

while sjmi1ar in algebraic structure to coefficient change, conveys somewhat

different infonition of general interest with specific applications in a tine

series context. DFFITS can be viewed in some theoretical cases as having a

t distribution so that extremes of concern show up for values in excess of 2. S
In Exhibit 17 three countries that surfaced previously reappear:

Japan (23), Zambia (6) and Libya (149). When coefficient changes
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alone are considered as shown in Exhibit 7, Zambia did not appear, while

Ireland (21) did. Thus somewhat different information is contained in each.

2.9.6 A Provisional Sunmary

It is now desinable to bring together the information that has been

assembled thus far, to see what it all adds up to. One useful sunnai-y plot

is shown in Exhibit 18, which plots the sunuiary measure of - NDFBETAS

against the corresponding hat matrix diagonal, h.
The first point which emerges is that Japan (23) and Libya (49) have

both high leverage and a significant influence on the estimated parameters.
This is reason enough to view them as serious problems. (After the analysis
had reached this point, we were informed by Arlie Sterling that a data error
had been discovered for Japan. When corrected, he tells us that the revised

data is more similar to the majority of countries. These diagnostics have
thus "proven their worth" in bad data detection in a modest way. Second,
Ireland is an in-between case, with moderately large leverage and a somewhat

disproportionate impact on the coefficient estimates.

Third, the United States has high leverage combined with only meager

differential effect on the estijmted coefficients. Thus leverage in this
instance can be viewed as neutral or beneficial. It is important to note
that not all leverage points cause large changes in .

Exhibit 19 plots the suninary of coefficient change, NDFBETAS against

the studen-tized residuals arid visually drives home the point that large
residuals do not necessarily coincide with large changes in coefficients; all of
the large changes in coefficients are associated with standardized residuals
less than 2. Thus residual analysis alone is not a sufficient diagnostic tool.



Another summary plot, that of change in coefficient standard error,

NDFBVARS against leverage as measured by h in Exhibit 20 indicates the

close anticipated association between leverage and estimated parameter

variability. This is clearly shown by the diagonal line composed of (21) Ireland,

(23) Japan, (1-i4) United States and (9) Libya. But residuals also can have

a large arid separate influence, as evidenced by the low leverage, high

standard error changes for (7) Chile and (46) Zambia. H

A final summary plot, Exhibit 21 of NDFBFI'AS against NDFBVARS, is revealing

in that all of the points noted outside the cutoff points (3,2) have been

spotted in the previous diagnostics as worth another look for one reason or

another. Thus about 15% of the observations have been flagged, not an

excessive fraction for many data sets.

2.9.7 One Further Step

Since Libya (L9) is clearly an extreme and probably deleterious influence

on the original regression, a reasonable next step is to eliminate it to find

out whether its presence has masked other problems or not. Exhibit 22 plots

the h when Libya (9) has been excluded in the data set. There is only one

noticeable difference since Ireland (21), Japan (23) and the United States (t4)

remain high leverage points. Southeri Rhodesia (37) now appears as a

marginally significant leverage point, whereas it had previously been just

below the cutoff. The only really new fact is that Jamaica ('+7) now appears

as a prominent leverage point.

Jamaica has furthermore now become a source of parameter influence which

is perhaps most effectively observed in the recalculation of scaled parameter

changes, NDFBETAS, in Exhibit 23 which reveals Jamaica as the single largest

source of overall coefficient variation.
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This illustrates the proposition that perverse extreme points can mask the

impact of still other perverse points. Yet the original analysis did

contain most of the pertinent information about exceptional data behavior.

The correlation matrix of the residuals discussed in Section 2.7 provided

a clue, since the squared correlation between (47) and (49) was .173,

the hightest value. It is nevertheless a prudent step to reanalyze the data

with suspect points removed, to ascertain whether one or more extreme or

suspect data points have obscured or dominated others.

2.10 Final Comments

The question naturally arises as to whether the approach we have taken

in detection of outliers is more effective than simply examining each

individual column of the data to look for detached observations. We believe

the answer is yes. Detached outliers did appear in column 5 (INGRO) of the

X matrix for Libya (49) and Jamaica (47), but not elsewhere. Libya, of

course, was "the villain of the piece" in the prior analysis. But leverage

points for minerous other countries were revealed by row deletion diagnostics,

while Jamaica, as matters turned out, was not a particularly troublesome data

point. In addition we discussed how various leverage points affected our

output - coefficients, fit, or both. So we conclude at this early stage of

our investigation, that these new procedures have merit in uncovering discrepant

data that is not possible with a high degree of confidence by just looking at

the raw data.
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Appendix 1. BASIC DIFFERENCE FORMULAS

The fundamental difference formulas are known as the Sherman-

Morrison-Woodbury Theorem [19, p. 29].

-1 (XTx4x.(xTxT -1 T
(X . x . ) (X X) + (A1.l)(i) Ci)

1—h1

T -1 T -1 (XT)X(. )xTx.(XTX
-l

(X X) =
(X(1)X(1))

- (i i) i (j) (i))
T (Al.2)

1—x1(X(1)X(1)) x

From this comes

T 1 T(Xx) xr1A Ai) 1—h. (A1.3)
1

and since

2
(n-p-i) S1)

- t 8(j)
t

we get

2 2

tin. 1
(n p 1) S(2)

h .r. r.
- - . E (r +

1-h.
-

(i-h1)2t=l 1

2 2
2r n r n r.
____ _______ Z h2(n—p)s2+

1 Z _______ _________
(1_h1)2 t1 ti

-
(1-h1)2

2 iz (n-p) S —
1—h1

by using the fact that H annihilates the vector of residuals



Ai.2

Finally we obtain

2 T -l 2 T —l
(n—p) s (X X) — (n—p—i) S(1) (X()X())

i_ (X1)X(1))1 - (n-p)s2
(ix) l4x(xTx)'

•H

.
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Appendix 2. DIFFERENTIATION FORMULAS

Let

1

1w=

1

1

and

(xwx)i xTwy.
(A2.2)

From (Al.l) we obtain

T -1
-1 T —1 (l—w1)(X X) x1x1(XX)(xTWx) (X X) + —

(A2.3)
l—(l.-w1)h1

and then

3 T —1
_(XTX) 1xx(xTx)

-1
(X WX)

(A2.L)

(1-(1-w1)h.)2

Some algebraic manipulation using (A2. 2) and (A2. 3) gives

A - T T (l_w)
11llw.)h.XP• (A2.5)

13.
A

where and r1 are the least-squares estimates obtained when w11. Thus

____ - (XTX)
X r.___ 1 1

(A2.6)
-

(1—(1-w.)h.)2
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or equivalently (again using A2.3) •
= (XTWX)4 (y-x1 (A2.7)

It is also useful to look at the squared residual error

n 2

SSRW tl w (A2.8)

Using (A2.7) we have

SSR n A —l T
-2 w (y_x X. x1(y1x1 w1)

A 2
+ (y-x1

(y.-x1 fl A T -l
-2

1 1 tl ) vçx(X WX) )c

+
(y1—x1 )2 (A2.9)

For the data v'W Y and v X

-l
iW X(XTWX) xT and

HR=O.
This implies that the sum in (A2.9) is zero so that

2
aSSRW. A 2 r (A2.lO)

(y.-x. .)W. 1 1 1

because of (A2.3).
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Putting (A2.Li) and (A2.lO) together gives

[SSR (XTWx)_1]

—l —1

____________ T i xTx xTX1(XTX)1
2 (X WX) —

SSR.. 2 (A2.ll)

(l_(l_w)h1)
1

(l-(l—w1)h)

When 1 this is equivalent to

T -l 2 T 1T T -lr (X X) — (n—p)s (X X) x1x(X X) (A2.l2)



A3.1

Appendix 3. THEOREMS ON THE HAT MATRIX

In this appendix we for!ially show that when h11 (we can take 1=1

without loss of generality), there exists a nonsingular transfonrtion T,
such that (T)1 y and a2,... ,a

do not depend on y1. This implies

that, in the transformed coordinate system, the parameter a1 has been dedicated

to observation 1.

When h1l we have for the coordinate vector
,0)'

He1

since h1 0, Let P be any pXp nonsingular matrix whose first column

is (XTX)XTe1. Then

a
XP=I

A

where a is lx(p-1) arid 0 is (p—l)xl. Now let

-aQI
L

with I denoting the (p-1)x(p-1) identity matrix. The transfonition we seek
is given by T PQ, which is nonsingular because both P and Q have inverses.

Clearly

10
CT

OA
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and the least-squares estimate of the parameter a T1 will have the first

residual, y1-a1, equal to zero since a2,. .. ,& cannot affect this residual.

This also implies that &2. . . ,& will not depend on y1.

To prove the second theorem in Section 2.3

det(X(.)TX(.)) (1—h1) det (xTx)

we need first to show that

det (I_uvT) i_vTu

where u and v are column vectors. Let Q be an orthononnal matrix such that

Qu !lulle1
(A3.l)

where e1 is the first standard basis vector. Then

det(I_uvT) det Q[I_uvT] QT

det [I-I lul Ie1vTQT i - I lull

which is just i_vTu because of (A3 .1). Now

det x . Tx . = det [(I-xTx. (XTX)_l) xTx]
(i) (i) ii

and letting u = x1 and V x(X X) completes the proof since x(X X) x±h.

(We are indebted to David Gay for simplifying our original proof.)

S
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Appendix 4. DiIBITS FOR SECTION 2.9

Exhibit No. Title

1 Assignments of Row Indices to Countries

2 Data

3 Ordinary Least Squares Regression Results

4 Normal Probability Plot of Studentized Residuals

5 Studentized Residuals

6 Diagonal Elements of the Hat Matrix.

7 NBFBFI'AS: Square Roots of the Sum of Squares of the
Scaled Differences of LS Full Data and Row Removed
Coefficients (DFBETAS)

8 - 11 DFBFTAS (for individual coefficients)

12 Summary of Relative Changes in Coefficient Standard
Errors: NDFBVARS

13 - 16 Individual Relative Change in Coefficient Standard
Errors: DFBVARS

17 Scaled Change in Fit

18 Scatter Plot of NDFBEI'AS versus Diagonal Elements of
the Hat Matrix

19 Scatter Plot of NDFBL'TAS versus Studentized Residuals

20 Scatter Plot of NDFBVARS versus Diagonal Elements of
the Hat Matrix

21 Scatter Plot of NDFBETAS versus NDFBVARS

22 Diagonals of Hat Matrix with Observation 49 Removed

23 NDFBETAS with Observation 49 Removed



POSITION LABEL

1 AUSTRALIA
2 AUSTRIA
3 BELGIUM
4 BOLIVIA
5 BRAZIL
6 CANADA
7 CHILE
S CHINA(TAIWAN)
9 COLOMBIA
10 COSTA RICA
ii t'ENMARK
12 ECUADOR
13 FINLAND
14 FRANCE
15 GERMANY F.R.
16 GREECE
17 (3IJATEMALA
18 HONDURAS
19 ICELAND
20 INDIA
2:L IRELAND
22 IrAL.y
23 JAPAN
24 KOREA
25 LUXEMBOURG
26 MALTA
27 NORWAY
28 NETHERLANDS
29 NEW ZEALAND
30 N:ECARAGUA
31 PANAMA
32 FARAGUAY
33 PERU
34 PHILLIPINES
:35
36 SOUTH AFRICA
37 SOUTH RHODESIA
38 SPAIN
39 SWEDEN
40 SWITZERLAND
41 TURKEY
42 TUNISIA
43 UNITED KINGDOM
44 UNITED STATES
45 VENEZUELA
46 ZAMBIA
47 JAMAICA
48 URUGUAY
49 LIBYA
So MALAYSIA

EXHIBIT 1



EXHIBIT 2

IUSTRALIA
IUSTRIA
)ELGIUM
WLIVIA
)RAZIL
ANADA
:HILE
HINA (TAIWAN)
OLOMBIA
:OSTA RICA
JENMARK
CUADOR
INLAND
RANCE
3ERMANY F.R,
REECE
UATEMALA
IONDURAS
:CELAND
:NDIA
:RELAND
:TALY
JAPAN
:OREA
.UXEMBOURG
JALTA
IOR WAY
IETHERLANDS
JEW ZEALAND
JICARAOUA
'ANAMA
'ARAGUAY
'ERU
'HILLIPINES
'ORTUGAL
SOUTH AFRICA
IOUTH RHODESIA
PAIN
WEDEN
tWITZERLAND
URKEY
•UNISIA
JNITED KINGDOM
INITED STATES
'ENEZUELA
:AMBIA
IAMAICA
IRUGUAY
.IBYA
ALAYSIA

11.43
12.07
13.17
S •75
12.88
8 • 79
0.6
11.9
4.98
10.78
16.85
3,59

11 •24
12.64
12.55
10.67
3.01
7.7
1 • 27
9.
11.34
14.28
21.1
3,98
10.35
15.48
10.25
14.65
10.67
7,3
4,44
2.02
12.7
12.78
12.49
11.14
13.3
11.77
6.86
14.13
5.13
2.81
7.81
7.56
9.22
18.56
7,72
9.24
8.89
4.71

29.35
23,32
23 •8
41.89
42.19
31,72
39,74
44,75
46.64
47.64
24.42
46.31
27.84
25.06
23.31
25.62
46.05
47.32
34.03
41.31
31.16
24,52
27.01
41.74
21.8
32.54
25.95
24.71
32.61
45.04
43.56
41.18
44.19
46.26
28,96
31,94
31.92
27,74
21.44
23.49
43.42
46.12
23.27
29.81
46.4
45.25
41.12
28.13
43.69
47.2

2.87
4.41
4,43
1.67
0.83
2.85
1.34
0.67
1.06
1.14
3,93
1.19
2.37
4,7
3,35
3.1
0.87
0.58
3.08
0.96
4.19
3,48
1.91
0.91
3,73
2.47
3,67
3.25
3.17
1.21
1.2
1.05
1.28
1.12
2.85
2.28
1.52
2.87
4,54
3,73
1.08
1.21
4.46
3,43
0.9
0.56
1.73
2.72
2,07
0.66

COL 4•

2329.68
1507.99
2108.47
189.13
728.47
2982.88
662.86
289,52
276,65
471.24
2496.53
287,77
1681.25
2213.82
2457.12
870.85
289.71
232.44

1900.1
88,94

1139,95
1390.
1257.2
207.
2449.3
601.05
2231,03
1740.7
1487.52
325.54
568.56
220.56
400.06
152.01
579.51
651.11
250.96
768.79
3299,49
2630.96
389.66
249.87
1813.93
4001.89
813.39
138.33
380.47
766.54
123.
242.6

V COL 2 COL 3
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EXHIBIT 1

POSITION LABEL

I AUSTRALIA
2 AUSTRIA
3 BELGIUM
4 BOLIVIA
5 BRAZIL
6 CANADA
7 CHILE
S CHINACTAIWAN)
9 COLOMBIA
10 COSTA RICA
11 DENMARK
12 ECUADOR
13 FINLAND
14 FRANCE
15 GERMANY F.R.
16 GREECE
17 GUATEMALA
18 HONDURAS
19 ICELAND
20 INDIA
21 IRELAND
2? ITALY
23 JAPAN

S 24 KOREA
25 LUXEMBOURG
26 MALTA
27 NORWAY
28 NETHERLANDS
29 NEW ZEALAND
30 NICARAGUA
31 PANAMA
32 PARAGUAY
33 PERU
34 PHILLIPINES
35 PORTUGAL
36 SOUTH AFRICA
37 SOUTH RHODESIA
38 SPAIN
39 SWEDEN
40 SWITZERLAND
41 TURKEY
42 TUNISIA
43 UNITED KINGDOM
44 UNITED STATES
45 VENEZUELA
46 ZAMBIA
47 JAMAICA
48 URUGUAY

S LIBYA
50 MALAYSIA
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EXHIBIT 2 CONTINUED

COL 5

AUSTRALIA 2.87
AUSTRIA 3.93
BELGIUM 3.82
BOLIVIA 0.22
BRAZIL 4.56
CANADA 2.43
CHILE 2.67
CHINACTAIWAN) 6.51
COLOMBIA 3.08
COSTA RICA 2,8
DENMARK 3.99
ECUADOR 2.19
FINLAND 4.32
FRANCE 4.52
GERMANY F.R. 3.44
GREECE 6.28
GUATEMALA 1.48
HONDURAS 3.19
ICELAND 1.12
INDIA 1.54
IRELAND 2.99
ITALY 3.54
JAPAN 8.21
KOREA 5.81
LUXEMBOURG 1.57
MALTA 8.12
NORWAY 3.62
NflHERLANDS 7.66
NEW ZEALAND 1.76
NICARAGUA 2.48
PANAMA 3.61
PARAGUAY 1.03
PERU 0.67
PHILLIPINES 2.
PORTUGAL 7.48
SOUTH AFRICA 2.19
SOUTH RHODESIA 2.
SPAIN 4.35
SWEDEN 3.01
SWITZERLAND 2.7
TURKEY 2.96
TUNISIA 1.13
UNITED KINGDOM 2.01
UNITED STATES 2.45
VENEZUELA 0.53
ZAMBIA 5.14
JAMAICA 10.23
URUGUAY 1.88
LIBYA 16.71
MALAYSIA 5.08
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COL5

AUSTRALIA 2.87
AUSTRIA 3.93
BELGIUM 3.82
BOLIVIA 0.22
BRAZIL 4.56
CANADA 2.43
CHILE 2.67
CHINACTAIWAN) 6.51
COLOMBIA 3.08
COSTA RICA 2.8
DENMARK 3.99
ECUADOR 2,19
FINLAND 4.32
FRANCE 4.52
GERMANY F.R. 3.44
GREECE 6.28
GUATEMALA 1.48
HONDURAS 3.19
ICELAND 1.12
INDIA 1.54
IRELAND 2.99
ITALY 3,54
JAPAN 8,21
KOREA 5.81
LUXEMBOURG 1.57
MALTA 8.12
NORWAY 3.62
NETHERLANDS 7,66
NEW ZEALAND 1.76
NICARAGUA 2.48
PANAMA 3,61
PARAGUAY 1.03
PERU 0.67
PHILLIPINES 2.
PORTUGAL 7,48
SOUTH AFRICA 2.19
SOUTH RHODESIA 2.
SPAIN 4.35
SWEDEN 3.01
SWITZERLAND 2.7
TURKEY 2.96
TUNISIA 1.13
UNITED KINGDOM 2.01
UNITED STATES 2.45
VENEZUELA 0.53
ZAMBIA 5.14
JAMAICA 10.23
URUGUAY 1.88
LIBYA 16.71
MALAYSIA 5.08

EXHIBIT 2 CONTINUED
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