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INTRODUCTION

During the past decades, research on benthic food
webs has focused on the relative importance of detritus
versus bacteria in the diet of benthic macrofauna
(Lopez & Levinton 1987), while the effect of macro-
fauna on the bacterial community has received less
attention (Kemp 1990). However, some results indicate
that deposit-feeders, such as polychaetes, can either
control or stimulate bacterial biomass and activity
directly by predation or indirectly by bioturbation
(Moriarty et al. 1985, Grossmann & Reichardt 1991,
Reichardt et al. 1991). Studies analyzing how marine
deposit-feeders affect microbial variables focused on
diverse species of crustaceas, holothurias and mol-

luscs. Few reports deal with polychaetes (Aller &
Yingst 1985, Duchene et al. 1988, Reichardt 1988,
Plante et al. 1989, Grossmann & Reichardt 1991, Plante
& Jumars 1993, Steward et al. 1996, Plante & Shriver
1998, Phillips & Lovell 1999). Among polychaetes, data
dealing with the deposit-feeder and borrowing
Hediste (Nereis) diversicolor (O.F. Müller) are scarce.
However, this polychaete causes substantial changes
in oxygenation and redox potential of surficial and bur-
row-lining sediments that may have a significant effect
on the bacterial assemblages (Esselink & Zwarts 1989,
Gilbert et al. 1994). For instance, denitrification rates
increased in surface sediments with H. diversicolor
colonies and activity of chemolithotrophic bacteria was
stimulated in burrows (Gilbert et al. 1994). Lucas &
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Bertru (1997) demonstrated that >80% of ingested
sediment bacteria disappeared in the H. diversicolor
midgut (MG) via bacteriolysis. Lysis in the MG and
regrowth in the hindgut (HG) of diverse bacterial
strains may occur at different rates, thus altering the
bacterial community composition of feces and of sur-
rounding sediments (Plante & Shriver 1998). However,
field studies supporting this hypothesis are needed.

A few studies have examined the impacts of deposit-
feeding infauna on microbial community structure
using either cultivation techniques (Findlay & White
1983, Duchêne et al. 1988) or analysis of phospholipid
fatty acid (PLFA) profiles (Dobbs & Guckert 1988a,b,
Steward et al. 1996, Phillips & Lovell 1999, Bird et al.
2000). Cultivation techniques have drawbacks be-
cause isolates typically represent less than 1% of nat-
ural bacterial communities (Amann et al. 1995). The
use of cultivation-independent techniques based on
nucleic acid and/or PLFA analyses avoids this bias.
However, many of these techniques are time consum-
ing, not quantitative, and sometimes data complexity
constitutes substantial challenges for analysis. There is
a clear need for methods that can be used to rapidly
examine microbial community structure. One simple
approach is to separate bacteria into easily recogniz-
able groups such as free-living (FLB) and attached
bacteria (AB) (Pedros-Alio 1989). Using molecular
techniques, differences in the taxonomic structure
between FLB and AB assemblages have been demon-
strated in the water column (Delong et al. 1993, Acinas
et al. 1999, Crump et al. 1999, Selje & Simon 2003).
PCR-based techniques, such as cloning and DGGE
profiles, allow the analysis of dominant species in the
total community. While avoiding PCR biases, 5S rRNA

profiles directly address the distribution and relative
abundance of dominant active members of bacterial
community (Höfle 1992), since the amount of RNA is
well correlated with the growth rate of bacteria (Kemp
et al. 1993). Closely related organisms usually have 5S
rRNA of the same size, which allows a resolution at the
genus level (Höfle 1992). 5S rRNA analysis has been
successfully applied to study the community dynamics
of bacterioplankton (Höfle 1992, Bidle & Fletcher 1995,
Höfle et al. 1999).

Developing methods to understand how the poly-
chaete Hediste diversicolor influences bacterial com-
munity structure is important as this worm may affect
the activity and occurrence of key functional groups
within benthic ecosystems. Bacteria in marine sedi-
ments control most biogeochemical cycles and benthic
food web dynamics (Azam et al. 1983). To understand
how lysis and regrowth in the deposit-feeder diges-
tive’s tract and bioturbation, resulting from burrowing
activity, may affect the structure of bacterial communi-
ties, we studied the temporal and spatial distribution
and structure of FLB and AB in gut contents of H.
diversicolor and in bioturbated sediments. The taxo-
nomic structure of active members of these 2 bacterial
groups was directly analyzed using 5S rRNA profiles.

MATERIALS AND METHODS

Study site. The salt marsh was situated in the Bay of
Mont St Michel, France (48° 40’ N, 1° 40’ W). Adult
worms (n = 10) were collected on October 9, 1995 by
digging in a tidal channel. Digestive tracts of 5 worms
were divided into MG and HG, and dissected as in
Lucas & Bertru (1997). Five Hediste diversicolor were
also left to fast for 12 h in order for their feces to be col-
lected. Gut samples and feces from 5 worms were
pooled in order to count bacteria in ingested sediments.

Sediment samples were collected in the tidal chan-
nel on October 9, 1995 (O95) and January 17, May 23,
August 27 and October 4, 1996 (J96, M96, A96, O96,
respectively). Surficial sediments were sampled (6 g at
0 to 1 cm deep): (1) on the border of the channel, out-
side the Hediste diversicolor bed and called ‘Outside’
(i.e. not bioturbated by H. diversicolor); and (2) inside
the worm bed and called ‘Inside’ (Fig. 1). Burrow walls
were sampled (1 g) by digging up a block of sediment
at low tide and scrapping the sediment from the bur-
row wall (0 to 3 mm) using a sterile spatula; these sed-
iments were called ‘Wall’ (Fig. 1). Samples were placed
in sterile bags on ice for transport to the laboratory.

Bacterial counts. FLB and AB were extracted from
3 replicate subsamples of the homogenized gut, feces
and sediment samples. FLB were extracted from sam-
ples (complete sample for the gut and feces, 1 g for out-
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Fig. 1. Hediste diversicolor. Location of outside, inside and 
wall sediments in the drainage channel
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side and inside sediments and 0.3 g for wall sediment)
by washing with 10 ml of sterile artificial seawater.
After agitation for 10 min at 150 rpm, the sediment
slurry was centrifuged 15 min at 500 g. Supernatants
were kept for direct counts and RNA extraction of FLB.
AB were extracted from sediment pellets according to
Lucas et al. (1996). Briefly, the pellets were sonicated
for 10 min with 200 mg of Chelex 100 (Bio-Rad) and
10 ml of 0.1% sodium deoxycholate and 2.5% PEG
6000 solution. After centrifugation, supernatants were
kept for direct counts and RNA extraction of AB. Bac-
teria in supernatants were stained with acridine
orange and were counted using an epifluorescence
microscope (Hobbie et al. 1977). Counts were reported
as average number per g of dry sediment (DW). Statis-
tical comparison of densities was conducted using mul-
tivariate analysis of variance and Tukey’s multiple
comparison tests (Statgraphics, Manugistics).

5S rRNA extraction and labeling. The small amount
of sample we collected from the burrow wall and gut
contents did not allow us to obtain enough cells for
RNA extraction. As a consequence, RNA was only
extracted from outside and inside samples. FLB and
AB were collected from supernatants by centrifugation
for 10 min at 10 000 × g. RNA was extracted from bac-
terial biomass according to Tsai et al. (1991), slightly
modified by adding 20% polyvinylpolypyrolidone at
the beginning of the procedure. Crude extracts were
then purified using Qiagen-100 columns (Qiagen SA).
One to 4 µg of total RNA was mixed with 10 µl of
buffered T4 RNA-ligase (0.5 U µl–1, Pharmacia) and
were 3’-end labeled with 10 µCi (0.37 MBq) of [5’-32P]-
cytidine 3’,5’ diphosphate (specific activity: 3000 Ci
mmol–1, Amersham), according to England et al.
(1980). Samples were kept overnight at –20°C, then
they were precipitated with ethanol.

Separation of 5S rRNA and quantitative analysis.
Radioactively labeled 5S rRNA was separated using
denaturing high power electrophoresis on a 10% poly-
acrylamide gel (Sequigel electrophoresis: 380 × 800 ×
0.4 mm, Bio-Rad) according to Höfle (1992). Elec-
trophoresis conditions included stepwise increase over
5 h from 100 to 250 W. After electrophoresis, the gel
was fixed in 1% acetic acid for 30 min, washed with
distilled water and air dried. 5S rRNA profiles were
revealed by exposure to X-ray film for 30 min to sev-
eral hours. Some samples failed to give band profiles:
outside sediment from October 1996 and inside sedi-
ment from August 1996 for FLB assemblages; outside
sediment from January 1996 for AB.

5S rRNA profiles were standardized and analyzed
using Gelcompar (Applied Maths, BVBA) computer
software. The relative number of nucleotides and the
intensity of each 5S rRNA band was estimated by ref-
erence to standards (Escherichia coli 5S rRNA) and
the relative intensity of each band per sample was
calculated as percentage of total band intensity (area
under the densitometric profile). For diversity and
similarity analyses, only bands with relative intensity
>4% were used. Complete profiles are given in Table
1. Each band of different size is considered as an
operative taxonomic unit (OTU). Specific diversity
was estimated using the Shannon index (Shannon &
Weaver 1963):

where N is the total intensity of 5S rRNA per sample
and ni the intensity for each band (Lucas 1997, Höfle et
al. 1999). The Shannon index increases with the num-
ber of species and is balanced by the frequency of each
species (Shannon & Weaver 1963).
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Sediment Bacteria Date 121 120 119 118 117 116 115 114 113 112 111 109

Outside FLB O95 40 10 40 5 5
M96 56 28 15 1 10
A96 8 18 23 44

AB O95 40 47
M96 54 46
A96 29 19 23 30
O96 39 61

Inside FLB J96 9 58 33
M96 29 64 8
O96 36 42 22

AB M96 38 35 16 1 3 1 5
A96 18 16 18 48
O96 41 52 7

Table 1. Relative intensity of 5S rRNA bands (percentage of the total amount of 5S rRNA sample) for free-living (FLB) and
attached bacteria (AB) in outside and inside sediments, in October 1995 (O95) and January (J96), May (M96), August (A96) and 

October (O96) 1996. Each band represents an operational taxonomic unit (OTU)
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Similarity between samples was calculated using the
Sorensen index (Cs; Sorensen 1948), where j is the
number of common bands, and a and b the number of
bands in the samples A and B: Cs = 2j/(a+b). A
Sorensen value of 1 is expected for identical samples
and 0 for dissimilar samples. The Sorensen matrix was
compared to binary matrices for the sediment type, the
bacterial assemblage and the date. Using the software
Fstat 2.9.3.1 (Goudet 1995), partial correlation of the
matrices was performed with the Mantel test and a
Monte Carlo procedure (5000 permutations) was used
to determine statistical significance (Manly 1991).

RESULTS

Bacterial densities in the digestive tract of 
Hediste diversicolor

As shown in Fig. 2A, FLB densities from inside sedi-
ment (4.2 × 108 cells g–1) were 27 times lower than AB
densities (115.1 × 108 cells g–1). For both bacterial groups,
densities were significantly (n = 24, p < 0.01) lower in the
MG samples versus inside sediment (Table 2). Selection
and/or digestion of bacteria resulted in a decrease of
81% for FLB densities and 88% for AB densities in MG
(Fig. 2A, Table 3). When comparing HG versus MG, re-
sults differed between FLB and AB, with a significant
(n = 24, p < 0.01) increase (55%) for FLB and decrease
(95%) for AB (Tables 2 & 3).

In feces, bacterial abundances were not significantly
different from densities in HG samples (Table 2). The
increase of AB (42.3%) in the feces was not significant
(n = 24, p > 0.05) due to high SD (Tables 2 & 3).

Percent of FLB and AB in digestive tract of 
Hediste diversicolor

Attached bacteria dominated (94 to 97%) the bacter-
ial community in inside sediment and the MG. How-
ever, the relative proportions of FLB and AB shifted in
the HG and feces, with AB representing only 40 to
48% of the bacterial community (Fig. 2B). FLB content
was significantly (n = 24, p < 0.01) higher in the feces
and the HG, while AB densities were significantly (n =
24, p < 0.01) higher in inside sediment and MG than in
HG and feces (Table 2). There was no significant dif-
ference between HG and the feces for both bacterial
fractions (Table 2).

Bacterial densities in outside and inside sediments

Bacterial densities from outside, inside and wall
sediments are reported in Fig. 3. FLB densities ranged
from 0.7 to 16.2 × 108 cells g–1 (Fig. 3A) and AB densi-
ties ranged from 36.7 to 284.2 × 108 cells g–1 (Fig. 3B).

Seasonal variations

FLB concentrations increased in January 1996
(16.2 × 108 cells g–1) and May 1996 (9.6 × 108 cells g–1)
in the inside sediments. In outside sediments, FLB
densities peaked in May 1996 (11.9 × 108 cells g–1) and
for the wall sediments, the FLB abundances were
higher in August 1996 (Fig. 3A). FLB densities in May
1996 were significantly higher than in October 1995
and 1996, and August 1996 (Table 4). Percentage of
FLB significantly increased in January and May 1996
and was highest in May 1996 (n = 42, p < 0.01).
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Fig. 2. (A) Bacterial density (108 cells g–1 DW) and (B) relative
contribution in percent of free-living (FLB) and attached (AB)
bacteria in inside sediment, midgut (MG) and hindgut (HG)
content, and feces of Hediste diversicolor. Error bars denote 

SD (n = 3)

Bacteria Sediment

Density AB HG Feces < MG < Sediment
FLB HG < Feces MG < Sediment

Percent AB HG Feces < MG Sediment
FLB Sediment MG < Feces HG

Table 2. Variance analysis and Tukey’s test (n = 24, p < 0.01)
of densities and percent of free-living (FLB) and attached 
(AB) bacteria in inside sediment, midgut (MG) and hindgut
(HG) contents, and feces of Hediste diversicolor. No signifi-
cant difference was found between the underlined groups
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AB densities increased in October 1995 and August
1996 in the 3 sediments, with maximum densities
ranging from 76.5 to 283.6 × 108 cells g–1 (Fig. 3B). The
lowest densities were reported in January 1996 with
39.6 × 108 cells g–1 in outside sediment, 36.7 × 108 cells
g–1 in inside sediment and 49.9 × 108 cells g–1 in burrow
walls. AB increase in October 1995 and August 1996
was significant (Table 4). The percent of AB was
significantly higher in October 1995, August 1996 and
October 1996 (n = 42, p < 0.01; Table 4).

Differences between sediments

In outside sediments, the FLB densities ranged from
2.3 to 16.2 × 108 cells g–1 (Fig. 3A). Densities were
lower in inside sediments (0.3 to 11.9 × 108 cells g–1)
and burrow walls (0.3 to 8.3 × 108 cells g–1). FLB densi-
ties were significantly higher in outside sediments
than inside and wall sediments (Table 4). There was no
significant difference between the FLB abundances
from inside and wall sediments. However, the percent-
age of FLB was significantly lower in wall sediments
than inside sediments (Table 4).

AB densities were the highest in burrow walls (49.9 to
284.2 × 108 cells g–1) and outside sediments (39.6 to
246.0 × 108 cells g–1). AB abundances were lower in in-
side sediments, ranging from 36.7 to 115.1 × 108 cells g–1

(Fig. 3B). AB densities from inside sediments were
significantly lower than from wall and outside sediments
(Table 4). The percentage of AB was significantly higher
in the burrow walls and significantly lower in the outside
sediments (Table 4).

Analysis of 5S rRNA profiles from
outside and inside sediments

Fig. 4 shows the contribution of
bands with a relative intensity >4% to
each profile. FLB and AB were charac-
terized by a low number of OTUs as
indicated by the number of bands of
different size (in average 2 to 5 bands

per sample; Fig. 4). Analysis of 5S rRNA profiles are
limited to the active part of the community, which may
explain the low number of OTUs observed in our sedi-
ment samples. In all the samples, a total of 12 different
bands was recognized, ranging from 109 to 121
nucleotides (nt) in size. Major bands contained 115 to
121 nt (Fig. 4). The Shannon index of 5S rRNA profiles
varied from 0.96 to 1.98. As reported in Table 5, the
FLB assemblage had a higher average Shannon index
(1.77 ± 0.05) than AB (1.32 ± 0.47) in the outside sedi-
ment. However, in the inside sediment, the average
Shannon index was lower for FLB (1.34 ± 0.16) than for
AB (1.60 ± 0.28). There was no significant difference
between FLB and AB (ANOVA: F1,12 = 0.27, p = 0.61),
there was no significant difference between outside
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Fig. 3. (A) Number of free-living (FLB) and (B) attached (AB)
bacteria in outside, inside and burrow wall sediment, accord-

ing to the sampling date. Error bars denote SD (n = 3)

Difference between 2 samples FLB AB

Midgut content vs inside sediment –80.7 –87.5
Hindgut vs midgut content 55.0 –94.5
Feces vs hindgut content –4.8 42.3

Table 3. Change in proportion of free-living (FLB) and
attached (AB) bacteria densities along the digestive tract of
Hediste diversicolor (difference between average density of 

Sample 1 in comparison to Sample 2)

Bacteria Sediment Season

Density FLB Wall Inside < Outside O96 O95 A96 J96 M96

AB Inside < Outside Wall J96 M96 O96 < A96 O95

Percent FLB Wall < Inside < Outside O96 O95 A96 < J96 < M96

AB Outside < Inside < Wall M96 < J96 < O96 A96 O95

Table 4. Variance analysis and Tukey’s test (n = 42, p < 0.01) of densities and
percent of free-living (FLB) and attached (AB) bacteria in outside, inside and
burrow wall sediments. Underlined groups do not show significant differences



Aquat Microb Ecol 32: 165–174, 2003

and inside sediments (F1,12 = 0.16, p = 0.69). The inter-
action between the bacterial fraction and the sediment
type was not significant (F3,12 = 4.00, p = 0.08). Given
the low number of samples, the validity of the statisti-
cal tests has to be taken with caution.

The structure of FLB and AB assemblages was com-
pared using the Sorensen index (Table 6). To simplify
the analysis, we used the Mantel test. However, these
results have to be interpreted with caution because of
the low number of samples being compared. Also, the
Mantel test masked the dynamic aspect of the assem-
blages. For the structure of both FLB and AB, there was
a significant difference between outside and inside

sediments (Table 7). However, in August 1996, AB as-
semblages from inside and outside sediments shared
similar structures (Sorensen index of 0.75; Table 6).

There was no significant correlation between the
bacterial structure and the sampling date (Table 7).
The structure of AB assemblages seemed more stable
over the time period sampled than the FLB fraction,
especially in outside sediment. In this sediment, the
117 and 118 bp OTUs dominated the AB community at
each sampling date (Fig. 4). When comparing samples
of the same sediment on different dates, AB Sorensen
indices varied from 0.57 to 1.00, while FLB Sorensen
indices ranged from 0.00 to 0.75 (Table 6).

The structure of FLB assemblages
was not different from the structure of
AB assemblages (Table 7). AB and FLB
structure mostly differed in low molec-
ular weight bands (109 to 116 nt),
which appeared in January and May
(Fig. 4, Table 1). In August and Octo-
ber, the FLB and AB assemblages were
dominated by medium size bands (117
to 120 nt) or high molecular weight
bands (121 nt). The Sorensen matrix
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Fig. 4. 5S rRNA profiles for free-living and attached bacteria in (A,B) outside and (C,D) inside sediments, respectively. The rela-
tive contribution of each band per sample is expressed as a percent of the total amount of 5S rRNA in the sample (bands <4% are 

not represented). The size of the bands is expressed in nucleotides (nt)

Sediment Bacteria O95 J96 M96 A96 O96 Average ± SD

Outside FLB 1.82 nd 1.73 1.75 nd 1.77 ± 0.05
AB 1.35 nd 1.00 1.98 0.96 1.32 ± 1.47

Inside FLB nd 1.30 1.19 nd 1.54 1.34 ± 0.16
AB nd nd 1.70 1.82 1.29 1.60 ± 0.28

Table 5. Overall diversity, expressed as Shannon index of free-living (FLB) and
attached (AB) bacteria in outside and inside sediments based on 5S rRNA 

community fingerprints. nd: not determined
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showed that FLB and AB similarity varied with the
sampling period, for example in October 1995, FLB
and AB structure were very dissimilar (Table 6).
Sorensen indices comparing FLB to AB structures
ranged from 0.25 to 0.75 in outside sediments and 0.57
to 1.00 in inside sediments.

DISCUSSION

In the Bay of Mont St Michel, the polychaete Hediste
diversicolor is among the most abundant macroinver-
tebrates in the salt marsh drainage channels (field
observation). This worm has various feeding strate-
gies, including deposit-feeding (Esselink & Zwarts
1989). As a deposit-feeder, H. diversicolor may have a
great impact on the microbial community by grazing
sediment bacteria.

Most sediment bacteria are attached to sediment
grains or other large particles (Dye 1983, Ellery &
Schleyer 1984, Ozawa & Yamaguchi 1986), which
makes them more available to macrofaunal grazers
(Plante & Shriver 1998). In our study, we found that AB
represented 76.9 to 99.2% of the total bacterial com-
munity in sediment inside the worm bed. In the diges-
tive tract of Hediste diversicolor, we observed that
81% of FLB and 88% of AB were removed in the MG
in comparison to surficial sediment. This finding is in
agreement with previous studies reporting removal of
more than 50% of total bacteria with each passage
through the gut of various polychaetes (Cammen 1980,
Duchêne et al. 1988, Grossmann & Reichardt 1991,
Lucas & Bertru 1997). Our data also allowed a differen-
tiation between digestive and post-digestive pro-
cesses. The number of FLB showed a 55% increase in
the HG compared to the MG, while AB continued to
decrease. As a result, the prevalent bacterial fraction
in the HG and feces shifted to FLB.

The variation of bacterial densities through the gut
may have different reasons: (1) sediment sorting;
(2) digestion; and (3) bacterial growth and contribution
by the gut flora (Dobbs & Guckert 1988b, Plante et al.
1989). Sediment sorting may have played a significant
role in altering the bacterial community as Hediste
diversicolor enriches its intake in organic matter versus
inorganic sediment particles (Gunnarsson et al. 1999).
However, such a process will enrich the bacterial com-
munity in the animal gut (Lopez & Levinton 1987) and
not decrease the bacterial densities. Bacterial digestion
can certainly explain the decrease we observed since
high bacteriolytic activities were measured in the MG
of H. diversicolor (Lucas & Bertru 1997). A shift in the
relative proportion of FLB and AB in the H. diversicolor
HG can be explained by a rapid growth of FLB using
digestion products (Plante et al. 1989) or by AB becom-
ing free after the action of digestive enzymes. Differ-
ential fate of FLB versus AB in the gut could be
explained by taxonomic differences, although there is
no clear consensus on this matter in the literature (Hol-
libaugh et al. 2000). Differential lysis of diverse bacte-
rial taxa has been reported previously. Plante &
Shriver (1998) demonstrated in vitro that Gram-
positive bacteria are more resistant to bacteriolysis by
Arenicola marina MG fluids, and some studies have
demonstrated in situ changes of bacterial community
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OFLO95 OFLM96 OFLA96 OAO95 OAM96 OAA96 OAO96 IFLJ96 IFLM96 IFL096 IAM96 IAA96

OFLM96 0.44
OFLA96 0.44 0.75
OAO95 0.25 0.86 0.57
OAM96 0.29 0.67 0.67 0.80
OAA96 0.44 0.5 0.75 0.57 0.67
OAO96 0.29 0.67 0.67 0.80 1.00 0.67
IFLJ96 0.25 0.29 0.29 0.00 0.00 0.00 0.00
IFLM96 0.00 0.29 0.29 0.33 0.40 0.57 0.40 0.00
IFL096 0.50 0.57 0.57 0.33 0.40 0.57 0.40 0.33 0.67
IAM96 0.22 0.50 0.50 0.29 0.33 0.75 0.33 0.00 0.57 0.57
IAA96 0.44 0.50 0.75 0.29 0.33 0.75 0.33 0.29 0.57 0.86 0.75
IAO96 0.50 0.57 0.57 0.29 0.40 0.57 0.40 0.33 0.67 1.00 0.57 0.86

Table 6. Sorensen index of free-living (FL) and attached (A) bacteria from outside (O) and inside (I) sediments in October 1995 
(O95), January (J96), May (M96), August (A96) and October (O96) 1996

Factor R p

Sediment 0.426 0.010
Sampling date 0.110 0.238
Bacterial assemblage 0.023 0.544
Bacterial density 0.058 0.777

Table 7. Partial correlation (Mantel test, n = 78) between the
Sorensen matrix and bacterial, spatial and temporal data. 

Values in bold represent significant correlation (p < 0.05)
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structure between ingested sediment, guts and feces
(Duchêne et al. 1988, Dobbs & Guckert 1988b).

The changes in bacterial community structure that
we documented in the Hediste diversicolor digestive
tract may also affect the bacterial diversity in sur-
rounding sediments. The effect depends on the abun-
dance, feeding rate and digestive efficiency of deposit-
feeders, relative to the bacterial growth rates (Plante &
Shriver 1998). Biotic processes, such as irrigation activ-
ity, material translocation and mucus secretion by the
polychaete, as well as abiotic processes, such as wave
action, sediment reworking, organic matter deposition,
groundwater seeping, seasonal variation of sediment
pH, temperature and moisture, can also overshadow
the effect of gut processing.

In our study, the most pronounced impact of Hediste
diversicolor on the sediment bacterial community
appeared in the burrow wall. The proportions and
densities of AB in the lining of H. diversicolor were sig-
nificantly higher than in outside and inside sediments.
The dominance of AB in the burrow wall was probably
due to the adhesive capacities of the mucus that cover
its body and the burrow walls. Moreover, mucus secre-
tion and excretion of urea and ammonium by the worm
may also stimulate the growth and activity of bacteria,
together with its irrigation activity (Reichardt 1988).
Investigation of burrow microbial community structure
was complicated by the small amount of material sam-
pled. However, the 5S rRNA profiles that we obtained
from total RNA extraction (not divided into FLB and
AB) showed that the burrow wall community was sta-
ble over time and different from assemblages in out-
side and inside sediments (Lucas 1997). In terms of
physico-chemical characteristics, infaunal burrow
walls are fairly stable environments compared to the
more frequently disturbed sediment/water interface
(Steward et al. 1996). This stability over time allows for
the development of complex microbial biofilms (Stew-
ard et al. 1996, Phillips & Lovell 1999). It leads to the
formation of microbial communities fundamentally dif-
ferent from the nearby surface and subsurface sedi-
ments, with substantial bacterial diversity and high
bacterial densities and growth rates (Steward et al.
1996, Dobbs & Guckert 1988a).

In surficial sediments, disturbance due to Hediste
diversicolor burrowing and movement, as well as sedi-
ment mixing by physical processes (tidal or wave
action, ripple migration) could have major impacts on
densities and taxonomic structure of FLB and AB frac-
tions. These processes may activate or stimulate the
bacteria that would otherwise be slow growing or dor-
mant (Findlay et al. 1990). In our study, FLB and AB
densities were significantly lower in inside sediment
than in outside sediment. We found it difficult to sepa-
rate H. diversicolor activity or seasonal changes versus

tidal flow within the channel or other disturbance to
explain the changes in bacterial densities. Grain size
analysis of outside and inside samples did not show
any significant differences (data not shown). However,
the high densities of bacteria in the undisturbed creek
bank sediments may be explained by groundwater
seepage, which is likely responsible for the 2 to 3 times
higher carbon and nitrogen concentrations measured
in the groundwater of the channel border compared to
the channel water (Troccaz 1996). These nutrient rich
conditions surely contributed to the difference in
inside sediment situated in the middle of the channel.

FLB and AB densities in outside and inside sedi-
ments did not covary, suggesting that these 2 fractions
responded to different environmental factors. The
structure of the AB assemblages in the channel sedi-
ment seemed more stable throughout the year than the
FLB structure. Attachment to particles may provide a
more stable environment and protection against proto-
zoan and meiofaunal grazing. Moreover, biofilms that
cover surfaces also provide the opportunity for devel-
oping stable mutualistic interactions among the micro-
biota.

There was no taxonomic difference between the
2 fractions in the channel sediments. Other studies
using fingerprinting methods (5S rRNA profiles and
16S rDNA DGGE profiles, respectively) also reported
that FLB and AB assemblages in estuarine waters were
similar (Bidle & Fletcher 1995, Hollibaugh et al. 2000,
Selje & Simon 2003). These 2 assemblages of bacteria
should be considered as interacting entities. Many
exchanges can occur between these 2 groups via
adsorption and desorption phenomena (Bright &
Fletcher 1983, Karner & Herndl 1992). However, sev-
eral studies using cloning methods suggest high taxo-
nomic differences between FLB and AB assemblages
(Delong et al. 1993, Acinas et al. 1999, Crump et al.
1999). The discrepancy between these reports may
come from methodological biases, resulting in the
analysis of different subsets of the total bacterial
community. Firstly, these studies often used different
methods to separate FLB from AB (Selje & Simon
2003). Secondly, fingerprint bands of similar position
may represent completely different clones. Other
important factors in determining the relative composi-
tion of AB and FLB assemblages may be the composi-
tion of the particle organic matter (Hollibaugh et al.
2000) and/or the ratio of organic and inorganic mater-
ial in the sample (Selje & Simon 2003). The huge vari-
ation in similarity indices between FLB and AB assem-
blages that we found according to the sampling date
may also be explained by variation in the quality of the
organic matter.

This study showed that in sediment, FLB and AB can
also be considered as interacting populations that have
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different dynamics in response to the presence of
Hediste diversicolor and seasonal variation. Separation
of FLB and AB was useful in studying the relationship
between sediment bacteria and macrofauna. However,
further studies will help to elucidate the relative impor-
tance of abiotic versus biotic effects on spatial and tem-
poral distribution of bacteria and the taxonomic struc-
ture of the sediment bacterial community. Estimation
of bacterial production and rate of sediment turn-over
due to H. diversicolor feeding and defecation will also
be useful for knowing how important these processes
are in regulating bacterial densities and structure.
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