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ABSTRACT: Many marine organisms are sedentary as adults and are redistributed between genera-
tions by the oceanic transport of planktonic larvae. In order to assess interactions among oceano-
graphic and biological processes that determine larval dispersal patterns, we introduce a Lagrangian
(or water-parcel-following) description of larval transport. This formalism is used to determine larval
dispersal kernels (larval settlement probability distributions) for a range of ocean flows, planktonic
larval durations and settlement pre-competency/competency periods. Paths of individual planktonic
larval releases are modeled statistically and, by averaging over many individuals, ensemble esti-
mates of larval dispersal are determined. Typical dispersal scales vary from a few km to >400 km.
Modeled dispersal kernels are well explained using only a few readily available biological and
oceanographic parameters, and derived dispersal scales agree well with population-genetic esti-
mates, suggesting that the model has reasonable predictive power. An index for regional-scale self-
seeding is presented, and is used as a tool to evaluate the efficiency of marine conservation areas.
Finally, settlement patterns resulting from larval releases made over short times (days to months)
should be comprised of a small number of discrete samples taken from the long-term averaged dis-
persal kernel. The resulting larval dispersal patterns will be quasi-random in both space and time,
which will have important implications for the interpretation of settlement time series and the
prediction of recruitment of sessile organisms.
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INTRODUCTION

Understanding and predicting the spatial distribu-
tion of organisms is among the most fundamental goals
of population ecology. This requires knowledge of both
local processes leading to births and deaths, and non-
local processes that redistribute organisms in space. In
intertidal and subtidal marine environments, many
species are sessile or highly sedentary as adults, with
dispersal occurring predominantly during a planktonic
larval stage. As a consequence, particularly for organ-
isms with planktonic periods of days to months,
oceanographic processes can play critical roles in the
dynamics of populations (Jackson & Strathmann 1981,
Roughgarden et al. 1988, Gaylord & Gaines 2000).
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Detailed numerical flow simulations and indirect mea-
surements of dispersal ability have yielded insights
into the movement of certain species of marine larvae
in particular systems (Sammarco & Andrews 1988,
Cowen et al. 2000). However, a general framework for
predicting patterns of dispersal from simple biological
traits and ocean flow parameters does not yet exist.
Estimates of dispersal scales can be made knowing
characteristics of the oceanographic flow field and
2 fundamental biological variables: the length of time
larvae spend in the plankton before they become
developmentally and physiologically capable of set-
tling (the pre-competency period), and the duration of
time over which larvae can settle (competency period;
e.g. Jackson & Strathmann 1981). These biological fac-
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tors determine the period of time over which physical
processes influence larval transport and, under the
assumption that larvae act as passive particles, allow
prediction of dispersion patterns. The result is a null
model of larval transport incorporating only basic
oceanography and the simplest biological parameters.
Various factors, including larval behavior, timing of
larval release, internal wave-driven transport, and
local variations in Ekman transport, have all been
implicated in influencing larval movement (see review
by Shanks 1995). However, it remains unclear whether
these processes simply introduce 'noise’ around an
overall template of larval dispersal set by oceano-
graphic structure and the time course of larval settle-
ment. As empirical data on marine dispersal distances
emerge, comparison with a simple null model may
highlight cases in which unique biological or physical
processes, not captured in the simple model, play a
role in larval dispersal.

An ideal null model of larval dispersal would both
generate predictions that can be tested and provide the
basis for incorporating empirical data into theoretical
studies. Dispersal kernels provide a convenient way to
do each by quantifying the average spatial distribution
of larval settlers originating from a given point in space
(e.g. Hastings & Higgins 1994, Botsford et al. 2001).
This eliminates the need to track individuals (making
the method well-suited for application with metapopu-
lation models), while still allowing for comparison with
empirical dispersal data from genetic or natural tagging
estimates (Swearer et al. 1999, Kinlan & Gaines 2003,
Palumbi 2003). Fundamental characteristics of disper-
sal, such as mean absolute displacement, the fraction of
larvae arriving from a particular source, and the shape
of the dispersal distribution, are all easily derived from
the kernel descriptions.

Prediction of dispersal kernels requires knowledge
of the spatial and temporal scales over which dispersal
occurs and the scale-dependent processes regulating
larval dispersal. Marine larval dispersal scales range
from a few meters to 100s of kilometers (e.g. Scheltema
1971, Roughgarden et al. 1988, Botsford et al. 1994,
Cowen et al. 2000, Kinlan & Gaines 2003). Estimates of
average larval displacement are generally well corre-
lated with corresponding planktonic larval durations
(Fig. 1), although exceptions do exist (Shanks et al.
2003). In general, the longer the planktonic duration,
the further larvae will disperse.

Dispersal scales, however, must also be viewed
within the context of the substantial variability in flow
that characterizes coastal circulation. The amplitude of
the fluctuating components of velocity is, more often
than not, larger than the time-averaged mean currents
(e.g. Davis 1985, Poulain & Niiler 1989, Ohlmann et al.
2001, Poulain 2001). Typical root-mean square ampli-

tudes of surface currents are generally many times
larger than regional scale mean currents (e.g. Swenson
& Niiler 1996, Dever et al. 1998). Hence, individual
particle trajectories often bear little resemblance to the
mean flow and can exhibit convoluted, seemingly
chaotic paths. Examples of this arise in surface drifter
trajectories from a variety of coastal regions, including
the California Current (Davis 1985, Winant et al. 1999),
the Gulf of Mexico (Ohlmann et al. 2001), and the Adri-
atic Sea (Poulain 2001). For similar reasons, individual
larvae released from the same location at different
times may ultimately find themselves at quite different
destinations. Though some trajectories may lead far
downstream from the parental location, others may not
stray far from the spawning site. Still others may head
upstream, opposing the mean flow. This intrinsic vari-
ability means that the description of mean larval dis-
persal requires an analysis of many larval trajectories
through a variable flow field.

This concept of transport by means of quasi-random
trajectories is subtly different from standard advection-
diffusion approaches. In Fickian diffusion, net particle
transport is strictly down-gradient due to the action of
small-scale eddies (where ‘small’ is relative to the spa-
tial scale of particle density). In turbulent coastal flows,
the largest scales of motion are responsible for particle
dispersal, and the movement of an individual water
parcel is serially autocorrelated on the timescales of
days. Traditional advection-diffusion approaches can
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Fig. 1. Genetic estimates of mean absolute dispersal distance
(Dq in km) vs mean planktonic larval duration (PLD in days)
for 32 species (19 invertebrates, 12 fish, and 1 macroalgae)
from a range of geographic locations and taxonomic groups
(data from Kinlan & Gaines 2003). The complete data set with
references is in Appendix 1, available at www.int-res.com/
journals/suppl/siegel_appendix.pdf. Mean planktonic larval
durations are estimated from larval otolith aging (fish) or lab-
oratory culture studies (algae, invertebrates). The regression
line is Dyq = 1.33 (PLD)!?*" and the r? value for the fit is 0.802
(N =32)
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yield faithful results when evaluated over timescales of
sufficient duration. However, these methods may not
be useful on shorter timescales, as the short-time dis-
persal patterns act over relatively small spatial scales.
In a turbulent ocean, long distance transport of larvae
can occur on short timescales due to transport by
the largest eddies in the flow. These differences,
effectively between the concepts of stirring and mixing,
are important and will be discussed later in the paper.

Here, we present a Lagrangian (water parcel follow-
ing) simulation model of larval dispersion based on lar-
val precompetency/competency periods and basic sta-
tistics of coastal oceanographic flow fields. Results of
this model are used to derive dispersal kernels for lar-
val transport under a wide range of flow scenarios.
This null model of larval dispersion is confronted with
empirical metrics of marine dispersal distances in
order to illustrate the utility of merging theoretical and
empirical dispersal estimates in a common framework.
The present results are used to estimate an index for
regional-scale self-seeding that is useful for evaluating
the efficiency of a marine protected area. Finally, we
address the role of temporal scale on predictions of lar-
val transport.

MATERIALS AND METHODS

To assess larval dispersal in turbulent coastal flows,
we apply a simple, stochastic method for simulating
the trajectories of many planktonic individuals in a
quasi-realistic velocity field. This approach has long
been used to model dispersal of pollutants in the lower
atmosphere (Hall 1975, Thompson 1984, Wilson &
Sawford 1996) and has recently been applied to ocean
flows (cf. Siegel & Deuser 1997, Bauer et al. 1998). The
resulting particle trajectories are ensemble-averaged
to yield a statistical description of the dispersal kernel,
which can subsequently be parameterized for compar-
ison with empirical estimates and used in population
dynamic models.

Stochastic Lagrangian simulations are employed
over a diffusion-based approach (e.g. Black et al. 1990,
Possingham & Roughgarden 1990) because the simula-
tion framework allows easy incorporation of, and com-
parison with, field observations. Specification of eddy
diffusion coefficients requires either detailed field
studies of dye or surface drifter dispersion (Okubo
1971, Poulain 2001, Sundermeyer & Ledwell 2001), or
the results of a regional circulation model (Wolanski et
al. 1989, Black et al. 1990). Each approach requires
intensive efforts to determine eddy diffusivities and
then with a poorly characterized understanding of
uncertainty. The stochastic simulation method, in con-
trast, requires only a knowledge of statistics of the

velocity field, which are comparatively easy to deter-
mine from field observations.

To simulate the movement of a larval ‘particle’ in a
stochastically varying flow field, we implement a
Markov chain model. At each time step, a particle
updates its velocity by receiving a small random
impulse. The resulting particle trajectory is similar to a
random walk, except that the steps are serially auto-
correlated. After some time, formally defined as the
Lagrangian decorrelation timescale (1), the motion of
the particle becomes statistically independent from its
previous motions. Trajectories of many, similar inde-
pendent ‘particles’ are then simulated, enabling an
estimation of relevant dispersion statistics.

Briefly, particle trajectories are simulated as follows:
The alongshore position of the ith particle at time step
n+ 1, x*!, can be predicted knowing its previous posi-
tion, x;”, the mean alongshore velocity of the flow field,
U, and the fluctuating alongshore velocity acting on
the particle, u", or:

n+l n n
X] xi +At(U +uf) (1)

where At is the time step. A similar expression is used
for cross-shelf position, y", and fluctuating velocity
component, v;". For the problems addressed here, flow
statistics are assumed to be known and constant in
time. The fluctuating component of current acting on
particle i, u" is altered each time step by a normal ran-
dom deviate with an amplitude specified by the root
mean square (rms) of the fluctuating currents, ¢, or:

urtt = u?(1—£)+cu\/%RN )
T 9

where 1 is the Lagrangian decorrelation timescale and
RN is a random deviate selected from a normal distrib-
ution with unit variance and zero mean. A similar
expression is used for the cross-shelf component, v;". A
new random deviate is selected each time step and the
updated fluctuating current at the particle is used to
advect the particle following Eq. (1). As the value of
At/ty is small (typically 0.01 to 0.03), the effects of the
random impulses are small for each time step and the
particle retains most of its initial trajectory. After some
time (approximately 7;), the particle’s motion will
become independent of the value for the previous time
step. Further information about this approach can be
found in excellent reviews by Rodean (1996) and Wil-
son & Sawford (1996).

Five oceanographic parameters are important in this
method for simulating individual particle trajectories
in a hypothetical coastal ocean. These are: the mean
velocity components, Uand V, a measure of the ampli-
tude of the fluctuating currents, ¢, and o¢,, and the
Lagrangian decorrelation time, 1. Values of 1 are typ-



Cross-shore velocity (cm s=1) Alongshore velocity (cm s1)

86

Mar Ecol Prog Ser 260: 83-96, 2003

mean) range from 5 to 20 cm s7! (both in
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Fig. 2. Profile of alongshore (upper) and cross-shore (lower) velocity profiles
used in the CODE-like scenarios. Observations are from Davis (1985) at the
site of the Coastal Dynamics Experiment (CODE) just north of Pt. Arena, Cali-
fornia, for the month of July 1982. Surface layer mean velocity determinations
are denoted by circles and root mean square (rms) values by triangles. Obser-
vations from moored current meters are shown as filled symbols, and open
symbols are from an analysis of drifter tracks. The solid and dotted lines give
the profile used in the larval dispersion simulations of the CODE-like scenar-
ios, i.e. Uy) =5 -3 exp(-0.15 y), V(y) = 0, 6,(¥) = (300%) + (2002 exp(-0.12y),
6,(y) = (300Y2) — (250"2) exp(-0.05y). All fits were done by eye. Positive along-
shore current is taken to be southward in this depiction

ically 2 to 4 d for surface drifter observations from the
coastal ocean (e.g. Davis 1985, Swenson & Niiler 1996,
Brink et al. 2000, Poulain 2001). The Lagrangian decor-
relation time is assumed to vary with distance offshore,
ranging from 3 d far offshore, to %4 d at the coast, or:

T(y) = 3-2.5e% (3)

where yis the distance offshore (in km). This parame-
terization for 1y is aimed to account for cross-shelf
changes in the timescales of motion due to surface
waves, tidal flows and so on, and its effects will be dis-
cussed below. Finally, a time step of 0.01 d is used.

For most of the simulations presented, the flow field
is assumed to be vertically uniform (i.e. barotropic),
the long-term mean cross-shelf current is zero (V
0), and the fluctuating currents are symmetric (o,
o,), stationary (U and 6, do not change with time)
and homogeneous (U and ¢, do not change with loca-
tion). Numerous flow scenarios are simulated in
which mean currents range from 0 to 10 cm s and
fluctuating currents (standard deviations from the

summer and represent peak upwelling
conditions in this eastern boundary cur-
rent. The fluctuating components show
the expected pattern of strong asymme-
try onshore (6, ~ 30 cm s™! and o, ~
1.5 cm s7! at the coastline) and approach
a symmetric pattern offshore. The along-
shore mean velocity increases offshore to
a maximum value of ~10 cm s™!, while
the mean crossshore velocity increases
from 0 to ~20 cm s™! in the offshore direc-
tion. We use these data to derive a
'CODE-like’' heterogeneous flow scena-
rio for comparison with the homoge-
neous flow simulation results (Fig. 2). Although the
CODE results show an alongshore mean flow which
increases offshore (Fig. 2), conservation of mass
requires that the mean cross-shelf flow be set to zero.
Implications of this and other assumptions are dis-
cussed below.

A correction is required when this stochastic simula-
tion method is applied to inhomogeneous flow fields,
as particles collect in low-speed regions of the flow
(e.g. Thompson 1984). This violates the well-mixed
hypothesis, which states that a uniform particle distrib-
ution should remain uniformly distributed as long as
there are no convergences or divergences (Thompson
198%). First-order correction terms for the well-mixed
hypothesis have been proposed (e.g. Rodean 1996,
Wilson & Sawford 1996) which account for the change
in velocity variance in the offshore direction, or:

At 24t At ) (s, )
vt = V}?(l——)+cu Z—RN+— 1+(V—i) o) (4)
\ 2 oy

T oy
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No correction is needed in the along-shelf direction.
The last element required is the larval pre-compe-
tency/competency time course. Average planktonic
larval durations can range from an hour to several
months, depending on the organism in question (see
Fig. 1). In our simulations, larvae are released near a
single linear coastal boundary, and only those individ-
uals that return to the coastline during their compe-
tency interval are allowed to settle. Those that
encounter the shoreline during their precompetency
period remain in the plankton, whereas those that do
not reach the coast by the end of the competency
period perish. We use 5 larval precompetency/
competency time courses (0 to 5, 6 to 12, 14 to 21, 24 to
36 and 42 to 56 d). Longer competency windows are
needed for longer precompetency times to ensure that
an adequate number of simulated settler trajectories
are sampled (this increase in competency period with
mean time in the plankton is also biologically realistic;
see Wellington & Victor 1989). However, this choice
does impact the fraction of released larvae that do set-
tle. A total of 65 different simulations are conducted
(13 flow scenarios and 5 larval time courses).

The dispersal kernel, K, _,, is defined as the density
of settling larvae at X' (no. km™), normalized by the
number of settlers released from Location X. Dispersal
kernels are estimated by calculating the density distrib-
ution of settlers based on many individual releases from
a single location. The integral of a dispersal kernel over
all space is equal to 1. For the calculations presented
here, kernel functions are determined by ensemble av-
eraging over at least 5000 individual trajectories. Dis-
persal kernels calculated in this way account only for
those larvae that successfully settle. Most spawned lar-
vae do not reach the shoreline during their competency
window and perish (e.g. Roughgarden et al. 1988). In
addition to intrinsic demographic factors such as preda-
tion or starvation, these ‘fluid mechanical losses' can be
a significant fraction of the total losses of larvae during
the planktonic period (see ‘Results’).

The model presented here is aimed at approximating
the mechanics of larval transport in a coastal ocean. It
assumes that larvae are purely planktonic and are
advected like passive particles. Its present implemen-
tation is simplistic, although it can, in principle, be
extended to include detailed biological factors (i.e.
organism behavior) and physical oceanography (i.e.
detailed flow-field characteristics).

RESULTS

Example trajectories for larvae that can settle imme-
diately and can remain in the plankton for up to 5 d
(short planktonic larval duration [PLD] larvae), and lar-

vae that can survive in the plankton for up to 8 wk after
a 6 wk precompetency period (long PLD larvae), are
shown in Fig. 3. A mean alongshore current of 5 cm 57!
and a fluctuating component of 15 cm s™! is used. For
both cases, particles show both downcurrent (to the
right) and upcurrent trajectories. There appear to be
more downcurrent trajectories than upcurrent ones,
but the difference is subtle in this sample of 10 paths.
Further, only a couple of larvae appear to settle during
the assumed competency windows.

The large differences in spatial scale of dispersion
between the 2 examples are of greater importance.
This is a consequence of the 10-fold differences in their
planktonic larval durations. Typical dispersion scales
for the short PLD case are 20 to 40 km, whereas the
long PLD larvae are typically found more than 200 km
from their source (Fig. 3). Further, the long PLD trajec-
tories are more convoluted than the short PLD paths.
This is because the long PLD larvae are in the plankton
much longer than typical Lagrangian decorrelation
times (1. < 3 d), and are thus subject to many indepen-
dent fluctuations in the flow field. In contrast, each
short PLD larval trajectory is constructed from just a
few independent degrees of freedom.

Ensemble averaging over many individual trajecto-
ries enables calculation of the larval dispersal kernel,
K. Dispersal kernels for short PLD and long PLD lar-
vae are shown in Fig. 4. As hinted in Fig. 3, the most
probable location of settlement (the mode of the distri-
bution) occurs downstream of the spawning location.
For short PLD larvae, the mode is only a short distance
from the source, whereas for long PLD larvae, the
mode is found >200 km downstream (Fig. 4). This
reflects increasing advection by the mean flow with
increasing time in the plankton. The half-height
widths of the K, distributions are ~40 km for the short
PLD larvae and ~500 km for the long PLD larvae. This
reflects variation in the effects of dispersive processes
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Fig. 3. Example trajectories for short (left) and long (right)

planktonic larval duration (PLD) larvae in a flow with mean

alongshore current of 5 cm s™* and fluctuating components of

15 cm s™'. Ten trajectories are shown for each type of settler.

Mean flow goes from left to right. Short PLD larvae trajecto-

ries are plotted for 0 to 5 d while for long PLD larvae they are
plotted from 0 to 56 d
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Short PLD larvae

Kx (km™7)

Long PLD larvae

The role of flow configuration on the ker-
nel fit parameters, as well as the fraction of
released larvae that settled during the
assumed competency window, are shown in
Fig. 5 for the short PLD case and in Fig. 6 for
the long PLD case. For both cases, the kernel
spread (04) increases and the kernel ampli-
tude (K,) decreases with increasing fluctuat-
ing current amplitude (6,). The kernel drift
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Fig. 4. Example kernel distributions for short (left) and long (right) plank-
tonic larval duration (PLD) larvae in a flow with mean alongshore current of
5 cm s7! and fluctuating components of 15 cm s™!. Numerical simulation re-
sults are shown by vertical bars; Gaussian fits (Eq. 5) are shown by solid
lines. Fit parameters are K, = 2.2 x 103 km™!, x4 = 5.2 km and 64 = 15 km for
the short PLD larvae case and K, = 1.84 x 10~® km™, x4 = 208 km and o4 =
219 km for the long PLD case. Fits were excellent (r* = 0.983 and 0.990, re-
spectively). Five thousand independent trajectories were used to construct
the kernel functions; 1379 and 922 synthetic larvae settled for the short and

long PLD larvae cases, respectively

over the 10-fold differences in the time these larvae
spend in the plankton.

The dispersal kernels appear to be similar to a
Gaussian distribution, which suggests their modeling
using a compact form:

A

KX = KO exp (_(X_—Xd)z)

203 ©

This results in 3 parameters for K,: amplitude, K,,
downstream drift, x4, and spread, 64. As the integral of
Ky over all space is by definition equal to 1, only 2 of
these parameters are unique (theoretically K, =
1/[2m)?64)]. A Gaussian distribution is chosen
because it fits the observed K, distributions well and it
provides a link to traditional advection-diffusion
approaches. Gaussian fits are performed on all 65
numerical experiments. Generally, least-square fits
using the Gaussian model were excellent (r* > 0.95 for
nearly all cases). The only exception was a short PLD
case where the mean flow was greater than the root
mean square of the fluctuating components (U= 10 cm
st and 6, = 5 cm s7'). This is not a concern, since this
flow configuration is exceptional. A Gaussian model
may not be the best analytical form for all applications.
In particular, simulation results predict leptokurtic dis-
persal kernels for organisms with planktonic durations
similar to the Lagrangian decorrelation timescale. This
detail may not be important for modeling demographic
connectivity among established populations, but could
be critical for modeling of species invasion and colo-
nization rates (e.g. Cain et al. 2000).

(xq) is largely a function of the mean current
(U). Distributions for other larval compe-
tency time courses support these generaliza-
tions (not shown). There are exceptions to
these trends, particularly for short PLD cases
at low ¢, values.

Approximately /4 of the total number of
released particles settle during their pre-
scribed competency windows for both the
short and long PLD cases (Figs. 5 & 6). The
remaining larvae are lost. These estimates of
the fraction of settling larvae do not consider
the many demographic processes (predation,
starvation, etc.) that contribute to larval mor-
tality. There are few significant changes in the fraction
of settling larvae with flow parameters (see below).

The CODE-like flow scenarios allow us to assess the
importance of flow-field homogeneity on the dispersal
kernel. The CODE-like simulations use the flow field

1000
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Fig. 5. Role of homogeneous flow field configuration on ker-
nel fit parameters for the short planktonic larval duration
(PLD) larvae case. Upper left panel: Kernel drift, x4, as a func-
tion of U and ¢,in km. Upper right panel: Kernel spread, oy,
as a function of U and ¢,in km. Lower left panel: Kernel am-
plitude, K,, as a function of U and ¢,km™. Lower right panel:
fraction settling larvae to total spawned larvae as a function of
Uand 6,
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Fig. 6. Role of homogeneous flow field configuration on ker-
nel fit parameters for the long planktonic larval duration
(PLD) larvae case. Upper left panel: Kernel drift, x4, as a func-
tion of U and ¢,in km. Upper right panel: Kernel spread, oy,
as a function of U and ¢,in km. Lower left panel: Kernel am-
plitude, K., as a function of Uand 6,km™'. Lower right panel:
fraction settling larvae to total spawned larvae as a function

of Uand o,

given in Fig. 2 for 10 000 individual larval releases
and apply the correction to enforce the well-mixed
criterion (Eq. 4). Fig. 7 shows the resulting K, fit
parameters for the CODE-like flow field as a func-
tion of the mean time in the plankton for settled
larvae (T,). Also shown are results for a similar
homogeneous case (U= 5 cm s! and 6, = 15 cm
s7!). To first order, Gaussian fit parameters from
the CODE-like (circle symbols) and the corre-
sponding homogeneous (asterisk symbols) case
are very similar. As expected, values of 64 and x4
both increase with increasing T, and a large
degree of quantitative similarity between the 2
kernel fit values is observed. This suggests that
knowledge of spatial gradients of the flow field
may be less important than the magnitude of the
large-scale circulation and the average time an
organism spends in the plankton.

Large differences in the fraction of released lar-
vae that settle within their competency time peri-
ods are found between the homogeneous and
inhomogeneous flow cases (Fig. 7). Only ca. 4 % of
the larvae settle in the CODE-like flow field,
whereas ~20 % of the released larvae settle in the
homogeneous cases. This difference is likely due
to the flow inhomogeneity correction (Eq. 4),
which acts to push particles offshore from low- to
high-speed regions of the fluid. The implications

Xy (km)

Ko (km-T)

of

this result and its robustness will be discussed

below.

Fit values for the kernel parameters show a strong

dependence on flow parameters for a given larval com-
petency timeline (Figs. 5 & 6). Likewise, for a single
flow field, the K, parameters illustrate the importance

of

temporal details of the competency window parame-

ters (Fig. 7). These clues can be used to devise a
scheme for collapsing these parameters into a unified
framework. It seems reasonable that the longer an
organism is in the plankton, the further downstream it
will be advected by the mean flow. Thus, one would
expect that the kernel drift parameter (x4) could be
modeled as the product of the mean current (U) and
mean time that individuals have been in the plankton
(Tw). Using the database of kernel parameters, least-
squares regression can be used to derive relationships
between flow and larval settlement parameters (Fig. 8,
Table 1). All experiments performed (N = 65) are used

in

these fits.
Retrieved values of the kernel drift (x4) are accu-

rately modeled using the mean current (U) and mean
time an individual is in the plankton (Ty,), as expected
(Fig. 8). The fit coefficient between x4 and U T, is
nearly equal to 1, and this regression explains nearly
all of the variance in x4 (Table 1). Following this logic,
estimates of the kernel spread (cy), a result of turbu-
lent mixing processes, should scale as the square root

of
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Fig. 7. Kernel fit parameters from the CODE-like flow field (o) and a

corresponding homogeneous #case (U=5 cm s

1, o,=15cms ) asa

function of mean planktonic larval duration (T;,). Upper left panel:
Kernel drift, x4, vs Ty,. Upper right panel: Kernel spread, 64, vs Tp,.
Lower left panel: Kernel amplitude, K,, vs T;,. Lower right panel:
ratio of settled larvae to total spawned larvae vs T,
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600 300 and the mean planktonic larval duration,
500 250 ¥ suggesting this approach can be applied
T 400 T 200 across a broad array of scenarios.
3 300 =< 150 The mean absolute displacement of set-
oy S tlers, Dy, is a useful index for how fluid
200 100 motions disperse larvae in their plank-
100 50 tonic phase, and provides a mechanism
0 ’ 200 200 500 0 for comparison with standard ecological
0 50002 1020001 15000 1hetrics of dispersal distance. Dy can be
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Fig. 8. Parameterization of kernel fit parameters x4 (upper left panel) and 64
(upper right panel) as functions of mean planktonic larval duration (T;,) and
flow parameters (U and o,) and K, (lower left panel) as a function of cg4.
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tionships (Eq. 5) and estimates vary from
a few km to more than 400 km (Fig. 8).
Mean absolute displacement is a function
of both mean flow and dispersion by fluc-
tuating components of flow, as illustrated
by regression models (Table 1).

Shown in the lower right panel are simulated and regression-fit mean dis-
placement, Dy, estimates. For the homogeneous flow scenarios, settling com-
petency time courses are 0 to 5d (0), 6to 12d (¢), 14 to 21 d (O), 24 to 36 d (¥)

and 42 to 56 d (4). The large 6-pointed star symbols are results from the

DISCUSSION

CODE-like flow field. Regression lines and statistics for the fits are given in

Table 1. The dotted line in the lower left panel assumes a 1:1 relationship be-
tween K, and 1/[(2r)264], while the solid line is the fit relationship. For the
simulated vs regression-modeled D, estimates, a 1:1 line is plotted

and T, (Fig. 8). Fit results are excellent for oy,
explaining nearly 98 % of the variance (Table 1). Fol-
lowing theory, Gaussian kernel amplitude (K,) is a
simple function of kernel spread (= 1/[(2n)"%c4]; Fig.
8). Deviation in the fit parameter for K, from 1 (Table
1) is driven by a few unusual flow scenarios (6,/U <
1), and a value of 1 should be used in applications. In
all, the parameters needed to quantify dispersal ker-
nels are simple functions of a few flow parameters

Table 1. Fit expressions for dispersion kernel parameters. Re-

gression lines are shown in Fig. 8. Units are U (km d"?), 6,, (km

d™'y and T, (d). It is recommended that K, be calculated using

1/[(2m)264], with 64 modeled as above, as a few exceptional
cases are driving the regression parameter from 1

Kernel parameter Fit relationship r? of fit
Amplitude, K, (km™) 0.861/[(2m)"%054] 0.991
Drift, x4 (km) 0.994T,U 0.997
Spread, 64 (km) 2.238 6,T,,"* 0.979
Mean absolute dis-

placement, Dq (km)  0.695(T,,U) + 0.234(T,0,)  0.958

Several generalizable results emerge
from the present Lagrangian simulation
model of planktonic larval dispersal. First,
predictions of larval dispersal can be
developed from knowledge of the mean
and fluctuating components of flow, coupled with basic
information about an organism's larval competency
time course. Second, expected dispersal scales range
from less than 1 to more than several hundred kilome-
ters, depending on these characteristics. Last, parame-
terizations for dispersal kernels can be derived using
readily available flow and organism life-history char-
acteristics. In the following sections, we evaluate valid-
ity bounds of the present modeling assumptions and
compare the present results with empirical estimates of
mean absolute displacement, Dy, derived from popula-
tion genetic data. Model results are then used to pro-
vide insights into the prediction of regional-scale self-
seeding for marine populations and the role of
temporal scale in interpreting patterns of larval disper-
sion and recruitment.

Issues in the modeling of larval transport
The goal of this work is to best encapsulate the fun-

damental processes regulating larval dispersal into a
simple, yet generally applicable, model of larval trans-
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port. In attempting to achieve this goal, many issues
have been ignored. This results in a ‘null model’ for
larval transport that lies somewhere between a de-
tailed simulation and a cartoon. Here, we discuss
implications of the assumptions used and suggest
directions for future work.

First, the basic underlying assumptions of a straight
coastline and uniform alongshore flow statistics have a
major influence on the types of processes that can be
simulated. These assumptions were selected to best
generalize results for a wide application. This means
that persistent flow features, such as topographically
induced recirculations, are not considered, although
these processes can have a large influence on larval
settlement patterns (Wolanski & Hamner 1988, Gay-
lord & Gaines 2000). As the fluctuating current fields
are modeled as random variables, consistent temporal
changes in mean currents, such as a tidal or seasonally
reversing current, are not considered. These and simi-
lar issues could be easily modeled, although this would
defeat our goal of creating a generalizable, null model.

Second, the assumption of alongshore flow unifor-
mity limits the types of mean flows that can be mod-
eled due to the mass conservation constraint and the
assumption that motions are vertically uniform (see
below). This requires that the mean flow remain con-
stant over the alongshore scales modeled (dU/dx = 0),
although cross-shelf changes in the along-shelf mean
current can be considered. Further, the mean flow
must be a spatial as well as a temporal mean. Regional-
scale, temporal mean currents are typically small
(often vanishingly small) as they average together con-
flicting currents from various locations and times. The
appropriate spatial scale for current averaging is
related to the scale over which larval dispersal occurs.
Larvae with longer plankton durations require mean
currents to be considered over larger spatial scales. For
most situations, this means that the appropriate mean
currents should be smaller than that for shorter PLD
larvae.

Third, the flow field is assumed to be constant with
respect to depth. Mass conservation considerations
then require the cross-shelf mean flows to be zero (V=
0). This means that important potential larval delivery
processes, such as internal waves, surface gravity
waves, Ekman transport, bottom friction, and interac-
tions with small-scale bathymetric features, are not
considered. Vertical structure in the mean flow is
needed to model interactions between flow and organ-
ism behavior, such as vertical migration. This could be
done given appropriate mean and fluctuating current
fields (but with a substantial loss of generality).

Fourth, the choice of Lagrangian decorrelation time
(tL; Eq. 3), has some bearing on the modeling results.
Experimentation with a variety of 1, parameterizations

results in few changes for the long PLD case, but some
differences are found for the short PLD case (not
shown). For the short PLD case, changes in the off-
shore 1, profile cause small differences in the resulting
kernel distributions (amounting to <4 km for x4 and
<10 km for o4, compared with the case shown in
Fig. 4). Further, a greater fraction of short PLD larvae
settle as the value of 1. is decreased. This sensitivity to
the 1, parameterization for the short PLD case makes
sense as the PLD and the value of 1, are roughly equiv-
alent, and few independent degrees of freedom con-
tribute to an individual larval release's trajectory. The
long PLD case is rather insensitive to the choice of the
T, parameterization, as many degrees of freedom con-
tribute to individual trajectories. Overall, the present
results are less reliant on the details of the parameteri-
zation of 7; than on the other flow and biological para-
meters.

Fifth, the choice of larval precompetency/compe-
tency time course appears to have little influence over
the characteristics of a larval dispersion kernel. The lar-
val competency timecourse will have an important role
in predicting the fraction of released larvae that suc-
cessfully settle. That is, the longer the time over which
settlement can occur (the competency time window),
the greater the chance that a planktonic larva will set-
tle, whereas the longer the precompetency timescale,
the lower this probability will be. The present modeling
assumes that the duration of the competency window
increases with precompetency time. This is done to en-
sure that an adequate number of simulated settler tra-
jectories are sampled, although there is biological justi-
fication for this assumption (e.g. Wellington & Victor
1989). For the homogeneous flow scenarios and larval
competency time courses used, there are few signifi-
cant differences in the fraction of released larvae that
settles (Figs. 5 & 6). However when the CODE-like flow
field is used, this fraction is much smaller (~4 vs ~20 %
for the homogeneous flows; Fig. 7), as it appears that
the flow inhomogeneity correction (Eq. 4) acts to push
particles offshore. The present experiments are clearly
inadequate for addressing ‘fluid mechanical’ larval
losses, and more detailed experimentation is needed.
The resolution of this issue will be important for under-
standing life history tradeoffs and population persis-
tence, where the balance between mortality and larval
recruitment play critical roles.

Last, the null model of larval transport described
here ignores several potentially important biological
factors. For example, larvae are treated as surface-
following, passive particles, which may not be true,
particularly in their later stages of development. Many
larvae migrate vertically to take advantage of different
portions of the current profile, or physical features
such as fronts and internal waves, leading to increased
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or decreased dispersal (Hill 1991, Shanks 1995). The
timing of larval release may correspond with non-
random aspects of flow (e.g. Richards et al. 1995).
Planktonic mortality may vary as a function of offshore
distance. All of these factors are difficult to assess, and
further experimentation (both field and numerical) is
required. Nevertheless, a consideration of the poten-
tial biological complications first depends on the devel-
opment of an appropriate null model. More complex
biological and physical processes should be examined
as deviations from this basic template.

Experimental verification of the dispersion kernel

Model predictions of average dispersal distance (Dy)
are confronted with empirical estimates of larval dis-
persal derived from population-genetic data (Kinlan &
Gaines 2003, Palumbi 2003). Demographic rates of dis-
persal can be estimated from the decrease in correla-
tion of allele frequencies with distance (e.g. Wright
1943, Palumbi 2003). Genetic dispersal estimates re-
flect long-term average patterns of dispersal, as genetic
correlations accumulate over hundreds of generations.
Moreover, genetic estimates reflect only dispersal of
propagules that successfully establish and reproduce
(i.e. effective dispersal). Estimates of dispersal make as-
sumptions about the distribution of effective dispersal
in space, effective size of populations, and the spatial
arrangement of subpopulations (Slatkin 1987). We used
estimates of average dispersal distance derived from
simulations assuming an exponential dispersal kernel,
effective population size of 1000, and a 1-dimensional
array of equally spaced subpopulations (Palumbi 2003).
Sensitivity to both the assumptions used and the inher-
ent accuracy of genetic data results in probable uncer-
tainty levels for Dy estimates of less than a factor of 10
(Kinlan & Gaines 2003). However, the strong correla-
tions of genetic Dy estimates with life-history proxies of
dispersal ability (Fig. 1) suggest this uncertainty is
likely less than the stated upper bound, perhaps a fac-
torof 4 to 5 (B.P.K. & S.D.G. unpubl. data)

We identified 32 marine species (19 invertebrates,
12 fish, and 1 macroalga) for which both genetic esti-
mates of Dy and estimates of planktonic larval duration
were available (Fig. 1). These species are drawn from a
variety of geographic areas and taxonomic groups.
Mean planktonic larval duration was estimated from
published larval otolith aging (fish) or laboratory cul-
ture results (invertebrates, algae). We compared
genetic estimates of mean dispersal distance with
model predictions of D4 (based upon the regression in
Table 1) for the same species (Fig. 9). This is clearly not
a direct comparison, as there are no oceanographic
data associated with the genetic dispersal observa-

tions. Flow directionality is ignored, a reasonable
assumption over the large spatial and temporal scales
inherent in the genetic method, and a reasonable
range of fluctuating current levels (5 cm s7! < ¢, <
15 cm s7!) is assumed. Within the discussed uncertainty
bounds, the null model estimates of Dy provide a rea-
sonably good overall fit to genetic estimates (Fig. 9);
points are roughly distributed about the 1:1 line.

Even allowing for uncertainty about oceanographic
structure, some of the very long- and very short-
dispersing species appear to provide hints of devia-
tions from the null model (Fig. 9). Model predictions
match genetic dispersal distances best at low fluctuat-
ing velocities (6, = 5 cm s7!) for the short PLD larvae,
and at higher fluctuating velocities (6, = 10 to 15 cm
s 1y for long PLD larvae. Deviations from model predic-
tions at the extremes may be due to systematic differ-
ences in life-history strategies of organisms with diver-
gent planktonic durations. Very short dispersers may
not spend their full development time in the plankton,
leading to shorter dispersal distances than predicted
from the duration of the larval period. Some of the
longest-dispersing species may be capable of delaying
metamorphosis and remaining in the plankton longer
than laboratory culture studies suggest, or may have
behaviors that enhance dispersal. The use of a simple
null model of dispersal assists in identifying when bio-
logical processes may modify dispersal distances. The

108 : : : ,
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Fig. 9. Modeled mean absolute displacement (Dy) vs estimates
of Dy derived from population-genetic data (from Kinlan &
Gaines 2003). The genetic data used here are the same as in
Fig. 1. Modeled estimates of Dy use the expression derived in
Table 1 with U=0 cm s™! and 6, = 5, 10 and 15 cm s7! (the
symbols V, O and A, respectively). Uncertainties in the genetic
dispersal estimates are thought to be a factor of 4 to 5 and an
example of this range is shown on the left portion of the figure
(see text for details). A 1:1 line is plotted
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persion scale (D). When Dy/L is small
(Dg/L < 1), the self-seeding fraction should
approach 1, as most larvae disperse at
scales smaller than the region of interest.
If D4/L is much greater than 1, the fraction
of released larvae that settle within the
region should be small.
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based on our model scenarios vary from
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nearly 1 to values as small as 10~° (Fig. 10).
As expected, smaller SSF estimates are
found when smaller values of L are
assumed (Fig. 10a—c). When L is set equal
to 100 km, values of the self-seeding frac-

ha tion approach 1 for many of the flow fields

and planktonic larval durations investi-
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Fig. 10. Regional-scale larval self-seeding as a function of the ratio of the
absolute dispersal scale (Dy) to the length scale of the region of interest (L).
Length scales of (a) 1, (b) 10 and (c) 100 km are used, and these results are
combined in Panel (d). In the Panels (a) through (c), cases where the Peclet
number (Pe) is greater than 8 are circled and these cases are not consid-
ered in Panel (d). As before, settling competency time courses are 0 to 5 d
(), 6to 12 d (¢), 14 to 21 d (O), 24 to 36 d (*) and 42 to 56 d (4) for the ho-
mogeneous flow field, and the larger 6-pointed star symbols are

results from the CODE-like flow

utility of such comparisons will increase as new tech-
niques, such as analysis of natural microchemcial tags
(Swearer et al. 1999), provide more precise and fre-
quent estimates of larval dispersal properties.

Larval seli-seeding in a null model

Understanding the degree to which local popula-
tions are seeded by their own larvae is essential to
effective management of marine populations, and has
become the subject of much recent attention (e.g.
Roberts 1997, Swearer et al. 1999, Cowen et al. 2000).
An objective measure of larval self-seeding can be
made by calculating the fraction of total settling larvae
that have settled within a region of extent, L, about

their release location, or:
L/2
| Kxyax

-L/2

Self — Seeding fraction = (7)

A value of 1 for the self-seeding fraction (SSF) indi-
cates that the all-released larvae settle within a dis-
tance L/2 of their release point. Values of SSF depend
on the relationship between the assumed regional

Dy/L

gated (Fig. 10a). However, if Lis chosen to
be 1 km, SSF values reach a maximum of
~0.1 and are often much smaller than this
factor.

For each of the assumed L-values used,
a handful of self-seeding fraction esti-
mates depart from the rest of the simu-
lated results (Fig. 10a—c). These SSF esti-
mates correspond to flow regimes with
relatively large mean flow values. The rel-
ative effects of mean and fluctuating com-
ponents of flow on dispersion can be
quantified using the Peclet number (Bird
et al. 2001). The Peclet number is defined
as the square of the ratio of the mean flow advection
length scale (UTy,) to a diffusive length scale [(x Ty)"?],
or:

10

(8)

Pe - (advective scale)2 _ UTn)? _ U,

diffusive scale KT - K

where « is the eddy diffusion coefficient (m? s™!) which
quantifies the rate of mixing due to turbulent ocean
processes. Large values of the Peclet number indicate
that mean flow advection dominates, whereas small
values imply that the fluctuating components of flow
are the most important. Following standard turbulence
scaling, we model the eddy diffusion coefficient as the
product of the fluctuating velocity variance, 6u2, and a
mixing timescale, T (x ~ 6,21). Equating the mixing
timescale with the Lagrangian decorrelation timescale,
7., a simplified expression for the Peclet number can be
derived:

U?T,

Pe = >
OuTL

)

A value of 3 d is assumed for t;, consistent with the
present simulations. Flow scenarios for which the
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Peclet number exceeds 8 are denoted with the circled
symbols in Fig. 10a—c (8 out of 64 cases). These corres-
pond to the most egregious SSF outliers and represent
cases with large mean flow, long PLD and small fluctu-
ating current values, which will be atypical.

When the high Peclet number scenarios are
neglected, estimates of regional self-seeding collapse
nicely as a function of Dy/L for the 3 assumed values of
L (Fig. 10d). Values of SSF are approximately 1 for
Dy/L values less than ~0.3. For values of Dy/L greater
than 0.3, regional-scale estimates of self-seeding
decrease with increasing Dy/L following a power law
relationship of approximately (Dy/L)"! (Fig. 10d).

These estimates of regional scale self-seeding frac-
tions may prove useful for assessing the spatial scales
needed to achieve the desired goals of marine pro-
tected areas. Estimates of SSF quantify the fraction of
progeny produced at a point remaining within a region
of size L as a function of the larval dispersal scale, Djy.
Values of Dy can be determined from knowledge of
flow statistics and an organism's PLD using the simple
regression relationship presented in Table 1, or by
empirical techniques (e.g. population genetics, natural
microchemical tags). Quantitative estimates of re-
gional-scale self-seeding can then be used to address
the degree to which a given marine protected-area
scenario achieves management objectives. For exam-
ple, when the SSF is ~1, very little spillover of settlers
will occur to neighboring sites. When SSF values are
low, there may not be enough settled larvae to sustain
recruitment of adults within the domain. By comparing
SSF estimates from different organisms (with corres-
ponding differing Dy values), assessments can be made
of whether the designation of a particular marine
protected area might act as a source and/or sink for
settling larvae. Of course, full assessment of a marine
protected area requires consideration of demographic
factors such as mortality and fecundity and their den-
sity dependence, which is beyond the scope of the
present manuscript.

The role of time

The present calculations of larval dispersal kernels
are based on the superposition of many particle trajec-
tories (N = 5000), each of which can be thought of as
ensuing from an independent larval release event.
Kernel distributions estimated in this manner therefore
represent ensemble mean dispersal patterns. Trajecto-
ries in the coastal ocean effectively reset themselves
every ~3 d, as indicated by typical Lagrangian decor-
relation timescales. Assuming continuous larval
release, the present determinations of larval dispersal
represent accumulated patterns for timescales of at

least ~40 yr (based upon 5000 independent trajectories
needed to produce a kernel distribution). Releases of
propagules are generally not continuous through the
year, and the kernel results may represent dispersal
patterns integrated over even longer timescales, per-
haps >100 yr.

For some applications, knowledge of larval disper-
sion on multi-decadal timescales is appropriate. These
include considerations of genetic, physiological or
behavioral adaptations that occur over the timescales
of many generations. However, predicting annual
stock-recruitment relationships of harvested marine
organisms requires knowledge of larval dispersal over
much shorter timescales. For the case of annual
recruitment, the number of independent trajectories
incorporated into a dispersal kernel will be less than
100 (~365 d/1.). Dispersion kernels constructed using
50 released larvae for the case of short (left) and long
(right) PLD larvae in a typical flow field (U= 5 cm s7!
and o, = 15 cm s7!) are shown in Fig. 11. A total of 12
and 13 out of 50 released larvae settled in this random
sampling of the short PLD and long PLD cases, respec-
tively. The solid lines are the result of the Gaussian fit
to the modeled dispersal kernels (Fig. 4) found using
5000 released larvae. It is obvious that spatial patterns
of settlement on short timescales will not follow 'nice’
Gaussian distributions, but rather will represent dis-
crete samples taken from the long-term ensemble dis-
tribution.

The discrete nature of annual kernels has major
implications for predicting patterns of settlement, and
thereby recruitment of sessile marine organisms on
short timescales. Even if long-term ensemble disper-
sal patterns are predictable and stable, discrete sam-
pling from kernel distributions will lead to stochastic
variability in observed recruitment rates. This noise
will make recruitment and/or larval settlement
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Fig. 11. Dispersion kernel constructed using a small number
of released larvae for the case of short (left) and long plank-
tonic larval duration (PLD) larvae (right) in a typical flow field
(U=5cms?tand o, =15cms™}). A total of 12 and 13 out of 50
released larvae settled in these realizations of the short and
long PLD larvae cases, respectively. Solid lines show results of
the Gaussian fit to the simulated dispersion kernels (Fig. 5)
found with 5000 synthetic larvae
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datasets difficult to interpret and relate to oceano-
graphic processes in a simple and general manner
(e.g. Caffey 1985). Further, stochastic noise in recruit-
ment rates due to random sampling of dispersal ker-
nels can be expected to generate scatter in stock-
recruitment relationships, with implications for the
setting of policies for harvest of regulated marine spe-
cies. In other words, on short timescales, larvae in the
coastal ocean are ‘stirred’ and not ‘well-mixed’. Set-
tler distributions will exhibit '‘'well-behaved’ patterns
only when assessed over many independent realiza-
tions (e.g. Garrett 1983, Gabric & Parlsow 1994). A
more complete discussion of the role of time on larval
dispersal patterns is beyond the scope of this contri-
bution, but these results highlight the importance of
temporal scale in assessing larval dispersal and its
role in several critical applications.
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