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ABSTRACT: Five infauna groups at 3 taxonomic levels - nematodes, polychaetes, oligochaetes, 
ostracods, copepods - were selected for an investigation on the feeding habits of juvenile (Stage IV) 
lobsters. As part of this study a method was developed to identify these 5 infauna groups by their 
natural composition of non-polar compounds using a simple derivatization/extraction step, High 
Resolution Gas Chromatography (HRGC) with Flame Ionisation Detection (FID), and pattern recogni- 
tion by the method of Soft Independent Modelling of Class Analogy (SIMCA). The peak pattern of 20 
naturally occurring compounds found in all samples were compared by principal component analysis 
using SIMCA. The 20 peaks and the 5 infauna groups were identified and classified. The method 
allows for comparison of samples of infauna groups from their HRGC patterns; it was used to correct a 
sample of questionable origin and to identify particular fatty acids with relevance to the classification 
of the 5 infauna groups. Interpretation of variable loading plots of separate sample classes are 
suggested and future possibilities of chemometric applications in marine biological and environmental 
studies are suggested. 

INTRODUCTION 

Lipids have been suggested as the best group of 
compounds to use when chemotaxonomically classify- 
ing bacteria (Shaw 1974). Lipid compounds fulfil 3 
basic criteria for chemotaxonomic use. They are: abun- 
dant in all organisms; readily analysed by available 
simple methods; present in a large number of different 
forms (Shaw 1974). The largest group of lipid com- 
pounds are the fatty acids. The simple fatty acids and 
non-polar organic compounds, i.e. saturated and 
unsaturated, straight chain and branched, fatty acids 
and hydrocarbonaceous material, are present in 
biological systems in great variety and amount. 
Despite this, fatty acids have previously been used to 
investigate diets of juvenile Atlantic menhaden Bre- 
voortia tyrannus (Jeffries 1975), and to characterize 
benthic microbial community structures (Bobbie & 
White 1980). This work has depended on identifying 
lipid compounds specific to a group of species and 
often involves separation and identification of small 

amounts of particular lipid components. Jeffries (1979) 
used simple fatty acid compounds and correspondence 
analysis to investigate seasonal changes in marine 
communities. Recently, multivariate pattern recogni- 
tion has become a method in widespread use for solv- 
ing problems where more than 2 variables (parame- 
ters) must be accounted for simultaneously (Wold et al. 
1983a, Smith et al. 1985). Multivariate analysis by the 
method of SIMCA (Soft Independent Modelling of 
Class Analogy) (Wold et al. 1984), using naturally 
occurring compounds present in organisms, has been 
used to show differences between pollution-influenced 
and clean blue-mussels (Grahl-Nielsen et al. 1983). 
The technique of multivariate pattern recognition by 
SIMCA in chemical data which describe natural 
marine biological systems has been used by the 
laboratory at Fladevigen Biological Station in a mul- 
tivariate chemotaxonomic classification of l d old eggs 
of cod Gadus morhua (L.) and haddock Melano- 
grammus aeglefinus ( L . )  (Knutsen et al. in press). 

As part of an investigation into the feeding habits of 
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juvenile (Stage IV) lobsters Homarus gammarus, 5 
infaunal groups suspected of being potential prey were 
selected and the fatty acids chemically derivatized to 
methyl esters (Knutsen & Vogt 1985). The non-polar 
fraction, extracted with hexane from the acidic 
methanol used as derivatizing reagent, was analysed 
by High Resolution Gas Chromatography (HRGC) 
using Flame Ionisation Detection (FID). The intention 
was to develop a simple identification method for 
infauna which could supplement the visible identifica- 
tion by microscopy of stomach contents, and which was 
chemically simple and rapid to perform. The results on 
feeding patterns of juvenile lobsters will be presented 
separately (Knutsen & Vogt 1985). 

The present paper discusses some aspects of chemi- 
cal analysis coupled with pattern recognition by the 
method of SIMCA in the field of marine biology/ecol- 
ogy using results from the classification of 5 infauna 
groups. 

Statistical analysis using principal components 
(Massart & Kaufman 1983) by the SIMCA method, 
level 1 and 2 (Albano et al. 1978), was done on peak- 
area data obtained from chemical analysis of samples 
containing from 2 to 100 organisms each (Table 1). 
Each group (class) of samples consisted of from 6 to 8 
such individual samples, except for the total class 
which was constructed over all 35 samples (Table 2). 

Table 1. Taxonomic groups used. Class numbering follows 
that in the text. Number of organisms refers to each separate 

sample. Size is the size range of specimens collected 

Class name Class no. No. of organisms Size 

Nematodes 1 100 1-3 mm 
Polychaetes 2 2 7-8 mm 
Oligochaetes 3 2 5-6 mm 
Ostracods 4 60 0.5 mm 
Copepods 5 60 0.8 mm 

Table 2. Class names and numbers, and numbers of principal 
components and amount of variance for each class. Numbers 
for principal components in parentheses are calculated valu- 
es; in Class 1 to 4 only 1 principal component was statistically 
significant. Number of samples in each class is the number of 

chromatographic samples 

Class name Class no. No. Variance No. of 
of PC % samples 

Nematodes 1 1 (2) 55% 7 
Polychaetes 2 1 (2)  33% 6 
Oligochaetes 3 1 (2) 47% 7 
Ostracods 4 1 (2) 4 1 % 7 
Copepods 5 2 62% 8 
Total (all 5) 6 4 65 % 35 

From the principal component analysis, information 
regarding the samples (objects) was obtained at sev- 
eral levels. In the present work information as to the 
classification of samples and detection of samples that 
were class outliers was obtained (Wold et al. 1984). In 
addition the fatty acids (variables) were classified with 
respect to which of them were responsible for the 
differentiation between groups (classes) of objects. 
Suggestions are also put forward for interpretation of 
variable loading plots, i.e. plots of the variables in the 
Eigenvector projections, of a single class. 

MATERIALS AND METHODS 

Multivariate analysis by  SIMCA. The method of 
principal component analysis called SIMCA has been 
described mathematically and graphically in several 
texts (Wold & Sj~s t ram 1977, Albano et al. 1978, Wold 
et al. 1981, Wold et al. 1984) and applications in 
chemistry, medicine and environmental chemistry/ 
biology may be found in Dunn & Wold (1980), Jellum 
et al. (1981) and Grahl-Nielsen et al. (1983). 

The SIMCA method of data analysis is one of several 
statistical data analytical methods of linear cluster 
analysis (Massart & Kaufman 1983). The intention of 
these methods is to reduce dimensionality in multivari- 
ate data sets so that systematic variation present may 
be investigated. Although the SIMCA method is robust 
to non-normal distribution of data, it works best when 
the data have a normal distribution, i.e. when class 
residuals are normally distributed (Christie & Wold 
1979, Wold et al. 1981). SIMCA may be used to find 
groups (classes) of samples in datasets comprised of 
several groups, i.e. unsupervised learning. When 
groups have been identified, separate models for each 
group must be made. Statistical tests, i.e. F-test, are 
then used to define class boundaries, e.g. to identify 
outlier samples. These tests are parametric tests. See 
Albano et al. (1980) and Wold et al. (1981, 1983a) for a 
detailed discussion of SIMCA approaches. 

To avoid samples in the data set with large numbers 
influencing the model construction, the data may be 
normalised and each variable expressed as a fraction 
of 1. This is appropriate where data have not been 
expressed as concentrations before analysis by 
SIMCA. The construction of the mathematical model is 
scale-dependent (Wold et  al. 1983a). If parameter 
importance is not known, the data are scaled to unit 
variance before SIMCA analysis. This was done for 
each separate class model. 

The SIMCA method of constructing disjoint (inde- 
pendent) principal components, i.e. modelling each 
class separately (Wold et al. 1981), consists of fitting a 
principal component model to the data set of each 
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Class number: 1 
Class name: Nematodes 
Class RSD (p = 0.05): 0.8952 
Class SRD (p = 0.01): 1.0101 

Object 
Name Number RSD PC1 PC2 

NEMl 1 0.2993 -0.74 -0.86 
NEM2 2 0.4496 - 1.67 -2.87 
NEM3 3 0.4962 0.40 -0.79 
NEM4 4 1.0759 -0.31 -1.23 
NEM5 5 0.6527 0.14 0.09 
NEM6 6 0.6922 0.26 -0.66 
NEM7 7 0.7178 0.48 0.02 

Class number: 2 
Class name: Polychaetes 
Class RSD (p = 0.05): 1 .l 122 
Class RSD (p = 0.01): 1.2677 

POLl 15 1.1485 -0.27 1.63 
POL2 16 0.7161 0.76 2.84 
POL3 17 0.4348 -0.22 3.53 
POL4 18 0.3143 0.57 5.17 
POL5 19 0.821 1 0.19 2.4 1 
POL6 20 1.1035 -0.11 2.79 

Class number: 3 
Class name: Oligochaetes 
Class RSD (p = 0 05): 0.9823 
Class RSD (p = 0.01): 1.1042 

OLl l 21 0.7915 -4.05 0.79 
OL12 22 0.7449 -4.66 1.08 
OL13 23 0.6473 -3.66 -0.56 
OL14 24 0.5290 -3.69 - 0.39 
OL15 25 0.8428 -3.78 1.83 
OL16 26 0.6982 -2.80 1.42 
OL17 27 0.7570 -3.40 1.81 

Class number: 4 
Class name: Ostracods 
Class RSD: (p = 0.05): 1.0420 
Class RSD: (p = 0.01): 1.1720 

OSTl 50 0.8661 -0.35 -2.17 
OST2 51 0.2851 -1.14 - 3.24 
OST3 52 0.6032 -0.52 -2.65 
OST4 53 0.5439 -0.79 -2.72 
OST5 54 1.0676 -1.00 -2.28 
OST6 55 1.0968 -1.04 -2.74 
OST? 56 0.5242 -0.09 -1.92 

Class number: 5 
Class name: Copepods 
Class RSD (p = 0.05): 0.8295 
Class RSD (p = 0.01): 0.9293 

COP1 57 0.6876 3.83 -0.04 
COP2 58 0.6839 3.88 0.19 
COP3 59 0.3843 3.75 0.36 
COP4 60 0.9649 4.24 - 0.33 
COP5 61 0.6398 3.83 0.38 
COP6 62 0.3824 4.21 -0.76 
COP7 63 0.4989 3.77 0.06 
COP8 64 0.4389 3.98 0.03 

different class (group) of samples when the classes Table 3 .  The 5 separate polished class models. The residual 

have been identified. The number of principal compo- standard deviation for appropriate degrees of freedom and  

nents to be used for a specific class model may be confidence intervals are  tabulated. The principal component 

determined either statistically or from evaluation of the 
data apriori by setting a limit on how much of the 
variance in the data it is necessary to describe. An 
alternative approach is to evaluate the information in 
the object score and variable loading plots of principal 
components, and from this determine which principal 
components contain information relevant to the prob- 
lem in question (K. Esbensen pers. comm.). There are, 
however, situations where the number of principal 
components must be balanced against the number of 
objects/variables, i.e. if too few objects/variables are 
present or too many principal components are con- 
structed there will not be any dimension reduction. 

The number of principal components which are 
termed statistically significant is determined by cross 
validation (Wold 1978). The intention of cross valida- 
tion is to determine if the last principal component 
describes more systematic information in the data. The 
number of statistically significant principal compo- 
nents that are found from cross validation often con- 
tains information on the number of different chemical 
or biological systems (e.g. classes/variable groups) 
present in the problem being analysed (Wold et al. 
1983a). It was decided to use cross validation to deter- 
mine the number of statistically significant principal 
components, but for visual evaluation of plots of the 
individual classes it is necessary to calculate at least 
2 principal components. 

The models constructed seldom describe all the var- 
iance present in a data set. The left-over (residual, 
'unexplained') variance of a class model is caused 
partly from 'noise' in the data set and partly from the 
model restrictions (Wold et al. 1983a). The residual 
variance may be used to define boundaries (hyper- 
spheres, envelopes) (Wold et al. 1983a) of different 
significance levels around the class model. Object 
residual standard deviation (RSD, see Table 3) is the 
residual, i.e. left-over ('unexplained'), standard devia- 
tion for an object when comparing it to a class model. 
This number may be compared to class residual stan- 
dard deviation using an approximate F-test with 
appropriate levels of confidence (class RSD, p = 0.05 
and p = 0.01). Objects with residual standard devia- 
tion above the critical value (class RSD in Table 3) may 
be considered as outliers (Wold & Sjerstram 1977), i.e. 
detected as samples not belonging to a group (Wold et 
al. 1984). If objects are found not to belong to their 
assigned classes and are at the same time found to fit to 
another class, then they should either be included in 
the other class or at least deleted from the assigned 
class. The amount of variance described by the number 
of calculated statistically significant principal compo- 

values (PC1 & PC2) are those which must be  used to position 
objects in Fig. 2 
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nents tells how much of the total variance in the actual 
class has been incorporated into the model con- 
structed. This is a measure of how well the model 
describes the class and is also used in calculating the 
modelling power (intra-class description) and dis- 
criminating power (inter-class discrimination) for the 
variables. Class distance between groups of samples is 
a measure, in the multivariate space, of how far sepa- 
rated classes of samples are. In the SIMCA method a 
class distance between groups of objects above 3.0 is 
regarded as significant to identify 2 groups of samples 
as different classes (Wold et aI. 1981). The same nu- 
merical value applies to the discrimination power 
(class discrimination) significance of variables. For the 
modelling power significance of variables, a value 
above 0.3 is considered necessary (Wold et al. 1981). 
When comparing 2 classes a combination of low dis- 
crimination and modelling power may qualify for the 
deletion of this variable. Construction of new 
(polished) class models must be done if either an object 
is deleted or if over 30 % of the variables used to 
describe the class have been deleted (Wold & Sjestrem 
1977). 

The principal components constructed may be used 
either to plot the objects analysed (object score plots) 
or to plot the variables analysed (variable loading 
plots). In the last case the variable loading values 
along the principal components (Eigenvectors) (Wold 
et al. 1984) are used as coordinates. The variable load- 
ing plots contain information on the covariance 
between variables used to construct the principal com- 
ponent model. 

Collection of species. The sediment from which the 
organisms were sampled was collected in Fledevigen, 
a small unpolluted bay on the southern coast of Nor- 
way close to the Biological Station Fledevigen. The 

sediment was collected by scraping the upper 2 to 3 cm 
of sand in the bay and transfering this to a bucket. In 
the laboratory the sediment was allowed to deteriorate 
(Fenschel pers. comm.). To concentrate the motile 
organisms in the upper layer the sediment was allowed 
to stand with water having 2 to 3C0 higher tempera- 
ture. Motile organisms present in the sediment then 
migrate and concentrate in the upper part of the sand. 
After 24 h the upper layer of sediment, now concen- 
trated in organisms, was transfered to small cups and 
the organisms collected by pipetting volumes of sus- 
pended material onto a millipore membrane filter. 
From the membrane filters the organisms were then 
sorted and transfered to test tubes by using a 25X 
stereo microscope and tweezers. The organisms were 
not identified to species level, but only according to 
taxa (named group divisions) (see Table 1). Because of 
the size differences between the groups, a preliminary 
investigation was carried out to find the necessary 
number of organisms to collect for chemical analysis to 
be possible. These preliminary samples have been 
included in the classes of samples. Table 1 shows the 
number of organisms collected for each object (sam- 
ple), the size range of the organisms collected, and the 
class (group of samples) numbering as referred to later 
in the text. Table 2 gives the number of objects in each 
class. 

Chemical method. The chemical analytical method 
has been adopted from Jantzen (1976), simplified and 
modified to suit the purpose. The collected samples of 
whole animals in each test tube were subject to 
depolymerisation and methyl esterification (derivati- 
zation) in 1.5 m1 anhydrous 2N HCl in methanol at 90 
to 100 "C for 12 h. This procedure depolymerises tissue 
and methyl esterifies both free and bound fatty acids 
(Christie 1983). The derivatized sample mixtures were 

Table 4. HRGC-MS and confirmed Fame (Supelco 5436) standard identification of peaks. Peak numbering coincides with the 
final 20 peaks selected, those 2 peaks deleted are marked with + The peaks identified as  fatty acid methyl esters (Fame) without 
giving a structure have been so on the occurence of m/e 74 and m/e 87 in mass spectrometry. Branching points and unsaturated 
points are only tentatively positioned. Compounds Identified as alkene/alcohol and propylate are only suggestions based on 

mass spectral data. B: branched structure; MW: molecular weight 

Peak no. Compound Peak no. Compound 

+ C - l5:O (B) MW:256 10 C - 1 8 : l  MW:296 
+ C - 15:O (B) MW:256 11 C-18:O MW:298 
1 C -  15 :0  (B) MW:256 12 (Propylat, mle : 71 & 75) 
2 C - 15:O MW:256 13 C - 1 9 : l  MW:310 
3 C -  l 6 : 1  11) MV.268  14 Not identified 
4 Not identified 15 C - 2 0 . 1  MW:324 
5 C -  16:O MW:270 16 C - 2 0 . 0  MW:326 
6 C - 1 7 : l  MW:282 17 (Alkene/alcohol) 
7 C -  17:O (B) MW:284 18 (Alkenelalcohol) 
8 C - 1 7 : l  MW.282 19 FAME 
9 C - 18:2 MW:294 20 C - 2 1 . 0  MW:340 
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Fig. 1. Gas chromatograms of the extracted 
material from the 5 classes analysed by SIMCA. 
(A) nematodes, (B) polychaetes, (C) oligo- 
chaetes, (D) ostracods, (E) copepods. The peaks 
marked in (E) are those selected for SIMCA 
analysis. Conditions for analysis were splittless 
injection (250°C, 30 S). Camer gas flow 1.8 
m1 min-I (150°C) of nitrogen. Make-up gas 31.5 
m1 min-l. Detection by FID at 300°C (H2 and 
air). Attenuation was 8. Temperature program is 

given below 
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then cooled to room temperature and extracted twice 
with 1 m1 volumes of HPLC grade hexane (Rathburn 
Chemicals, Scotland). Care was taken not to include 
any of the methanolic HC1 with the extract. The 1.5 to 
2.0 m1 extract was evaporated to 40 p1 using a constant 
stream of pure nitrogen at 35 "C. From this 2.3 ~1 were 
injected into a 25 mm, 0.33 mm i.d., SE-54 (0.17 pm 
phase thickness) fused silica capillary column by using 
an HP 7670A autoinjector mounted on an HP 5880 Gas 
Chromatograph. Integration was done by the elec- 
tronic integrator coupled to the GC-FID and peak areas 
used. Injection was by splittless injection on a splitt/ 
splittless injector (Jennings 1981). The chromatog- 
raphic conditions and the temperature program are 
given in Fig. 1. Blank samples consisting of 2N HC1 
only in anhydrous methanol were treated by the entire 
procedure and analysed together with the infauna 
samples. Apart from the preliminary samples analysed 
to obtain an idea of the number of organisms to collect 
in each separate sample of nematodes, ostracods and 
copepods, the samples were not randomised with 
respect to class during analysis. 

High Resolution Gas Chromatography-Mass Spec- 
trometry (HRGC-MS) was done on a HP-5985A quad- 
ropole instrument by 70 eV electron impact. The iden- 
tification of compounds was based in part on prelimi- 
nary identification by using retention times and com- 
paring these with a Fatty Acid Methyl Ester (FAME) 
standard (Supelco 5436). Subsequent analysis by 
HRGC-MS using the National Bureau of Standards 
(NBS) 8 peak library and manual interpretation of 
mass-specters gave the identifications listed in 
Table 4. 

RESULTS 

Chemical 

Between 2 and 100 organisms were collected for 
each sample. The derivatization mixture was found to 
give a clear solution of all samples except for ostracods 
and copepods, where the shell was to some degree 
resistant to this acidic treatment. The 1 : 1.5 extraction 
from acidic methanol with hexane was found to give 
good extraction of esterified fatty acids and other non- 
polar organic compounds. No quantitative measure- 
ments of extraction efficiency were made. Blank sam- 
ples showed only few minor peaks, 0.1 to 0.5 area %, 
present at  retention times coinciding with some of the 
major peaks, except for the first 2 variables where 
contamination in blank samples did exceed 10 %. 
Fig. 1 shows the 5 chromatograms from the selected 
groups; peaks selected for SIMCA analysis are marked 
on the chromatogram for copepods (Fig. 1 E). There 
was an ample amount of organic material present in 

each sample. The peaks selected for SIMCA analysis 
have been identified using HRGC-mass spectrometry. 
Table 4 gives the peak numbers and the identifications 
found by using a Fatty Acid Methyl Ester (FAME) 
(Supelco 5436) standard and an HP 5985A HRGC-MS 
and the library search option available on this. From 
the preliminary sampling and analysis, the number of 
organisms to collect in each separate sample was 
determined (Table 1). 

Twenty-two peak areas for selected peaks found in 
all 35 chromatograms of the 35 samples analysed were 
used for multivariate analysis. 

Multivariate and biological 

The data from the chemical analyses were ordered 
by samples in a matrix where the samples were 
described by 22 peaks found in all 35 samples. The 
data are raw data in that they are not given as concen- 
trations. 

The 35 samples may be divided into 5 classes of 
taxonomic groups as described in Table 1. From the 
preliminary data matrix, 2 variables were deleted 
because they had retention times which coincided with 
peaks found to have high concentrations in some of the 
blank runs (Var. No. 1 & 2). From this set of data, 
consisting of 35 samples (objects) and 20 parameters 
(variables), a principal component model for the total 
class data set and one for each of the 5 separate classes 
was constructed. Table 2 lists the number of principal 
components, the amount of variance described for each 
separate class, and number of samples in the 5 classes 
together with the total class. The amount of variance 
described as systematic varies between 33 % and 62 % 
for the single classes. This was to some degree 
expected. The different objects (samples) may be sam- 
ples consisting of different species. The number of 
principal components that are statistically significant 
in the total class is 4. These 4 significant, i.e. cross 
validated, principal components describe 65 % of the 
variance in the total class. If the number of statistically 
significant principal components is compared to 
Fig. 2 A, where the objects are plotted in Principal 
Components 1 and 2, it is seen that there are 4 visually 
different groups of objects present. This shows that the 
principal component model constructed for a number 
of statistically significant principal components, deter- 
mined by cross validation, does in fact describe a 
feature present in the data matrix. Two groups of 
objects are separated only poorly in the plot (Fig. 2 A).  
The same feature is present for the variable loading 
plot (Fig. 2 B).  

From the total class model the classification of one of 
the objects preliminarily assigned to the polychaete 
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Fig. 2. (A) Principal component plot of total 
class (Class 6) of all 5 object groups collected. 
Objects are marked with numbers. MF: 2 or 
more objects positioned on top of each other. 
Class boundaries illustrate classes and must not 
be taken as confidence intervals. (B) Plot of 
variable loading values in Eigenvectors 1 and 2. 
Group boundaries illustrate only and do not 
indicate mathematical boundaries. (C) Plot of 
variable loadings for Class5 (copepods) in 
Eigenvectors 1 and 2. Group boundaries only 
illustrate groups as described in text. Only those 
variables with visible grouping have been 

drawn 
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class was also suspected to be wrong. SIMCA analysis 
of the disjoint, i.e. separate, classes showed that 1 
polychaete sample chromatogram had been mis- 
placed, and was in fact a copepod sample chromato- 
gram. This is also a point to be made. Of the objects 
analysed by SIMCA, one of each of Classes l 
(nematodes), 4 (ostracods) and 5 (copepods) are from 
the preliminary sampling. The chemical analysis must, 
therefore, be considered highly reproducible in the 
context described here. Table 3 lists the class residual 
standard deviation at 2 levels of confidence for each 
separate class and the object residual standard devia- 
tion together with the principal component scores used 
in Fig. 2. The residual standard deviation of each sam- 
ple may b e  compared to the confidence intervals for its 
class using the appropriate levels of confidence (RSD- 
max., p = 0.05 & p = 0.01). From Table 3 it is seen that 
Object 4 (NEM 4)  in Class l (nematodes) and Ob- 
ject 60 (COP 4) in Class 5 (copepods) may be consi- 
dered as outliers of their assigned classes. We have 
chosen to retain these samples within the assigned 
classes as they did not fit any other class, had only 
slightly larger residual standard deviation (RSD) than 
the critical value (Class RSD, p = 0.01) (Table 3), did 
not influence the visual class boundaries (Fig. 2),  and 
because the number of samples in each separate class 
were relatively low already (Wold et al. 1981). Apart 
from these samples it was found from the principal 
component analysis of the total class (Class 6) that 
Samples 2 & 3 (NEM 2 & NEM 3) and Objects 8 & 11 
(POL 1 & POL 4) fell outside the total class with 
p = 0.01, i.e. 99 % confidence interval. These samples 
have not been deleted. The total class is not 
homogeneous and the outliers only show that the 

model for the total class does not describe all the 
information in the class even though the number of 
components is significant. The 4 samples are also 
clearly members of their own classes (Table 3). Table 5 
shows the class distances between the 5 classes. All the 
values are well above 3.0, showing that there is suffi- 
cient difference between the natural non-polar chemi- 
cal compound patterns in all classes to differentiate 
samples consisting only of these 5 taxonomic groups. 
Fig. 2 A shows that for 3 of the classes a visual inspec- 
tion is enough to classify the objects. For the classes of 
ostracods and nematodes the class distance, although 
22.2, is not so easily seen in the 'window' of Principal 
Components 1 and 2 which we have selected. 

Fig. 2 B shows the variable loading plot from the 
SIMCA analysis of the total data matrix, in the axis of 
Principal Components (Eigenvectors) 1 and 2, and 
classifies variables into 4 (5) groups. Comparing vari- 
able group positions in Fig. 2 B with the classes of 
objects in Fig. 2 A it is seen that variables are sepa- 
rated into groups similar to the classes. These variable 
groups have been tabulated in Table 6. Fig. 2 C shows 
a similar variable loading plot for the copepod class 
where the number of statistically significant principal 
components was 2. Three groups of variables have 
been plotted, the rest are left out to simplify the plot 
and interpretation, but have been included in calcula- 
tion of principal components. 

DISCUSSION 

Chemical analysis of fatty acids by total derivatiza- 
tion using 2N HC1 in anhydrous methanol has previ- 

Table 5. Class distances between groups of samples (classes) calculated using the class distance method available in the SIMCA 
program 

Class Nema- Poly- Oligo- Ostra- 
todes chaetes chaetes cods 

Cope- 
pods 

Nematodes (1) 1 7.6 12.4 21.6 22.2 
Polychaetes (2) 7.6 1 7.4 14 .6  43.2 
Oligochaetes (3) 12.4 7.4 1 42.2 50.8 
Ostracods (4) 21.6 14.6 24.2 l 13.7 
Cope pods (5) 22.2 43.2 50.8 13.7 1 

Table 6. Variable numbers tabulated according to the class they describe best. For compound identification compare with Table 1 

Class 1 Class 2 Class 3 Class 4 Class 5 
Nematodes Polychaetes Ol~gochaetes Ostracods Copepods 

11 14 1 6 1 6  4 13 5 
15 17 2 8 9 7 
18 20 3 10  12  19  
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ously been used with success on fish eggs (Knutsen et 
al. unpubl.). The method is simple, rapid and selective 
for non-polar compounds and fatty acids. In addition, 
the one-step procedure of derivatization and extraction 
in test tubes requires little handling and therefore 
almost entirely excludes contamination possibilities. 
Quantitative analysis of extraction efficiency indicates 
that there is some difference in extraction of fatty acids 
from the methanolic mixture (Grahl-Nielsen pers. 
comm.). This is considered not to influence the results 
reported here as the SIMCA method relies on the 
description of relative composition, and the extraction 
efficiencies are expected to be the same for a given 
fatty acid in all samples. The data used were not 
corrected for amount of initial sample. To avoid the 
first principal component describing only a quantita- 
tive variation (Wold et al. 1983a), it was decided to 
normalise the data by summing to 1 over each sample 
in the data set and then representing the variables as 
fractions. This approach, although applied extensively, 
has been criticized by several workers (Johansson 
1984) as it has the effect of 'closing' the data set. 
Closure gives erratic negative correlation between 
large and small variables. Several, more or less effec- 
tive, methods have been described for minimizing the 
problem of closure (Johansson et al. 1984, Grahl- 
Nielsen pers. comm.), but there seems to be no agree- 
ment on a uniform method. It was tried analysing the 
data without normalising, but this led to the models 
obtained describing the different classes less well than 
when the data had been normalised. 

The principal component analysis of the 5 sample 
classes together and as separate classes shows that it is 
possible to distinguish visually and chemically 
between the taxonomic groups by using non-specific 
non-polar and fatty acid compounds analysed by a 
simple chemical method. This agrees with previous 
work by Bobbie & White (1980) and Findlay & White 
(1983), where specific indicator fatty-acids were used 
to characterize benthic microbial societies, and by 
Boon et al. (1978) and Federle et al. (1983), who used 
specific fatty acids as marker molecules in sedimentary 
environments. 

The amount of variance in the total class described 
as statistically significant, using 4 principal compo- 
nents, is only 65 %. This implies that 35 % of the 
variance in the total class is non-systematic. This may 
again be the result of the samples in the 5 'subclasses' 
consisting of different species. 

Principal component analysis uses the variance/ 
covariance matrix relation (Massart & Kaufman 1983) 
and the variables grouped together in the variable 
loading plot (Fig. 2 B, C) are highly correlated. These 
groups of variables are likely to be a result of chemical 
CO-occurrence of variables in different sample classes 

(Massart & Kaufman 1983 p. 9, Wold et al. 1984). 
Fig. 2 B, and the interpretation suggested in the results 
and in Table 6, indicate that to separate the 5 classes it 
would only have been necessary to use 5 variables. 
This applies, however, only to the model of the total 
class, and considering that there were 5 individual 
'sub-classes' present and that the intention was to 
develop a method of classifying and identifying sam- 
ples in an even more complex sample type (lobster 
stomachs), it was decided not to delete any variables. 
We suggest that grouping of this type may in future 
studies be used to select variables of interest for distin- 
guishing between classes of animals, or for investiga- 
tion of sample composition (Wold et al. 1983). This may 
be considered a supplement to chemical identification 
of special fatty acids of taxonomic interest by other 
methods such as those of Bobbie & White (1980). 

The number of statistically significant principal 
components in the individual classes (Class 1 to 4) 
being 1, and Class 5 (copepods) being 2 (Table 2), 
suggests that there are most likely small analytical 
variations or possibly non-resolved subclasses present 
within each separate taxon grouping as we have 
defined them here. The copepod class (Class 5) was 
found to have 2 statistically significant principal com- 
ponents. This class has therefore been selected to 
examplify variable plot interpretation of a single class. 
Fig. 2 C, the variable loading plot for the copepod 
class, where only those variables which have a visible 
grouping pattern have been plotted, suggests 3 groups 
of variables to show covariance in this class. The group 
consisting of Variables 2, 3, 5, 6, 7 and 10 are fatty 
acids with chain lengths from C15 to C18. The group 
consisting of Variables 9, 17 and 18 is a mixed group 
consisting of 1 unsaturated fatty acid (C-18 : 2) and 2 
compounds tentatively identified as alkene/alcohol. 
We suggest from this variable covariance and the 
chemical identification in Table 4 that the groups of 
variables have chemical compositional information. 
The variable loading plot used in this way for 1 class is 
suggested to contain information on the natural group- 
ing or predominant CO-occurrence of the fatty acids 
grouped together in glycerides and membrane struc- 
tures. The indicated negative correlation between 
these 2 groups of variables (containing Variables 2, 3, 
5, 6 ,7  and 10, and Variables 9, 17 and 18, respectively), 
visualised by their positioning on each side of Princi- 
pal Component 2 (Esbensen pers. comm.), suggests 
that there might be 2 different biochemical processes 
each responsible for the grouping of these fatty acids in 
the copepods. The problem of closure leading to erratic 
negative correlation between large and small vari- 
ables (Johansson et al. 1984) demands cautious 
interpretation of variable loading plots of normalised 
data. The group comprising Variables 1, 15, 19 and 20 
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is positioned intermediate between the 2 other groups. 
The composition of this group suggests that there is 
some process which correlates the short chain 
branched C-15 : 0 fatty acid to the longer chain C-20 : 1 
and C-21 : 0  fatty acid. The simple chemical method 
applied does not allow conclusions at this level, but 
does indicate the potential of SIMCA pattern recogni- 
tion for metabolic studies. 

Multivariate analysis in marine ecology 

Ecological science is multivariate and interdiscipli- 
nary. The identification and classification of environ- 
mental conditions and knowledge of the effect these 
have on organism groups is often necessary. Using 
multiscience approaches, e.g. chemical and biological 
methods, in combination with multivariate statistical 
analysis techniques might allow both slmple and rapid 
identification of the influence of environmental condi- 
tions (geographical variations) on the natural composi- 
tion/metabolism of organisms. Previous work has 
shown that specific groups of the eukaryotic commun- 
ity in sediments may be assayed by measuring specific 
fatty acids (Findlay & White 1983). We have recently 
used non-polar compounds and fatty acids to classify 
cod Gadus morhua and haddock Melanogrammus aeg- 
lefinus eggs from Day 1 and Day 8 after fertilization 
(Knutsen et al. unpubl.). 

In marine ecology the effect of pollution from differ- 
ent sources on organisms and organism societies is a 
major problem. Recent work has shown that low level 
chronic pollution influences the natural fatty acid pat- 
tern of blue mussels (Grahl-Nielsen et al. 1983) and 
cod Gadus morhua (Grahl-Nielsen pers, comm.). The 
pattern of paraffinic hydrocarbons in blue mussels col- 
lected from different areas at different seasons has 
been analysed by using pattern recognition tech- 
niques, and the influences of oil pollution and seasonal 
changes have been shown by Kwan & Clark (1981). 
Application of SIMCA, level 3 and 4, PLS (partial least 
squares, 'multivariate calibration') (Wold et al. 1983a, 
b),  in dose-response investigations should allow for 
investigating synergistic effects of different pollutants 
on the chemical response of organisms. The recent 
increased use of multivariate analysis in biological 
sciences (Reddin & Burfitt 1983, Shearer 1983, Meng & 
Stocker 1984, McGurk 1985) and work at our 
laboratories (Biological Station at Fladevigen and 
Center for Industrial Research) have shown that 
natural biological systems may be studied with success 
using pattern recognition at several levels (Albano et 
al. 1978) on both physical, biological and chemical 
parameters. 

This also opens the way to closer cooperation 

between sciences. The interdisciplinary nature of 
ecological investigations suggests that general mul- 
tivariate methods of data treatment capable of hand- 
ling together data from different sciences, e.g. biologi- 
cal and chemical parameters, in describing complex 
systems should come to more use. We are currently 
applying the SIMCA method to several areas in marine 
ecologyhiology. Fish egg quality has importance both 
in aquaculture rearing and in determining the viability 
of fish eggs collected in the field. The complexity of 
this determination, involving chemical composition 
analysis and biological measurements, has led us to 
experiment with multivariate pattern recognition. 

To investigate if there might be stationary organ- 
isms, apart from and more tolerant towards pollution 
than mussels, which may be used as indicator organ- 
isms for pollution tracing and/or pollution source iden- 
tification in the marine environment, we are presently 
working to Identify the trace element and organic 
compound accumulation pattern and the natural fatty 
acid pattern of several species using the pattern recog- 
nition method described. 

CONCLUSION 

We suggest that it should be possible to obtain ade- 
quate amounts of organic material from as little as ' / 3  to 
' /S  the number of organisms collected. 

The present results show that use of simple and rapid 
chemical methods gives information on the classifica- 
tion of infauna groups when multivariate pattern rec- 
ognition is used on the non-specific natural chemical 
position. The method applied contains information at 
several levels both with respect to marine biology, 
pattern recognition by SIMCA, and in chemistry. 
Groups of infauna may be 'mapped' chemically. The 
possible occurrence of several species in samples does 
not influence the classification of broad taxon groups 
as used here. It is likely tha t  refined pattern recogni- 
tion may be applied in mapping chemotaxonomically 
subspecies groups. Variable loading plots of the total 
class give information on which variables are respons- 
ible for the differentiation between groups. The possi- 
bility that variable loading plots of separate classes 
contain groups of variables (compounds) grouped 
according to biochemical and metabolic occurrence 
suggests that this method might be useful as a method 
for identifying chemotaxonomically specific com- 
pounds and of obtaining information on changes 
occurring in metabolism during different situations of 
environmental stress. 
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