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Background
Health technology assessment often requires the
evaluation of interventions which are implemented
at the level of geographical area or health service
organisational unit. Examples include health
promotion interventions implemented in schools,
workplaces or neighbourhoods, screening pro-
grammes in health authority populations, and
healthcare interventions in general practices or
hospitals. Interventions like these are implemented
for clusters of individuals. Evaluation of cluster-
based interventions presents a number of diffi-
culties but some evidence suggests these are not
always addressed in an optimal manner.

Aims and objectives

This report describes a systematic review of
methods for evaluating cluster-based interventions.
There were three objectives:

• to review the methodological literature and
synthesise the findings into a checklist for
practical use

• to evaluate existing practice in healthcare
evaluation

• to present intraclass correlations for a range of
outcome variables at different levels of organisa-
tional clustering in order to provide information
for the design of future cluster-based studies.

Methods

• The review focused on methods for evaluating
health and healthcare interventions that are imple-
mented for clusters of patients or healthy individ-
uals. References were obtained by handsearching
journals, searching electronic databases, screening
cited references, contacting expert informants,
and searching the world wide web. Synthesis into 
a methodological checklist was by means of
qualitative judgements concerning validity.

• A review of seven health science journals in 
1996 yielded 56 papers reporting evaluations of
cluster-based interventions. Evaluation against the
checklist of methodological recommendations
identified the main departures from good practice.

• A database of intraclass correlations was com-
piled by analysing data from a variety of sources.

Methodological recommendations

The main methodological findings of the review
were synthesised into a 12-point checklist 
for investigators.

(1) Recognise the cluster as the unit of inter-
vention or allocation. It is important to
distinguish between cluster level and
individual level intervention, as failure 
to do so can result in studies which are
inappropriately designed or which give
incorrect results.

(2) Justify the use of the cluster as the unit of
intervention or allocation. For a fixed number
of individuals, studies in which clusters are
allocated are not as powerful as traditional
clinical trials in which individuals are random-
ised. The decision to allocate at cluster level
should be justified on theoretical, practical 
or economic grounds.

(3) Include a sufficient number of clusters.
Evaluation of an intervention implemented in
a single cluster will not usually give generalis-
able results. Valid designs should include a
control group not receiving the intervention.
Both intervention and control groups should
include enough clusters to allow the effect of
intervention to be distinguished from natural
variability among clusters. Studies with fewer
than four clusters per group are unlikely to
yield statistically significant results, and more
clusters will be required if relevant inter-
vention effects are small.

(4) Randomise clusters wherever possible. 
The need for randomisation is generally
accepted in the evaluation of individual level
interventions but randomisation of clusters 
has not been practised as often as it should 
be in the evaluation of cluster-based inter-
ventions. Because of the risk of bias, use of
quasi-experimental or observational designs
should always be justified.

(5) In non-randomised studies include a control
group. When randomisation is not feasible, 
a control group should be included. Each

Executive summary
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group should include a sufficient number of
clusters (see point 3). The clusters allocated
to groups should be stratified for important
prognostic factors so far as possible (see point
8) and a wide range of confounders should 
be measured. Outcome variables should be
measured before and after the intervention.

(6) In single group studies include repeated
measurements over time. Sometimes it is not
feasible to include a control group, as, for
example, when a new policy is implemented 
at national level. In this case, repeated assess-
ments should be made both before and after
the intervention in order to control for
secular changes in the outcome.

(7) Allow for clustering when estimating the
required sample size. The total number of
individuals required can be estimated by
multiplying the result of a standard sample 
size calculation by the design effect. This will
require an estimate of the intraclass corre-
lation coefficient, which should be obtained
from previous studies.

(8) Consider the use of pairing or stratification 
of clusters where appropriate. Cluster-based
evaluations often include small numbers of
clusters, and simple randomisation is unlikely
to yield groups that are balanced with respect
to cluster level baseline characteristics. Stratifi-
cation or pairing of clusters according to
characteristics that are associated with the
outcome may reduce error in randomised
studies and reduce bias in non-randomised
studies. Limitations of the paired, or matched,
design are underappreciated.

(9) Consider different approaches to repeated
assessments in prospective evaluations. Either
cohort or repeated cross-sectional designs may
be used to sample individuals in studies with
follow-up. The cohort design is more applic-
able to individual level outcomes, and may
yield more precise results but is more suscep-
tible to bias. The repeated cross-sectional
design is more appropriate when outcomes
will be aggregated to cluster level; it is usually
less powerful but is less susceptible to bias.

(10) Allow for clustering at the time of analysis.
Standard statistical methods applied to
individual level outcomes should not be used
because they will give confidence intervals
that are too narrow and p values that are too
small. There are three valid approaches to
analysis: cluster level analysis, in which the
cluster means or proportions are used as units
of analysis; adjusted individual level analysis,
in which standard univariate statistical
methods are adjusted for the design effect;

regression methods for clustered data, which
allow for both individual and cluster level
variation (hierarchical analysis). When the
number of clusters is small, cluster level
analysis will be most appropriate because
between-cluster variation cannot be estimated
with sufficient precision to implement
analyses at the individual level. Regression
methods for clustered data will usually be
required for non-randomised designs.

(11) Allow for confounding at both individual 
and cluster level. Standard multiple regression
methods are not appropriate. Use of regres-
sion methods for clustered data will allow the
incorporation of both individual and cluster
level confounders in the analysis. This
approach will increase precision in random-
ised studies and reduce bias in non-
randomised designs.

(12) Include estimates of intraclass correlation and
components of variance in published reports.
In order to provide information that may be
used to estimate sample size requirements 
for future studies, estimates of the intraclass
correlation coefficient should be included 
in published reports.

Case study: a review of seven
health science journals
A review of 56 papers reporting evaluations of
cluster-based interventions from seven health science
journals showed that the present level of adherence
to the methodological recommendations of the
review was low. The main departures from recom-
mendations were the evaluation of interventions in
small numbers of clusters, and the incorrect use of
standard methods for individual level analysis.

A database of intraclass
correlation coefficients
In order to provide information which may be used
in the design of future studies, the report presents
intraclass correlation coefficients and components
of variance for a range of outcomes in five areas:
cardiovascular and lifestyle, cancer, respiratory,
health service activity, and other. For community-
based studies, data are presented for individuals
clustered at the level of household, postcode 
sector and district and regional health authority.
For healthcare-based studies, data are presented 
for clustering at the level of general practice,
hospital, district health authority and family 
health services authority.

Executive summary
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Areas and organisations as 
clusters of individuals
Healthcare interventions are often implemented at
the level of organisation or geographical area rather
than at the level of the individual patient or healthy
subject. For example, screening programmes are
delivered to health authority populations; health
promotion interventions might be delivered to
towns, workplaces or schools; general practitioners
(GPs) deliver services to general practice popu-
lations; and hospital specialists deliver health care to
clinic populations. Interventions at area or organis-
ation level are delivered to clusters of individuals.

Rationale for cluster-based studies

Traditional clinical epidemiological approaches 
to healthcare evaluation have regarded the
individual subject as the unit of intervention 
and analysis, as, for example, in a clinical trial to
evaluate the efficacy of drug treatment. In area-
wide and organisation-based evaluations (cluster-
based evaluations) the unit of intervention is a
geographical or organisational cluster. There are
both theoretical and practical reasons why
intervention and evaluation at area or 
organisation level may be appropriate.

Individuals do not exist in isolation. Changes in
health policy or health service organisation and
practice are usually implemented within areas and
health organisations and not at individual level.
Evaluation at area or organisation level is
appropriate from a theoretical perspective.1–5

From a practical perspective, there are several
reasons why cluster-based evaluation may be
appropriate. An intervention may necessarily affect
all members of a geographical area.6 Examples are
a regional trauma centre directed at the catchment
population of a region or use of an advertising
campaign to reduce smoking prevalence. Even
when individual allocation is feasible, there may 
be ethical problems associated with treating some
subjects within clusters differently to others.1–5,7–13

In some instances, it may not be convenient from
an administrative or political viewpoint to allocate
members of the same organisation to different

intervention groups.2,6,9,11 For example, in a study to
evaluate a dietary intervention for schoolchildren,
it will usually be easier to allocate clusters, such as
classes or schools, rather than allocate pupils within
the same school to different dietary choices. In
studies of general practice, GPs may be unwilling to
randomise individual patients, so randomising GPs
themselves becomes more feasible for political and
practical reasons.14 Cluster-based evaluation is also
more convenient if there is no sampling frame
from which individuals may be selected.

Cluster-based evaluations provide opportunities 
to include cluster level outcomes and cluster level
confounding variables,15,16 this is not usually
possible in studies with individual level allocation.

Use of cluster-based evaluation may reduce
contamination between intervention groups.4,7,13,17

Contamination can be a problem if individuals
within the same community are randomised to
different groups, particularly when blinding is
impossible. Conversely, ‘contamination within
clusters’ is beneficial in the context of community-
wide evaluations.2,4 Subjects in the same cluster
tend to mix, and as a consequence the intervention
is diffused more efficiently. The success of an
intervention may rest upon the ability to change
the behaviour of the cluster overall.

Cluster-based evaluations can be more cost-effective
than trials in which the intervention has been
applied to individuals.1–3,5–7,9,16,18–21

Problems of cluster-based studies

Cluster-based evaluations are often appropriate for
theoretical, practical or financial reasons, but this
type of evaluation presents special problems which
need to be addressed before a study can produce
valid, generalisable results.

There are three main methodological problems
associated with cluster-based evaluation:

• the level of intervention may differ from the
level of evaluation

• there may be a small number of units of
intervention (clusters)

Chapter 1

Introduction
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• outcomes of individuals are often correlated
within clusters.

Distinction between cluster level and
individual level evaluation
A basic problem in cluster-based evaluation is that
the level of intervention is often different from the
level of measurement (Table 1). Donner and Klar11

observed that cluster level interventions present a
less serious problem to investigators when inferences
from evaluation are intended at cluster level,
because each cluster can then be considered as 
the individual unit of observation or analysis. For
example, the consequences of different methods 
of funding primary care services might be evaluated
according to whether certain types of practice had
better practice facilities. Cluster level interventions
are often designed to modify individual level out-
comes. For example, a study might aim to determine
whether setting up a general practice diabetic 
clinic resulted in better blood glucose control in 
the practice’s patients. In this instance intervention
is at cluster level but inferences are intended at
individual level.11 This leads to the ‘unit of analysis
problem’, where standard individual level analyses
are performed inappropriately in a cluster-based
intervention study. Whiting-O’Keefe and colleagues
found that this type of error was present in 20 out 
of 28 healthcare evaluations which they studied.22

Designing studies with small numbers 
of clusters
Area-wide and organisation-based evaluations
typically include only small numbers of clusters. 
For example, the North Karelia Project5 included
one intervention and one control region, the
Stanford project included five cities,24 and a recent
evaluation of a regional trauma centre included
one intervention and two control regions.25 The
total number of individuals included in each of

these studies was large. However, when cluster level
interventions are being evaluated, the power of the
study is determined more by the number of clusters
than by the number of individuals in the study. One
of the challenges presented by cluster-based evalu-
ations is to determine how studies may be designed
most efficiently using small numbers of clusters.

Correlation of outcomes within clusters
Standard statistical methods are based on 
the assumption that individual responses are
independent of one another. In the context of
organisation level evaluations, responses are 
rarely independent because areas and organisations
tend to contain individuals who are more similar 
to each other than they are to individuals in other
areas or organisations. In other words, because
individual responses usually show some correlation
within clusters, variation between clusters is greater
than variation within clusters.11,12,22 There are at least
three reasons why this might be the case.12,26–28

Firstly, subjects may select the cluster to which they
belong. For example, a patient’s choice of general
practice may be associated with characteristics such
as age, gender or ethnic group. Secondly, cluster
level variables might influence all cluster members
in a similar direction and each cluster will be subject
to distinct influences. For example, patient
outcomes may differ systematically among surgeons.
Thirdly, individuals within clusters may interact,
influence each other and thus tend to conform, as,
for example, when individuals within a school class
respond to a health promotion message.

The degree of correlation between individuals
depends on the type of cluster and the nature of
the outcome variable. In general, because members
of the same cluster are unlikely to be independent
with respect to health outcomes,29 standard statis-
tical methods for calculating sample sizes, assessing

TABLE 1 Comparison of levels of intervention and levels of evaluation 

Level of evaluation Level of intervention

Individual Area or organisation

Individual Example: Does treatment with Examples: Does setting up a nurse run asthma clinic 
β interferon decrease morbidity improve patient health outcomes? Does providing a 
from mutiple sclerosis? baby-friendly environment in hospital increase 

mothers’ success at breast-feeding?

Area or organisation Examples: Do smoking control policies increase 
the proportion of smoke free work places? Do 
fundholding general practices develop better 
practice facilities than non-fundholders?

Source: adapted from McKinlay23
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power and analysing data are not appropriate for
use in cluster-based evaluations. Because the
variance of the outcome is inflated by between-
cluster variation, use of standard methods will
result in the required sample size being under-
estimated, and the significance of the intervention
will be overestimated. In other words, standard
sample size calculations will result in studies with
insufficient power to detect an intervention effect
and standard statistical tests will tend to reject the
null hypothesis too often.

Each individual in a cluster randomised study
contributes less information than for a study in
which the subjects themselves are randomised. For
this reason the decision to use clusters as the unit
of intervention should always be explicitly justified
in study proposals and reports.9,12,13

Aims and objectives
The aim of the project was to conduct a systematic
review of methods for evaluation of area-wide and
organisation-based interventions.

Specific objectives
The specific objectives of the project were to:

• produce a systematic methodological review,
synthesised into a set of methodological
guidelines

• present an evaluation of existing practice in
healthcare evaluation so as to identify the main
departures from good practice

• present estimates of between-cluster variation 
for a range of outcome variables at different
levels of organisational clustering.
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The systematic review has been shown to be 
an important tool for analysing and present-

ing evidence of the effectiveness of interventions 
by pooling results from randomised trials, and 
for establishing associations of risk factors with
disease outcomes by pooling the results of
observational studies. Systematic reviews have 
only recently come to be used in the analysis 
of methodological problems, and there are
presently no standard guidelines for the con-
duct of methodological reviews. Scientific 
strategies must still be applied, however, to 
avoid error and bias.30

Three characteristics distinguish the approach 
to methodological systematic reviews:

• Methodological reviews have a broad focus, 
and it is important to chart the subject area 
of the review in order to ensure that 
important aspects of the problem are 
not neglected.

• Because the focus for the review is broad, 
a systematic search will usually generate 
a large number of citations of varying 
relevance and degree of overlap. Some 
selection must be made so that the final 
review is based on a smaller number of 
key references.

• Finally, qualitative methods of synthesis are
required, so that methodological information
can be assembled into a narrative review 
which includes a succinct set of
recommendations.

Hutton and Ashcroft recently discussed how
systematic reviews can best be carried out.31

They pointed out that a fully comprehensive 
review is rarely feasible, and they recommended
that reviewers should use approaches that are
relevant to the purpose of the review. The main
purpose of our review was to provide guidance 
for optimal practice in the design, conduct and
analysis of evaluation of healthcare interventions 
at area and organisation level. We emphasised
relevant methodological developments. There 
are areas with some relevance to the focus of the
review, for example the design and analysis of
complex surveys, which were not reviewed in 
detail. This was because we judged that these 

were not areas which needed to be evaluated 
in depth in order to meet the purposes of the 
review. Similarly, we judged that it was neither
necessary nor feasible to attempt a fully 
systematic review of methodological literature 
in multilevel modelling.

Definition of focus for 
the review
The review focused on methods for evaluating
health or healthcare interventions that are
implemented for clusters of patients or healthy
individuals. We aimed to include methods
appropriate for both experimental studies 
and observational evaluations of existing 
services. We did not aim to investigate quali-
tative methods nor methods of health 
economic evaluation.

We charted three main areas for the review. 
Under study design we considered issues relating 
to randomisation, design of non-randomised
studies, sample size and power calculations,
stratification and matching, and methods of
sampling individuals within clusters. Under 
analysis we considered methods of univariate
analysis at the individual and cluster level,
hypothesis testing and estimation, approaches 
for stratified or paired designs, and methods 
for controlling for confounding variables at 
the individual and cluster levels. We considered
each of these issues for different types of data,
including continuous, binary, ordinal, and time 
to event data. Finally we considered a number 
of issues relating to the conduct of cluster-
based evaluations.

Search strategy

The search was restricted to English language
papers on the grounds that including non-English
language papers greatly increases the difficulty 
and cost of a review.32

Initial searches were biased towards papers
published in journals, but all other sources of
knowledge were considered for inclusion in the

Chapter 2
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review, including books, newsletters, conference
papers and personal communications from 
key informants.

Multiple methods of ascertainment were used 
to identify relevant published work. The main
search methods used were handsearching,
computer-assisted searching, collection of rele-
vant cited work and papers recommended by 
key informants.

Personal collections
Initially we had available the authors’ personal
collections of references. Professor Allan Donner
also provided a personal collection of references.

Handsearches
Initial handsearches were made of the journal
Statistics in Medicine for the period January, 1992 
to July, 1996. A subsequent search was made of 
the following journals for the period July 1996 to
July 1997; Statistics in Medicine, American Journal of
Epidemiology, International Journal of Epidemiology,
Journal of Clinical Epidemiology, American Journal 
of Public Health, Journal of Epidemiology and
Community Health and the Journal of Community
Health. At the time of revision further searches 
of selected journals were continued up to
November 1998.

Electronic databases
The MEDLINE, EMBASE (Excerpta Medica) and
ERIC (Education Resources Information Centre)
databases were searched. While the first two are
biomedical databases, the ERIC database contains
material relevant to educational research. The
latter was included because early advances in
modelling data with a multilevel structure were
made in this field.

MEDLINE
We formulated a search strategy using papers which
were available from our personal collection and
from the handsearch. We identified those papers
that were included in MEDLINE for the years
1992–1996, and from the MEDLINE abstracts we
identified the most frequently used key words
(medical subject headings (MeSH)). They were
found to be cluster analysis, randomised controlled
trials, research design and statistical models. We
combined these with selected textwords and
applied the resulting search strategy to all available
years on MEDLINE from 1966 onwards. We
specifically searched for papers describing non-
randomised studies using ‘quasi-experiment’ and
‘non-randomised’ as text terms. The strategy used 
is shown in Box 1.

ERIC
The ERIC database, accessed via Brunel 
Learning and Information Services, was used 
to capture papers on random effects modelling 
or multilevel modelling as it is also known. Four
general terms were identified as potentially 
useful search terms and formed the cornerstone 
of the search strategy: multilevel model; random
coefficient model; hierarchical model; and
hierarchical linear model. Searches made in 
the ERIC database were for all papers containing
the specified terms in the title, abstract, notes or
descriptors. The full list of searches implemented 
is given in Box 2. Papers were selected for the 
study upon inspection of the titles and abstracts.
The ERIC database contains papers from 
1966 onwards.

BOX 1 MEDLINE search strategy

(1) Cluster analysis (MeSH)

(2) Randomised controlled trials (MeSH)

(3) Research design (MeSH)

(4) Statistical models (MeSH)

(5) – (1) or (2) or (3) or (4)

(6) Cluster (textword)

(7) Community (textword)

(8) Clusters (textword)

(9) Clustered (textword)

(10) Clustering (textword)

(11) Community (textword)

(12) – (6) or (7) or (8) or (9) or (10) or (11)

(13) – (5) and (12)

BOX 2 ERIC searches

(1) Multilevel model(s) or model(l)ing

(2) Random coefficient model(s) or model(l)ing

(3) Hierarchical linear model(s) or model(l)ing

(4) Hierarchical model(s) or model(ling)

(5) Multilevel, research design

(6) Random coefficient, research design

(7) Hierarchical, research design

(8) Multilevel, sample size

(9) Multilevel, design

(10) Random coefficient, sample size

(11) Random coefficient, design

(12) Hierarchical, sample size

(13) Hierarchical, design
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BIDS: Excerpta Medica (EMBASE), Science
Citation and Social Science Citation Index
The papers in the database at the time of the 
BIDS search were used to identify key textwords 
for searches. The search implemented in BIDS
(1980 onwards) was such that all papers containing
the search textword in the title or abstract were
retrieved along with those that were classified
under the same minor or major keyword. Over 
100 separate search terms were used, and for this
reason they are not all listed here. We specifically
searched the Science Citation Index, the Social
Science Citation Index and EMBASE for papers 
on quasi-experimental and non-randomised 
studies.

Internet searches
Some relevant materials were identified through
the world wide web. Ad hoc searches were carried
out with the objective of identifying appropriate
statistical software for cluster-based studies, mostly

through the web site of the Multilevel Models
Project (http://www.ioe.ac.uk/multilevel/).

Criteria for retrieval, validation
and synthesis
The search process identified a very large number
of potential papers for review. We initially inspected
the titles and abstracts to evaluate their relevance 
to the focus of the review. We went on to retrieve
relevant papers, each of which was reviewed for
validity. The primary reviewer was OU, secondary
reviewers were MG, SC and JS. Papers were assessed
against conventional epidemiological and statistical
principles, and qualitative judgements were made
of their validity. A narrative review was drafted in
which the methods proposed in the most relevant
and valid papers were recommended for adoption.
Our general approach could be classified as one 
of ‘best evidence synthesis’.33
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Healthcare interventions and 
experimental interventions
Designs used in health services research are 
usually classified using terminology borrowed 
from analytical epidemiology, but this terminology
cannot be used without ambiguity. Healthcare
interventions may be evaluated either in the
context of experimental studies, sometimes 
called intervention studies, or in the context of
observational designs. The former should be used
to evaluate new innovations while the latter are
more appropriately used to evaluate the quality 
of existing services. In its epidemiological sense 
the term ‘observational’ refers to studies in 
which there is no intervention. In order to 
avoid confusion, it is important to make the
distinction between healthcare interventions 
and experimental interventions. Observational
studies of healthcare interventions do not
incorporate experimental interventions initiated 
by the investigator. A conventional classification 
of epidemiological study designs is shown in 
Figure 1.

For both experimental and observational 
designs we are concerned with studies in which 
the unit of intervention or observation is a 
cluster of individuals, such as a geographical 
area or unit of health service organisation. For
intervention studies, clusters of individuals 
are included in groups which receive the 
same intervention.

Minimum number of clusters

Health services researchers are often asked to
evaluate interventions implemented in single
clusters. Typical examples include the evaluation 
of a regional trauma centre25 or The North Karelia
Project.5 This type of evaluation is sometimes
strengthened by including more than one control
cluster.25 A few commentators have suggested 
that a one-to-one comparison of clusters can be 
rigorous enough to generalise the results to 
a whole country or larger area so long as the
clusters are typical,3,5 but this type of study 
suffers from serious limitations.

Chapter 3
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FIGURE 1 A classification of study designs

Experimental

Non-randomised

Uncontrolled

Cannot allow for secular
changes in the outcome

Can allow for secular changes
in the outcome

Cannot exclude bias because
of non-random allocation

Effects of confounding may be
reduced by stratifying clusters
at the design stage and
controlling for baseline
prognostic factors in analyses

Controlled
before and after

Confounding with baseline
characteristics a major
problem

Randomisation avoids
systematic confounding by
known and unknown
factors

Secular changes evaluated
in control group

Baseline imbalances may be
reduced by matching or
stratification

For evaluations of
existing services

Selection biases
and confounding
important

Randomised

Observational
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The implementation of an intervention in one 
or a few clusters usually lacks generalisability and
provides a weak basis on which to generate findings
for policy formulation. If only one cluster is allo-
cated to each group the intervention effect cannot
be separated from the natural variability among
clusters.34 At least three or four clusters per group
will be required to provide sufficient degrees of
freedom to detect an intervention effect using
standard statistical methods applied at the cluster
level. Studies with as few as six35 clusters per group
have been used to demonstrate the effects of an
intervention, but more clusters will often be
needed, particularly when small intervention
effects are relevant. Even as many as ten clusters
per group may not be enough to estimate the
between-cluster variation with sufficient precision
to allow analysis at the individual level.

Generally a minimum of three or four clusters
should be allocated to each group if cluster level
analyses are intended, and ideally many more if
individual level analyses are intended. Researchers
need to advise health decision makers and service
providers that, although of local interest, evaluation
of interventions implemented in one or two clusters
is unlikely to yield decisive, generalisable results.

Example of an intervention implemented in one
cluster with a single control cluster: The North
Karelia Project36

The North Karelia Project was a community-based
cardiovascular disease control programme which
included one intervention and one reference
community in Finland. Each community was a
province with approximately 200,000 inhabitants.

Example of an intervention implemented in one
cluster with two control clusters: effectiveness of
a regional trauma system in reducing mortality
from major trauma25

This study evaluated the effect of an experimental
regional trauma centre on the survival of patients
with major trauma. The trauma centre and five
associated district hospitals in the West Midlands
were compared with two control regions in
Lancashire and Humberside.

Study design and validity

The validity of a study may be defined as the
degree to which the inferences drawn from it 
are correct.37 Two types of validity are recognised 
in relation to study design, internal validity and
external validity. Internal validity is the extent 
to which the estimate of intervention effect 

from a study is unbiased. External validity is the
extent to which an estimate of intervention effect
from a study may be generalised to a given 
target population.

The selection of clusters for inclusion in the 
study has an important bearing on the external
validity of a study. A study is more likely to give
generalisable results if it can be shown that the
units selected for study, and agreeing to partic-
ipate, were representative of the population of
units.38 Similarly, the intervention should be typical
of the one available to the target population. The
allocation of clusters to groups has an important
bearing on the internal validity of the study. 
When clusters have been randomly allocated to
intervention and control groups and the study has
been conducted carefully,39 the major sources of
bias should be avoided. Non-randomised study
designs on the other hand are inherently
susceptible to several biases.39,40

The major threats to the internal validity of a 
study are:41

• ‘history’: external events occurring between 
the pre- and postintervention measurements 
may influence the outcome in addition to 
the intervention

• ‘maturation’: the passage of time may bring
about changes in the experimental units
independent of the intervention

• ‘testing’: administering a baseline measurement
may alter the response to subsequent
measurements

• ‘instrumentation’: measures used to evaluate
outcomes may change over time, for example
because disease definitions change or because
observers or measuring instruments change

• ‘regression to the mean’: experimental units
selected on the basis of their extreme scores 
will tend to give subsequent scores closer to 
the average

• ‘selection bias’: occurs when different types 
of experimental units are recruited into 
different groups

• ‘differential attrition’: occurs when loss of
experimental units from groups is related 
to the intervention

• ‘selection maturation interaction’: occurs when
time-dependent changes vary systematically in
different types of experimental units.

The potential influence of each source of bias
should be considered carefully when appraising
studies which aim to evaluate the effectiveness of an
intervention. It is important to be aware that some
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study designs do not allow for control of particular
forms of bias (Table 2). For example, studies with a
single group will not usually permit control of the
influence of external events other than the
intervention (‘history’).

Experimental (intervention)
studies: randomised and 
non-randomised
In general, a valid experimental study design will
require two groups (intervention and control), with
measurements before and after the intervention, to
ensure that each source of bias may be controlled
(see Figure 1). Randomisation is the only method of
allocation that will control for unknown confound-
ers and is to be strongly advocated. When non-
randomised study designs are used, careful con-
sideration should be given to the extent to which
each form of bias might influence the assessment 
of intervention effect41,42 (Table 2).

In clinical or laboratory research, the subject
usually participates in a study at the invitation of
the researcher, and randomised studies may be
readily carried out. In ‘field’ settings, in which
many area- or organisation-based evaluations are
performed, the evaluator often participates at the
invitation of the commissioners or providers of
services, and it may be difficult to achieve random-
isation in this context.42 For this reason, some
attention is paid here to non-randomised designs.
Methods which were developed for sample size
estimation and analysis in cluster randomised
studies may also be adapted for application to 
non-randomised designs.

Non-randomised designs
In two monographs, Cook and Campbell42 and
Campbell and Stanley41 described several non-
randomised designs and outlined the biases to
which they are susceptible. They made a distinction
between pre-experimental and quasi-experimental
designs,41 arguing that pre-experimental designs
are unlikely to provide valid evidence for the
effectiveness of an intervention, while quasi-
experimental designs may be sufficiently 
resistant to bias to provide valid evidence 
under some circumstances.

Pre-experimental designs
One-group post-test-only design
In this design, observations are made after an
intervention. Because observations are not made
before the intervention, it is not certain that the
intervention has resulted in change. Because there
is no control group, allowance cannot be made for
secular changes resulting from maturation, or from
the effects of external factors other than the inter-
vention. This design has very limited application 
in quantitative research, but interpretable inform-
ation may sometimes be obtained from detailed
qualitative case studies.43

Example of one-group post-test design: evaluation
of total purchasing pilots in England and
Scotland.43 This study evaluated 52 first-wave total-
purchasing pilot (TPP) schemes. Evaluation was 
by means of interviews with key informants and
analysis of hospital episode statistics. There was 
no control group of practices not in TPP schemes,
and no data were obtained from participating
practices before entry to the TPP schemes. The

TABLE 2 Classification of non-randomised study designs according to number of groups and timing of observations, and major sources 
of bias

Number of groups Observations Potential major sources of bias

Intervention group only After Selection and attrition of sample; maturation effects;
external influences on outcome

Before and after Maturation effects; external influences on outcome;
effects of testing; secular change in outcome assessment

Interrupted time series External influences on outcome; secular change in 
outcome assessment

Intervention group After Maturation effects; selection and attrition of sample
and non-equivalent Before and after Residual selection bias; interaction of selection and 
control group maturation; regression to mean

Interrupted time series Residual selection bias; interaction of selection and 
maturation; regression to mean

Source: adapted from Campbell and Stanley41
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study presented an analysis of the reported
achievements of TPP schemes.

Post-test-only design with non-equivalent
control group
In this design, observations are taken after the
intervention, in an intervention group and a 
non-equivalent control group. Because baseline
observations are not taken, differences in the
outcome between groups may be interpreted 
either in terms of selection bias or the effect of
intervention. Results obtained using this design 
are usually uninterpretable,42 and the design is 
not considered further here.

One-group, pretest post-test design
Observations are made in one group before and
after an intervention. There are several reasons 
why it may not be justified to presume that changes
in the outcome are the result of the intervention.
There may be secular changes in the outcome
caused by maturation of the subjects or by other
external factors; regression to the mean may
sometimes be important; previous experience of
the test might influence subsequent scores; and
definitions of the outcome measure may change
over time. A control group should be included 
in order to limit these potential biases.42

Example of one-group pretest post-test design:
changes in population cholesterol concentrations
and other cardiovascular risk factor levels after 
5 years of the non-communicable disease inter-
vention programme in Mauritius.44 A population-
wide intervention programme promoting a 
healthy lifestyle was implemented in the island 
of Mauritius. Population surveys were carried 
out before the intervention in 1987 and after in
1992. Comparison of the prevalence of hyper-
tension, cigarette smoking, alcohol consumption,
physical activity and serum cholesterol concentra-
tions from the two surveys showed favourable
changes. It was concluded that lifestyle intervention
projects can have positive effects. This interpret-
ation was plausible but the study suffered from the
obvious weakness that there was no information
available concerning what would have happened
without the intervention.

Quasi-experimental designs
Quasi-experiments evaluate the effect of an
intervention on the outcome for different groups
but do not use randomisation to create the
comparisons from which the effects of intervention
are inferred. The basic problem in interpreting
quasi-experimental studies is to separate the effects
of intervention from the initial non-comparability of

the groups.42 Two basic types of quasi-experimental
design can be distinguished, non-equivalent group
designs and interrupted time series designs.

Non-equivalent group designs
Cook and Campbell42 used the term non-equivalent
group design to describe studies in which there are
two or more experimental groups which are not
formed through randomisation. The simplest form
of non-equivalent group design includes inter-
vention and control groups, with observations
made before and after the intervention in both
groups. By including an untreated control group,
this design avoids some of the limitations of the
one-group pretest, post-test design. Secular changes
resulting from maturation and external factors may
be estimated, as may the effects of regression to the
mean, repeated testing and changes in methods of
outcome measurement. The main threat to validity
comes from bias in selection to the intervention
and control groups. Post-test differences in out-
come may be adjusted for baseline measures by
using analysis of covariance. However, because
measurements will usually be made with error,
adjustment is likely to be incomplete. In addition,
the extent of the secular trend may be dependent
on baseline factors. In other words there may be 
an interaction between selection factors and the
secular trend. Finally, there may be unknown or
unmeasured confounders which may bias the
outcome comparison.

Example of non-equivalent group design: effects 
of the Heartbeat Wales programme over 5 years 
on behavioural risks for cardiovascular disease.45

In this study, a health promotion programme was
implemented in Wales, starting in 1985, with the
aim of improving modifiable behavioural risks for
cardiovascular disease. A comparison was made
with a reference area (North East England) which
was chosen because it was the part of the UK most
similar in sociodemographic and health profile to
Wales at the 1981 census. Data were collected by
means of cross-sectional surveys carried out in the
intervention and reference areas in 1985 and 1990.
Analysis was by comparison of 15 self-reported
indicators of dietary choice, smoking, frequency 
of exercise and weight between areas. Community
level analysis was achieved by comparing nine
district health authority areas in Wales with the 
four counties in the reference area. There were
positive changes in outcomes in both areas but no
net intervention effect comparing the two areas.
Contamination, that is, the possibility that publicity
in Wales affected the North East, is a possible
explanation for these findings. Note that the effect
of intervention is completely confounded by
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underlying differences between Wales and the
North East England.

Interrupted time series designs
In the interrupted time series design, multiple
observations are made before and after an inter-
vention is implemented.42 The comparisons which
are used to gauge the effect of intervention are
made within a single group, and the ‘control’
observations are those made before the inter-
vention is implemented. This design allows secular
changes resulting from maturation or regression to
the mean to be estimated before the intervention 
is implemented. The use of repeated measure-
ments before and after the intervention should 
also allow testing and instrumentation effects to 
be controlled. As a general rule, studies with three
or fewer observations both before and after the
intervention are unlikely to give conclusive results.

This design does not allow for the effect of ‘history’,
but if a non-equivalent control group is also includ-
ed then this design will also allow for more rigorous
control of external influences on the outcome. The
design can be further elaborated to include removal
of the intervention or repeated application of the
intervention. Obtaining repeated measurements
may be costly if primary research is used, but if
routinely collected data are used, then the problems
of incompleteness and changing definitions over
time may complicate interpretation.

Example of a single group interrupted time series
design: the benefit of seat belt legislation in the
UK.46 This study evaluated the effectiveness of
legislation enforcing the wearing of seatbelts at
reducing road accident fatalities. Legislation was
introduced in early 1983. Annual mortality data 
for road accident deaths in England and Wales
were analysed for 7 years before and 5 years after
the introduction of the legislation (i.e. from 1977
to 1987). No obvious effect of the intervention 
was apparent.

Example of an interrupted time series design with
several groups: family credit and uptake of school
meals in primary school.47 In 1988, families receiv-
ing Family Credit as a welfare benefit in England
lost their right to receive free school meals. This
study examined the effect of this policy change 
on the uptake of school meals by children from
families receiving Family Credit in comparison 
with children from families receiving Income
Supplement, and those receiving no benefits. 
Data from annual cross-sectional surveys were
analysed for the years 1982 to 1993. The change 
in legislation resulted in an immediate drop in

uptake of school meals by Family Credit children 
of about 30%. Uptake of school meals in Income
Supplement children and children not receiving
benefits did not show a marked change.

Limitations of quasi-experimental studies
In quasi-experimental studies, differences in either
the intervention effect or the secular trend may
result from confounding by differences between
the groups. Even after controlling for confounding
at the time of analysis, residual confounding and
unknown confounders may bias assessment of the
effects of intervention. For this reason, randomised
designs are to be preferred in health technology
assessment, and convincing justification should
always be given for the use of non-randomised
designs. If randomisation is not feasible, then the
effects of confounding can be reduced by using
restricted forms of allocation, that is by matching
or stratification of clusters which are allocated to
the intervention and control groups (see later).

Randomised designs

The purpose of randomisation is to ensure
preintervention comparability of study groups.
When units are randomly allocated to groups, the
groups will be similar on average, and it can be
inferred that differences in the outcome are likely
to be caused by the intervention. In itself random-
isation is not sufficient to ensure that estimated
intervention effects are measured without error or
bias. This will also depend on other features of the
design, conduct and analysis of the study39 which
are included in checklists for the reporting of
intervention studies.38

Under the completely randomised design (or
unrestricted randomisation) clusters from a 
single pool are allocated to groups.10 Unrestricted
allocation is appropriate when there are many
clusters available to be allocated.10,11 A weakness 
of the approach is that when there are few clusters,
treatment groups are likely to be unbalanced with
respect to baseline characteristics.11 Restricted
allocation may then be used to reduce the extent 
of baseline imbalances.10

Example of cluster randomised study with
unrestricted randomisation: effects of diet and
exercise in preventing NIDDM in people with
impaired glucose tolerance – the Da Qing Impaired
Glucose Tolerance and Diabetes Study.48 In this
study among 110,660 men attending 33 health
centres, 577 were identified as having impaired
glucose tolerance (IGT). Subjects with IGT were
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randomised by clinic either to a control group 
or one of three intervention groups: diet only,
exercise only, or diet and exercise. Subjects were
followed up at 2 yearly intervals for 6 years to
determine whether they developed non-insulin-
dependent diabetes. Analysis by clinic showed 
that each of the intervention groups differed
significantly from the control clinics.

Restricted allocation

Under restricted allocation, clusters are first divided
into strata according to prognostic characteristics.
For example, electoral wards might be stratified
according to indicators of social deprivation.
Clusters are then allocated to groups within strata.
The paired design is a special case of the stratified
design in which there are only two clusters per
stratum and one cluster is allocated to each group.
In paired designs the clusters are individually
matched, while in stratified designs they are
matched for broader categories.49 The paired design
is often referred to as the matched-pairs design.

Stratification of cluster units in randomised studies
is designed to give intervention groups that are
more evenly balanced with respect to prognostic
variables. This is particularly important in cluster-
based studies, which typically include small
numbers of clusters, and baseline imbalances 
may result by chance. Restricted allocation has 
the effect of increasing statistical power by making
estimates of the outcome more precise.11,12,15,50–52

Restricted allocation can also be used to reduce
bias in non-randomised studies.51,52 Murray stated
that non-random assignment of a small number of
poorly matched or unmatched units to each group
is inadvisable and should be avoided.53 The Min-
nesota Heart Health Program provides an example
of a quasi-experimental pair-matched study.54

Clusters should only be stratified on variables 
that are highly correlated with the outcome of
interest.10,34,50,51,55 Baseline values for the outcome
variable will often be a useful stratifying factor if
data are available.8 In community intervention
studies, it is fairly common to match on variables
for which routinely collected data are available
such as geographical proximity, cluster size, urban-
isation or socioeconomic indicators. Unfortunately
it may be difficult to anticipate which variables will
be related to the outcome of interest. If the stratify-
ing variable is not associated with the outcome,
then the potential benefits of restricted allocation
will not be realised and stratification will add un-
necessary complexity to study design and analysis.

Paired designs
Under the matched-pairs design, clusters are
individually matched in pairs with respect to base-
line characteristics that are associated with the out-
come, and one cluster from every pair is allocated
to each group. The Community Intervention Trial
for Smoking Cessation (COMMIT)56 and the
British Family Heart Study57 used matched-
pairs designs.

Several methods can be used to identify matched
pairs. The first is to divide the population of
clusters into relevant strata and then select cluster
pairs from each stratum. The second is to identify
pairs from clusters that have already been selected
for study from the population of interest, and the
third is to identify and randomly select relevant
pairs. In community intervention studies, the
clusters in each pair are not required to be
geographically close to each other; indeed, the
pairing of clusters that are geographically remote
may reduce contamination between the two
clusters in each stratum.

The matched-pairs design has important limitations
which should be recognised. It may be difficult to
find matching variables that can be used to create
distinct pairs, particularly for a large number of
clusters.51,55 Another potential problem is that in
the event that a particular cluster drops out of 
the study, the other cluster and thus the entire
stratum must be eliminated, causing a reduction 
in study power.

Matching on variables that are related to the out-
come has the effect of reducing the variance of the
estimate of intervention effect and increasing the
power of the study. However, a loss of degrees of
freedom is incurred by using a matched analysis
instead of an unmatched one. This loss becomes
increasingly important for smaller studies and any
gain in power may be cancelled out. The power 
of a study will inevitably be reduced by matching 
on a variable that is unrelated to the outcome if 
a matched analysis is used. For matching to be
successful, the decrease in experimental error 
needs to be sufficiently large to offset the reduction
in degrees of freedom. Freedman and colleagues50

presented a method for estimating the gain in
efficiency resulting from matching compared 
with not matching. They also devised a method 
for assessing the extent to which matching on the
baseline values for the outcome further improves
efficiency. A limitation of their method is that it 
does not consider reduction in power of the
matched design due to the loss of degrees of
freedom in small sample studies, and therefore it
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might lead to the erroneous conclusion that even
when there is a relatively small number of clusters,
matching results in greater efficiency.55

Martin and colleagues,55 basing their work on the 
t tests for paired and unpaired samples, showed
that if the number of study clusters is small then 
an unmatched randomised design will usually be
more efficient because of the loss of degrees of
freedom associated with the matched design. Only
the strongest of correlates would make matching
worthwhile for very small studies. They also showed
that for studies with less than around ten pairs of
clusters a matched design will often be appreciably
less powerful than an unmatched design.55 Diehr
and colleagues34 obtained much the same result
which they generalised to studies in which there 
are between three and around ten pairs. Diehr and
colleagues34 suggested that in studies with small
numbers of clusters, if pre-intervention matching
seems to be required at the outset, an unmatched
analysis will usually be more powerful because of
the increased degrees of freedom compared with
the matched analysis.

Klar and Donner51 cautioned that the matched-
pairs design may be less suitable for cluster-based
evaluations because of the difficulty of separating
the effect of intervention from between-cluster
variation for adjusted individual level analysis. This 
is because between-cluster variation is confounded
with the intervention effect, with differences be-
tween cluster pairs as well as with between-stratum
variation in the intervention effect (i.e. the
stratum–intervention interaction).11,51,58–60 In other
words, between-cluster variation cannot usually be
estimated within pairs because each cluster within a
pair receives a different intervention and between-
cluster, within-group variation cannot be estimated
due to confounding with differences between pairs.
Given that there is a non-zero intervention effect
and real differences between strata, an unbiased
estimate of between-cluster variation can only be
obtained if there is no interaction between inter-
vention effect and stratum. Thus, the consequence
of calculating the between-cluster variation from a
matched-pairs study is that the variation will usually
be overestimated, leading to conservative results in
adjusted individual level analyses and overestimates
of the required sample size for future studies.
Thompson and colleagues61 recently proposed that
random effects meta-analysis can be applied to the
analysis of such designs. One variance component
can be used to allow for both natural variation
between clusters and between-stratum variation in
the intervention effect. Natural variation between
clusters is not estimated separately but is still allowed

for in the analysis. However, this approach will be re-
stricted to studies with the relatively large number of
cluster pairs required to estimate variance
components with reasonable precision.62

Example of pair-matched cluster randomised
design: the British Family Heart Study57,63

This study was designed to determine whether
cardiovascular screening and lifestyle intervention in
general practice achieved changes in coronary risk
factors. Pairs of general practices were recruited in
each of 13 towns, and one practice in each pair was
randomly allocated to the intervention. Practices
were matched for town, practice size and socio-
demographic characteristics. The intervention
consisted of a nurse-led programme using a family-
centred approach with follow-up according to
degree of risk. In men the reduction in risk score
was 16% (95% confidence level 11–21%) at 1 year.
The result was discussed in relation to the govern-
ment’s policy for screening in general practice.

Example of pair-matched non-equivalent group
design: the Minnesota Heart Health Program54

This study evaluated an education program
designed to promote change in coronary heart
disease risk factors and behaviours across whole
communities. Six communities were identified 
in Minnesota and North and South Dakota and
matched into pairs based on size of community,
type of community and distance from Minneapolis–
St Paul. Randomisation was rejected because it 
was considered that ‘randomisation of three units
provides little assurance of equality of pooled com-
munities’. Allocation to the education intervention
was then decided on the basis of various factors
including the degree of isolation of the media
network, the number of local government struc-
tures to be dealt with, and whether the community
was in Minnesota or the Dakotas.

Stratified designs
Under the stratified design, two or more clusters
from each of several strata are allocated to each
intervention group. The design is exemplified by
the Child and Adolescent Trial for Cardiovascular
Health study.64 As for the paired design the clusters
are grouped into strata according to one or more
variables which are related to the outcome, but 
the stratified design differs qualitatively from the
matched-pairs design because there is replication 
of clusters within each intervention–stratum
combination. It is therefore possible to obtain 
an estimate of between-cluster variation from a
stratified community-wide trial as the cluster effect
can be separated from both the intervention effect
and the stratum effect.
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Using the completely randomised design as the
benchmark in their simulations, Klar and Donner51

found that compared with the matched-pairs
design there is little loss in power for stratified
designs when strata are not related to outcome.
Another advantage of the stratified design over 
the matched design is that for studies in which
there are a large number of clusters relative to 
the number of confounding factors it is easier 
to construct meaningful strata.11,51

In the light of these advantages, Klar and Donner51

suggest that the stratified design is underutilised 
in comparison to the matched-pairs design and
should be considered more often. The stratified
design is limited to studies with eight clusters or
more (four clusters in each of two strata).

Example of a stratified cluster randomised
design: WHO trial for the evaluation of a new
antenatal care programme65

This trial is being carried out to see whether a
programme of antenatal care which only includes
items of care of proven effectiveness has similar
outcomes to current standard care. Fifty-three clinics
were randomised after stratification by country (four
different countries) and clinic size (small, medium
and large). Stratification according to country was
thought to provide some control over confounding
by between-country differences. Clinic size was used
as an additional stratifying factor because it was
thought to be a marker for a range of baseline
factors such as women’s risk factors, socioeconomic
status and geographical location.

Design issues for follow-up

The evaluation of health interventions often
necessitates repeated assessments of health status
over time. For example, a study might aim to
evaluate the reduction in prevalence of unhealthy
behaviour or the increase in the adoption of a
healthy habit in the population. A single post-test
comparison is insufficient for this purpose and
measurements must be taken in each group at 
least once before and once after an intervention
has been implemented.10 Several authors3,8,10 have
suggested that repeated observation of clusters 
is a useful method for increasing the power of 
a study even if it is not necessary from a design
viewpoint. Allowing for the change in the outcome
of interest following intervention is a more sensitive
method of evaluation than simply comparing
postintervention values. As long as excessive costs
are not incurred, this can increase the efficiency 
of a study. The Minnesota Cancer Pain Project66

is an example of a community trial that used 
before and after intervention assessments.

Two designs can be used to sample individuals
within clusters in cluster-based studies with follow-
up. Under the repeated cross-sectional design a
new sample of individuals is drawn from each of
the clusters at each measurement occasion. Under
the cohort design data are collected from the 
same sample of individuals at each measurement
occasion. When the ratio of sample size to popu-
lation size is high, a cohort will be generated within
the framework of a repeated cross-sectional design
as individuals may be sampled repeatedly by
chance.10 This overlap of repeated cross-sectional
samples may be engineered deliberately, and some
community intervention studies have set out to
achieve this mixed design.10,67 Mixed longitudinal
designs can be costly and are not always feasible,68

so a choice usually has to be made between
repeated cross-sectional and cohort designs.

Choice of design: cohort or repeated
cross-sectional sampling
If the main objective is to determine how an
intervention changes individual level outcomes 
then a cohort design should be used. Cohort studies
provide the opportunity to link individual outcomes
directly to individual level prognostic factors.

For example, the Da Qing study of diabetes and
impaired glucose tolerance48 (see earlier) used a
cohort design to study the effect of intervention 
by means of diet and exercise on the risk of
developing diabetes.

When the main objective is to determine how an
intervention affects some community level index 
of health, then a repeated cross-sectional design
should be used, as it will generate data which are
representative of the study communities through-
out the study period. For example, the evaluation
of Heartbeat Wales45 (see earlier) studied the effect
of a health promotion campaign on the prevalence
of coronary heart disease risk factors. Cohorts are
subject to ageing, migration, death, loss to follow-
up and other factors which affect representative-
ness.6,10,15 In choosing the most suitable design for
follow-up, the aim of the intervention needs to 
be clearly defined so that the appropriate choice 
is made. This design choice is important because 
it will influence the validity of the study.

When both cohort and repeated cross-sectional
designs are considered equally appropriate and there
are no biases, cohort designs will generally offer
greater statistical power.6,10,15,56,69 In a cohort study,
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measurements made over time on the same subject
are often correlated and the estimate of the inter-
vention effect has a smaller variance than that calcu-
lated from repeated cross-sectional data. The greater
the correlation between measurements made on the
same individual the smaller the variance of the
intervention estimate and the more powerful the
cohort design will be in relation to the repeated
cross-sectional one. The study of the same individuals
also controls for any unforeseen cohort effects.

In practice the cohort design will be more
susceptible to bias than the repeated cross-sectional
design,10 and the power advantage diminishes as
the length of follow-up increases because responses
of the cohort members are time-dependent and
consequently are less correlated as the study goes
on. For the cohort design to have greater overall
efficiency, the increase in precision needs to be
sufficiently large to offset the potential bias. Cohort
designs are generally best used in short trials 
where there is a high correlation between repeated
measurements on the same subject. For studies 
in which the clusters are small in size, use of the
cohort design may be advisable if overlapping cross-
sectional surveys are to be avoided.36 Repeated
cross-sectional sampling is generally preferable in
longer studies of larger clusters. Several researchers
have introduced techniques which can be used at
the planning stage of a study to establish which
design will be more efficient.67,69–71 Costs may 
also be taken into account.72

Sources of bias in studies with follow-up
• Non-response. Subjects who decline to participate

in a trial may have different characteristics to
those who do participate, rendering the sample
less representative of the target population and
introducing bias. Cohorts may be more vulner-
able to this type of bias than repeated cross-
sectional samples, because in order to follow up
subjects it is more likely that they will have to
reveal their identity and contact details.10

• Attrition, or loss to follow-up, only affects
cohorts, and is particularly relevant when
evaluation spans a long period. If a cohort
member leaves a trial it is generally impossible 
to obtain further data. The characteristics of 
the drop-outs may be very different from those
who are followed up, rendering the remaining
subjects less representative of the original
cohort. Whilst oversampling at baseline will
guarantee a given level of precision it will not
solve the problem of bias caused by attrition.
Gillum and co-workers73 devised a sample size
formula to allow for loss to follow-up and Green
and colleagues15 presented methods for dealing

with loss to follow-up at the analysis stage of a
community-wide evaluation.

• The testing or learning effect is a specific type 
of Hawthorne effect. The problem is that the 
act of questioning may alter the behaviour of 
the subjects under study. Asking a group of
respondents questions about the same health
subject over a period of time could influence
their behaviour by making them more sensitised
to the topic.5,10 Provided the population is large
enough this is not a problem with repeated
cross-sectional samples, but it can affect cohorts
in a significant way. There is evidence to suggest
that testing effects can also lead indirectly to
differential non-response rates and bias between
the intervention groups at follow-up surveys.
Salonen and colleagues36 suggested that higher
non-participation rates at follow-up can be
expected amongst those who have not yet been
influenced by an intervention than amongst
those who have. This may be of particular
importance in non-blinded studies. If many
patients who have not been influenced by an
intervention drop out, the observed difference
between groups may be exaggerated.

• Maturation, or ageing, affects only the cohort
design.6,10 In a study that runs over an appreci-
able period, the age distribution of the cohort
will not be representative of the age distribution
in the clusters for the later surveys. This can be
detrimental to the external validity of the study 
if the outcome is age related.

• Cross-contamination. If mobility of the study
subjects from cluster to cluster is high, then
cross-contamination is possible and as a conse-
quence the exposure status of the subjects may
become unclear.10 Ensuring that the intensity of
the intervention is high enough to produce a
clear and distinct measurable difference between
the groups helps to diminish this problem.36

Notwithstanding the issues affecting the
representativeness of the sample, internally valid
conclusions about the effect of the intervention 
can still be reached if the groups are biased in 
the same manner.67,74 Minimising the imbalance
between groups with respect to confounders 
both at baseline and throughout the study and
consistent implementation of the intervention 
will help to achieve internal validity.

Comparing the efficiency of cohort and
repeated cross-sectional designs
Methods for comparing the efficiency of cohort and
repeated cross- sectional designs fall into two
categories.67 The first is concerned with the power or
precision of the estimate and the second with the
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accuracy or overall efficiency of the estimate. 
Diehr and co-workers67 pointed out that the two
approaches appear to lead to the same general
conclusion, but they can produce quite different
results when the estimate of the intervention effect
is biased. When bias is present it is more appropriate
to assess the relative accuracy of the two designs
because it takes into account both power and bias.

Diehr and co-workers67 devised formulae for
comparing the repeated cross-sectional design to
the cohort design; the approach uses the accuracy
criterion. The mean square error of the interven-
tion estimate under the cohort design is compared
with that obtained under repeated cross-sectional
sampling using some ‘gold standard’ intervention
estimate. Data from previous mixed design follow-
up studies in which there are both cohort and
repeated cross-sectional elements are required,
which is one of the disadvantages of the approach.
Such data will be hard to obtain.

Feldman and McKinlay,71 using precision as their
criterion, devised a formula for comparing the
efficiency of cohort and repeated cross-sectional
sampling for studies in which replicated measure-
ments are made on the subjects once at baseline
and once at follow-up. The method works on the
premise that the cohort and repeated cross-
sectional designs will be equally representative 
of the population of interest, and thus unlike the
approach of Diehr and co-workers67 it does not take
account of bias. Their analysis of variance frame-
work, from which the relative efficiency formula
was derived, is also suited to overlapping samples,
which have elements of both major designs.

Assume we have a study design for a long-term
cluster-based intervention with replicated measure-
ments (more than one measurement of the
outcome for each subject at each measurement
occasion) taken at baseline and follow-up for 
one intervention and one control group. The
estimate of the intervention effect or the difference
between changes in the intervention and control
groups is given by

d =∑
it

γit y it… (1)

where y it… = (1/JKM)∑
jkm

yitjkm is the mean of the 

responses in the i th group at the t th time of
measurement over all clusters, individuals and
replicated measurements on individuals where
there are J clusters each group, K individuals in
each cluster and M measurements made per
subject at each measurement occasion. Equal

numbers of clusters within each group, equal
cluster sizes and equal numbers of replicated
measures per individual are assumed.

The γit are appropriate contrast coefficients which
convert the term d into an expression that quan-
tifies the change from baseline to follow-up in the
intervention group relative to the control group.
The contrast coefficients are governed by the
following constraint:

∑
i

γit = ∑
t

γit = 0 (2)

With two time points, the two contrast coefficients
at each time point should be 1 and –1, allocated to
the treatment and control groups, respectively, and
likewise the two contrast coefficients for each group
should be 1 and –1, allocated to the two time points
follow-up and baseline, respectively. The contrast
coefficients should be orthogonal.

Under the cohort design the variance of the
estimator of the intervention effect, d, is given by

(1 – ρC)σ2
C (1 – ρS)σ2

S σ2
E

Vcohort(d) =(∑itγ2
it)(________ + ________ + ____)   (3)

J JK JKM

ρC represents the autocorrelation between mean
values for the same cluster over different time
points, and ρS represents the autocorrelation
between mean values for the same individual over
different time points, σ2

C represents the random
cluster variation, and is the sum of the time variant
((1 – ρC)σ2

C) and time-invariant (ρCσ2
C) components

of the cluster effect, σ2
S represents the random

individual or subject level variation, and is the 
sum of the time variant ((1 – ρS)σ2

S) and time-
invariant (ρSσ2

S) components of the subject effect,
and σ2

E represents the random variation between
replicated measurements made on the same
individual.

Under the repeated cross-sectional design the
variance of the estimator, d, is given by

(1 – ρC)σ2
C σ2

S σ2
E

Vcross-sectional(d) = (∑it γ2
it)(________ + ___ + ____ )    (4)

J JK JKM

ρS = 0 because a fresh sample of individuals is used
at follow-up.

The formula for the efficiency of the repeated
cross-sectional design relative to the cohort 
design is given by the ratio of these variances 
(3) and (4).
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KM(1 – ρC)σ2
C + M(1 – ρS)σ2

S + σ2
E

RE cross-sectional = ____________________________ (5)
KM(1 – ρC)σ2

C + Mσ2
S + σ2

E

When the expression is greater than unity the
repeated cross-sectional design will yield a more
precise estimate of intervention effect.

As part of this framework, Feldman and McKinlay71

also provide formulae for calculating the relative
size of the cohort design to the repeated cross-
sectional that is required in order to achieve the
same level of precision. The relative number of
clusters per group is given by

KM(1 – ρC)σ2
C + M(1 – ρS)σ2

S + σ2
E

J cohort = ____________________________ J cross-sectional (6)
KM(1 – ρC)σ2

C + Mσ2
S + σ2

E

where J cohort is the number of clusters per group 
in a cohort study that is required to achieve the
same precision as J cross-sectional clusters per group 
in a repeated cross-sectional study, K is the fixed
number of subjects per cluster and M is the 
fixed number of replicated measurements 
per individual.

The corresponding formula for the relative
numbers of individuals per cluster is

M(1 – ρS)σ2
S + σ2

E

K cohort = _______________ Kcross-sectional (7)
Mσ2

S + σ2
E

where K cohort is the number of individuals 
per cluster in a cohort design that is required 
to achieve the same precision as K cross-sectional

individuals per cluster at each time point in a
repeated cross-sectional design, where M is the
fixed number of replicated measurements per
individual at each time point. The number of
clusters per group is assumed to be fixed.

Feldman and McKinlay71 also devised formulae for
calculating the change in the number of clusters
that is required to maintain the same precision
given a change in the number of individuals per
cluster, and vice versa. The formula for the number
of clusters per group required to compensate
exactly in terms of precision for a change in 
cluster size from K 1 to K 2 is

(1 – ρC)σ2
C + (1 – ρS)σ2

S /K 2 + σ2
E /K 2M 2

J 2 = (_________________________________) J1 (8)
(1 – ρC)σ2

C + (1 – ρS)σ2
S /K 1 + σ2

E /K 1M1

given that J 1 clusters was previously sufficient.

The formula for the additional number of
individuals per cluster required to compensate
exactly in terms of precision for a change in the
number of clusters per group from J 1 to J 2 is

(9)
J1(1 – ρS)σ2

S + J1σ2
E /M2

K 2 = (______________________________________)K1

K1( J2 – J1)(1 – ρC)σ2
C + J2(1 – ρS)σ2

S + J2σ2
E /M1

given that a cluster size of K1 was previously
sufficient.

Formulae (8) and (9) are applicable to both 
cohort and repeated cross-sectional studies.
Further, the formulae for the variance of the
estimate (3) and (4) can be adapted to calculate
sample sizes for given levels of precision. So Feld-
man and McKinlay’s model is a useful framework
for planning evaluations with follow-up, given prior
knowledge from previous studies that are similar to
the one being planned. The approach was formu-
lated for studies with replicated measurements on
individuals, but formulae could just as well be
derived for studies with one measurement per
individual at each time point.

An important requirement for comparing the
efficiency of the cohort and repeated cross-
sectional designs is that the cost of selecting and
interviewing the subjects for the two designs be
taken into account. McKinlay72 modified Feldman
and McKinlay’s approach to take cost into account.

Examples of observational designs

The cohort and cross-sectional designs which 
were described above may also be used in
observational healthcare evaluations. Black75

outlined several reasons why observational studies
should be used in evaluating the effectiveness of
health care. The problems of making causal
inferences from observational data were discussed
by Bradford Hill, and the use of causal criteria 
was reviewed recently.76

Example of a cross-sectional observational
design: hospital admissions for asthma in 
East London – associations with characteristics
of local general practices, prescribing 
and population77

A survey was carried out of all 163 general practices
in East London and City Health Authority. Hospital
admission rates for asthma in each practice were
related to selected practice characteristics. Higher
asthma admission rates were found to be associated
with smaller partnership size and with higher rates
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of night visiting. The authors concluded that
smaller practices should be helped to improve
asthma care.

Example of a cohort observational design:
survival with bladder cancer and characteristics
of hospital or surgeons78

A cohort of patients registered with bladder cancer
in the South Thames region was followed up for
mortality. Survival analyses were carried out to
determine whether the survival of patients treated
at teaching hospitals differed from those treated at
district hospitals and whether patients treated by
urologists survived longer than those treated by
general surgeons.

Ethical considerations

Ethical guidelines for the conduct of randomised
trials are well established.79 In general, each
individual subject in a study should give informed
consent to participate. In organisation- or area-
based evaluations it may be difficult to obtain
individual consent if the unit of allocation is large.
For example, it would not usually be possible to
obtain consent from all of the patients registered

with a general practice, or from the residents of a
health authority. In this situation, consent should
be obtained at area or organisation level, perhaps
from the GP or from senior officers of the health
authority.65,79 Such consent should usually be
informed by wide consultation.79 Edwards and
colleagues recommend that it would not usually be
ethical to remove individual choices that had
previously existed without individual consent.79

Donner65 provided an illustration of this principle
with reference to a trial of antenatal care. Clinics
were randomised to standard care or to a new
antenatal care schedule which only included items
of care which were of proven value. Consent was
given at clinic level, but women in the intervention 
arm were also asked to give informed consent. It
was not considered necessary to obtain informed
consent from women receiving standard antenatal
care. Donner points out that this approach is
similar to the randomised consent design 
proposed by Zelen.65

Summary

The study designs discussed in this chapter are
summarised in Table 3.

TABLE 3 Summary of design recommendations

Design characteristics Recommendation

Observational designs Suitable for evaluating existing services

Intervention group with after only observations Not often interpretable

Intervention group with before-and after observations Not often interpretable

Intervention group and non-equivalent control group, Not often interpretable
after-only observations

Intervention and non-equivalent control group, Preferred design if randomisation not feasible. Restricted allocation 
before and after observations recommended to reduce bias. Analysis controlling for confounders 

advisable

Interrupted time series design May give interpretable results with a single group, inclusion of 
control group recommended

Randomised designs Recommended

Restricted allocation Recommended when the number of clusters is small, and when 
stratifying variables are associated with the outcome. Limitations 
of the matched pairs design are not widely appreciated

Cohort designs More appropriate for short term studies of individual outcomes.
Bias likely to increase with duration of study

Cross-sectional designs More appropriate for studies of community level health indicators.
May be less susceptible to bias but with lower power
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Introduction
In studies at the individual level, variation is
between individuals. In cluster level studies,
because of the correlation of individual level
responses within clusters, there are two separate
components of variation, within-cluster variation
and between-cluster variation. Variation in the
outcome among clusters will be larger than the
variation among individuals within clusters.

Standard statistical methods for sample size
estimation and analysis do not recognise the
between-cluster component of variation in the
outcome, and consequently cannot be applied
directly at the individual level in cluster-based
studies. Standard sample size calculations will 
lead to sample sizes that are too small. Standard
methods of analysis will usually lead to confidence
intervals that are too narrow and p values that 
are too small.

Appropriate methods for sample size calculation
and analysis need to allow for within- and between-
cluster variation. This section outlines methods 
that may be used to estimate within- and between-
cluster components of variance, and subsequently
describes how these are used to estimate the
intraclass correlation coefficient and the design
effect, which are used to adjust standard sample
size calculations for cluster-based studies.

Estimating within- and between-
cluster components of variance
Within-cluster and between-cluster variance
components may be estimated by decomposing 
the variation in subject responses into these two
constituent components using analysis of variance.
Variance components may be estimated from a
clustered sample through implementing a one-way
analysis of variance of the outcome with the
clustering variable as a random factor. The
algebraic form of the appropriate model is

y ij = µ + βj + e i j (10)

where yij is the response of the ith individual within
the j th cluster, µ is the mean of the responses, βj is

the random effect of the j th cluster and eij is the
random error component. The βj are independently
and identically distributed (Gaussian) with zero
mean and constant variance, σ2

b. The eij are inde-
pendently and identically distributed (Gaussian)
with zero mean and constant variance σ2

w. 

Estimates of the between- and within-cluster
variance components are extracted from the
resulting analysis of variance table:

σ∧ 2
b = (MSB – MSW)/n 0 (11)

σ∧ 2
w = MSW (12)

where MSB is the between-cluster mean square 
and MSW is the within-cluster mean square, n 0 is
the average cluster size calculated using

1 ∑n2
j

n 0 = ____(N – ____) (13)
J – 1 N

where J is the number of clusters, N is the total
number of individuals, and nj is the number of
individuals in the jth cluster. This version of the
average cluster size, n 0, is used because use of the
arithmetic mean cluster size can lead to under-
estimation of the between-cluster variance com-
ponent when the cluster sizes vary. n 0 approaches _
n when there is a large number of clusters.80

The analysis of variance approach can be extended
to more complex designs, which include the other
categorical and continuous variables that are import-
ant in the design of the study from which variance
components have to be estimated. Thus there may
be more than one intervention group, several strata,
and several time points at which measurements 
are made. Interaction terms may also be needed,
particularly if the data are from a study in which
repeated measurements are made over time.69,81 The
clustering variable will generally be the only random
factor in the model, but sometimes there may be a
need to control for more than one level of cluster-
ing, in which case a more complex model with
several random effects may be required. All inter-
action terms that involve a random main effect are
themselves treated as random, so for instance the
term for the cluster by time interaction effect in a

Chapter 4

Measures of between-cluster variation
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study with follow-up is random. Further details are
provided in standard texts.82

The intraclass correlation
coefficient (ρ)
The within-cluster and between-cluster components
of variance may be combined in a single statistical
measure of between-cluster heterogeneity (or
within-cluster homogeneity), the intraclass
correlation coefficient, ρ. 

A more technical definition of ρ is the proportion
of the true total variation in the outcome that can
be attributed to differences between the clusters:

σ2
b

ρ = _______ (14)
σ2

b + σ2
w

where σ2
b is the between-cluster variance

component and σ2
w is the within-cluster variance

component. Equations (11) and (12) can be
substituted into equation (14) and rearranged 
to show that ρ83 is given by

MSB – MSW
ρ∧ = _________________ (15)

MSB + (n 0 – 1)MSW

If individuals within the same cluster are no more
likely to have similar outcomes than individuals in
different clusters then the intraclass correlation 
will be 0. Conversely, if all individuals in the same
cluster are identical with respect to the outcome,
then the intraclass correlation is 1. In the context
of cluster-based evaluations, ρ will usually assume
small positive values. Negative values can be
attributed to sampling error.

The design effect

In order to take account of between-cluster
variation when estimating the sample size or 
carrying out the analysis, the variance term in
standard statistical formulae for hypothesis testing
or sample size calculation needs to be increased 
by the design effect. Kish84 and Moser and 
Kalton,85 in their works on survey sampling, 
define the design effect (Deff) as the ratio of the
variance of the estimated outcome under the
cluster sampling strategy (σ2

c) to the variance 
that would be expected for a study with the same
number of individuals using simple random
sampling (σ2

srs):

σ2
c

Deff = ___ (16)
σ2

srs

The design effect has also been referred to as the
variance inflation factor.12 In evaluations of cluster-
based interventions the design effect will usually be
greater than unity due to the presence of between-
cluster variation. An interpretation of the design
effect is the number of times more subjects a
cluster-based evaluation should have compared
with one in which individuals are randomised, in
order to attain the same power. Estimates of sample
size obtained using standard formulae should be
multiplied by the design effect to ensure that
enough subjects are included in the study. Further,
individual level analyses need to allow for the
design effect so that the effective sample size on
which inferences are based is recognised.

It can be shown that the design effect is given by

Deff = 1 + (n – 1)ρ (17)

where n is the average cluster size and ρ is the intra-
class correlation coefficient of the outcome.84,85

This represents a more convenient and frequently
used formula. It can be seen that the standard
sample size calculation should be multiplied by a
factor lying between unity and the average cluster
size. The effective sample size for individual level
analysis lies somewhere between the total number
of individuals and the total number of clusters.

Given that the intraclass correlation coefficient of
outcome is positive, equation (17) shows that the
larger the average cluster size, the larger will be the
design effect. In practice, ρ tends to be larger for
smaller clusters,86 but for large clusters, such as
health authority populations, design effects will
often be large even with small intraclass correlations.
ρ is more generalisable than the design effect
because it is independent of the number of individ-
uals that are sampled from within each cluster and
can therefore be readily compared across studies of
similar design and purpose. Estimates of ρ can then
be used to calculate the design effect of proposed
studies at the planning stage. The following sub-
sections provide further details of methods for
obtaining estimates of ρ and variance components
using analysis of variance for binary responses,
studies with more than one intervention group,
stratified cluster-based designs and studies with 
more than one level of clustering. The last two
subsections respectively look at methods used to
calculate confidence intervals for ρ and computer
packages that can be used to estimate the ρ.
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Estimating ρ from binary data
The analysis of variance model can also be used 
to calculate ρ when the outcome is dichotomous.
However, McCulloch87 warned that when covariates
are controlled for, the analysis of variance frame-
work is not applicable. Katz and colleagues88 go
further to claim that ρ itself is a poor measure of
within-cluster association for binary responses. We
conclude that the analysis of variance approach may
be used, but methods for constructing confidence
limits about ρ are not appropriate because distri-
butional assumptions of the method are unlikely to
be valid. The within-cluster dependence of binary
responses tends to be low if the prevalence of the
outcome is low, and outcome measures with a pre-
valence of 50% will lead to larger design effects.89

Analysis of variance methods generally require
individual level data. When binary responses are
aggregated at cluster level it is usually more con-
venient to estimate the kappa coefficient. Kappa is
itself an intraclass correlation coefficient.90 Fleiss91

gives details of methods for estimating kappa.
When the clusters are equal in size, Fleiss’s kappa 
is algebraically equivalent to ρ as calculated for a
binary outcome.91 When the clusters are unequal 
in size, kappa will produce a value which is almost
identical value to ρ,86 particularly as the number 
of clusters increases. This is the case even when 
the cluster sizes are quite variable. The arithmetic
mean cluster size, 

_
n , is commonly used to estimate

kappa whereas ρ is usually calculated using n 0, 
a weighted version of the mean cluster size 
(see earlier).

Katz and Zeger92 also recommend the calculation
of pairwise odds ratios to calculate the design effect
using the method of alternating logistic regres-
sion.93 The appropriate formula for calculating the
design effect is given in Katz and Zeger.92 Further
discussion of methods for estimating ρ is given by
Muller and Buttner.94

Estimating ρ from more than 
one group
A two-way analysis of variance is required to
estimate ρ from more than one group, and the
appropriate model is

yijk = µ + βjk + γk + eijk (18)

where yijk is the response of the i th individual of 
the j th cluster nested within the k th group, µ is the
mean of the responses, βjk is the random effect of

the j th cluster in the k th group, γk is the fixed 
effect of the k th group relative to the mean, µ, 
and e ijk is the random error component. The βjk are
independent and identically distributed (Gaussian)
with zero mean and constant variance σ2

b, and the
e ijk are independent and identically distributed
(Gaussian) with zero mean and constant 
variance σ2

w.

The intraclass correlation coefficient estimate is
given by

σ∧ 2
b

ρ∧ = _______
σ∧ 2

b + σ∧ 2
w

(19)

MSB – MSW
= _________________

MSB + (n 0 – 1)MSW

where all terms are as previously described except
n 0, which is now

N – 
K
∑( J

k

∑n 2
jk/nk)k=1   j=1

n 0 = ______________ (20)K

∑ ( J k – 1)
k=1

where N is the total number of individuals, K 
is the number of intervention groups, J k is the
number of clusters in the k th group, njk is the size
of the j th cluster in the k th group and nk is the
total number of individuals in the k th group. 
This approach effectively pools the group-specific
variance estimates and thus separates the fixed
group effect from the random cluster effect.

This analysis of variance model specification 
makes the assumption that the intraclass corre-
lation coefficient is the same in each group, or 
in other words that σ2

w and σ2
b are constant across

groups. Bartlett’s procedure83 can be used to test 
σ2

w for homogeneity across groups, and a test based
upon Fisher’s transformation can be used to 
assess whether ρ is constant between groups 
for balanced data.

Estimating ρ from matched pairs
and stratified designs
As discussed in the previous chapter, ρ cannot
generally be estimated directly from matched pairs
of clusters because between-cluster variation is
confounded with both intervention and stratum
effects.51 This is not a problem for stratified designs
in which there are at least two clusters within each
intervention–-stratum combination, enabling
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natural variability between clusters to be separated
from intervention effects and between-stratum
variation. Estimates of ρ are obtained by averaging
out the ρ values of each intervention–stratum
combination. This can be achieved by adjusting for
both group and stratum in the analysis of variance
model. Usually the strata will be represented as
fixed effects.

For the matched-pairs design there are three
conditions under which the intraclass correlation
can be calculated using analysis of variance: when
the intervention is ineffective, when matching is
ineffective and when the intervention effect is
homogeneous across each matched pair.51

If the intervention is ineffective, then a pooled
estimate across strata of the between-cluster vari-
ance can be made. This is obtained by modelling
stratum as a fixed effect in the analysis of variance
model. If there is in fact an intervention effect and
this method is used, then the intraclass correlation
will be overestimated.

If matching is ineffective, then ρ can be calculated
for each intervention group and pooled to get an
estimate. This is achieved by using the formula for
calculating the intraclass correlation from more
than one group (see earlier). The more effective
the matching the more the intraclass correlation
will be overestimated using this method.

For dichotomous outcomes, if the true difference
in underlying rates is stable from pair to pair then
the intraclass correlation coefficient (ρ∧ 1) is 
given by51

MSI – MSW
ρ∧ 1 = ________________ (21)

MSI + (n – 1)MSW

where the mean square between clusters (MSI) is
given by

J

∑
j =1

n(dj – 
_
d)2

MSI = __________ (22)
2( J – 1)

n is the cluster size, p
∧

jk is the event rate for the j th
cluster in the k th group, and J is the number of
pairs. The difference between cluster-specific event
rates for the j th pair, dj, is given by dj = p

∧
j1 – p

∧
j2. 

The mean of the differences between event 
rates, 

_
d, is

_
d =

J

∑
j =1

dj /J

The mean square within clusters is given by

MSW = 

J

∑
j =1

2

∑
k =1

np
∧

jk(1 – p
∧

jk) (23)
______________

2J(n – 1)

In the presence of treatment–stratum interaction, 
ρ will be overestimated. At least around 20 pairs 
of clusters are required for ρ to be estimated
efficiently under the above formulae.

Estimating ρ for hierarchical
designs
When calculating ρ for the level of clustering at
which the intervention was implemented it is also
necessary to control for all intermediate levels of
clustering. For instance, in an organisation-based
study in which general practices are randomised,
the analysis of variance model will include both
general practice and GP as random effects, the 
GP effect being nested within the general practice
effect. Failure to allow for lower levels of clustering
can lead to anomalous results, for example 
negative estimates of ρ.

Confidence interval construction
for ρ
There are two main considerations when con-
structing confidence limits for ρ. Firstly, the clusters
will typically be unequal in size, or unbalanced,
which invalidates the appropriateness of the
relatively simple formulae for balanced designs.
Secondly, although analysis of variance produces 
an efficient point estimate of ρ for dichotomous
outcomes, the method is not appropriate for
estimating the corresponding confidence limits.

Exact confidence limits for ρ have been given by
Searle95 for the one-way balanced analysis of
variance. The limits are

F/FU – 1 F/FL – 1{__________ , __________} (24)
n + F/FU – 1 n + F/FL – 1

where F = MSB/MSW, Pr{FL ≤ F ≤ FU} = 1 – α, 
Pr{Fk – 1, k(n – 1) < FU} = α1, Pr{Fk – 1, k(n – 1) > FL} = α2, 
α1 + α2 = α and, usually, α1 = α2. k is the number 
of clusters and n is the cluster size.

An exact method for calculating confidence 
limits for unbalanced data does exist,96 but it is
computationally intensive so approximate 
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methods tend to be used instead. Smith’s method97

is not best suited to cluster-based evaluations
because it assumes a Normal distribution; this is
unlikely to be the case for a small number of
clusters. Donner and Wells98 suggest that Searle’s95

exact method for balanced data should be adapted
for the unbalanced design by replacing n in the
formulae of the lower and upper limits by n 0. The
approach is limited to studies in which only the
random cluster effect needs to be modelled.

Computation of ρ and variance
components
Several standard statistical packages can be used for
estimating ρ but they may yield slightly different
estimates when cluster sizes vary because not all
packages use the same definition of average cluster
size. The statistical packages SAS® and Minitab®

include random effects analysis of variance pro-
cedures which can be used to estimate variance
components, and both use n 0 as the weighted 
mean cluster size. Analysis of variance procedures
in Minitab permit the modelling of multiple
random factors as well as fixed covariates and

factors.99 In the SAS package three procedures 
may be used to obtain variance components, Proc
Nested, Proc Varcomp and Proc GLM.100 Proc
GLM, although computationally intensive, is the
most versatile. Numerous random effects can be
modelled while controlling for other categorical
and continuous variables. Proc Nested is a fast
procedure for estimating variance components, but
only random effects may be included in the model.
Proc Varcomp can be used to adjust for categorical
but not continuous variables and is much slower
than Proc Nested. The package Stata® includes 
two commands for one way analysis of variance,
loneway and l1way; the latter is more appropriate
for estimating ρ when the cluster size varies.101

In recent years a number of specialist random
effects modelling packages have been developed
specifically for regression analysis of hierarchical,
or clustered data. These packages may also be used
to estimate components of variance. The specialist
random effects modelling packages are superior 
to conventional analysis of variance because the
latter gives biased estimates when clusters are
highly variable in size, or when the number of
covariates is large (see chapter 6).
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Introduction
When estimating the sample size it is important to
take into account the planned method of analysis.
If the intention is to analyse cluster level outcomes,
then a conventional sample size calculation may be
performed to estimate the required number of
clusters, using an estimate of the variance of the
cluster level outcome.

If the intention is to analyse individual level out-
comes, estimation of the required sample size is less
straightforward. Individual level outcomes tend to
be correlated within clusters, and this has the con-
sequence that a study in which clusters are allocated
to intervention groups will be less powerful than one
in which an equivalent number of individuals is
randomised (see chapter 1). If individual level
analyses are intended, it will usually be necessary to
multiply the sample size estimated from standard
formulae by the design effect (see chapter 4).

In practice, when designing cluster-based evalu-
ations the investigator often needs to estimate both
the required total number of individuals and the
required number of clusters. A minimum number of
clusters is required for certain analytical techniques
and a minimum number of individuals per cluster 
is also required to yield sufficiently precise cluster-
specific estimates. If the cluster sizes are pre-
determined, the required number of clusters 
can be estimated by dividing the total number of
individuals required by the average cluster size.

When it is feasible to sample individuals within
clusters, the power of the study may be increased
either by increasing the number of clusters or the
number of individuals within clusters. Increasing the
number of clusters rather than the number of
individuals within clusters has several advantages.10,61

Firstly, the result of the study will usually appear to
be more generalisable if the intervention has been
implemented in a number of different clusters.
Secondly, a larger number of clusters allows more
precise estimation of the intraclass correlation
coefficient and thus more flexible approaches to
analysis.61 Thirdly, there is a limit to the extent to
which power may be increased solely by increasing
the number of individuals within clusters. The
relative cost of increasing the number of clusters 

in the study, rather than the number of individuals
within clusters, will be an important consideration
when deciding on the final structure of the sample.

Obtaining appropriate estimates
of ρ
Statistical formulae for sample size calculation
usually incorporate the design effect (formula
(17)). In order to carry out sample size calculations
it is necessary to estimate the design effect from
previous studies which are as similar as possible in
terms of design to the one being planned. That is,
studies that used similar-sized clusters containing
similar types of individuals and used the same
outcome. Having identified the appropriate
studies, the intraclass correlation coefficients or
between- and within-cluster variance components
of the outcome must be estimated using methods
outlined in chapter 4. A wide range of components
of variance and intraclass correlations are provided
in chapter 9 of this report.

Precise estimates of the intraclass correlation
coefficient should be used, or at least the level of
imprecision should be considered. ρ is estimated
with some margin of error, and its precision is
reduced with limited numbers of clusters and vari-
able cluster sizes. It is sensible to take this impre-
cision into account and evaluate the effect that
imprecision has on the sample size.89 Feng and
Grizzle102 suggested that the results of studies of 
the size that yielded ρ should be simulated and a
distribution of required sample sizes can then be
generated. Hannan and colleagues103 recommended
that as intraclass correlations for large clusters are
usually between 0 and 0.05, values in this range
should be used to perform sensitivity analyses.
Neither of these approaches actually provides con-
fidence limits for the sample size, so where possible
it may be advisable to use the confidence limits of
the intraclass correlation coefficient to obtain corre-
sponding confidence limits for the sample size.

Where appropriate, covariates other than design
variables should be allowed for when estimating 
the intraclass correlation coefficient.89,104–107 By
controlling for covariates, particularly those at 
the cluster level, the sizes of ρ, the design effect 

Chapter 5

Sample size and power
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and subsequently the required sample can be
reduced. In order to translate this into a power
advantage the same covariates must also be con-
trolled for when evaluating the intervention effect 
at analysis. For example, demographic character-
istics such as gender, age and ethnic group are often
controlled for. Murray and Short105 observed that for
alcohol-related outcomes, adjusting for cluster level
covariates drastically reduced the size of the intra-
class correlation coefficient. Raudenbush107 also
found that controlling for cluster level covariates has
greater effect in reducing the intraclass correlation
coefficient than controlling for covariates at the
individual level. This might be expected as cluster
level covariates will explain variation between
clusters rather than within. Conversely, the addition
of individual level covariates can increase the size of
ρ if it reduces the size of the within-cluster variance
component by a larger amount than it does the
between-cluster component. Previous research is
important in identifying the covariates that will
improve the power of a study.

It may be worth calculating separate intraclass
correlation coefficients for subgroups of important
demographic variables, such as age and gender.106

For example, if ρ is larger for women than men,
then an estimate of ρ which is calculated on a
sample of both sexes may underestimate the
required sample size for women.

Estimating secular trends

Because follow-up intervention studies seek to 
alter the secular trend in the outcome of interest,
sample size calculations should take into account
the likely pattern of change in the absence of inter-
vention. Spontaneous changes in the outcome are
likely to occur as a result of demographic changes,
cohort effects and non-specific temporal and
period effects. Potential consequences of not
accounting for trends in outcome or planning for
spontaneous changes in trend are that the inter-
vention will not be sufficiently intense to make a
significant impact or the sample size may not be
large enough to detect a relevant effect.5,53,69 It is
therefore necessary to estimate the secular trend in
outcome as well as population means and standard
deviations prior to the study.

Completely randomised design

Difference between group means
The standard normal deviate sample size formula
for comparing two independent groups should be

multiplied by the design effect.108 The required
number of individuals per group, n′, is given by

2(Z α + Z β)2 σ2[1 + (n – 1)ρ]
n′ = _________________________ (25)

d 2

2(Z α + Z β)2 σ2

= ____________ Deff
d 2

where Z α is the value of the standardised score
cutting off α/2 of each tail, Z β is the value of the
standardised score defining a power level of 1 – β, 
σ 2 is the variance of the outcome measure under
simple random sampling, n is the expected cluster
size or number of individuals sampled from within
each cluster, ρ is the intraclass correlation coeffi-
cient, and d is the detectable difference between
group means. This sample size formula is appro-
priate for studies with a large number of clusters.
When the t test is required Z α and Z β can be
replaced by t 2n′–2, α and t 2n′–2, β respectively, with 
n′ estimated iteratively.

When unequal cluster sizes are anticipated, 
Donner and colleagues108 suggest the use of either
the expected average cluster size, 

_
n , or the more

conservative expected maximum cluster size, 
nMAX instead of n. The use of

_
n can lead to under-

estimates of the required sample size for highly
unbalanced designs if the size of each intervention
group is less than around 100 individuals.108

Hsieh19 derived sample size formulae for estimating
differences between mean changes from baseline 
in studies with two repeated cross-sectional surveys,
one before and one after intervention. The method
is easily adapted for studies comparing means with
one postintervention survey. Hsieh’s formulae
incorporate estimates of the variance components
for the outcome (see chapter 4). The total required
number of clusters, N, is given by

8(S 2
b + S 2

w /m)(Z α + Z β)2

N = _____________________ (26)
d 2

where S 2
b is the estimate of the between-cluster

component of variance of the outcome, S 2
w is 

the estimate of the within-cluster component of
variance of the outcome, m is the expected number
of individuals per cluster, Z α is the standard two-
sided normal curve value with probability α, Z β is
the standard normal curve value with probability 
β and d is the detectable difference between the 
two intervention groups with respect to mean
change from baseline.
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Because the number of clusters will normally not
be large enough to use the standard normal curve
values, Hsieh suggests that the size of each group
should be increased by one cluster for significance
tests at the 5% level. Alternatively, t values can be
used with N estimated iteratively, using

8(S 2
b + S 2

w /m)(tα;N – 2 + t β;N – 2)2

N = ___________________________ (27)
d 2

By rearranging the above formulae the required
number of individuals per cluster for a given
number of clusters is

S 2
w

M = ________________________ (28)
Nd 2/8(t α;N – 2 + t β;N – 2)2 – S 2

b

If these formulae are used for follow-up studies
which use cohort sampling, then they will over-
estimate the required sample size because they 
do not adjust for the increased power of the study
design resulting from the correlation between
measurements made on the same individuals.

This method is adapted for studies with one cross-
sectional measurement by halving the variation.
The total number of clusters and the number of
individuals in each cluster are respectively given by

4(S 2
b + S 2

w /m)(t α;N – 2 + t β;N – 2)2

N = ___________________________ (29)
d 2

and

S 2
w

m = ________________________ (30)
Nd 2/4(t α;N – 2 + t β;N – 2)2 – S 2

b

where d is now the detectable difference between
group means.

Difference between group proportions
Under Cornfield’s109 approach, the sample size
required for a study in which individuals are
randomised is multiplied by an inflation factor
equal to the ratio of the variance when clusters are
randomised to the variance when individuals are
randomised. The generalised formula for the
inflation factor (IF) formula is86,109

σ2
prop

_
n

IF = _______ (31)_
p(1 – 

_
p)

where pj is the proportion with the characteristic of
interest in the j th cluster, J is the total number of

clusters and n j is the expected number of individuals
sampled in the j th cluster. The proportion with the
characteristic in the entire sample is

J

∑
j =1

nj pj
_
p = ______ (32)

J

∑
j =1

nj

The variance of the cluster-specific proportions is
J

∑
j =1

nj (pj – 
_
p)2

σ2
prop = ___________ (33)_

n 2J

and the mean cluster size is
J

∑
j =1

nj
_
n = _____ (34)

J

Cornfield recommends that the inflated sample
size should in turn be multiplied by a further
correction factor (CF) in recognition that the 
true population variance of the cluster-specific
proportions, σ2

prop, is estimated with J – 1 degrees
of freedom. CF is calculated by dividing the t
distribution score by the z value corresponding 
to significance level, α,

tα, J – 1
CF = _____ (35)

z α

where tα is the t value defining the α level of
significance with J – 1 degrees of freedom, and zα

is the z value defining the α level of significance.

It is not necessary to quantify the within-cluster
dependence for Cornfield’s method, rather the
variation in cluster-specific proportions should be
known or estimated. Cornfield’s method can be
advantageous when dealing with large cluster sizes
for which the prevalence of the phenomenon is
available from routine statistical information. It is
most appropriate when large units such as district
health authorities are randomised because the
estimates of the cluster proportions are likely to be
reliable and obtainable. For smaller units such as
general practices the data will often be unavailable
and the method will be less effective.

Cornfield’s inflation factor is equivalent to the
design effect defined in chapter 4:

σ2
propn

_______ = 1 + (n – 1)ρ (36)_
p(1 – 

_
p)
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An alternative sample size method is given by 
the adaption by Donner and colleagues29,108 of the
standard sample size formula for comparing two
proportions.110 The required number of individuals
per group, n′, is

(Z α + Z β)2[PT(1 – PT) + PC(1 – PC)][1 + (n – 1)ρ]
n′ = ____________________________________ (37)

(PT – PC)2

(Z α + Z β)2[PT(1 – PT) + PC(1 – PC)]
= __________________________ Deff

(PT – PC)2

where Z α is the value of the standardised score
cutting off α/2% of each tail, Z β is the value of the
standardised score cutting off the lower β% and
defining a power level of (100 – β)%, ρ is the intra-
class correlation coefficient with respect to the
binary trait, PT is the expected event rate in the
intervention group, PC is the expected event rate in
the control group and n is the cluster size. Kappa
may be used as a measure of intraclass correlation
as described in chapter 4.91

Matched-pairs design

When estimating the required sample size for
matched-pairs designs it may be difficult to obtain
appropriate estimates of between-cluster variation.
This problem has been discussed recently by
Donner and Klar51 and Thompson and colleagues61

(see chapter 3).

Difference between group means
Hsieh19 derived sample size formulae for evaluating
the differences between groups with respect to
mean changes from baseline in studies with two
repeated cross-sectional surveys. The required
number of cluster pairs ns is given by

n s = 4(S 2
b + S 2

w /m)(t α; n–1 + t β; n–1)2/d 2 (38)

where S 2
b is the estimate of the between-cluster

component of variance of the outcome, S 2
w is the

estimate of the within-cluster component of variance
of the outcome, m is the expected number of
individuals per cluster, t α; n – 1 is the t distribution
value with two-sided probability α and n – 1 degrees
of freedom, t β; n – 1 is the t distribution value with
probability β and n – 1 degrees of freedom, and 
d is the detectable difference between mean changes
from baseline. The solution can be found iteratively.

Rearranging the above formula the number of
individuals per cluster is given by

ms = S 2
w/[nd 2/4(t α; n–1 + t β; n–1)2 – S 2

b] (39)

When there is only one cross-sectional survey, at
follow-up, the respective formulae are

ns = 2(S 2
b + S 2

w /m)(t α; n–1 + t β; n–1)2/d 2 (40)

and
ms = S 2

w/[nd 2/2(t α; n–1 + t β; n–1)2 – S 2
b] (41)

where d is now the detectable difference between
group means.

Difference between group proportions
Hsieh’s19 formulae for comparing group means 
in pair matched designs may be used here with 
the differences between means replaced by differ-
ences between event rates. Shipley and co-workers60

provide a formula for calculating the power of the
cluster level paired t test for the matched-pairs
cluster randomised design. The formula can be
rearranged to calculate sample sizes for desired
power and significance level. The formula, with 
the power given by the term 1 – β, is

 d J
Z β = ________________________________ – Z α (42)

[(2
_
p + d)/nH + 2σ 2

prop(1 – ρ)]1/2( J + 2)1/2

where Z α is the two-sided normal curve value
defining the level of significance of the test, Z β

is the normal curve value defining the power of 
the test, d is the detectable difference between
proportions, J is the number of pairs of clusters in
the study, 

_
p is the average value of the underlying

event rates in the absence of any intervention, σ2
prop

is the variance of the underlying event rates in the
absence of any intervention, r is the correlation of
the true underlying cluster-specific rates within
each pair and n H is the harmonic mean of the
cluster sizes.

Stratified designs

Difference between group means
If techniques devised for completely randomised
designs are employed here they are likely to over-
estimate the required sample size. An adapted
version of Hsieh’s19 formula for the matched-pairs
designs is recommended here.

Difference between group proportions,
ratio of odds
Donner111 presented formulae for calculating both
the total number of subjects and clusters required
to be randomised within strata to each intervention
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group where cluster size is the stratifying factor.
The total number of individuals required per
group, N, is given by

N = (Z αT ′ + Z βU ′)2/V 2 (43)

where

T ′ = 1_
2 √( J

∑
j =1

tj[1 + (mj – 1)ρ][
_
Pj(1 – 

_
Pj)]) (44)

(45)

U ′ = √(1_
8

J

∑
j =1

t j[1 + (mj – 1)ρ][Pj T(1 – Pj T) +(Pj C(1 – Pj C)])
V = 1_

4

J

∑
j =1

t j(Pj T – Pj C) (46)

Z α is the two-sided critical value of the normal
distribution corresponding to the α% level of
significance, Z β is the critical value of the normal
distribution corresponding to a power level of 
(100 – β)%, J is the number of strata, t j is the
fraction of individuals in the trial belonging to 
the j th stratum, m j is the cluster size within the 
j th stratum, ρ is the intraclass correlation coeffi-
cient of the outcome, 

_
Pj is the proportion with the

characteristic of interest in the j th stratum, and Pj T

and PjC are the success probabilities characterising
the intervention and control group subjects,
respectively, within the j th stratum.

The number of clusters to be assigned from the j th
stratum to each intervention group is given by

n j = (Nt j)/(2mj) (47)

Donner’s method allows the allocation of a
constant number of subjects from each stratum to
groups by setting all the stratum fractions, t j, to be
equal. Alternately, one may allocate a constant
number of clusters from each stratum to the
intervention groups:

t j = mj/
J

∑
j =1

mj (48)

Advance knowledge is required of the stratum-
specific success rates and ρ. This information may
be available from previous studies.

Donner’s method assumes that equal numbers 
of individuals and equal numbers of clusters are
assigned from each stratum to each group. If
cluster sizes are expected to vary within strata, then
the formulae can be used with the mean antici-
pated cluster size in the j th stratum, 

_
mj , replacing

m j. The extent to which this will lead to an under-

estimate of the required sample size is dependent
upon the variation in cluster size within stratum.

This method is a modified version of that used by
Woolson and colleagues112 for individual random-
ised studies. The technique is applicable to either
Cochran’s statistic (specifically) or the Mantel–
Haenszel statistic for testing for a significant odds
ratio; the two tests are essentially equivalent if the
total number of individuals in each stratum is
large.111 This method may not be appropriate for
the matched-pairs design because the method
corresponds to an analysis which entails calculating
the intraclass correlation coefficient from study
data, which will not be possible without making
special assumptions (see chapter 3).111

An example: sample size
calculation allowing for clustering
To provide a simple numerical example we
consider the planning of an audit of clinical care.
Suppose an audit was to be carried out in the
offices of single-handed GP and at clinics held in
primary care health centres. We might propose to
find out whether the proportion of all attenders
who were taking antihypertensive treatment was 
the same in the two clinical settings.

Suppose it were assumed that about half (50%) 
of the health centre attenders and 40% of GP
attenders were taking antihypertensive medication.
How many subjects would be required to detect 
this difference? Using a standard sample size
calculation with α = 0.05 and a power of 0.80, if 
408 subjects from each setting were included in 
the study then there would be sufficient power to
detect a difference in case mix of this magnitude.
However, because the subjects were to be sampled
from a number of different clinics it would also be
necessary to allow for between-cluster variation. 
We estimated that the average number sampled 
per clinic (in other words the cluster size) would 
be about 50. We did not know the intraclass corre-
lation coefficient, ρ, so we carried out a sensitivity
analysis using values of 0.01, 0.05 and 0.1. The
results are shown in Table 4. After allowing for
between-cluster variation, the sample size require-
ment was inflated to 608 if ρ was 0.01 or 2407 if 
ρ was 0.1. Thus, 12 clinics per group would suffice
if ρ was 0.01, but 48 clinics per group would be
needed if ρ was as high as 0.1. If the number
sampled per clinic could be increased to 100, then
eight clinics would be required if the ρ was 0.01,
but 44 clinics would be needed if ρ was 0.1. In
deciding on the final design of the study it would
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be necessary to consider the feasibility and costs of
increasing the number of clinics in the study rather
than the number of individuals sampled per clinic.

This example shows how important it will be to
have an approximate estimate of the intraclass
correlation coefficient when designing a study.

TABLE 4 Results of sample size calculation to detect a difference in proportions of 10%. Prevalence in control group = 50%, α = 0.05,
1 – β = 0.8

Estimated ρ Number sampled per cluster = 50 Number sampled per cluster = 100

Design effect Individuals Clusters Design effect Number Clusters
per group required required per group required required

per group per group

0.00 1.00 408 8 1.00 408 4

0.01 1.49 608 12 1.99 812 8

0.05 3.45 1408 28 5.95 2428 24

0.10 5.9 2407 48 10.90 4447 44
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Correlation between responses of individuals
within clusters must be allowed for in the

analysis of cluster level evaluations. Failure to do 
so will usually result in p values that are too small
and confidence intervals that are too narrow. The
choice of analytical approach may be restricted 
by the design of the study, and by the number of
clusters and individuals included in the sample.
Decisions made at the planning stage are therefore
very important.

Alternative approaches 
to analysis
There are three basic approaches to analysis:

• cluster level analysis with the cluster 
means, proportions or log odds used as 
the observations

• univariate analysis of individual level data 
with standard errors adjusted for the 
design effect

• regression analysis of individual level data using
methods for clustered data.

Cluster level analysis uses the cluster means,
proportions or log odds as the observations, and
applies standard parametric or non-parametric
analytical methods. Individual level analysis uses
the outcome values for individual subjects as
observations. In order to allow for clustering of
data, the design effect is incorporated into standard
formulae. This approach involves estimating the
intraclass correlation coefficient of the outcome
from the study data, and about 20 clusters are
required to calculate ρ with reasonable precision.113

Adjusted individual level hypothesis tests often
assume a common value for ρ across groups, and
for this reason may be less applicable to non-
randomised data.113 Analysis of non-randomised
designs will usually require controlling for baseline
characteristics and this will necessitate use of
multiple regression methods for clustered data.
Further details of these different approaches are
provided below, together with a worked example.
We recommend that the general reader should
look at the worked example before proceeding to
the more detailed discussion of statistical methods
included in the two sections that now follow.

Univariate cluster level and 
individual level tests
In this section, we outline univariate methods of
analysis for each of the three main designs: com-
pletely randomised, pair matched and stratified
designs. We present methods suitable for analysis 
of continuous and dichotomous outcomes. The
methods described fall into two main groups:
adjusted individual level and cluster level 
methods of analysis.

Adjusted individual level methods adapt standard
statistical methods by incorporating the design
effect into formulae for the standard error. They
require a sufficiently large number of clusters to
obtain a stable estimate for ρ. Approaches that
assume a common value for ρ across groups will 
be less applicable to non-randomised data.

Cluster level analyses are performed using the
cluster means, proportions or log odds as the
observations with application of standard para-
metric or non-parametric analytical methods. 
For example, a two-sample t test could be per-
formed on the cluster means. When the number 
of clusters in a study is too small to estimate the
intraclass correlation coefficient, cluster level
analyses may be preferred to analysis at the
individual level. The t test is known to be robust
when applied to studies with as few as three 
clusters per group. Individual level confounders
cannot be included directly, but cluster level
statistics may be standardised for variables such 
as age and sex. Cluster level analysis has the 
appeal that the unit of intervention and analysis 
are the same, but relationships demonstrated 
at the cluster level do not always hold at the 
individual level. This is sometimes referred 
to as the ecological fallacy.

Completely randomised design
Continuous outcomes
Donner and Klar59 presented a formula for
comparing two means in a cluster randomised
study generalisable to studies in which the clusters
differ in size. The test statistic is an adjustment of
the normal deviate test as applied to the individual,
and should be evaluated against the table of the
normal distribution:

Chapter 6

Analysis
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_
X 1 – 

_
X 2

Z = ____________ (49)
[V

∧
(

_
X 1 – 

_
X 2)]1/2

where 
_
X 1 – 

_
X 2 is the difference between the group

means for the intervention effect, and

C 1 C 2

V
∧
(

_
X 1 – 

_
X 2) = S 2

p(__ + __ ) (50)
N 1 N 2

is the variance of
_
X 1 –

_
X 2, where

2

∑
k =1

J

∑
j =1

(njk – 1)s 2
jk

_______________ (51)S 2
p =

2

∑
k =1

J

∑
j =1

(njk – 1)

is the overall pooled variance, n jk is the number of
individuals in the j th cluster of the k th group, s 2

jk is
the cluster-specific variance for the j th cluster of
the k th group,

n2
jkCk = 1 + [( J

∑
j =1

__ ) – 1]ρ∧ (52)
Nk

is the group-specific variance correction factor, ρ∧ is
the intraclass correlation coefficient estimated from
the study data, and Nk is the number of individuals
in the k th group. The corresponding confidence
interval for the difference between two means is

_
X 1 – 

_
X 2 ± z α[V

∧
(

_
X 1 – 

_
X 2)]1/2 (53)

where z α defines the level of confidence with
approximate two-sided (1 – α)100% confidence
limits.

Random effects meta-analysis offers an alternative
approach to univariate analysis.61 In this application
of the technique, results are pooled across clusters
rather than across studies. The approach may be used
for both continuous and dichotomous outcomes in
studies with and without stratification. To implement
meta-analysis for studies without stratification, the
cluster-specific means are pooled across clusters for
each group and the difference between the two
group-specific statistics is tested for significance.

When the number of clusters per group is small
(usually less than ten clusters per group) it may be
better to use the cluster means themselves as the
analytic units and apply a two-sample t test.114 A
weighted t test can be used when clusters are
unequal in size.

Dichotomous outcomes
The confidence interval for the risk difference
between groups is given by59

(P
∧

1 – P
∧

2) ± z α SE
∧

(P
∧

1 – P
∧

2) (54)

where z α defines the level of confidence with approxi-
mate two-sided (1 – α)100% confidence limits. The
standard error of the difference is given by

C 1P
∧

1Q
∧

1 C 2P
∧

2Q
∧

2
SE

∧
(P

∧

1 – P
∧

2)=(______ + ______ )
1/2

(55)
N 1 N 2

where Ck is the variance correction factor for 
the k th group, and is given by equation (52), 
Q k = 1 – Pk and Nk is the number of individuals 
in the k th group. A test of significance can be
performed by pooling the two samples to give 
the overall proportion.110 The design effect is 
then incorporated into the formula for the
standardised normal deviate test

P
∧

1 – P
∧

2
Z = _________ (56)

SE(P
∧

1 – P
∧

2)

An appropriate formula is shown as equation (9) 
of Donner and colleagues.108

The group-specific adjusted chi-squared
approach,113 an adjusted individual level method, 
is applicable to multigroup studies,115 though the
version of the formula below is for two groups. The
technique is closely related to the adjusted method
for constructing confidence intervals for the risk
difference between two groups. The test statistic,
χ 2

A , should be evaluated using the chi-squared
distribution with one degree of freedom:

nk(P
∧

k – P
∧
)2

χ 2
A = 

2

∑
i =1

__________ (57)
CkP

∧
(1 – P

∧
)

where n jk is the number of people in the j th cluster
of the k th group, n k is the number of individuals in
the k th group, 

_
nAk = 

Jk

∑
j =1

n 2
jk/n k

is the weighted average cluster size in the k th
group, J k is the number of clusters in the k th
group, ρ∧ is the intraclass correlation coefficient, 
Ck = 1 + (

_
nAk – 1)ρ∧ is the clustering correction 

factor for the k th group, P
∧

k is the event rate in 
the k th group and P

∧
is the overall proportion 

with characteristic of interest.
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Clustering correction factors are computed for
each intervention group, and it is assumed that
there is no ‘significant’ difference between the
design effects of each group. For this reason the
method is not well suited to non-randomised
studies. Again, the group-specific adjusted chi-
squared method is not reliable when less than 
ten clusters are randomised to each group because
the intraclass correlation coefficient cannot be
estimated with sufficient precision.113

The ratio estimate chi-squared method is another
adjustment of the chi-squared statistic but the
concept of the design effect is treated in a different
manner; it is calculated for each group separately
by dividing the variance of the event rate in each
group, under cluster randomisation by the 
variance under individual randomisation. The 
test is generalisable to studies with more than 
two intervention groups.

The following statistic should be referred to the chi-
squared distribution with one degree of freedom:

~n k(P
∧

k – 
~
P )2

χ 2
R = 

2

∑
k =1

_________ (58)~
P (1 – 

~
P )

where ~n k = n k /d k, n k is the number of individuals
in the k th group, P

∧

k is the event rate in the k th 
group, d k is the design effect for the k th 
group given by

d k = Va
∧
rR(P

∧

k)/Va
∧
rB(P

∧

k) (59)
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∧
rR(P

∧

k) = J k( J k – 1)–1n k
–2 

J
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∑
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(X jk – njkP
∧

k)2 (60)

n jk is the number of individuals in the j th cluster 
of the k th group,

Va
∧
rB(P

∧

k) = [P
∧

k(1 – P
∧

k)]/nk (61)

J k is the number of clusters in the k th group, 
Xjk is the number of successes in the j th cluster 
of the k th group, X

~
k = X k /d k is the effective

number of successes in the k th group and 

P
~

= 
2

∑
k =1

X
~

k /
2

∑
k =1

n~ k

The ratio estimate chi-squared test is well suited to
non-experimental comparisons as neither the design
effect nor intraclass correlation coefficient are
assumed to be the same in each group. However, the
method is generally less powerful than the group-
specific adjustment approach for experimental
comparisons, and is really only applicable in very

large samples because it is based on the use of
between-cluster variation for the estimation of error.
This approach will usually require much more than
ten clusters per group to ensure validity, and will tend
to work better when there is little variation in cluster
size and the amount of clustering in the data is
small.113 A version of this test has been developed that
does rely on a pooled estimate of the design effect.116

Donner and Klar59 provide formulae for the
confidence interval of the odds ratio estimate 
using what they refer to as the clustered Woolf
method. Given that ψ

∧
= (P

∧

1Q
∧

2)/(P
∧

2Q
∧

1) is the odds
ratio estimate, where P

∧

k is the proportion with the
characteristic in the k th group and Q

∧

k = 1 – P
∧

k ,
approximate two-sided (1 – α)100% confidence
limits are given by

exp(loge ψ
∧

± z α[V
∧
(loge ψ

∧
)]1/2) (62)

C1 C2
V
∧
(loge ψ

∧
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1 N2P
∧
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2

gives the variance of the log odds ratio estimate, Ck

is the variance correction factor for the k th group
given by equation (52) and Nk is the total number
of individuals in the k th group. If P

∧

k = 0 or 1, then
0.5 needs to be added to both the numerator and
denominator of P

∧

k for the variance of the log odds
ratio estimate to be defined. This method assumes
a large number of clusters because it requires an
estimate of ρ.

As for continuous outcomes, random effects 
meta-analysis is appropriate here but this time the
cluster-specific log odds or proportions are pooled
across clusters for each group, rather than the
mean, and the difference between the two 
groups is then tested for significance.

As for continuous outcomes, Donner and Klar114

and Klar and colleagues80 recommended that 
when the number of clusters per group is less 
than around ten, a two-sample t test should be per-
formed using the cluster proportions as observ-
ations. If inferences are to be made on the relative
odds scale then the cluster-specific log odds should
be used instead of proportions. A weighted t test is
appropriate when the cluster sizes are variable. A
disadvantage of using the two-sample t test is that it
does not reduce to standard methods for testing
the null hypothesis of equal event rates when there
is no clustering effect.

The cluster level t test is reputed to be robust for
proportions, and even when the assumptions are
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violated the method can be used with as few as three
clusters per group so long as variation in the cluster
sizes is not large. In studies where the number of
clusters is less than ten non-parametric tests can also
be used,113 though they suffer from the disadvantage
of low statistical power. Among the non-parametric
tests, Wilcoxon’s rank-sum test, which uses the rank
order of the cluster-specific event rates, and Fisher’s
two-sample permutation test, which takes account of
the magnitudes of the event rates, may be used.15,113

Both tests require at least four clusters per group in
order to reach significance at the 5% level.6

Matched-pairs design
Klar and Donner have drawn attention to the
limitations of the paired design.51 The difficulty 
of separating the effect of the intervention from
between-cluster variation within strata means that
the analytical options are more restricted than for
studies with strata containing more than two clusters
(see chapter 3). However, Thompson and co-
workers61 showed that random effects meta-analysis
is a valid approach for analysing data from matched-
pairs cluster-based studies for which the between-
cluster variation does not need to be estimated
explicitly (see chapter 3). Under this approach the
statistic of interest, stratum-specific differences in
means for continuous outcomes, or differences in
proportions or log odds for dichotomous outcomes,
are calculated and pooled across strata.

Continuous outcomes
The paired t test applied at the cluster level using
the cluster-specific means as observations is applic-
able here. Evidence suggests that the paired t test 
is robust enough to test for significance between
group means even if there is substantial variation 
in cluster size from pair to pair.58 However, the
standard paired t test is not strictly valid if the
cluster sizes within each pair are unequal, and the
weighted paired t test should used be under such
circumstances. It is also appropriate to use the
weighted version of the paired t test when there 
is a small number of large clusters if the cluster 
size varies between strata. Thus, the weighted
paired t test supersedes the standard paired t test 
in the context of this review.58 The appropriate 
test statistic for the weighted t test is

_
d W

J

∑
j =1

Wj

_________TWP =
(64)

SdW √
J

∑
j =1

W 2
j

which should be referred to tables of the t distri-
bution with J – 1 degrees of freedom, where J is the
number of strata.

The corresponding confidence interval for the
intervention effect is given by

(t α/2S 2
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W 2
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d W ± _____________ (65)
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where 
_
d W = 

J

∑
j =1

Wj dj /
J

∑
j =1

Wj

is the weighted difference between the group
means, the stratum weights are given by Wj =
(nj1nj 2)/njT, njk is the size of the j th cluster in the
k th group, njT is the size of the j th stratum, d j is the
difference between the cluster-specific means in the
j th stratum, t α/2 gives the two-sided (1 – α)100%
confidence limits and 

S 2
d W = 

J

∑
j =1

Wj(dj – 
_
d W)2/

J

∑
j =1

Wj

is the variance of 
_
d W. 

Random effects meta-analysis may be used here,
pooling the stratum-specific statistic of interest
across strata.

Dichotomous outcomes
Donner’s111 adjustment to the Mantel–Haenszel 
test statistic (see below) for stratified cluster-based
studies, can only be used in the special case of the
matched-pairs design if an estimate of ρ can be
obtained. Non-parametric methods using cluster
level observations such as Wilcoxon’s signed rank 
test and Fisher’s permutation test58 have too little
power for small numbers of clusters. This section
concentrates on more suitable analytical approaches.

Random effects meta-analysis may be used here
pooling the stratum-specific statistic of interest
across strata.

The paired t test may be applied at the cluster level
to the differences between proportions for pairs of
clusters within strata.58,59 Although the assumptions
of equal variances of the stratum-specific risk
differences and normality are not met,58 the test 
is still fairly robust provided that there is a large
number of matched pairs. The paired t test can also
be used under these conditions when stratum size
is variable but the weighted version described
below is likely to be more efficient.

The weighted paired t test should be used when 
the cluster size within strata is not constant.58,59
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It is well suited to studies with a small number of
large clusters that vary in size. The appropriate 
test statistic should be referred to tables of the 
t distribution with J – 1 degrees of freedom where 
J is the number of strata

_
d W∑Wj

TWP = _________ (66)
SdW √∑W 2

j

The other components of the equation are as
defined for equation (64) for continuous outcomes
except that the risk difference rather than the
difference in means is used.

When analysing a small number of large matched
clusters with fairly unbalanced designs Donner 
and Donald58 recommend the use of the weighted
paired t test based on the empirical logistic trans-
form of the crude event rates. Along with the
standard weighted paired t test this method is an
alternative for studies in which cluster size within
strata is not constant. Simulations have shown this
method to be the best for comparing matched
proportions in which a small number of large
clusters is allocated to groups.58,117 The 
appropriate test statistic is

_
d wl∑wjl

t w l = _________ (67)
S l√∑w 2

jl

to be referred to tables of the t distribution with 
J – 1 degrees of freedom where J is the number of
strata. The weighted mean log odds ratio over the
strata is given by

∑w jld jl_
d wl = ______ (68)

∑wjl

the stratum-specific weights are given by

1
wjl = ______ (69)

var(djl)

the log odds ratio for the j th stratum is given by

d jl = l j 1 – l j 2 (70)

and the log odds for the j th cluster in the k th
group is given by

a jk + 1_
2

l jk = loge (__________) (71)
njk – a jk + 1_

2

(nj1 + 1)(nj1 + 2)[1 + (nj1 – 1)ρ∧ ]
var(djl) = __________________________

nj1(aj1 + 1)(nj1 – aj1 + 1)
(72)

(nj 2 + 1)(nj 2 + 2)[1 + (nj 2 – 1)ρ∧ ]
+ ___________________________

nj 2(a j 2 + 1)(nj 2 – aj 2 + 1)

∑wjl(djl – 
_
dwl)

2

S 2
l = ____________ (73)

∑wjl

where a jk is the number of people with the
characteristic of interest in the j th cluster of the 
k th group and njk is the total number of people 
in the j th cluster of the k th group.

The corresponding confidence limits for the
intervention effect are given by

tαS l √ J

∑
j =1

w 2
jl_

dwl ± _________ (74)
J

∑
j =1

wjl

where t α provides two-sided confidence limits of 
(1 – α)100%.

Use of the clustered Woolf odds ratio estimator 
and associated confidence interval for the 
matched design is equivalent algebraically to 
the weighted paired t test based on the empirical
logistic transform of the crude event rates. The 
only difference is the latter is used to make
inferences on the risk difference rather than 
the relative odds scale. The clustered method 
is superior to the classical Woolf odds ratio
estimator for making inferences in cluster-based
studies provided there is a positive intraclass
correlation coefficient.

The clustered Woolf odds ratio estimator is

ϕ
∧

CW = exp(γ∧ CW) (75)

the weighted log odds ratio is given by
J

∑
j =1

WjC γ∧ j

γ∧ CW = _______ (76)
J

∑
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Wj C

the weights are given by

Cj1 Cj 2
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–1

(77)
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the log odds ratio specific to the j th stratum is
given by

γ∧ j = loge(ϕ∧ j) (78)

the odds ratio for the j th stratum is

ϕ∧ j = (P
∧

j1Q
∧

j 2)/(P
∧

j2Q
∧

j1) (79)

and the clustering correction factor for the j th
cluster in the k th group is given by 

C jk = 1 + (njk – 1)ρ∧ P

where njk is the total number of subjects in the j th
cluster of the k th group, J is the number of strata, P

∧

jk

is the estimate of the proportion with the character-
istic of interest in the j th cluster of the k th group, 
Q
∧

jk = 1 – P
∧

jk, and ρ∧ P is the intraclass correlation
coefficient estimated from the study data.59

The corresponding two-sided confidence limits
about the odds ratio estimate, ϕ∧ CW, are then given by

exp[γ∧ CW ± tα/2(V
∧
(γ∧ CW))1/2] (80)

where tα/2 defines the two sided (1 – α)100%
confidence limits and the variance of the weighted
log odds ratio,V

∧
(γ∧ CW), is given by

S 2
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J

∑
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Wj C(γ∧ j – γ∧ CW)2

S 2
c = ______________ (82)

J

∑
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Wj C

A test of significance corresponding to this
confidence interval is obtained by referring 
t = γCW/√[V

∧
(γCW)] to tables of the t distribution with

J – 1 degrees of freedom.117 It is worth noting that
the odds ratio estimate itself remains consistent in
the presence of clustering.

Use of the clustered Woolf odds ratio estimate en-
tails estimating ρP, and for this reason its use may be
problematic for matched-pairs designs, particularly
where there is a small number of clusters.

Stratified designs
Continuous outcomes
The paired t test can be used at the cluster level if
the distribution of cluster sizes from stratum to

stratum is similar; the observations are means
calculated for each combination of stratum and
group. If there is much variation between stratum
sizes the weighted paired t test is preferable.59

Random effects meta-analysis is another valid
approach with the stratum-specific differences
between means pooled across strata.61

Dichotomous outcomes
The analytical techniques that Donner and Klar
presented for testing prevalence differences and
odds ratios for significance under the matched-
pairs design are appropriate for the stratified
randomised design also;59 the paired t test and
weighted paired t test applied at the cluster level
and the clustered Woolf method applied at the
individual level. In contrast to the matched-pairs
design the intraclass correlation can be estimated
with ease but an estimate appropriate to the
stratified design with multiple replication of
clusters should be used.

Donner’s111 adjustment to the Mantel–Haenszel 
chi-squared test for a significant odds ratio estimate
is also applicable here. The procedure is a general-
isation of that given by Donald and Donner.118 The
following statistic should be referred to the chi-
squared distribution with one degree of freedom.

(
J

∑
j =1

a j T(nj C –aj C) – (a j C(nj T – aj T)

 – 1_
2)2

_______________________
njTBjC + njCBj T

χ 2
MHA = _______________________________ (83)

J

∑
j =1

nj Tnj Caj(nj – aj)__________________
nj TBjC + njCBj T – 1)n 2

j

where J is the number of strata, a j T is the number
of subjects with the characteristic of interest in the
j th stratum of the intervention group, a jC is the
number of subjects with the characteristic in the 
j th stratum of the control group, a j = a j T + a jC, n jT

is the total number of subjects in the j th stratum of
the intervention group, njC is the total number of
subjects in the j th stratum of the control group,
and nj = nj T + njC.

The clustering correction factors, Bj T and BjC for
the intervention and control groups, respectively,
are given by

∑
m

m[1 + (m – 1)ρ]Nj Tm

B j T = ___________________ (84)
∑
m

mNj Tm

and
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∑
m

m[1 + (m – 1)ρ]Nj Cm

B jC = ___________________ (85)
∑
m

mNjC m

where Nj Tm is the number of treatment group
clusters in the j th stratum having exactly m subjects,
Nj C m is the number of control group clusters in the
j th stratum having exactly m subjects, and ρ is the
intraclass correlation coefficient.

In practice ρ will be unknown and is estimated
from the data. It is obtained by implementing an
analysis of variance as described in chapter 4. The
adjusted Mantel–Haenszel procedure cannot
generally be used for the matched-pairs design,
where each stratum contains just two clusters, as
the intraclass correlation cannot be estimated from
the study. Thus, use of this method for matched-
pairs studies will usually lead to conservative results.

Random effects meta-analysis is another valid
approach with the stratum-specific differences
between proportions or the odds ratio estimates
pooled across strata.

Regression methods for 
clustered data
Limitations of standard regression
methods
It is not appropriate to carry out standard
regression analyses with clustered data. As for 
the adjusted individual level univariate tests, the
variance of the intervention effect and other
regression coefficients needs to be increased 
by the design effect

1 + (n – 1)ρ∧ x ρ∧ y (86)

where n is the cluster size, ρ∧ x is the estimate of the
intraclass correlation of the covariate or factor, x,
and ρ∧ y is the estimate of the intraclass correlation 
of the outcome, y.119–121 In univariate tests of inter-
vention effects, this formula simplifies to equation
(17): ρx is 1 as all individuals in a given cluster are
in the same intervention group.

Previously, standard regression methods have been
adapted to account for clustering either by including
indicator variables to represent the clusters as fixed
effects in individual level analyses or by aggregating
data to the cluster level. Using the latter approach,
analyses are implemented on the cluster-specific
summary measures with weights incorporated when
cluster sizes are unequal. Both these approaches
have well documented shortcomings.81,122–125

The use of indicator variables to represent clusters
as fixed effects in individual level analyses has four
major disadvantages. Firstly, because the inter-
vention effect is confounded with the natural
variability between clusters it is not possible to
obtain an unbiased estimate of intervention. This 
is the same confounding which would occur if
indicator variables were not used at all. Further-
more, the fixed effects analyses may be even more
misleading because the method does succeed in
separating cluster variation from individual level
variation, thus leading to an artificially large test
statistic for the intervention effect and an even
smaller p value.81 Secondly, cluster level covariates
may only be incorporated in individual level
analyses by disaggregating the data to individual
level. This can lead to reduced estimates of
standard errors and potentially biased parameter
estimates.125 Thirdly, because the clusters are
treated as a fixed rather than a random selection 
of clusters from a population, it is not appropriate
to generalise findings to the entire population of
interest. Fourthly, the practice of using indicator
variables becomes more inefficient as the number
of clusters increases because each variable uses 
one degree of freedom.

An approach that is being increasingly used to
adapt standard regression methods for clustering is
the estimation of robust standard errors (or robust
variance estimates). This approach allows the
requirement that the observations be independent
to be relaxed and leads to corrected standard
errors in the presence of clustering. Robust
standard errors may be derived using the linear,
logistic or other regression commands in the
statistical package Stata (see chapter 6).

The approach of aggregating individual level
characteristics to cluster level also suffers from 
a number of limitations. Firstly, adjusting for
individual level covariates is not straightforward
within the framework of cluster level regression
analysis. Secondly, it is not advisable to analyse 
data aggregated from the individual level to the
cluster level because relationships at one level do
not necessarily hold at another. The erroneous
generalisation of relationships that hold at one
level to another is sometimes referred to as eco-
logical fallacy.126 Analyses carried out at a given
level can only be reliably used to make inferences
at that level, therefore only very limited con-
clusions can be drawn from a cluster level
regression. Thirdly, the number of clusters 
is generally small in cluster-based studies, 
and so cluster level regression analysis will 
be inefficient.127
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Standard regression analysis at either individual or
cluster level does not yield a unified model which
reflects the hierarchical structure of the data in
cluster-based studies. Single-level analyses will
produce results that vary according to the choice 
of analytical unit, hence some type of hierarchical
analysis is required in which both cluster level 
and individual level covariates may be included.
Previously, nested analysis of variance models 
have been used, but this approach becomes less
efficient as clusters vary in size and as more
covariates are added.

A number of approaches to the regression analysis
of clustered data have been developed which
overcome the disadvantages of standard regression
methods. The following section describes types of
multilevel data structure that commonly occur in
cluster-based evaluations and in the next section
two regression methods for the analysis of clustered
data will be described: random effects modelling
(often referred to as ‘multilevel modelling’) and
marginal modelling using generalised estimating
equations (GEEs). Specialist packages that are
available for implementing regression models for
clustered data, and the results produced by the
different packages, using a common data set in
which clusters were allocated, are compared later
in this chapter.

Data structures encountered in 
cluster-based evaluations
Data from cluster level evaluations have a multi-
level structure. Variables are measured at two or
more levels, typically with individuals at level 1,
nested within clusters (communities or organis-
ations) at level 2. More complicated designs may
lead to several levels of clustering. For example,
repeated observations (level 1) may be made on
patients (level 2) attending GPs (level 3) within
general practices (level 4). Four common types 
of multilevel data structure that occur in health
interventions will be described.

Nested data structures
The nested or hierarchical structure is the simplest
multilevel structure encountered in cluster-based
studies. The defining features are that lower 
level units are nested within higher units and all
elements nested within the same unit at a given
level will also share the same unit of any higher
level that exists in the data structure. An example
of a nested structure is one in which GPs (level 2)
are randomised to groups with measurements
made on patients (level 1). Patients sharing the
same GP will also share the same general practice
(level 3).

Cross-classified data structures
In common with the nested design, the lowest level
units of interest in the cross-classified design are
nested within higher level units. The feature of the
cross-classified design which sets it apart from the
nested design is that level 1 units grouped within a
given level 2 unit do not necessarily also share the
same unit at level 3 or at any other higher level. 
For this reason clustering variables are said to be
crossed with each other. A cross-classified structure
by definition has at least three levels of data. An
example of such a structure is one in which the
outcome of intervention is studied in relation to
area of residence and hospital of treatment.
Because of cross-boundary flows there will be 
cross-classification of area of residence with
hospital of treatment.

Repeated measures data structures
In cluster level evaluations, repeated or replicated
measurements, rather than the subjects themselves,
may be perceived as the lowest level units. The
simplest repeated measures structure in a cluster-
based study will thus have at least three levels:
measurement, individual and cluster. Such data
may arise in interventions for which several
measures are made of the outcome to check its
reliability. Measurements (level 1) are nested within
individuals (level 2) who are in clusters (level 3).

Multivariate data structures
Again the measurements themselves are the lowest
level units, but there is more than one dependent
variable. For example, outcomes may be represent-
ed by more than one response variable, as when
blood pressure is represented by systolic and
diastolic pressures, or when a health status 
measure gives a profile of scores.

These different multilevel data structures may
occur as a result of the study design, the method 
of sampling used or the nature of the 
observations themselves.

Random effects models
The random effects model is an extension of the
generalised linear model which can be used to
allow for the clustering of data within areas or
organisations.120,123,128–130 The term ‘random 
effects modelling’ refers to the fact that the mean
response is treated as varying randomly between
clusters. Several other terms, for example ‘multi-
level modelling’120 and ‘hierarchical linear model-
ling’,128 are commonly used to describe the
approach and these terms emphasise the multilevel
or hierarchical nature of the data being analysed.
Other terms include ‘variance components
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modelling’,122,129 ‘mixed modelling’,69 ‘random
coefficient modelling’129 and ‘contextual
modelling’.124 Many of the advances in random
effects modelling have been made in the field of
educational research,122 where pupils are nested
within classes and classes within schools. A full
discussion of random effects models is provided 
by Goldstein.120

For analysis of a normally distributed outcome on 
a single covariate or factor, the form of a random
effects model is

y ij = α + βx ij + uj + e ij (87)

where y ij is the outcome response of the i th
individual in the j th cluster, α is the intercept or
constant, β is the regression coefficient describing
the relationship between the outcome and the
covariate or factor, x ij is the covariate or factor
value for the i th individual in the j th cluster, uj is
the random effect (level 2) for the j th cluster and 
e ij is the (level 1) residual for the i th individual in
the j th cluster.

It is usually assumed that the u j are independent
and identically distributed (Gaussian) with zero
mean and constant variance, σ2

u and the e ij in 
each cluster are independent and identically
distributed (Gaussian) with zero mean and
constant variance, σ2

e.

The random effect, uj, represents the amount by
which the intercept for the j th cluster differs from
the overall mean value α. The dependence between
observations within the same cluster is modelled
explicitly via the random effect u j. It is the presence
of the two variance terms u j and e ij that defines the
model as a multilevel or random effects model. The
fixed (non-random) part of the model, y ij = α + βx ij

describes the overall relationship between x and y.
When there is no variation between clusters the
estimates of the fixed parameters α and β in the
random effects model will be the same as those
obtained using standard regression analysis.

The simplest random effects regression model 
is one in which only the intercept varies between
clusters (as in equation (87)); this is referred to 
as a variance components model. Random effects
models may be generalised to allow any number 
of regression coefficients to vary randomly between
clusters, and these are referred to as random coeffi-
cients or random slopes models. The coefficients
will not be equivalent to those which would be
obtained by running a separate regression for 
each cluster because random effects models use

information from all clusters in estimating the
regression coefficients.130 The overall regression
coefficient estimates are averages of the estimates
for each cluster, weighted in such a manner that
smaller clusters with higher standard errors con-
tribute less than larger clusters. The cluster-specific
coefficients are all shrunk120,122 towards the
coefficient of the overall model.

A consequence of treating clusters as random
effects is that the results can be generalised to 
the entire population of clusters, provided the
study clusters have been randomly sampled and
allocated. Strictly, when clusters have not been
randomly selected, inferences only apply to the
study clusters. However, it is generally preferable 
to treat the cluster effect as random rather than 
as fixed regardless of whether or not allocation 
is random;123 in particular, unbiased estimates of
the intervention effect cannot be estimated if
differences between clusters are treated as fixed
effects. In circumstances where there are very 
few clusters and moderately large numbers of
individuals in each, it may be best to implement 
a univariate cluster level analysis, as there are not
enough clusters to estimate the cluster level
variation, σ2

u, efficiently.

Use of random effects regression to estimate
components of variance
Random effects modelling can be used to estimate
the relative contributions of individual and cluster
level characteristics to the variation in continuous
outcomes. The terms σ2

u and σ2
e are equivalent to

the between-cluster and within-cluster variance
components used to estimate the intraclass corre-
lation coefficient. Most random effects modelling
packages provide estimates of the variance com-
ponents in the output. For binary outcomes the
variance components estimates cannot be used to
calculate ρ because they are estimated on different
scales; the level 1 variation is binomial whilst for
other higher levels it is continuous.

Sample size requirements
It is important to emphasise that the sample size
requirements for random effects modelling are
substantial. While it is not advisable to specify
precise numerical requirements, Duncan and
colleagues follow Paterson and Goldstein131 in
suggesting that a minimum of 25 individuals in 
each of 25 clusters may be required for analysis 
with a single level of clustering.132 The requirement
for a reasonably large number of clusters may limit
the application of multilevel approaches to many
intervention studies in health care, but application
to the analysis of observational evaluations of health
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service performance will be appropriate. When 
the number of clusters is small, variances may be
underestimated and confidence intervals may be 
too narrow, a problem that may be overcome to
some extent by adopting a Bayesian approach.132

Random effects models for non-continuous
outcomes
The estimation of random effects generalised
linear models for non-normally distributed
outcomes (e.g. random effects logistic regression)
presents considerable computational difficulties.
Because full maximum-likelihood estimation
procedures are not available, approximations 
(e.g. penalised quasi-likelihood133) are used. 
These may give rise to biased estimates and
practical difficulties, for example non-convergence.
This is an area of active development.134–140 Highly
computationally intensive Bayesian methods 
may again be helpful, but their implementation
requires a substantial level of expertise
(http://www.mrc-bsu.cam.ac.uk/bugs).

Marginal modelling using GEEs
The method of GEEs uses an alternative 
approach to the regression analysis of clustered
data.141–144 This approach is sometimes referred to 
as population-averaged or marginal modelling as
opposed to the cluster-specific approach used by 
the random effects model. Whereas in random
effects models the cluster level variation is modelled
explicitly using u j, the GEE method treats the
dependence between observations as a nuisance
parameter. The GEE method assumes a correlation
matrix which describes the nature of the association
within clusters. The correlation structure is usually
assumed to be exchangeable in the context of
cluster-based studies, that is, responses from the
same cluster are assumed to be equally correlated.
Two types of standard error can be obtained under
the GEE framework: model-dependent and robust
estimates. The latter are consistent even if the
within-cluster correlation structure has been
specified incorrectly.

In the context of organisation-based evaluations 
the GEE method suffers from the disadvantages
that it requires a large number of clusters143 and 
it can only be used to model data with one level 
of clustering. In spite of these disadvantages the
GEE approach is of interest because the regression
estimates relate directly to relationships within 
the overall population rather than specific clusters
and because, unlike random effects modelling,
correct significance tests may be provided 
without the need for complex modelling 
of variance structures.

As with random effects modelling, GEEs produce 
a solution identical to standard generalised linear
models in the absence of clustering. For linear
regression the random effects and GEE models 
will yield identical results in the presence of
clustering. For other types of data, such as logistic
and Poisson regression, results obtained using 
the two approaches may differ.

Comparison of specialist random 
effects modelling packages
Several software packages specifically designed to
implement random effects models are available,
and include MLn/MLwiN®, HLM®, VARCL®,
MIXOR/MIXREG®, MLA® and BUGS®. The last is
used to implement Bayesian models. Additionally
there are modules within some general statistical
packages that permit random effects modelling,
including EGRET®, Stata, SAS and BMDP. The
programs vary with respect to the type of estimation
method and algorithm used but all carry out ran-
dom effects regression analyses. The algorithmic
approaches to fitting random effects models include
expectation maximisation, iterative generalised 
least squares and Fisher scoring for maximum
likelihood estimates and the use of Gibbs sampling
to produce Bayesian estimates. For maximum
likelihood estimation it is recommended that
restricted estimation be used because it produces
unbiased estimates of the random parameters.120

For full descriptions of these algorithms and others
used to implement random effects models, the
literature should be consulted.120,128,129 The general
statistical packages Stata®, GENSTAT® and SAS 
can be used to implement GEEs.

In this section the characteristics and features of the
specialist packages MLn, MLA, HLM, VARCL and
MIXREG/MIXOR will be described. Some general
features of these packages are described in Table 5.
The reader should also refer to the review by Kreft
and colleagues,145 which described 5V(BMDP)®,
GENMOD(SAS)®, HLM, ML3® and VARCL. It is
intended here to give a general guide to two of the
newer programs and provide updated information
on those reviewed by Kreft and colleagues.

MLn (H Goldstein, J Rashbash and M Yang)
MLn supports the analysis of hierarchically
structured data with as many as 15 levels of 
nesting. Regression coefficients may vary randomly
at any level. Linear, logistic and Poisson regression
models may be implemented as well as log-linear
and survival analyses. The default output includes
fixed parameter estimates and standard errors,
variance estimates with standard errors and signifi-
cance tests for the fixed and random parameters.
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The worksheets together with current model
specification can be saved. Other useful features
include an option for the analysis of cross-classified
models and a command for listwise deletion 
of cases.

MLn has two estimation procedures for logistic
regression: MQL and PQL. The essential differ-
ence between the MQL and PQL estimating
equations is that the former does not incorporate
random effects into the estimation process. Evi-
dence suggests that the MQL procedure is biased,
especially in the presence of a large clustering
effect,146 and is essentially equivalent to marginal
modelling or population-averaged approaches 
(see earlier) in which the within-group correlation
structure is not explicitly modelled.133,147 The PQL
method, introduced with the current version of
MLn, produces estimates that are less biased.
Goldstein and Rasbash, however, warn that PQL
with a second-order Taylor expansion can produce
estimates that are not as efficient as those of a 
first order Taylor expansion.148 It is therefore
recommended that PQL should be used with 
a first-order expansion, the analysis should be
repeated with a second-order expansion and then
the difference between the solutions should be
assessed. Even so, Goldstein and Rasbash found
that potentially the improvement in using a 
second-order Taylor expansion for PQL rather 

than first-order PQL, can be far greater than that 
in going from MQL to first-order PQL. A Microsoft 
Windows version of the package, MLwiN, is now
available, and facilitates the implementation of
Bayesian models.

Web site: http://www.ioe.ac.uk/multilevel/

MLA (F Busing, R van der Leeden and E Meijer)
MLA permits random effects modelling of
continuous outcomes only. The default output
includes estimates of fixed parameters, their
standard errors and p values; random parameters
and their standard errors, the intraclass corre-
lation coefficient and the model deviance. The
program and manual can be downloaded from 
the web site.

VARCL (N Longford)
VARCL consists of two separate subprograms:
VARL3, which permits up to three-level structures,
and VARL9, for up to nine-level structures. VARL9
is for simple variance structures in which the
intercept is the only coefficient that varies between
clusters, that is, variance component models. 
Both programs run in batch mode for the data 
preparation, and are interactive during the
modelling stage. A separate data set containing
cluster level variables is required for each level 
of clustering that contributes covariates.

TABLE 5 General features of the random effects modelling packages

General features MLN MLA VARCL HLM MIXREG

Estimation method FML/REML FML/REML FML FML/REML FML

Algorithm for continuous outcome IGLS EM Fisher scoring EM—Fisher Fisher scoring
scoring

Maximum number of levels 15 2 3a 3 2

Number of parameters (fixed and random) 150 128 96 No limit No limit

Data format ASCII ASCII ASCII ASCIIb ASCII

Data manipulation Good None None Little None

Logistic regression Yes No Yes Yes Yesc

Algorithm for logistic regression MQL and PQL – MQL PQL MML

Microsoft Windows®/DOS® Both DOS only DOS only Both Both

Batch/interactive Both Batch only Interactived Both Both

Documentation/manual available Yes Yes Yes Yes Yes

FML, full maximum likelihood; REML, restricted maximum likelihood; IGLS, iterative generalised least squares; EM, expectation
maximisation; MQL, marginal quasi-likelihood; PQL, penalised quasi-likelihood; MML, marginal maximum likelihood
a Nine levels may be declared for variance components models where only the constant varies between clusters
b Data may also be converted directly from a variety of general statistical packages
c Using MIXOR
d Interactive for model declaration but the data is imported and prepared in batch mode
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VARCL facilitates the implementation of linear,
logistic, Poisson and gamma regression models.
The standard output contains fixed and random
parameter estimates with standard errors and the
model deviance. The worksheet, complete with
model specification, can be saved in a dump file 
for linear regression analyses only.

Web site: http://www.gamma.rug.nl

HLM (AS Bryk, S Raudenbush and RT Congdon)
HLM can be used to implement random effects
analogues of linear, logistic and Poisson regression.
By default the output contains fixed parameter
estimates with standard errors and p values,
random parameter estimates and a chi-squared 
test of significance for the between-cluster variance
component. For logistic regression, HLM uses the
PQL algorithm.

HLM requires a separate data set for each level of
clustering regardless of whether the level contri-
butes covariates to the fitted model. HLM allows
missing data declaration for individual level data
only. A very useful feature of HLM is that as well 
as importing ASCII data it can also convert data
from the statistical packages BMDP, Matlab®, SAS,
SPSS ®, Stata and SYSTAT®.

Web site: http://www.gamma.rug.nl

MIXREG (D Hedeker and RD Gibbons)
MIXREG can be used to implement random 
effects linear regression. A separate program,
MIXOR, is used for logistic and ordinal regressions,
and survival analysis is carried out in MIXGSUR.
The standard output contains fixed-parameter

estimates with standard errors and p values,
random parameter estimates and standard errors,
and the intraclass correlation coefficient estimate.

Comparison of solutions between
regression methods for clustered data
In this section the solutions of several multilevel
analysis programs are compared. The data 
were obtained from an audit of diabetic care at
nine primary care health centres with a total of 
415 patients. At the five clinics which comprised
the intervention group there were specially
organised clinics for patients with diabetes while 
at the other four clinics, diabetic patients were 
seen in general clinics. Table 6 illustrates the 
cluster-based statistics from these data.

Linear regression was used to determine whether
there was an association between the natural log 
of blood glucose concentration and clinic type.
Logistic regression was used to find out if there 
was an association between the proportions of
patients receiving dietary advice in the ordinary
and specially organised clinics. Several random
effects programs were compared as well as GEEs
(Stata). Three explanatory variables were used in
the linear regressions: clinic type (general or
diabetic), sex, and age as a continuous variable.
Only clinic type was used in the logistic regressions.
Patient data were considered to be clustered 
within clinics.

Table 7 summarises results of the linear regression
analyses carried out in the random effects model-
ling packages MLn, MLA, VARCL, HLM) and
MIXREG. The solution given by the random 
effects program in Stata (using the command

TABLE 6 Summary statistics for diabetes data by clinic

Clinic number Group number Cluster Mean log of blood glucose level Proportion receiving 
size (mmol/l) dietary advice

1 2 70 2.34 0.44

2 2 118 2.20 0.23

3 2 61 2.37 0.48

4 2 29 2.21 0.45

5 1 12 2.16 0.58

6 2 64 2.23 0.06

7 1 10 2.19 0.00

8 1 35 2.20 0.31

9 1 16 2.04 0.31

The weighted mean cluster size n0 = 43.08
Intraclass correlation coefficient for log of blood glucose level = 0.0197
Intraclass correlation coefficient for dietary advice = 0.113
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‘xtreg’) is also given. Standard linear regression
(using ordinary least squares), which takes no
account of clustering, suggests that the relationship
between blood glucose control and clinic type 
is significant, with a p value of 0.037. A positive
coefficient for clinic type suggests that patients 
in the special clinics have a higher blood glucose
level than those in the general clinics.

Each of the specialist random effects packages 
gives the same result, which differs from that
obtained using standard linear regression. The
consequence of allowing for clustering is a larger
standard error and a higher p value, and this
confirms that an incorrect single level analysis
could give misleading results. The Stata command
‘xtreg’ also gives the same result. However, it is
important to be aware that there are several options
for the ‘xtreg’ command, and it is the maximum
likelihood option ‘mle’ which gives results which
correspond to MLn. The package Stata may be
more convenient for general use, but it is not able
to handle the range of complex data structures
accommodated by MLn.

Table 8 summarises the results of logistic regression
analyses. The packages used were MLn, VARCL,

HLM and MIXOR, and Stata for GEEs with 
and without robust estimates of variance using 
the ‘xtgee’ command. The MLn solution was
estimated using the PQL algorithm with second-
order Taylor expansion.

The result obtained using standard logistic
regression differs from that obtained using methods
that allow for clustering. There are clear differences
between the results obtained using GEEs and those
obtained using the random effects packages, and the
results obtained using the random effects packages
are less consistent than those obtained for the
continuous outcome. Goldstein149 and Rodriguez
and Goldman146

noted the similarity between the non-linear
procedures employed by MLn and VARCL 
and this is borne out by the results for the logistic
regression. However, besides these two programs it
appears that the solutions for the logistic regression
generally differ among the packages. This might 
be expected as the extension of adjusted regression
methods for dichotomous outcomes is still in the
developmental stage.113 The estimation procedures
used for logistic regression differ, and they can
produce differing estimates. De Leeuw and Kreft150

stress that there is no uniformly best method for

TABLE 7 Comparison of random effects model results (for explanation see text)

OLS Stata MLn MLA VARCL HLM MIXREG

Coefficient of clinic type 0.115 0.123 0.123 0.123 0.123 0.123 0.123
Standard error 0.055 0.0636 0.063 0.063 0.063 0.063 0.063
t ratio 2.089 1.94 1.94 1.94 1.94 1.94 1.94
p value 0.037 0.053 0.052 0.052 0.052 0.052 0.052
Coefficient of age –0.004 –0.004 –0.004 –0.004 –0.004 –0.004 –0.004
Coefficient of sex 0.065 0.065 0.065 0.065 0.065 0.065 0.065
Constant 2.339 2.342 2.342 2.342 2.342 2.342 2.342
Between-cluster variance – 0.00197 0.00197 0.00197 0.00197 0.00197 0.00197
Within-cluster variance – 0.1786 0.1786 0.1786 0.1786 0.1786 0.1786
Intraclass correlation – 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110

OLS, ordinary least squares

TABLE 8 Comparison of logistic regression results

Standard MLN VARCL HLM MIXOR GEE GEE
logistic using model- robust

regression second- dependent variance 
order PQL variance estimates

estimates

Log odds ratio of clinic type –0.05135 0.0784 0.078827 0.032104 0.06433 0.090 0.090

Standard error of log odds 0.278020 0.5357 0.538199 0.636890 0.71374 0.579 0.572

Odds ratio of clinic type 0.949945 1.081555 1.082017 1.032625 1.066444 1.095 1.095
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logistic regression. Analysis of simulated data with
known population parameters is the ideal approach
for gauging the bias in estimates incurred by these
programs. For the purposes of this review, we use the
diabetes data to draw attention to the fact that there
are differences between the estimation procedures
used by different packages and to observe that differ-
ent results may be obtained by different methods.

Applications of regression methods 
for clustered data in health and
healthcare research
The practical application of regression methods 
for clustered data to the evaluation of health care 
is still at an early stage of development. Some appli-
cations up to 1996 were reviewed by Rice and Ley-
land,123 and up to 1998 by Duncan and colleagues.132

When regression models are used, methods
appropriate for clustered data should be employed
in order to obtain the correct standard errors and
confidence intervals. GEEs may be used to adjust for
the clustering of individual responses at organisation
or area level. This approach may be applicable if
cluster sampling is used to recruit individuals from
different clinics.151 The approach will also be
relevant when cluster level covariates are to be
included in analyses. For example, in a study of
neonatal mortality in relation to activity level in
neonatal units, GEEs were used to adjust for the
correlation of infant outcomes within hospitals.152

Duncan and colleagues132 make the point that
random effects models will be more useful when 
the evaluator wants to distinguish the effects of the
organisational or geographical context from the
composition of the sample of individuals within the
organisation or area. This type of distinction is often
important in observational evaluations of existing
health services, for example, in comparing the
performance of different institutions, or comparing
healthcare processes and outcomes in different
geographical areas. Goldstein and Speigelhalter153

discussed some of the statistical issues in compari-
sons of institutional performance. They showed that
it is important to carry out the correct hierarchical
analysis which models the nesting of individual
responses within hospitals or health authorities. 
This type of analysis in which organisational units
are treated as random effects leads to point estim-
ates which are shrunk towards the population mean
with confidence intervals that are more precise
when compared with a conventional fixed effects
analysis. However, when ranking of outcomes by
organisation is important, confidence intervals for
ranks may be so large that they are not informative.
Examples of the application of multilevel analysis to

geographical variations in health are described by
Duncan and colleagues.132

An example: analysis allowing 
for clustering
To illustrate how an analysis might be performed 
in order to allow for clustering, we analysed data
obtained from an audit of clinical care (Table 9).
The aim of this analysis was to see whether there
was a difference between the proportion of
attenders who were receiving antihypertensive
treatment at health centre clinics compared with
attenders at single-handed GPs.

TABLE 9 Data from clinical audit. Figures are frequencies
(percentage of row total)

Clinic Number Number on Mean Number
type of blood pressure age of women

patients treatment (years) (%)

HC 62 47 (76) 63 46 (74)
HC 51 44 (86) 62 34 (67)
HC 43 41 (95) 65 33 (77)
HC 43 32 (74) 64 27 (63)
HC 35 28 (80) 63 26 (74)
HC 21 9 (43) 69 7 (33)
HC 83 69 (83) 66 61 (73)
HC 68 24 (35) 56 43 (63)
HC 59 28 (47) 60 34 (58)
HC 74 39 (53) 59 45 (61)
HC 67 53 (79) 64 52 (78)
HC 44 27 (61) 59 28 (64)
HC 63 44 (70) 62 40 (63)
HC 76 39 (51) 63 49 (64)
HC 36 15 (42) 55 27 (75)
HC 66 41 (62) 60 42 (64)
HC 37 24 (65) 64 27 (73)
HC 47 32 (68) 57 42 (89)

GP 45 5 (11) 52 28 (62)
GP 43 6 (14) 52 29 (67)
GP 36 9 (25) 54 31 (86)
GP 89 14 (16) 46 69 (78)
GP 120 19 (16) 46 81 (68)
GP 21 8 (38) 53 13 (62)
GP 120 31 (26) 54 87 (73)
GP 84 19 (23) 47 49 (58)

HC 
sub-
total 975 636 (65) 61 663 (68)

GP 
sub-
total 558 111 (20) 49 387 (69)

Total 1533 747 (49) 57 1050 (68)

HC, health centre
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Initial inspection of the data showed that there were
26 clinics including 18 health centres and eight
single-handed GPs. The number of patients sampled
per clinic was quite variable. The proportion of
patients treated for hypertension seemed to be
higher at the health centre clinics but the health
centre patients were older than those attending the
GPs. The value for ρ estimated from the 26 clinics
was 0.259, but it might not be justified to assume a
common value for ρ at both types of clinic, since the
estimated value for ρ in the health centre clinics was
0.107 while for the GP clinics it was 0.013. However,
the number of GP clinics was small and possibly not
sufficient to obtain a stable estimate for ρ.

These observations suggest that certain approaches
to analysis will be more appropriate than others.
Because age is associated with both blood pressure
and clinic type, it will be necessary to carry out
analyses which allow for differences in age among
clinic types. Donner and Klar113 pointed out that
adjusted individual level hypothesis tests which
assume a common value for the design effect 
across groups will be less applicable to non-
randomised data.

The results of several different methods of analysis
are shown in Table 10. Initially, cluster level analyses

were performed using the cluster-specific pro-
portions as observations. A non-parametric rank
sum test shows a significant difference between the
two clinical settings with an approximate z statistic
of 3.95. The two-sample t test gave a mean differ-
ence in the cluster-specific proportions of 0.439
(95% confidence interval 0.307–0.571). Analyses
were also performed at the individual level. An
analysis which made no allowance for the cluster-
ing of responses gave a difference between the 
two proportions of 0.453 with 95% confidence
intervals from 0.409 to 0.498 and a z statistic of
17.1. However, a standard statistical analysis would
be incorrect because, as we noted above, between-
clinic variation is present. In order to construct
confidence intervals, the design effect should be
incorporated into the formula for the standard
error for the difference in two proportions as
shown in equation (55). The design effect for the
health centre clinics is 6.66, and for the single-
handed GPs is 1.90. The standard error of the
difference in proportions was 0.0458. The differ-
ence was still 0.453, but the corrected confidence
intervals were from 0.363 to 0.543. This result
showed that the difference between the two audits
was estimated less precisely after allowing for
between-clinic variation. The corresponding
adjusted chi-squared test113 yielded a χ2 of 113.0

TABLE 10 Results obtained using different methods of analysis to compare the proportion of attenders on antihypertensive treatment 
at health centre clinics and at single-handed GPs

Method Estimate (95% confidence intervals) z statistic

Cluster level analysis Difference (95% confidence interval)
Rank sum test – 3.95
Two-sample t test 0.439 (0.307–0.571) t = 6.85

Individual analysis – difference of proportions
Standard univariate test 0.453 (0.409–0.498) 17.1
Univariate test adjusted for design effect 0.453 (0.363–0.543) χ2 = 113.0 (df = 1)a

Univariate individual analysis – logistic Odds ratio (95% confidence interval)
regression methods
Standard logistic regression

Univariate 7.56 (5.91–9.66) 16.1
Adjusted for age and sex 5.46 (4.22–7.08) 12.9

Logistic regression, robust standard errors
Univariate 7.56 (4.88–11.69) 9.1
Adjusted for age and sex 5.46 (3.66–8.15) 8.3

GEEs 
Univariate 7.32 (4.62–11.57) 8.5
Adjusted for age and sex 5.06 (3.32–7.70) 7.6

Random effects logistic regression
Univariate 8.47 (4.51–15.91) 6.6
Adjusted for age and sex 6.16 (3.39–11.18) 6.0

df, degree of freedom
a Refers to adjusted chi-squared test59
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(one degree of freedom). Note, however, that this
test assumes a common value for ρ.

An alternative approach to the analysis is to 
use logistic regression. A conventional logistic
regression analysis showed that the relative odds 
of patients being on antihypertensive medication 
in the health centre clinics compared with the 
GP clinics were 7.56 (5.91–9.66). The z statistic
obtained from this model was 16.1. This analysis
was modified to allow for clustering within clinics
by estimating robust standard errors giving the
same odds ratio 7.56, but the 95% confidence
intervals were from 4.88 to 11.69 with a z statistic 
of 9.1. Analyses were adjusted for age and sex 
and the relative odds were reduced to 5.46 (3.66–
8.15). The method of GEEs offered an alternative
approach to regression analysis. This was carried
out by specifying a logistic link function, an
exchangeable correlation structure, and robust
standard errors to allow for clustering within
clinics. The analysis adjusted for age and sex gave
an odds ratio of 5.06 (3.32–7.70) which was similar
to the result obtained using logistic regression with
robust standard errors, but this analysis adjusted
the estimate for clustering as well as the standard
error. We used the package Stata to perform both
the logistic regression and GEE analyses.154

A third approach to the analysis of these data is 
to use random effects logistic regression to model
the variation in response at clinic level. We used 
a simplified model which assumed the same

variation at level 2 (i.e. clinic level) for both
settings. The adjusted analysis gave a higher 
odds ratio and slightly wider confidence intervals,
6.16 (3.39–11.18), when compared with the logistic
regression and GEE analyses. The level 2 variance
on the log odds scale was 0.387 with a standard
error of 0.139. We used the package MLn155 to fit
the random effects logistic regression models 
with second-order PQL estimation.

The incorrect individual level analyses with no
adjustment for clustering gave narrower confidence
intervals and larger z statistics than any of the
methods which allow for clustering of responses.
Carrying out a two-sample t test using the cluster-
specific proportions as observations provided the
most accessible method of analysis and gave a 
result which allowed for between-cluster variation.
However, as it was also necessary to adjust for
individual level confounders, one of the regression
methods for clustered data was to be preferred.
Logistic regression with robust standard errors 
gave a similar result to that obtained using GEEs 
in these data. Logistic regression was more access-
ible, and was computationally less intensive with
shorter analysis times, but the GEE approach
adjusted both the estimate and the standard error
for clustering, and was to be preferred for this
reason. Random effects logistic regression might
have allowed additional modelling of the variance
at cluster level, which could have been useful if 
the analysis was to focus on the performance of
particular primary care clinics.
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We summarised the preceding review into 
12 methodological recommendations:

(1) Recognise the cluster as the unit of intervention
or allocation. Healthcare evaluations often fail to
recognise, or correctly utilise, the different levels 
of intervention which may be used for allocation
and analysis.22 Failure to distinguish individual level
from cluster level intervention or analysis can result
in studies which are inappropriately designed or
which give incorrect results.109 Researchers should
recognise different organisational levels at which
the intervention may be made and distinguish
between them when deciding on the method 
of allocation or analysis.

(2) Justify the use of the cluster as the unit of
intervention or allocation. For a fixed number of
individuals, studies in which clusters are random-
ised to groups are not as powerful as traditional
clinical trials in which individuals are random-
ised.109 This is because individual responses within
clusters are correlated with each other in cluster-
based studies which thus usually require more
subjects to obtain comparable power. The decision
to allocate at organisation level should therefore 
be justified on theoretical, practical or economic
grounds (Box 3).

(3) Include a sufficient number of clusters.
Generally, the evaluation of an intervention 
which is implemented in a single cluster will not
give generalisable results. For example, a study
evaluating a new way of organising care at one
diabetic clinic would be an audit study from which
generalisable observations may be difficult. It
would be better to compare control and inter-
vention clinics, but studies with only one clinic 
per group would be of little value, since the effect
of intervention is completely confounded with the
underlying variation in response between the two
clinics. Studies with only a few (less than four)
clusters per group should generally be avoided 
as the sample size will be too small to allow a valid
statistical analysis with appreciable chance of
detecting an intervention effect.36 Studies with 
as few as six clusters per group have been used 
to demonstrate effects from cluster-based inter-
ventions,156 but larger numbers of clusters may 
be needed, particularly when the investigator is

interested in a relatively small intervention effect.
In principle, as many clusters as possible should 
be included in an evaluation, but in practice the
number of clusters may be limited by practical 
or financial constraints.

(4) Randomise clusters wherever possible. While
clinical trials are considered essential for the
evaluation of treatments aimed at individuals,
random allocation of clusters in organisation level
interventions has been less common. Random-
isation is used to ensure that the estimate of pro-
gramme effect is not biased as a result of confound-
ing with known or unknown variables. Recent
examples of cluster randomised studies include the
British Family Heart Study157 and the Mwanza study
of HIV prevention.156 There are occasions when the
investigator will not be able to control the assign-
ment of clusters, for instance when evaluating an
existing service or policy.75 However, because of the
risk of bias, use of quasi-experimental or observ-
ational designs should always be explicitly justified.

(5) In non-randomised studies include a control
group with observations before and after the

Chapter 7

Twelve methodological recommendations

BOX 3 Reasons for carrying out 
cluster-level evaluations

(1) Public health and health care programmes are
generally implemented at organisation rather than
individual level, so cluster level studies are more
appropriate for assessing the effectiveness of 
such programmes

(2) It may not be appropriate, or possible in practice,
to randomise individuals to intervention groups
since all individuals within a general practice or
clinic may be treated in the same way

(3) ‘Contamination’ may sometimes be minimised
through allocation of appropriate organisational
clusters to intervention and control groups. For
example, individuals in an intervention group
might communicate a health promotion message
to control individuals in the same cluster. This
might be minimised by randomising whole towns
to different interventions

(4) Studies in which entire clusters are allocated to
groups may sometimes be more cost-effective 
than individual level allocation, if locating and
randomising individuals is relatively costly



Twelve methodological recommendations

50

intervention. When randomisation is not feasible, 
a control group should be included. Each group
should include a sufficient number of clusters (see
point 3) which should be stratified for important
prognostic factors so far as possible (see point 8). 
A wide range of confounders should be measured.
Outcome variables should be measured both
before and after the intervention.

(6) In single group studies include repeated
measurements over time. Sometimes it is not
feasible to include a control group, as for example
when a new policy is implemented at national level.
In this case, repeated assessments should be made
both before and after the intervention in order to
control for secular changes in the outcome.

(7) Allow for clustering when estimating the
required sample size. When the cluster is both 
the unit of intervention and the unit of evaluation,
conventional statistical approaches may be used 
to estimate the required number of clusters, using
cluster level measures of outcome as the units of
observation. However, when evaluating cluster level
interventions by means of observations made at the
individual level, standard sample size formulae will
not be appropriate for obtaining the total number
of individuals required. This is because they assume
that the responses of individuals within clusters 
are independent.19,60,86,108,109,111 Individuals within
clusters are usually more similar than those in
different clusters. Dependence between subjects
within clusters needs to be recognised when
estimating the sample size. Standard sample size
formulae underestimate the number of individuals
required because although variation within clusters
is allowed for, variation between clusters is not.

Methods for calculating the total number of
individuals required for cluster level interventions
typically involve adjusting standard formulae to
allow for the correlation between subjects.109 A
quantity known as the design effect or variance
inflation factor is used to adjust standard sample
size formulae, in order to give a cluster level
evaluation with the same power to detect a given
intervention effect as a study with individual
allocation. The design effect is estimated as

Deff = 1 + (n – 1)ρ

where Deff is the design effect, n is the average size
of the clusters and ρ is the intraclass correlation
coefficient for the outcome of interest.

The design effect may be interpreted as the
number of times more subjects a cluster-based

evaluation should have, compared with one in
which individuals are randomised, in order to
attain the same power. ρ is the proportion of the
total variation of the outcome that is between
clusters; it essentially gauges the degree of similarity
or correlation between subjects within the same
cluster. The larger ρ is, that is, the more similar 
the subjects are within a cluster, the greater the size
of the design effect and the larger the additional
number of subjects required in an organisation-
based evaluation to compensate for the loss in
power. In studies of large organisational units, ρ
usually takes small positive values; however, with
large numbers of individuals per cluster even a
small ρ can lead to a large design effect.

For different studies with the same outcome, 
the estimate of ρ is more comparable than the
design effect because it is not dependent upon the
number of subjects selected from within each of
the clusters. It is therefore ρ that should be known
or estimated prior to the study. If ρ is not available
plausible values must be guessed. One of the
recommendations of this review is that researchers
should publish estimates of ρ for key outcomes 
of interest.103 This will aid the planning of future
organisation level interventions. Some examples 
of values for ρ are given in chapter 9.

The investigator will often find that clusters are 
of predetermined size. The number of clusters
required can then be estimated by dividing the 
total number of individuals required by the average
cluster size. When it is feasible to sample individuals
within clusters, the power of the study may be in-
creased either by increasing the number of clusters
or the number of individuals within clusters.

Increasing the number of clusters rather than the
number of individuals within clusters has several
advantages.61 The result of the study will usually
appear to be more generalisable if the intervention
has been implemented in a number of different
clusters. A larger number of clusters also allows
more precise estimation of ρ and more flexible
approaches to analysis.61 Furthermore, there 
is a limit to the extent to which power may be
increased solely by increasing the number of
individuals within clusters.61 However, the relative
cost of increasing the number of clusters in the
study, rather than the number of individuals within
clusters, will be an important consideration when
deciding on the final structure of the sample.

Appropriate formulae for sample size calculations
are given by Cornfield,109 Donner and
colleagues,86,108,111 Hsieh19 and Shipley.60
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(8) Consider the use of matching or stratification
of clusters where appropriate. In cluster-based
studies, randomisation may be stratified to ensure
that treatment groups are balanced with respect to
important prognostic factors, so as to increase the
power of the study. Stratification is of particular
importance when the number of clusters random-
ised is small (as is typically the case in organisation
level evaluations) since randomisation will not
ensure that treatment groups are balanced. Stratifi-
cation entails assigning clusters to strata classified
according to cluster level prognostic factors. Equal
numbers of clusters are then allocated to each
intervention group from within each stratum. 
Some stratification or matching will often be
necessary in cluster-based trials where there are
known prognostic factors, unless the number of
clusters is quite large. Stratification may increase
power in randomised studies and reduce bias in
quasi-experimental studies; however, it is only
useful if the prognostic factor(s) is(are) fairly
strongly related to the outcome.

The simplest form of stratified design is the
matched-pairs design in which each stratum
contains just two clusters. This design might seem
preferable when the number of prognostic factors
is large relative to the number of study clusters.50

We advise caution in the use of the matched-pairs
design for two reasons. Firstly, the range of
analytical methods appropriate for the matched
design is more limited than for studies which use
unrestricted allocation or stratified designs in
which several clusters are randomised to each inter-
vention group within strata.51 Secondly, when the
number of clusters is less than about 20, the loss 
of degrees of freedom associated with a matched
analysis may result in serious loss of statistical
power,55 although this will depend on the strength
of the association between the matching variable
and the outcome variable. It will often be more
advisable to include at least four clusters in each
stratum. If matching is felt to be essential, it is
worth considering the use of an unmatched cluster
level analysis to evaluate the intervention effect.34

(9) Consider different approaches to repeated
assessments in prospective evaluations. There 
is a choice between two basic sampling designs for
follow-up studies in which the organisation is the
unit of intervention: the cohort design in which 
the same subjects from the study clusters are used
at each measurement occasion, and the repeated
cross-sectional design in which a new sample of
subjects is drawn from the clusters at each
measurement occasion.67,69,71 The cohort design 
is most appropriate when the focus of the study 

is on the effect of the programme at the level of 
the subject,67 as one can link changes in outcome 
to individual level prognostic factors. The repeated
cross-sectional design on the other hand is more
appropriate when the focus of interest is the long-
term effect of intervention on some cluster level
index of health such as disease prevalence. This is
because the repeated cross-sectional design is more
likely to be representative of the clusters at the later
measurement occasions, particularly for studies
with long follow-up. Choice of design should be
dictated by the questions and hypotheses driving
the research. For studies where either design is
theoretically appropriate, the cohort design is
potentially more powerful than the repeated cross-
sectional design because repeated observations on
the same individuals tend to be correlated over
time, and this acts to reduce the variation of the
estimated intervention effect.69

When repeated cross-sectional sampling is used, 
it may be important to anticipate the possible
direction and size of secular trends in the outcome,
as the secular trend may compromise the power 
of the study to detect an intervention effect. In
healthcare settings it must be remembered that
secular changes in case mix may be substantial.

(10) Allow for clustering at the time of analysis.
Standard statistical methods are not appropriate 
for the analysis of individual level data from cluster-
based evaluations, because they assume that the
responses of different subjects are independent.109

Standard methods may underestimate the standard
error of the intervention effect resulting in con-
fidence intervals that are too narrow and p values
that are too small.

Univariate tests of intervention effect for
organisation level evaluations with individual level
outcomes, may be done in three ways: (a) analysis
at the level of the cluster, applying standard statis-
tical methods to the cluster means, proportions or
log odds; (b) analysis at the level of the individual
using formulae for which the variance of the
estimate has been adjusted to allow for the simi-
larity between individuals; and (c) analysis at the
level of the individual using regression methods 
for clustered data to implement univariate tests 
of the intervention effect.

The choice of level of analysis is sometimes referred
to as the ‘unit of analysis problem’.22 Cluster level
analyses have the appeal that that the unit of inter-
vention is the same as the unit of evaluation, but
individual level analysis may seem more appro-
priate on theoretical grounds when the aim of
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cluster level intervention is to modify individual
level outcomes. For example, a health promotion
intervention might be designed to modify the
coronary risk factors of individuals in the 
study population.

Individual level analyses must be adapted to allow
for dependence between individuals within the
same cluster. This is done by incorporating the
design effect into standard formulae. For adjusted
individual level analyses, ρ is estimated from the
study data and a weighted form of the mean cluster
size is usually used to calculate the design effect.
About 20 clusters are required to estimate ρ with a
reasonable level of precision. Appropriate formulae
are referenced by Donner and Klar11 for adjust-
ments to methods used for univariate tests at the
individual level. Methods for estimating confidence
intervals are given by Donner and Klar.59

The adjustments to standard univariate methods
for application at the individual level only adjust
the standard error of the intervention effect for
clustering; they do not adjust the intervention
effect itself. For this reason, regression methods 
for clustered data might be expected to provide
estimates that are more efficient and, thus, provide
correct significance tests.

(11) Allow for confounding at both individual 
and cluster levels. When there is a need to adjust
the estimate of intervention effect for individual
and/or cluster level prognostic variables, then
statistical methods which allow for similarity
between individuals in the same cluster should be
used. Regression methods for clustered data such
as random effects modelling and marginal model-
ling using GEEs allow for correlation between
subjects and both individual level and cluster 
level prognostic factors can be included in the
analysis.123,141 The techniques can be used for
studies with clusters that vary in size.

A variety of specialist computer packages for
estimating random effects models are available.145

In the UK the most popular is MLn. The general
statistical packages Stata154 and SAS 100 can be 
used to implement GEEs. Application of random
effects models is more appropriate when the
number of clusters studied is large enough to
estimate between-cluster variation (around 20) 
and a similar number of clusters is required for 
the use of GEEs.

In addition to linear models some of the random
effects modelling packages also provide logistic and
Poisson regression and other generalised linear

models. In general, the estimation procedures used
for such models are approximate, and have been
reported to produce biased estimates in some
circumstances. This is a rapidly developing field,
and results from random effects models with non-
normal errors must be treated with some caution.

(12) Include estimates of intracluster correlation
and components of variance in published reports.
For reasons presented earlier, estimates of ρ are
required for sample size calculation at the design
stage of organisation-based evaluations. However,
there is a danger in extrapolating ρ from one 
study to another because one of the components 
of variance (either the within-cluster or between-
cluster component) may change from one popu-
lation to another, or depend on the sampling
strategy. The between- and within-cluster compo-
nents of variance should therefore be reported 
in addition to ρ.

Concluding remarks

The main guidelines that have arisen from this
systematic review of organisation level evaluations
are summarised in Box 4. Investigators will need to
consider the special circumstances of their own
evaluation and use discretion in applying these
guidelines to specific circumstances. We also
emphasise that the conduct of cluster-based evalu-
ations may present special difficulties. The issue 
of informed consent needs careful consideration
(see chapter 3). Interventions and data manage-
ment within clusters need careful definition and
standardisation. The delivery of the intervention
should usually be monitored through the collection
of both qualitative and quantitative information,
which may help to interpret the outcome of 
the study.

BOX 4 Checklist for design and analysis of area 
and organisation-based interventions

(1) Recognise areas or organisational clusters as the
units of intervention

(2) Justify allocation of entire clusters of individuals 
to groups

(3) Include a sufficient number of clusters. Studies in
which there are less than four clusters per group
are unlikely to yield conclusive results

(4) Randomise clusters to intervention and control
groups whenever possible, and justify use of 
non-randomised designs

continued
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BOX 4 contd Checklist for design and analysis of area
and organisation-based interventions

(5) In non-randomised designs include a control
group and measure outcome variables before
and after the intervention

(6) When only a single group can be studied,
include repeated outcome measurements 
before and after the intervention

(7) Multiply standard sample size formulae by the
design effect in order to obtain the number of
individuals required to give a study with the
same power as one in which individuals are
randomised. Estimates of the intraclass
correlation coefficient should be obtained 
from earlier studies

(8) Consider stratification of clusters in order to
reduce error in randomised studies and bias in
quasi-experimental studies. Some stratification
should usually be used unless the number of
clusters is quite large. Researchers should be
aware of the limitations of the matched-pairs
design (i.e. a design with only two clusters 
per stratum)

(9) Choose between cohort and repeated cross-
sectional sampling for studies that involve
follow-up. The cohort design is more applic-
able to individual level outcomes, and may give
more precise results but is more susceptible 
to bias. The repeated cross-sectional design 
is more appropriate when outcomes will 
be aggregated to cluster-level, and is usually 
less powerful, but is less susceptible 
to bias

(10) Standard statistical methods, applied at the
individual level, are not appropriate because
individual values are correlated within clusters.
Univariate analysis may be performed either
using the cluster means or proportions as
observations, or using individual level tests in
which the standard error is adjusted for the
design effect. Where there are fewer than 
about 10 clusters per group, a cluster level
analysis may be more appropriate

(11) When individual and cluster level prognostic
variables need to be allowed for, regression
methods for clustered data are appropriate.
Provided there are sufficient clusters, use of
regression methods for clustered data may 
also provide a more flexible and efficient
approach to univariate analysis

(12) Authors should publish estimates of
components of variance and the intraclass
correlation coefficient for the outcome of
interest when reporting organisation 
level evaluations
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• Objectives. To identify the main departures 
from good practice in evaluations of area- or
organisation-based evaluations.

• Methods. A survey of seven peer-reviewed health
science journals identified 56 papers which re-
ported evaluations of area or organisation-based
interventions which were reviewed to identify the
main departures from recommendations.

• Results. Few studies explicitly considered the
distinction between clusters and individuals as
levels of intervention and evaluation. Intervention
studies were often implemented in small numbers
of clusters, sometimes without a control group,
and often without randomisation. Analysis at the
individual level did not usually include adjust-
ment for correlation of outcomes within clusters.

• Conclusions. There is a need to recognise the
different levels of organisational clustering at
which interventions may be implemented, to
include sufficient clusters in intervention and
control groups, and to allow for correlation of
outcomes within clusters when analysis is at the
individual level.

Introduction

Health interventions have traditionally been evalu-
ated using the approaches of clinical epidemiology
in which the individual subject is regarded as the
unit of intervention and analysis. Health inter-
ventions are commonly implemented, not for indi-
vidual subjects, but for entire clusters of individuals
in geographical areas or units of health service
organisation such as health authorities, hospitals 
or general practices. Examples of interventions
implemented at these levels include screening
programmes, medical practice guidelines and
health promotion interventions.

The evaluation of health interventions which are
implemented at cluster level presents several
problems (see chapter 1). Firstly, outcomes may 
be evaluated either at cluster level or at individual
level. It is important to distinguish between the
different levels at which evaluation may be achieved.
Secondly, it may only be possible to include a small
number of clusters in a study. For example, only a

small number of hospitals or general practices may
be available for investigation. Thirdly, the responses
of individuals within geographical or organisational
clusters tend to be more similar to each other than
to those in other clusters. The correlation of indi-
vidual responses within clusters means that between-
cluster variation must be allowed for in the design
and analysis of cluster level evaluations.11,109 There 
is evidence to suggest that the problems associated
with evaluating cluster level interventions are not
sufficiently widely appreciated nor addressed 
in a satisfactory manner.9,12,22

The aim of this part of the review was to identify
the main departures from good practice in area-
wide and organisation-based evaluations.

Methods

Study identification
Journals selected for study were the Journal of 
Public Health Medicine, Journal of Epidemiology and
Community Health, British Medical Journal (BMJ),
Journal of the American Medical Association (JAMA),
Medical Care, the International Journal of Technology
Assessment in Health Care and the European Journal 
of Public Health. These were selected because they
represent major European and North American
journals which publish papers in the field of health-
care evaluation. We selected for study issues from
1996, the most recent complete year. For the two
weekly journals (BMJ and JAMA) we only included
the first issue from each month in 1996, in order 
to avoid over-representation of papers from these
journals. For the other journals we included all
issues published in 1996. We handsearched each
issue of the journal, and included papers reporting
primary research or secondary data analyses which
studied interventions implemented at the level of
organisation or geographical area.

Data collection
For each study two independent observers (MG and
SC) abstracted data on to a standard proforma. Data
collected included details of the study design;
whether it was an intervention study or evaluation 
of an existing service; the number of groups for

Chapter 8

Case study: review of publications in seven health
science journals
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comparison; the unit of intervention or comparison;
whether allocation was by randomisation and, if not,
whether a reason was given; whether outcome assess-
ment was after only or before and after; the method
of identifying units of observation; and, for before
and after evaluations, whether a cross-sectional or
cohort design was used. We also noted the number 
of individual level units in the study; the numbers of
levels of clustering that were present; the number
and type of clusters at each level; whether a sample
size calculation was reported; and whether it made
allowance for clustering of the data. We determined
the type of outcome variable and the main level of
analysis. For individual level analyses, we determined
whether allowance was made for clustering; whether
standard errors were adjusted for the design effect
directly; whether regression analysis was used, and, 
if so, whether and how it allowed for clustering. We
also recorded whether confounding variables were
recorded at individual and cluster level and whether
they were included in the analyses. Finally, we noted
whether the intraclass correlation coefficient was
recorded. The quantitative findings of the survey are
presented by tabulation of frequencies. Examples
were also selected to provide qualitative illustrations
of the findings.

Results and discussion

The search process resulted in the identification 
of 56 reports which fulfilled the eligibility cri-
teria.47,152,158–211 Their source and characteristics are
shown in Table 11. The papers reported evaluations
of a range of services including health promotion,
population screening, and primary and community
care as well as hospital-based interventions. The
most frequent departures from good practice are
summarised in Box 5. The following subsections
discuss and illustrate some of the methodological
problems identified.

Failure to recognise areas or
organisational clusters as units 
of intervention
Many of the studies included in the review did 
not specifically acknowledge different levels of
organisational clustering present in the data, nor
the extent to which these might be regarded as
levels of intervention or evaluation.

Example: comparison of patient satisfaction
with ambulatory visits in competing healthcare
delivery settings in Geneva, Switzerland175

A survey was carried out including 1027 patients
who were sampled from one managed care
organisation, one private group practice and 

one university hospital outpatient clinic. Individual 
level analyses were carried out to see if patient satis-
faction varied in the different care settings. Patients
attending the managed care organisation were less
satisfied, perhaps because they could not freely
choose their doctor.

Comment. The study design suffered from the
weakness that only one example of each type of care
setting was included in the study. Satisfaction with
care was likely to vary among managed care organis-
ations, so more than one organisation should have
been represented. Within care settings, satisfaction

TABLE 11 Characteristics of studies included in this review

Variable Frequency (%)

Journal
Journal of Public Health Medicine 9 (16)
Journal of Epidemiology Community Health 13 (24)
BMJ 13 (24)
JAMA 6 (11)
Medical Care 9 (16)
International Journal of Technology

Assessment in Health Care 2 (4)
European Journal of Public Health 4 (7)

Country of origin
UK 22 (39)
USA 14 (25)
Other western European countries 17 (31)
Australasia 1 (2)
Canada 2 (4) 

Disease or problem
Infectious disease 1 (2)
Cancer 9 (16)
Blood forming organs 2 (4)
Mental health 4 (7)
Cardiovascular disease 4 (7)
Respiratory disease 3 (6)
Musculoskeletal 4 (7)
Genitourinary 1 (2)
Maternal and child health 5 (9)
Injuries 1 (2)
External causes 1 (2)
Factors influencing health status 

and contact with health services 21 (38)

Type of service
Health promotion 4 (7)
Population screening 5 (9)
Primary medical care 13 (24)
Community care 4 (7)
Hospital, medical 7 (13)
Hospital, surgical 2 (4)
Hospital, orthopaedic and trauma 2 (4)
Hospital, obstetrics and gynaecology 5 (9)
Hospital, other 7 (13)
Other 7 (13)
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might vary according to the doctor visited; this
second level of clustering could also be recognised
in the design and analysis of the study.

Neglect of randomisation
The randomised controlled trial has come 
to be accepted as the preferred method for
evaluating individual level interventions but has
been less used in the evaluation of organisation
level interventions. In this sample, only four of 
56 studies were randomised, and in each case
randomisation was at the individual level. Recent
reports have demonstrated the feasibility of cluster
level randomisation as a method for evaluating the
effectiveness of cluster level interventions.48,156,157

Four reasons why cluster level evaluations should
be carried out are shown in Box 3.

Some of the studies included in our survey
appeared to represent ad hoc evaluations of new 
or existing interventions which had been imple-
mented without planned evaluation in mind. 
The rationale for selecting a particular level of
clustering as the unit of intervention and the
reasons for avoiding use of randomisation were 
not usually discussed. Examples included evalu-
ations of a ‘drop-in’ service for women in a single
district,160 a smoking prevention programme 
for schoolchildren in one health region,158 and
helicopter emergency ambulance services.159

Example: evaluation of Grampian Smokebusters
– a smoking prevention initiative aimed at 
young teenagers158

In 1987 a club for children aged 10–13 years was
launched in the Grampian region of Scotland with
the aim of discouraging them from smoking.
Evaluation was by means of a questionnaire

administered to pupils at 27 primary schools 
and 40 secondary schools. Comparison was made
with data from national surveys in Scotland.
Comparisons were also made between club
members and non-members in the study area.

Comment. The evaluation suffered from the
limitation that the intervention was implemented
in a single study area. Comparisons with national
data would be completely confounded by under-
lying differences between Grampian and the rest 
of Scotland. Within the study area, because club
membership was not allocated at random, com-
parisons between club members and non-members
were likely to be biased. Correlation of outcomes
within schools or classes was not considered in the
analysis. A preferred design would be to randomise
classes or schools to club membership.40 Individual
level randomisation might be feasible, but
contamination is likely to be a problem.

Intervention in a single cluster
Evaluations often described interventions
implemented in a single cluster. Examples included
models of organisation implemented in a single
anticoagulant clinic,198 or health promotion
interventions implemented in a town,169 health
region158 or country.203 Where a single cluster 
is studied, it is clear that the results cannot be
considered to be generalisable, but such studies 
will be of local interest and can be used to inform
the development of local services.

Need for a control group
When an intervention is implemented in a single
cluster, the size of the intervention effect can only
be gauged by before and after evaluation. However,
because the outcome may be influenced by factors
other than the intervention, a comparison group 
is also needed. With only one or a few clusters per
group it may be difficult to distinguish the inter-
vention effect from the natural variability between
clusters. For this reason, the study should include
sufficient clusters to allow estimation of both the
extent of between-cluster variation and the size 
of the intervention effect. However, in this survey
there were examples where the number of control
clusters was too small to gauge the extent of
between-cluster variation.158,169

Example of a study with intervention in a 
single cluster without a control group: methods
for managing the increased workload in
anticoagulant clinics198

In order to cope with the increased workload at
their anticoagulant clinic the investigators arranged
for healthcare assistants to see most patients at their

BOX 5 Common departures from recommendations

(1) Failure to recognise areas or organisational
clusters as units of intervention

(2) Neglect of randomisation

(3) Evaluation of interventions implemented in a
single cluster

(4) Lack of control group

(5) Lack of appropriate sample size calculations

(6) Individual level analysis without adjustment for
correlation of responses within areas or
organisations

(7) Inappropriate methods of analysis used to allow
for clustering of responses or to adjust for cluster
level covariates in individual level analyses

(8) Cluster level analysis without inclusion of
individual level covariates
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routine visits, so that doctors could focus their atten-
tion on those patients with special requirements.
The quality of anticoagulant control was audited
before and after the change in clinic organisation.

Comment. Because the intervention was
implemented at a single clinic with no comparison
group it may be difficult to generalise the results 
of the study. In addition, because case mix may
change over time, it may not be justified to con-
clude that changes in anticoagulant control were
the result of the intervention.

Example of a study with insufficient clusters 
in intervention and control group: cost-
effectiveness and equity of a community-
based cardiovascular disease prevention
programme in Norsjo, Sweden169

A community-based health promotion programme
was implemented in Norsjo in northern Sweden.
Comparison was made with two reference counties,
Norrbotten and Vasterbotten.

Comment. The intervention was implemented 
in a single area. Two control areas were used but
allocation was not at random. Differences between
intervention and control areas would be confound-
ed by natural variability among areas, so the effect 
of the intervention could not be estimated.

Lack of sample size calculations
Only seven of the studies reported sample size
calculations. Four were controlled trials in which the
individual was the unit of allocation.167,199,200,204 In the
remaining three studies, calculations were also pre-
sented for the number of individuals to be sampled,
from a single cluster,198 from six hospitals,176 and
from four hospital departments.183 The required
number of clusters, or the number of individuals
required, after adjusting for correlation of outcomes
within clusters, were not reported. It has not been
standard practice to report sample size calculations
except for randomised trials, but the results of this
survey suggest that methods to estimate the number 
of organisational clusters for inclusion in healthcare
evaluation studies are generally not used, even
though this may have a critical influence on the out-
come of the evaluation. An example of an appro-
priate sample size calculation is given in chapter 5.

Individual level analysis without
adjustment for correlation of responses
within areas or organisations
A common feature of these studies was the reporting
of individual level analyses without adjustment for
correlation of responses within organisational
clusters. This was not a surprising finding, as this 

was standard practice in the absence of suitable
statistical software for this type of analysis.

Example: does a shorter length of hospital stay
affect the outcome and costs of hysterectomy 
in southern England? 176

This study was designed to see whether a shorter
length of postoperative stay was associated with
health outcomes after abdominal hysterectomy.
Data were analysed for 363 women attending six
hospitals. Conventional individual level multiple
regression analyses were carried out, but as out-
come variables might have been correlated within
hospitals, it would now be advisable to allow for
clustering of responses within organisational units
by using regression methods for clustered data
described in chapter 6. The application of
regression methods for clustered data would
generally require a larger number of hospitals 
than were included in this study.

Inappropriate methods used to allow
for clustering of responses
An approach to allowing for clustering of responses
that was common in the past was to include a fixed
effect indicator variable for each cluster in multiple
regression analyses. This was exemplified by eight
studies in this review, for example.163 The limitations
of this approach are summarised in chapter 6.

Appropriate methods of individual level analysis
of clustered data
When the number of clusters is small, it may be
possible to report within-cluster analyses separately
for each cluster. A study of the appropriateness of
hospitalisation in a Spanish hospital reported some
of the results separately for each of four hospital
departments, before going on to report an overall
individual level analysis.177 Another appropriate
method for individual level statistical analysis is to
use the method of GEEs to adjust standard errors
for the correlation structure of the data.152 A study
which examined the effects of patient volume and
level of care at the hospital of birth on neonatal
mortality reported a series of regression analyses 
in which the unit of observation was each birth.
The method of GEEs was used to adjust standard
errors for within hospital correlation.152 The GEE
approach is now being increasingly used in the
analysis of healthcare evaluations.151,212 However,
the method is may prove unsatisfactory when the
number of clusters is small.

Inclusion of cluster level covariates in individual
level analyses
A further problem with individual level analysis is
the difficulty of including cluster level covariates.
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These are sometimes included as individual 
level characteristics as, for example, when the
grade of surgeon carrying out a surgical operation
is included at the individual level.176 This approach
would now be considered incorrect because the
confidence intervals for the covariate will be
erroneously small. It would be preferable to use 
a statistical technique which allowed the inclusion
of covariates at both individual and cluster level.123

In the present survey, an example of two-stage, two-
level analysis was provided by a study of hospital-
and patient-related characteristics determining
length of hospital stay for hip and knee replace-
ments.179 Another study used GEE methods to
adjust the standard errors of estimates of hospital
level variables for within-hospital correlation of 
the outcome.152

Cluster level analysis without inclusion
of individual level covariates
Cluster level analysis has the advantage that it will
provide valid results in the presence of between-
cluster variation, but analysis at the cluster level
suffers from the disadvantage that individual level
covariates cannot be included directly. However,
standardisation techniques may be used to adjust
for individual level characteristics such as age 
and sex.

Example of cluster level analysis without
individual level covariates: influences of practice
characteristics on prescribing in fundholding 
and non-fundholding general practices
Wilson and colleagues206 studied practice level
prescribing data for 384 practices in the former
Mersey region of England. Regression analyses
were carried out to determine whether general
practice prescribing was associated with fundhold-
ing status. Analyses included a range of cluster 
level covariates, such as whether the practice was a
training practice and whether the GP was practising
single handed. Patient-specific characteristics such
as diagnoses, and measures of comorbidity or

disability, which might affect prescribing, could not 
be included directly.

Example of cluster level analysis after
standardisation for individual level characteristics:
challenges of monitoring use of secondary care 
at local level – a study based in London, UK173

Chenet and McKee analysed rates of hospital utilis-
ation at electoral ward level in London. In order to
allow for the varying age structure of ward popu-
lations, indirect standardisation was used to estimate
an age-standardised hospital episode rate. The
observed number of hospital episodes in each ward
was expressed as a ratio compared with the number
expected if age-specific hospital episode rates for the
whole area were applied to the ward population.

Conclusions

The illustrations provided by this review suggest
that theoretical developments in the evaluation of
cluster-based interventions are not yet being widely
applied in the practice of healthcare evaluation.
Current practice could be improved by adopting
simple measures such as including a sufficient
number of clusters, including control clusters,
estimating sample size requirements, and using
methods of analysis which allow for the correlation
structure of the data (see Box 4). The key first step
is to recognise that clusters of individuals, rather
than individuals themselves, are the units of
intervention and evaluation.

The methods used in the evaluations reviewed here
generally differ from those which were described in
earlier sections of the review. At first sight it might
appear that the focus of our review differed from
the focus of this case study. Instead, we suggest that
the findings of the case study reflect the extent to
which existing practice in healthcare evaluation
departs from what is justified in terms of recent
methodological development.
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Introduction
The need for rigorous evaluation of interventions
directed at individual patients or healthy subjects,
through the use of randomised trials, is well
accepted. Public health interventions may be
directed not at individuals but at geographical
areas, communities or units of healthcare
organisation. The need for evaluation of public
health policies, programmes and interventions 
is being increasingly recognised, but the special
difficulties encountered in implementing evalu-
ations of public health interventions are not 
always adequately appreciated.9 These types of
evaluation present distinct problems because the
unit of allocation is not an individual subject but 
a cluster of individuals such as a general practice
population, a hospital, or a geographical or
administrative area.

One of the key differences between evaluations 
at cluster level rather than individual level is the
dependence of individual observations within
clusters.109 Individuals sharing the same geograph-
ical area or organisational unit tend to be more
similar to each other than to individuals in 
other areas. If cluster level outcomes are being
considered, this is not a problem. But cluster 
level interventions are often aimed at modifying
individual level outcomes. For example, a
community-wide health promotion programme
may be implemented with the objective of 
reducing risk factors for cardiovascular disease 
in individuals. When individual level analyses 
are to be carried out, between-cluster variation
contributes an additional source of variation 
which must be allowed for, in addition to 
between-subject, within-cluster variation. When
between-cluster variation is present, the number 
of individuals needed for a cluster-based study 
is larger than for a study of the same power in
which individuals are allocated.109

In order to estimate the required sample size, the
design effect must be incorporated into standard
sample size formulae.108,109,111 The design effect is 
a function of the average cluster size and the
intraclass correlation coefficient:84

design effect = 1 + (n – 1)ρ

where n is the average cluster size (or average
number of individuals sampled per cluster), and 
ρ is the intraclass correlation coefficient of the
outcome. ρ quantifies the extent of between-
cluster variation. It represents the proportion of
the true total variation in the outcome that can 
be attributed to differences between the clusters:

σ2
b

ρ = _______
σ2

b + σ2
w

where σ2
b is the between-cluster variance

component, and σ2
w is the within-cluster 

variance component.

One of the problems investigators face in designing
cluster-based evaluations is that estimates of ρ need
to be obtained from previous studies. Nearly every
author commenting on this subject has called for
the publication of intraclass correlation coefficients
which could be used to aid the design of future
area- or organisation-based studies. A few reports
have recently appeared providing data for US
populations,103,213 but equivalent data appear not 
to have been reported in Britain. As part of this
methodological systematic review, we estimated
intraclass correlations from data obtained from 
a number of different sources. In this section of 
the report we present the methods used and the
results obtained for different geographical and
organisational levels of clustering.

Methods

Data
Data were obtained from a number of sources, 
which can be classified under the following 
headings.

Health Survey for England 1994
The Health Survey for England is a health and
lifestyle survey carried out annually in England.
Data collection procedures include interview,
anthropometric measurement and blood sampling.

Chapter 9

Database of intraclass correlation coefficients 
and variance components
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Data from the Health Survey for England 1994
(Crown copyright 1994, used by permission of the
Office for National Statistics) were obtained from
the Data Archive, University of Essex. The design 
of the Health Survey for England was reported by
Colhoun and Prescott-Clarke.214 A multistage
sampling framework was used, with postcode
sectors as the primary sampling unit, and house-
holds sampled from each of the postcode sectors.
Sampling of postcode sectors was stratified by
regional health authority as well as by four socio-
demographic variables: the proportion aged 
65 years or more; the proportion of households
without a car; the proportion of economically 
active males unemployed; and the proportion 
of non-white adults. Within households, all 
adults aged 16 years or more were eligible for
inclusion in the survey.

The data collection procedures of the Health
Survey for England and definitions of key variables
are given by Colhoun and Prescott Clarke.214 For
these analyses, we selected a range of variables
which might be considered as potential outcome
variables for future community intervention
studies. These included analytes obtained from a
blood sample: the total serum cholesterol con-
centration (mmol/l); glycated haemoglobin (%);
plasma fibrinogen (g/l); serum ferritin (µg/l); 
and haemoglobin concentration (g/dl). We also
included the body mass index (BMI; as weight
(kg)/height (m2)) and whether subjects were
overweight (BMI > 25 kg/m2) or obese (BMI 
> 30 kg/m2). Other data were obtained by inter-
view. Where appropriate, the categories of quali-
tative variables were reduced to those shown in 
the tables. Each variable should be understood 
to contrast with the condition not present; for
example, ‘eats fruit at least once a day or not’. 
The variables shown in the tables are mostly self-
explanatory, but more complete definitions are
given by Colhoun and Prescott-Clarke.214 The 
item ‘drinks more than recommended limit’ 
was derived as the proportion drinking more 
than 21 units per week for men or 14 units per
week for women.

British Regional Heart Study
The design of the British Regional Heart Study 
was described by Shaper and co-workers215 In brief,
24 towns were selected in England, Wales and
Scotland in order to represent areas with differing
mortality from cardiovascular disease. In each town,
a general practice was selected and men aged 
40–59 years, who were registered with the practice,
were included in the study. Data were obtained
from town profiles provided by the Department 

of Clinical Epidemiology and General Practice 
at the Royal Free Hospital School of Medicine.
These were based on data obtained from 7735 men
who were examined in 1978–1980.

It should be emphasised that the towns included 
in the study were not randomly sampled but were
selected because they had different levels of
coronary heart disease mortality.

Public Health Common Data Set
The Public Health Common Data Set for 1996 
was obtained from the UK Department of Health.
This data set includes mortality and morbidity 
data at district health authority level for England 
in 1994.

Health service indicators 1996
Health service indicators for the UK National
Health Service in 1996 were obtained from the
National Health Service Executive. This data set
includes health service activity data aggregated to
district health authority, family health service
authority and acute unit (hospital) level.

Thames Cancer Registry
Cancer incidence data were obtained from the
Thames Cancer Registry for the 27 District 
Health Authorities in the former South 
Thames Regions.

Other
Other data included in the database were
abstracted from published papers. Data were 
also analysed for the Royal College of Physicians
Wound Care Audit.216 We also made contact 
with a number of other investigators and audit
groups. However, because of considerations 
of confidentiality, accessing other sources of
unpublished data proved difficult, and the 
database does not currently contain a wide 
range of data for general practice level 
outcomes.

Analysis
We estimated components of variance for
continuous variables using analysis of variance. 
For continuous variables, approximate confidence
intervals for ρ may be estimated when the design 
is unbalanced, as described by Donner and Wells,98

but these methods have so far only been evaluated
for smaller clusters such as families. We have 
therefore not included confidence intervals for 
ρ. For binary variables, individual level data were
analysed by use of analysis of variance. When 
binary data were available aggregated to cluster
level, kappa was estimated.91 In the case of binary
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variables, it is appropriate to include a dichoto-
mous outcome as the dependent variable in 
the analysis of variance, but because the
distributional assumptions are not met, it is not
appropriate to attempt interval estimation. Data
presented include the average cluster size, the
number of clusters, the overall mean for con-
tinuous variables or overall prevalence for binary
variables, the within-cluster and between-cluster
components of variance, ρ and the design effect.
Where the between-cluster component of variance
was negative, ρ was truncated at zero. Data are
presented in the same format as earlier papers, 
to five decimal places.103,213

For analysis of data from the Health Survey for
England, we considered that individual values 
were clustered within households, which in turn
were clustered within postcode sectors. Postcode
sectors were considered to be clustered within
district and regional health authorities. We have
not allowed for the stratified sampling of postcode
sectors within regional health authorities; postcode
sector level data were not available for analysis.
Analyses were performed using the procedure
NESTED in SAS.100 This procedure performs 
a random effects analysis of variance which is
appropriate for a multistage nested sampling
design. The NESTED procedure is computation-
ally more efficient than alternative procedures 
in SAS such as GLM and MIXED, resulting in
greatly reduced analysis times.

We used a four-level completely nested model to
estimate components of variance for each level 
of clustering:

y ijklr = µ + α i + βj(i) + γk(ij) + δl(ijk) + ∈ r(ijkl)

where y ijk lr is the value of the dependent variable
observed for the r th subject, in the l th household,
k th postcode sector, j th district health authority
and ith regional health authority, µ is the overall
mean of the sampled population, and α i, βj(i), γk(ij),
δl(ijk) and ∈ r(ijkl) are uncorrelated random effects
with zero means and respective variances σ2

rha , 
σ2

dha , σ2
pcs , σ2

hh and σ2
e (subscripts: rha, regional

health authority; dha, district health authority; 
pcs, postcode sector; hh, households). We 
used variance components from the four level
model to estimate the following intraclass
correlations:

ρrha = σ2
rha /(σ2

rha + σ2
dha + σ2

pcs + σ2
hh + σ2

e)
ρdha = σ2

dha /(σ2
dha + σ2

pcs + σ2
hh + σ2

e)
ρpcs = σ2

pcs /(σ2
pcs + σ2

hh + σ2
e)

ρhh = σ2
hh /(σ2

hh + σ2
e)

For each equation, the numerator represents the
between-cluster component of variance, and the
difference between the numerator and denomi-
nator represents the within-cluster component 
of variance. In using this model we have assumed
that if randomisation were to be carried out at a
lower level, then variation at higher levels would 
be accounted for by use of stratification. For
example, we have assumed that randomisation 
by district health authority would be stratified
according to regional health authority. If 
regional health authority level variation were 
to be subsumed into district health authority 
level variation, then the district health authority
component of variance would be correspondingly
larger. The same models were used for continuous
and binary variables. We emphasise that the 
design effects presented here differ from those
presented in the report of the Health Survey for
England 1994214 (see Tables 13.16–13.33 therein).
In our report we present the design effect to be
expected if clusters of the same size were allocated
in a cluster randomised study. The design effects
included in the report of the Health Survey for
England represent the overall design effect of 
the survey.

Results

Results are presented for cardiovascular diseases
and lifestyle risk factors (Tables 12–27), cancer
(Table 28), respiratory disease (Tables 29–31), 
health service activity (Tables 32–41) and other
(Tables 42–43).

The most obvious feature of the results is the
inverse relationship between cluster size and
intraclass correlation coefficient, which is most
apparent on inspection of the data from the 
Health Survey for England. At regional and 
district health authority level, ρ was generally 
below 0.01. For postcode sector level, ρ was
generally less than 0.05, but at household level, 
ρ was mostly in the range 0.0–0.3. However, 
for larger cluster sizes, even small values of ρ 
might be associated with substantial design 
effects that could not be ignored in 
designing studies.

Table 25 shows ρ values separately for men and
women, for continuous variables at postcode 
sector level. It can be seen that ρ showed some
gender differences which differed among the
variables. However, the result for both sexes
combined was generally of approximately the 
same magnitude as for the sexes separately.
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Discussion
In this section of the report we have presented
components of variance and intraclass correlation
coefficients for a range of outcomes which may 
be relevant in the design of area- or organisation-
based studies. Only one data set was obtained 
from an experimental study (Tables 30 and 31). In
general, experimental data will usually be obtained
from a small number of clusters, giving imprecise
estimates for intraclass correlations. The present
analyses of observational data generally included
sufficiently large numbers of clusters to allow intra-
class correlations to be estimated with reasonable
precision. For example, data were obtained from
more than 7000 households and more than 
700 postcode sectors.

Data from the Health Survey for England will be
particularly relevant to the design of community-
based studies. The types of unit of allocation 
which might be used in a community intervention
study may vary, but the levels for which we have
presented data may be broadly generalised. The
household will generally correspond fairly closely
to a family. In England there are 7223 postcode
sectors with average populations of about 6500,
these correspond fairly closely in size to electoral
wards which have average populations of about
5200. District health authorities are administrative
areas responsible for the administration of health-
care services, and at the time of the 1994 survey
had average populations of just over 250,000.
District health authorities are commonly based 
on small towns, counties or sections of cities.

Estimating components of variance from
observational data has the advantage that large
numbers of clusters may be included, leading to

more precise estimates of intraclass correlations.
Furthermore, data from national sources may be
considered more generalisable than data obtained
through intervention in a single locality. Neverthe-
less, potential users of the present data will need 
to consider the extent to which the findings may 
be generalised to different settings and sampling
designs. There may be a danger in extrapolating
the intraclass correlation coefficient from one 
study to another because one or other of the
components of variance (either the between-
cluster or within-cluster variance) may vary from
one population to another, or may at least be
dependent on the sampling strategy. For this
reason we have presented components of variance
as well as intraclass correlations. We recommend
that a sensitivity analysis be included when these
data are used to aid the estimation of sample 
size requirements.

A second issue which deserves consideration 
is the extent to which intraclass correlation
coefficients will be affected by varying age or 
sex distributions in the sampled populations. 
In order to simplify the data presentation for 
this report, we have presented data for both 
sexes and for all age groups combined. These
estimates are likely to have the widest application,
but it must be acknowledged that sampling
according to age or sex might be expected to
influence estimates of intraclass correlation.
Nevertheless, our basic conclusion that between-
cluster variation is usually appreciable, and must 
be considered, remains unaltered. Furthermore,
intraclass correlation coefficients tend to be 
larger for lower levels of clustering, but for larger
cluster sizes, design effects may be substantial 
even when the intraclass correlation coefficient 
is extremely small.
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TABLE 12 Cardiovascular and lifestyle 1. National health strategy target indicators

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Coronary heart PHCDS 1995 Men aged DHA 198,419 105 128.7 0.000648 1.8 x 10 –8 0.000647 0.0000283 6.62
disease mortality < 65 years

Coronary heart PHCDS 1995 Women aged DHA 193,141 105 34.53 0.000179 3.0 x 10 –9 0.000179 0.0000145 3.80
disease mortality < 65 years

Coronary heart PHCDS 1995 All aged DHA 391,561 105 163.2 0.000416 9.0 x 10 –9 0.000416 0.0000210 9.22
disease mortality < 65 years

Coronary heart PHCDS 1995 Men aged DHA 18,524 105 201.5 0.0109 3.0 x 10 –6 0.0107 0.000277 6.13
disease mortality 65–74 years

Coronary heart PHCDS 1995 Women aged DHA 22,084 105 104.5 0.00472 1.0 x 10 –6 0.00470 0.000212 5.68
disease mortality 65–74 years

Coronary heart PHCDS 1995 All aged DHA 40,608 105 306.0 0.00752 1.8 x 10 –6 0.00747 0.000235 10.5
disease mortality 65–74 years

Stroke mortality PHCDS 1995 Men aged DHA 198,419 105 22.7 0.000114 < 10 –9 0.000114 0.00000419 1.83
< 65 years

Stroke mortality PHCDS 1995 Women aged DHA 193,141 105 17.8 0.0000921 < 10 –9 0.0000921 0.00000269 1.52
< 65 years

Stroke mortality PHCDS 1995 All aged DHA 391,561 105 40.5 0.000103 < 10–9 0.000103 0.00000439 2.72
< 65 years

Stroke mortality PHCDS 1995 Men aged DHA 18,524 105 45.4 0.00245 1.9 x 10 –7 0.00244 0.0000764 2.42
65–74 years

Stroke mortality PHCDS 1995 Women aged DHA 22,084 105 42.3 0.00191 9.4 x 10 –8 0.00191 0.0000490 2.08
65–74 years

Stroke mortality PHCDS 1995 All aged DHA 40,608 105 87.7 0.00216 1.2 x 10 –7 0.00215 0.0000576 3.34
65–74 years

PHCDS, Public Health Data Set; DHA, district health authority

TABLE 13 Cardiovascular and lifestyle 2. Data from the Health Survey for England (HSE) 1994.214 Continuous variables at regional
health authority (RHA) level

Variable Source Setting Cluster Average Number Overall Variance Variance Intraclass Design 
type cluster of mean component component correlation effect

size clusters – between – within coefficient
cluster cluster

Serum total cholesterol (mmol/l) HSE England RHA 790 14 5.88 0.00352 1.63865 0.00214 2.69

Glycated haemoglobin (%) HSE England RHA 774 14 6.44 0.00000 1.14775 0.00000 1.00

Plasma fibrinogen (g/l) HSE England RHA 693 14 3.10 0.00082 0.68725 0.00119 1.82

Serum ferritin (µg/l) HSE England RHA 778 14 76.22 0.26739 6693.10 0.00004 1.03

Haemoglobin level (g/l) HSE England RHA 764 14 13.96 0.00127 2.16567 0.00059 1.45

Systolic blood pressure (mmHg) HSE England RHA 893 14 135.79 1.10876 404.73 0.00273 3.44

Diastolic blood pressure (mmHg) HSE England RHA 893 14 74.43 0.20512 161.25 0.00127 2.13

BMI (kg/m2) HSE England RHA 1044 14 25.89 0.03560 20.435 0.00174 2.81

Waist circumference (cm) HSE England RHA 946 14 87.8 0.40276 163.980 0.00245 3.32

Hip circumference (cm) HSE England RHA 948 14 103.97 0.26481 84.779 0.00311 3.95
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TABLE 14 Cardiovascular and lifestyle 3. Data from the HSE 1994.214 Categorical variables at RHA level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Drinks more than HSE England RHA 1123 14 238 0.209 0.00063 0.16518 0.00378 5.24
recommended limit

Ever smoked cigarettes HSE England RHA 1122 14 609 0.541 0.00000 0.24851 0.00000 1.00

Current cigarette smoker HSE England RHA 1122 14 345 0.306 0.00000 0.21263 0.00000 1.00

Current smoker or passive HSE England RHA 1122 14 473 0.419 0.00000 0.24388 0.00000 1.00
smoke exposure

Had GP consultation in HSE England RHA 1121 14 192 0.171 0.00007 0.14140 0.00051 1.57
last 14 days

On contraceptive pill HSE England RHA 331 14 86 0.259 0.00000 0.19200 0.00000 1.00
(menstruating women only)

Moderately active at home/ HSE England RHA 1124 14 766 0.679 0.00043 0.21775 0.00197 3.21
in garden

Active in sport – HSE England RHA 1124 14 482 0.427 0.00063 0.24417 0.00255 3.87
moderate/vigorous

Active in general – HSE England RHA 1124 14 939 0.832 0.00015 0.13978 0.00110 2.24
moderate/vigorous

Physically inactive HSE England RHA 1124 14 642 0.569 0.00010 0.24540 0.00042 1.47

Active at work – HSE England RHA 1118 14 165 0.147 0.00003 0.12693 0.00024 1.27
moderate/vigorous

TABLE 15 Cardiovascular and lifestyle 4. Data from the HSE 1994.214 Categorical variables at RHA level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Overweight (BMI > 25 kg/m2) HSE England RHA 1044 14 557 0.531 0.00026 0.24884 0.00105 2.10

Obese (BMI > 30 kg/m2) HSE England RHA 1044 14 164 0.157 0.00017 0.13231 0.00132 2.38

Eats fruit at least once a day HSE England RHA 1121 14 560 0.497 0.00165 0.24850 0.00658 8.37

Eats vegetables at least once a day HSE England RHA 1117 14 760 0.677 0.00392 0.21506 0.01792 21.00

Adds salt to food when cooking HSE England RHA 1107 14 759 0.683 0.00033 0.21623 0.00152 2.68

Adds salt to meal HSE England RHA 1123 14 613 0.544 0.00151 0.24673 0.00609 7.83

Doctor-diagnosed diabetes HSE England RHA 1123 14 27 0.024 0.00001 0.02338 0.00043 1.48

Currently has high blood pressure HSE England RHA 1088 14 107 0.098 0.00000 0.08357 0.00000 1.00

Doctor-diagnosed angina HSE England RHA 1124 14 43 0.038 0.00000 0.03715 0.00000 1.00

Doctor-diagnosed heart attack HSE England RHA 1124 14 30 0.027 0.00000 0.02605 0.00000 1.00

Doctor-diagnosed stroke HSE England RHA 1124 14 19 0.017 0.00000 0.01647 0.00000 1.00

Doctor-diagnosed ischaemic HSE England RHA 1124 14 56 0.050 0.00000 0.04743 0.00000 1.00
heart disease (angina/
heart attack)
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TABLE 16 Cardiovascular and lifestyle 5. Data from the HSE 1994.214 Continuous variables at district health authority (DHA) level

Variable Source Setting Cluster Average Number Overall Variance Variance Intraclass Design 
type cluster of mean component component correlation effect

size clusters – between – within coefficient
cluster cluster

Serum total cholesterol (mmol/l) HSE England DHA 61 177 5.88 0.00406 1.63464 0.00244 1.15

Glycated haemoglobin (%) HSE England DHA 60 177 6.44 0.00634 1.14141 0.00552 1.33

Plasma fibrinogen (g/l) HSE England DHA 53 177 3.10 0.00000 0.68725 0.00000 1.00

Serum ferritin (µg/l) HSE England DHA 60 177 76.22 0.00000 6693.1 0.00000 1.00

Haemoglobin (g/dl) HSE England DHA 59 177 13.96 0.00499 2.16069 0.00271 1.16

Systolic blood pressure (mmHg) HSE England DHA 69 177 135.79 2.94351 401.788 0.00727 1.49

Diastolic blood pressure (mmHg) HSE England DHA 69 177 74.43 1.05226 160.196 0.00653 1.44

BMI (kg/m2) HSE England DHA 81 177 28.89 0.02876 20.407 0.00141 1.11

Waist circumference (cm) HSE England DHA 73 177 87.77 0.11034 163.869 0.00067 1.05

Hip circumference (cm) HSE England DHA 73 177 103.97 0.20623 84.572 0.00243 1.17

TABLE 17 Cardiovascular and lifestyle 6. Data from the HSE 1994.214 Categorical variables at DHA level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Drinks more than HSE England DHA 87 177 18.71 0.209 0.00079 0.16440 0.00476 1.41
recommended limit

Ever smoked cigarettes HSE England DHA 87 177 48.17 0.541 0.00098 0.24753 0.00395 1.34

Current cigarette smoker HSE England DHA 87 177 27.28 0.306 0.00151 0.21112 0.00711 1.61

Current smoker or passive HSE England DHA 87 177 37.42 0.419 0.00247 0.24141 0.01012 1.87
exposure

Had GP consultation in HSE England DHA 87 177 15.19 0.171 0.00037 0.14104 0.00258 1.22
last 14 days

On contraceptive pill HSE England DHA 26 177 6.80 0.259 0.00225 0.19521 0.01139 1.28
(menstruating women only)

Moderately active at home/ HSE England DHA 87 177 60.60 0.679 0.00000 0.21775 0.00000 1.00
in garden

Active in sport – HSE England DHA 87 177 38.15 0.427 0.00190 0.24228 0.00777 1.67
moderate/vigorous

Active in general – HSE England DHA 87 177 74.29 0.832 0.00053 0.13925 0.00379 1.33
moderate/vigorous

Physically inactive HSE England DHA 87 177 50.79 0.569 0.00000 0.24540 0.00000 1.00

Active at work – HSE England DHA 86 177 13.056 0.147 0.00039 0.12653 0.00307 1.26
moderate/vigorous
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TABLE 18 Cardiovascular and lifestyle 7. Data from the HSE 1994.214 Categorical variables at DHA level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Overweight (BMI > 25 kg/m2) HSE England DHA 81 177 44.02 0.531 0.00054 0.24830 0.00216 1.17

Obese (BMI > 30 kg/m2) HSE England DHA 81 177 12.99 0.157 0.00000 0.13231 0.00000 1.00

Eats fruit at least once a day HSE England DHA 87 177 44.28 0.497 0.00007 0.24842 0.00029 1.02

Eats vegetables at least once a day HSE England DHA 86 177 60.10 0.677 0.00081 0.21425 0.00373 1.32

Adds salt to food when cooking HSE England DHA 85 177 60.06 0.683 0.00177 0.21446 0.00818 1.69

Adds salt to meal HSE England DHA 87 177 48.47 0.544 0.00061 0.24611 0.00247 1.21

Doctor-diagnosed diabetes HSE England DHA 87 177 2.14 0.024 0.00000 0.02338 0.00000 1.00

Currently has high blood pressure HSE England DHA 84 177 8.47 0.098 0.00007 0.08350 0.00084 1.07

Doctor-diagnosed angina HSE England DHA 87 177 3.42 0.038 0.00003 0.03712 0.00081 1.07

Doctor-diagnosed heart attack HSE England DHA 87 177 2.37 0.027 0.00004 0.02601 0.00154 1.13

Doctor-diagnosed stroke HSE England DHA 87 177 1.49 0.017 0.00000 0.01647 0.00000 1.00

Doctor-diagnosed ischaemic heart HSE England DHA 87 177 4.42 0.050 0.00005 0.04738 0.00105 1.09
disease (angina/heart attack)

TABLE 19 Cardiovascular and lifestyle 8. Data from the HSE 1994.214 Continuous variables at postcode sector level

Variable Source Setting Cluster Average Number Overall Variance Variance Intraclass Design 
type cluster of mean component component correlation effect

size clusters – between – within coefficient
cluster cluster

Total cholesterol (mmol/l) HSE England Postcode 17 711 5.88 0.03788 1.59677 0.02317 1.37
sector

Glycated haemoglobin (g/dl) HSE England Postcode 15 711 6.44 0.02488 1.11653 0.02180 1.31
sector

Fibrinogen (g/l) HSE England Postcode 13 711 3.10 0.03737 0.64989 0.05437 1.65
sector

Ferritin (µg/l) HSE England Postcode 15 711 76.22 93.2586 6599.84 0.01393 1.20
sector

Haemoglobin (g/dl) HSE England Postcode 15 711 13.96 0.05883 2.10186 0.02723 1.38
sector

Systolic blood pressure (mmHg) HSE England Postcode 17 711 135.79 7.69267 394.095 0.01915 1.31
sector

Diastolic blood pressure (mmHg) HSE England Postcode 17 711 74.43 3.30140 156.895 0.02061 1.33
sector

BMI (kg/m2) HSE England Postcode 20 712 25.887 0.09116 20.3156 0.00447 1.08
sector

Waist circumference (cm) HSE England Postcode 18 711 87.769 3.26321 160.606 0.01991 1.34
sector

Hip circumference (cm) HSE England Postcode 19 711 103.967 1.56795 83.005 0.01854 1.33
sector
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TABLE 20 Cardiovascular and lifestyle 9. Data from the HSE 1994.214 Categorical variables at postcode sector level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Drinks more than HSE England Postcode 22 712 4.65 0.209 0.00138 0.16302 0.00841 1.18
recommended limit sector

Ever smoked cigarettes HSE England Postcode 22 712 11.97 0.541 0.00112 0.24640 0.00453 1.10
sector

Current cigarette smoker HSE England Postcode 22 712 6.78 0.306 0.00089 0.21023 0.00421 1.09
sector

Current smoker or passive HSE England Postcode 22 712 9.30 0.419 0.00150 0.23991 0.00620 1.13
exposure sector

Had GP consultation in HSE England Postcode 22 712 3.77 0.171 0.00041 0.14063 0.00288 1.06
last 14 days sector

On contraceptive pill HSE England Postcode 6 709 1.70 0.259 0.00142 0.19378 0.00727 1.04
(menstruating women only) sector

Moderately active at home/ HSE England Postcode 22 712 15.06 0.679 0.00372 0.21403 0.01710 1.36
in garden sector

Active in sport – HSE England Postcode 22 712 9.48 0.427 0.00323 0.23904 0.01334 1.28
moderate/vigorous sector

Active in general – HSE England Postcode 22 712 18.47 0.832 0.00098 0.13827 0.00702 1.15
moderate/vigorous sector

Physically inactive HSE England Postcode 22 712 12.63 0.569 0.00265 0.24275 0.01079 1.23
sector

Active at work – HSE England Postcode 22 712 3.25 0.147 0.00156 0.12497 0.01233 1.26
moderate/vigorous sector

TABLE 21 Cardiovascular and lifestyle 10. Data from the HSE 1994.214 Categorical variables at postcode sector level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Overweight (BMI > 25 kg/m2) HSE England Postcode 20 712 10.94 0.531 0.00128 0.24702 0.00516 1.10
sector

Obese (BMI > 30 kg/m2) HSE England Postcode 20 712 3.23 0.157 0.00021 0.13210 0.00159 1.03
sector

Eats fruit at least once a day HSE England Postcode 22 712 11.01 0.497 0.00272 0.24570 0.01095 1.23
sector

Eats vegetables at least once a day HSE England Postcode 22 712 14.94 0.677 0.00577 0.20849 0.02692 1.57
sector

Adds salt to food when cooking HSE England Postcode 22 712 14.93 0.683 0.00195 0.21251 0.00908 1.19
sector

Adds salt to meal HSE England Postcode 22 712 12.05 0.544 0.00129 0.24482 0.00524 1.11
sector

Doctor-diagnosed diabetes HSE England Postcode 22 712 0.531 0.0239 0.00002 0.02336 0.00085 1.02
in subject sector

Patient currently has high HSE England Postcode 21 712 2.11 0.0980 0.00000 0.08350 0.00000 1.00
blood pressure sector

Doctor-diagnosed angina HSE England Postcode 22 712 0.851 0.0383 0.00000 0.03712 0.00000 1.00
sector

Doctor-diagnosed heart attack HSE England Postcode 22 712 0.590 0.0266 0.00000 0.02601 0.00000 1.00
sector

Doctor-diagnosed stroke HSE England Postcode 22 712 0.371 0.0167 0.00000 0.01647 0.00000 1.00
sector

Doctor-diagnosed ischaemic heart HSE England Postcode 22 712 1.10 0.0495 0.00000 0.04738 0.00000 1.00
disease (angina/heart attack) sector
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TABLE 22 Cardiovascular and lifestyle 11. Data from the HSE 1994.214 Continuous variables at household level

Variable Source Setting Cluster Average Number Overall Variance Variance Intraclass Design 
type cluster of mean component component correlation effect

size clusters – between – within coefficient
cluster cluster

Total cholesterol (mmol/l) HSE England Household 1.57 6948 5.88 0.27762 1.31914 0.17387 1.10

Glycated haemoglobin (%) HSE England Household 1.56 6874 6.44 0.24273 0.87380 0.21740 1.12

Fibrinogen (g/l) HSE England Household 1.49 6413 3.10 0.20389 0.44599 0.31374 1.15

Ferritin (µg/l) HSE England Household 1.56 6891 76.22 332.678 6267.16 0.05041 1.03

Haemoglobin (g/dl) HSE England Household 1.55 6826 13.96 0.00000 2.10186 0.00000 1.00

Systolic blood pressure (mmHg) HSE England Household 1.65 7487 135.79 143.577 250.518 0.36432 1.24

Diastolic blood pressure (mmHg) HSE England Household 1.65 7487 74.43 30.6935 126.201 0.19563 1.13

BMI (kg/m2) HSE England Household 1.69 8559 25.887 3.95798 16.3576 0.19482 1.13

Waist circumference (cm) HSE England Household 1.69 7764 87.769 3.54565 157.060 0.02208 1.02

Hip circumference (cm) HSE England Household 1.69 7766 103.967 16.4556 66.5489 0.19825 1.14

TABLE 23 Cardiovascular and lifestyle 12. Data from the HSE 1994.214 Categorical variables at household level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Drinks more than HSE England Household 1.72 9063 0.365 0.209 0.03238 0.13063 0.19864 1.14
recommended limit

Ever smoked cigarettes HSE England Household 1.72 9060 0.941 0.541 0.04246 0.20394 0.17232 1.12

Current cigarette smoke HSE England Household 1.72 9059 0.533 0.306 0.06064 0.14959 0.28845 1.21

Current smoker or passive HSE England Household 1.72 9059 0.731 0.419 0.20912 0.03080 0.87163 1.63
exposure

Had GP consultation in HSE England Household 1.72 9049 0.297 0.171 0.01235 0.12828 0.08781 1.06
last 14 days

On contraceptive pill HSE England Household 1.09 4190 0.287 0.259 0.00000 0.19379 0.00000 1.00
(menstruating women only)

Moderately active at home/ HSE England Household 1.72 9067 1.18 0.679 0.02138 0.19265 0.09991 1.07
in garden

Active in sport – HSE England Household 1.72 9067 0.745 0.427 0.06138 0.17767 0.25676 1.18
moderate/vigorous

Active in general – HSE England Household 1.72 9067 1.450 0.832 0.03467 0.10360 0.25071 1.18
moderate/vigorous

Physically inactive HSE England Household 1.72 9067 0.991 0.569 0.03539 0.20737 0.14577 1.10

Active at work – HSE England Household 1.71 9060 0.255 0.147 0.00000 0.12497 0.00000 1.00
moderate/vigorous
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TABLE 24 Cardiovascular and lifestyle 13. Data from the HSE 1994.214 Categorical variables at household level

Variable Source Setting Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Overweight (BMI > 25 kg/m2) HSE England Household 1.69 8559 0.910 0.531 0.02934 0.21768 0.11877 1.08

Obese (BMI > 30 kg/m2) HSE England Household 1.69 8559 0.269 0.157 0.01433 0.11777 0.10846 1.07

Eats fruit at least once a day HSE England Household 1.72 9053 0.866 0.497 0.08068 0.16503 0.32835 1.24

Eats vegetables at least once a day HSE England Household 1.71 9036 1.177 0.677 0.11130 0.09718 0.53386 1.38

Adds salt to food when cooking HSE England Household 1.71 8984 1.183 0.683 0.16931 0.04321 0.79669 1.57

Adds salt to meal HSE England Household 1.72 9058 0.947 0.544 0.05940 0.18542 0.24263 1.17

Doctor-diagnosed diabetes HSE England Household 1.72 9064 0.0417 0.0239 0.00177 0.02159 0.07608 1.05

Currently has high blood HSE England Household 1.69 8923 0.168 0.0980 0.02042 0.06831 0.23011 1.16
pressure

Doctor-diagnosed angina HSE England Household 1.72 9067 0.0668 0.0383 0.00907 0.02805 0.24440 1.18

Doctor-diagnosed heart attack HSE England Household 1.72 9067 0.0463 0.0266 0.00365 0.02236 0.14031 1.10

Doctor-diagnosed stroke HSE England Household 1.72 9067 0.0291 0.0167 0.00339 0.01308 0.20573 1.15

Doctor-diagnosed ischaemic heart HSE England Household 1.72 9067 0.0864 0.0495 0.01105 0.03633 0.23324 1.17
disease (angina/heart attack)

TABLE 25 Cardiovascular and lifestyle 14. Data from the HSE
1994.214 Continuous variables at postcode sector level by gender

Variable Intraclass correlation coefficient

All Men Women

Serum total cholesterol (mmol/l) 0.02317 0.03776 0.02232

Glycated haemoglobin (%) 0.02180 0.03153 0.01221

Plasma fibrinogen (g/l) 0.05437 0.06502 0.04483

Serum ferritin (µg/l) 0.01393 0.00639 0.00000

Haemoglobin (g/dl) 0.03205 0.04349 0.04876

Systolic blood pressure (mmHg) 0.01915 0.01994 0.02708

Diastolic blood pressure (mmHg) 0.02071 0.01854 0.02829

BMI (kg/m2) 0.00447 0.01525 0.01187

Waist circumference (cm) 0.01991 0.03044 0.02925

Hip circumference (cm) 0.01854 0.03575 0.01736
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TABLE 26 Cardiovascular and lifestyle 15. Data from the British Regional Heart Study (BRHS)a 215

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Cigarette smoker BRHS England, Men aged Town 322.2 24 132.71 0.41 0.0063 0.24 0.026 9.35
Wales and 40–59 years
Scotland

Drinks more than BRHS England, Men aged Town 322.2 24 45.63 0.142 0.00439 0.117 0.0361 12.59
6 units on Wales and 40–59 years
weekend Scotland

Drinks more than BRHS England, Men aged Town 322.2 24 34.67 0.108 0.00296 0.0932 0.0308 10.89
6 units daily Wales and 40–59 years

Scotland

High blood pressure BRHS England, Men aged Town 322.2 24 45.88 0.142 0.00208 0.120 0.0171 6.49
(SBP > 160 mmHg, Wales and 40–59 years
DBP > 90 mmHg) Scotland

On antihypertensives BRHS England, Men aged Town 322.2 24 15.63 0.0485 0.000281 0.0459 0.00610 2.96
Wales and 40–59 years
Scotland

On anticoagulants BRHS England, Men aged Town 322.2 24 1.71 0.00530 0.00000756 0.00527 0.00143 1.46
Wales and 40–59 years
Scotland

On lipid-lowering BRHS England, Men aged Town 322.2 24 1.54 0.00478 0.00000620 0.00476 0.00130 1.42
drugs Wales and 40–59 years

Scotland

SBP, systolic blood pressure; DBP, diastolic blood pressure
a Towns in the BRHS were not randomly sampled
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TABLE 27 Cardiovascular and lifestyle 16. Data from the BRHSa 215

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Angina BRHS England, Men aged Town 322.2 24 10.46 0.0324 0.0000955 0.0313 0.00304 1.98
(doctor diagnosed) Wales and 40–59 years

Scotland

Heart attack BRHS England, Men aged Town 322.2 24 12.13 0.0376 0.000149 0.0361 0.00411 2.32
(doctor diagnosed) Wales and 40–59 years

Scotland

High blood pressure BRHS England, Men aged Town 322.2 24 41.25 0.128 0.000558 0.111 0.00500 2.61
(doctor diagnosed) Wales and 40–59 years

Scotland

Stroke BRHS England, Men aged Town 322.2 24 2.29 0.00711 0.00000497 0.00706 0.000704 1.23
(doctor diagnosed) Wales and 40–59 years

Scotland

Diabetes BRHS England, Men aged Town 322.2 24 4.92 0.0153 0.0 0.0150 0.0 1.0
(doctor diagnosed) Wales and 40–59 years

Scotland

On oral antidiabetics BRHS England, Men aged Town 322.2 24 1.83 0.00569 0.0000111 0.00565 0.00195 1.63
Wales and 40–59 years
Scotland

On insulin injections BRHS England, Men aged Town 322.2 24 1.5 0.00465 0.0 0.00464 0.0 1.0
Wales and 40–59 years
Scotland

5 year incidence of BRHS England, Men aged Town 322.2 24 4.08 0.0127 0.0000164 0.0125 0.00131 1.42
fatal ischaemic Wales and 40–59 years
heart disease Scotland

5 year incidence of BRHS England, Men aged Town 322.2 24 7.42 0.0230 0.0000606 0.0224 0.00270 1.87
non-fatal ischaemic Wales and 40–59 years
heart disease Scotland

5 year incidence of BRHS England Men aged Town 322.2 24 11.5 0.036 0.0001 0.034 0.00293 1.94
fatal and non-fatal 40–59 years
ischaemic heart disease 

a Towns in the BRHS were not randomly sampled

TABLE 28 Cancer mortality and incidence data

Variable Source Setting Unit type Cluster Cluster Number Average Incidence Variance Variance Intraclass Design 
of data type size of number of rate component component correlation effect

clusters events per – between – within coefficient 
cluster cluster cluster

Lung cancer mortality PHCDS England, Men aged DHA 216,947 105 113.1 0.000521 1.5 x 10–8 0.000520 0.0000284 7.16
1995 < 75 years

Lung cancer mortality PHCDS England, Women aged DHA 215,232 105 59.1 0.000274 7.0 x 10–9 0.000274 0.0000271 6.83
1995 < 75 years

Lung cancer mortality PHCDS England, All aged DHA 432,180 105 172.2 0.000398 1.0 x 10–8 0.000398 0.0000261 12.3
1995 < 75 years

Prostate cancer TCR England, Men aged DHA 18,484 27 48 0.00256 1.8 x 10–7 0.00256 0.000072 2.33
incidence 1992 65–74 years

Colon cancer TCR England, Men aged DHA 52,031 27 31 0.000593 1.3 x 10–9 0.000592 0.0000223 2.16
incidence 1992 45–64 years

Colon cancer TCR England, Women aged DHA 53,420 27 26 0.00482 7.0 x 10–9 0.000481 0.0000141 1.76
incidence 1992 45–64 years

Breast cancer TCR England, Women aged DHA 36,983 27 94 0.00252 4 x 10–8 0.00251 0.000016 1.59
incidence 1992 50–64 years

PHCDS, Public Health and Common Data Set;TCR,Thames Cancer Registry
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TABLE 29 Respiratory 1. Prevalence of asthma and bronchitis at town or local authority level

Variable Source Setting Unit type Cluster Cluster Number Average Overall Variance Variance Intraclass Design 
of data type size of number of pro- component component correlation effect

clusters cases per portion – between – within coefficient 
cluster cluster cluster

Wheeze Burney England, Men aged Local 3474 21 411 0.117 0.0000768 0.103 0.000745 3.59
(1991)217 1986 20–44 years authoritya

Night-time Burney England, Men aged Local 3474 21 135 0.0383 0.0000111 0.0368 0.000302 2.05
breathlessness (1991)217 1986 20–44 years authoritya

Self-reported Burney England, Men aged Local 3474 21 121 0.0343 0.000430 0.0331 0.00130 45.51
asthma (1991)217 1986 20–44 years authoritya

Phlegm BRHS215 England, Men aged Townb 322.2 24 51.4 0.160 0.00222 0.132 0.0165 6.30
(symptom) Wales and 40–59 years

Scotland

Wheeze BRHS215 England, Men aged Townb 322.2 24 60.6 0.188 0.00381 0.149 0.0249 9.00
(symptom) Wales and 40–59 years

Scotland

Breathlessness BRHS215 England, Men aged Townb 322.2 24 55.3 0.172 0.00211 0.140 0.0148 5.75
(symptom) Wales and 40–59 years

Scotland

Doctor-diagnosed BRHS215 England, Men aged Townb 322.2 24 58.1 0.180 0.00236 0.146 0.0159 6.11
bronchitis Wales and 40–59 years

Scotland

Doctor-diagnosed BRHS215 England, Men aged Townb 322.2 24 11.96 0.0371 0.000239 0.0355 0.00670 3.15
asthma Wales and 40–59 years

Scotland

Having asthma Burney England, Men aged Local 132 21 56 0.415 0.00149 0.242 0.00614 1.81
not on inhaled (1991)217 1986 20–44 years authoritya

β2 agonists

Having asthma Burney England, Men aged Local 132 21 106 0.785 0.000181 0.169 0.00107 1.14
not on inhaled (1991)217 1986 20–44 years authoritya

steroids

a Local authorities were not randomly sampled
b Towns were not randomly sampled
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TABLE 30 Respiratory 2. Symptoms, diagnoses and treatment at general practice level 1

Variable Source Setting Unit Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Chest wheezy Premaratne London, UK, Patients General 296.5 42 88.6 0.306 0.00130 0.211 0.0062 2.79
or whistling (1997)218 1996 practice

Woken with Premaratne London, UK Patients General 295.4 42 68.0 0.236 0.00111 0.179 0.0063 2.85
tight chest (1997)218 1996 practice

Woken short Premaratne London, UK, Patients General 296.0 42 34.0 0.118 0.00063 0.104 0.0062 2.84
of breath (1997)218 1996 practice

Woken with Premaratne London, UK, Patients General 295.3 42 96.4 0.334 0.00068 0.222 0.0031 1.91
cough (1997)218 1996 practice

Asthma attack in Premaratne London, UK, Patients General 296.4 42 28.9 0.100 0.00042 0.090 0.0048 2.42
last 12 months (1997)218 1996 practice

Taking medication Premaratne London, UK, Patients General 295.6 42 40.2 0.139 0.00108 0.119 0.0093 3.74
for asthma (1997)218 1996 practice

Patients with Premaratne London, UK, Patients General 299.1 42 56.5 0.240 0.00147 0.155 0.0096 3.86
‘asthma’ (1997)218 1996 practice

Nasal allergies Premaratne London, UK, Patients General 295.5 42 96.1 0.500 0.00030 0.222 0.0014 1.41
including (1997)218 1996 practice
hayfever

Ever smoked Premaratne London, UK, Patients General 297.2 42 126.2 0.435 0.00177 0.244 0.0074 3.19
(1997)218 1996 practice

TABLE 31 Respiratory 3. Symptoms, diagnoses and treatment at general practice level 2

Variable Source Setting Unit Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Smoked in Premaratne London, UK, Patients General 297.0 42 103.4 0.357 0.00226 0.227 0.0101 3.99
last month (1997)218 1996 practice

Have steroid Premaratne London, UK, Asthmatic General 58.9 42 30.7 0.535 0.0000 0.249 0.0000 1.00
inhaler (1997)218 1996 patients practice

Have peak Premaratne London, UK, Asthmatic General 58.9 42 15.8 0.275 0.0105 0.189 0.0538 4.12
flow meter (1997)218 1996 patients practice

Have steroid Premaratne London, UK, Asthmatic General 59.8 42 4.8 0.083 0.000307 0.076 0.0041 1.24
tablets (1997)218 1996 patients practice

Asthma education Premaratne London, UK, Asthmatic General 58.6 42 23.5 0.410 0.00253 0.239 0.0107 1.62
(1997)218 1996 patients practice

Asthma-related Premaratne London, UK, Asthmatic General 61.1 42 –- 1.51 0.00394 0.407 0.0098 1.59
quality of life (1997)218 1996 patients practice
(square root)
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TABLE 32 Health service activity 1. Health authority level data from health service indicators (HSI) 1

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

DP59: fertility NHS England, Women aged DHA 91,531 111 5666 0.0619 0.000022 0.058 0.000384 36.1
rate HSI 1994–1995 15–44 years

HA55: cataract NHS England, Persons aged DHA 30,080 111 756 0.025 0.000049 0.024 0.0020 61.1
surgery HSI 1994–1995 75+ years
operations,
age 75+ years

HA53: emergency NHS England, Persons aged DHA 30,080 111 405 0.013 0.000017 0.0013 0.0129 389.0
admission with HSI 1994–1995 75+ years
stroke, age 
75+ years

HA54: hip NHS England, Persons aged DHA 30,080 111 93 0.003 0.00000048 0.003 0.00015 5.50
replacement HIS 1994–1995 75+ years
operations,
age 75+ years

HA56: first NHS England, Persons aged DHA 30,080 111 56 0.002 0.0000057 0.0018 0.0031 94.20
psychiatric HSI 1994–1995 75+ years
admissions,
age 75+ years

TABLE 33 Health service activity 2. Health authority level data from HSI 2

Variable Source Setting Unit type Cluster Cluster Number Average Overall Variance Variance Intraclass Design 
of data type size of number of pro- component component correlation effect

clusters cases per portion – between – within coefficient 
cluster cluster cluster

MT40: number of HSI England Deliveries DHA 4186 104 33 0.0079 0.000169 0.0077 0.0216 91.44
home deliveries 1994–1995

MT67: proportion of HSI England Deliveries DHA 4980 111 301 0.0603 0.001 0.0556 0.0178 89.56
Caesarean sections 1994–1995
(non-elective)

MT68: proportion of HSI England Deliveries DHA 4980 111 356 0.0714 0.00174 0.0646 0.0264 131.8
forceps/Ventouse 1994–1995
deliveries 

MT63: proportion of HSI England Home DHA 53 75 14 0.248 0.040 0.149 0.211 11.98
unintended home 1994–1995 deliveries

deliveries

MT66: proportion of HSI England Deliveries DHA 4997 110 215 0.043 0.00067 0.040 0.016 82.72
elective Caesarean 1994–1995
sections

MT69: proportion of HSI England Deliveries DHA 4980 111 31 0.071 0.0017 0.065 0.026 131.8
breech extraction 1994–1995
or delivery

MT74: percentage of HSI England Deliveries DHA 5001 111 1515 0.302 0.062 0.149 0.295 1477
deliveries with first 1994–1995
antenatal assessment 
at 12–19 weeks’ 
gestation

MT75: percentage of HSI England Deliveries DHA 5001 111 2476 0.494 0.126 0.125 0.502 2511
deliveries with first 1994–1995
antenatal assessment 
at 20+ weeks’ 
gestation or none
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TABLE 34 Health service activity 3. Health authority level data from HSI 3

Variable Source Setting Unit type Cluster Average Number Average Average Variance Variance Intraclass Design 
of data type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

HA58: emergency HSI England All people DHA 438,143 111 407 0.00093 4.7 x 10–7 0.00093 0.00051 225
admissions for self- 1994–1995 
injury or poisoning

HA57: patients HSI England All people DHA 439,200 104 151 0.00034 9.9 x 10–8 0.00034 0.00029 128
statutorily detained 1994–1995

IM44: proportion of HSI England, Girls aged 
girls immunised 1994–1995 1994–1995 < 14 years DHA 7914 116 5949 0.659 0.040 0.190 0.174 1378
against rubella 
before 14 years 
of age

TABLE 35 Health service activity 4. Hospital level mortality data

Variable Source Setting Unit type Cluster Cluster Number Average Overall Variance Variance Intraclass Design 
of data type size of number of pro- component component correlation effect

clusters cases per portion – between – within coefficient 
cluster cluster cluster

Mortality in Intensive Britain and Intensive Intensive 335 26 61 0.0179 0.0026 0.144 0.018 6.88
intensive Care Society Ireland care unit care unit
care units study219 patients

Mortality in Intensive Britain and Intensive Hospital 335 26 94 0.0277 0.0036 0.197 0.018 6.93
hospitals Care Society Ireland care unit 

study219 patients

Hospital mortality Intensive UK, Patients aged Hospital 74.92 74 10.7838 0.143396 0.00077 0.12210 0.00629 1.47
after acute upper Care Society 1993–1994 16 years 
gastrointestinal study219 and over
haemorrhage

TABLE 36 Health service activity 5. Data from the Royal College of Physicians (RCP) Wound Care Audit 1216

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
(proportion of data type cluster of number of pro- component component correlation effect
with) size clusters cases per portion – between – within coefficient 

cluster cluster cluster

Immobility RCP England and Patient with Elderly care 
Audit 1 Wales, 1996 wound setting 144.54 25 34.04 0.229 0.00956 0.168 0.0539 8.735
Audit 2 123.4 23 29.74 0.235 0.00863 0.172 0.0478 6.854

Incontinence RCP England and Patient with Elderly care 
of urine Wales, 1996 wound setting

Audit 1 143.49 25 28.36 0.193 0.00661 0.149 0.0420 7.04
Audit 2 122.05 23 24.78 0.198 0.00283 0.156 0.0178 3.153

Incontinence RCP England and Patient with Elderly care 
of faeces Wales, 1996 wound setting

Audit 1 144.23 25 21.24 0.143 0.0044 0.119 0.0358 6.122
Audit 2 122.46 23 18.83 0.150 0.00816 0.120 0.0637 8.736

Written care plan RCP England and Patient with Elderly care 
Audit 1 Wales, 1996 wound setting 143.36 25 138.6 0.941 0.00329 0.0522 0.0593 9.438
Audit 2 121.29 23 119.90 0.964 0.00129 0.0338 0.0367 5.420

No patient RCP England and Patient with Elderly care 
education Wales, 1996 wound setting
recorded

Audit 1 140.87 25 36.48 0.252 0.0124 0.177 0.0655 10.16
Audit 2 117.97 23 28.00 0.231 0.0232 0.156 0.129 16.14

Leg ulcers > 5 cm RCP England and Patient with Elderly care 
Audit 1 Wales, 1996 wound setting 88.91 25 20.88 0.227 0.00129 0.174 0.00735 1.646
Audit 2 72.73 23 17.57 0.233 0.00416 0.175 0.0232 2.665
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TABLE 37 Health service activity 6. Data from the RCP Wound Care Audit 2216

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
(proportion of data type cluster of number of pro- component component correlation effect
with) size clusters cases per portion – between – within coefficient 

cluster cluster cluster

Pressure sore RCP England and Patient with Elderly care 
stage III or IV Wales, 1996 wound setting

Audit 1 49.21 25 15.92 0.317 0.00176 0.215 0.008 1.39
Audit 2 41.65 23 13.00 0.306 0.00237 0.210 0.0111 1.45

Wound not RCP England and Patient with Elderly care 
painful Wales, 1996 wound setting

Audit 1 95.70 25 17.04 0.172 0.000393 0.142 0.00276 1.261
Audit 2 90.63 22 15.64 0.167 0.000585 0.139 0.00420 1.376

Very satisfied RCP England and Patient with Elderly care 
Audit 1 Wales, 1996 wound setting 96.27 25 65.7 0.659 0.00949 0.216 0.042 5.009
Audit 2 90.48 22 56.9 0.609 0.00719 0.232 0.0301 3.694

TABLE 38 Health service activity 7. Hospital level data from the HSI 1

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

CT02: percentage HSI England, Accident and Acute unit 10,535.2 265 9757 0.925 0.00463 0.0649 0.0666 702.6
immediately 1996 emergency (hospital)
assessed in accident department 
and emergency attendance
department

CT05: percentage of HSI England, Finished Acute unit 
finished consultant 1996 consultant (hospital)
episodes done as episode by 
day cases selected 

C46: inguinal hernia speciality 333.0 236 96 0.289 0.0259 0.180 0.129 43.8
C47: arthroscopy, knee 320.5 226 204 0.636 0.0381 0.194 0.164 53.5
C48: cataract extraction 1005.3 154 369 0.366 0.0546 0.178 0.235 236.9
C49: laparoscopic sterilisation 241.5 226 177 0.731 0.0290 0.168 0.147 36.5

TABLE 39 Health service activity 8. Hospital level data from the HSI 2

Variable Source Setting Unit Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

MT46: percentage of HSI England, Delivery Acute unit 2728.8 206 117.5 0.043 0.000890 0.0403 0.0216 59.95
deliveries by elective 1996 (hospital)
Caesarean section

MT47: percentage of HSI England, Delivery Acute unit 2728.8 206 165.0 0.0604 0.00142 0.0553 0.0251 69.43
deliveries by Caesarean 1996 (hospital)
section (other)

MT48: percentage of HSI England, Delivery Acute unit 2728.8 206 195.6 0.0716 0.00231 0.0642 0.0348 95.90
deliveries by forceps, 1996 (hospital)
Ventouse or vacuum 
extraction

MT49: percentage of HSI England, Delivery Acute unit 2722.9 205 15.5 0.00568 0.0000218 0.00563 0.00386 11.50
deliveries by breech 1996 (hospital)
extraction or delivery
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TABLE 40 Health service activity 9. Family health service authority (FHSA) level data from HSI 1

Variable Source Setting Unit Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

CT10: percentage of HSI England, General FHSA 99.8 90 64 0.639 0.0372 0.194 0.161 16.9
general practices with 1996 practice
practice charter

XM34: percentage of GPs HSI England, GP FHSA 293.9 90 31.4 0.106 0.00475 0.0900 0.0500 15.6
practising single handed 1996

XM35: percentage of GPs HSI England, GP FHSA 293.9 90 4.5 0.0151 0.000123 0.0148 0.00827 3.42
aged > 65 years 1996

XM24: percentage of GPs HSI England, GP FHSA 293.9 90 23.6 0.0800 0.00358 0.0701 0.0486 15.2
with list size > 2500 1996

XM39: percentage of GPs HSI England, GP FHSA 293.9 90 174.9 0.592 0.0864 0.156 0.356 105.2
with deputising service 1996
contract

XM51: percentage of HSI England, GP FHSA 295.1 89 241.7 0.816 0.0243 0.127 0.161 48.4
GPs achieving higher 1996
childhood immunisation 
targets

XM52: percentage of HSI England, GP FHSA 295.1 89 35.5 0.120 0.00716 0.0984 0.0678 20.94
GPs achieving lower 1996
childhood immunisation 
targets

XM55: percentage of GPs HSI England, GP FHSA 295.1 89 241.8 0.816 0.0294 0.121 0.195 58.31
achieving higher rate for 1996
preschool booster targets

TABLE 41 Health service activity 10. FHSA level data from HSI 2

Variable Source Setting Unit Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

XM56: percentage of GPs HSI England, GP FHSA 295.1 89 34.2 0.115 0.00703 0.0951 0.0688 21.25
achieving lower rate 1996
preschool booster targets

XM61: percentage of GPs HSI England, GP FHSA 295.1 89 265.1 0.895 0.0276 0.0670 0.292 86.86
achieving higher rate for 1996
cervical cytology

XM62: percentage of GPs HSI England, GP FHSA 295.1 89 27.02 0.0912 0.0180 0.0652 0.216 64.56
achieving lower rate for 1996
cervical cytology

XM71: percentage of HSI England, GP FHSA 294.0 90 276.7 0.937 0.00309 0.0556 0.0527 16.45
GPs on child health 1996
surveillance list

XM94: percentage of HSI England, General FHSA 100.8 86 7.1 0.0698 0.00360 0.0614 0.0554 6.53
practices without a nurse 1996 practice

XM98: percentage of HSI England, General FHSA 100.4 82 6.66 0.0661 0.0191 0.0429 0.308 31.6
practices below 1996 practice
minimum standards

XM72: percentage of HSI England, Children FHSA 34,907.1 90 25,856 0.738 0.0190 0.175 0.0978 3414.7
children for whom child 1996 aged 
health surveillance < 5 years
provided by GPs

XA48: patients removed HSI England, Patients FHSA 559,766 80 905 0.00161 0.00000266 0.00160 0.00165 928.0
from lists at doctor’s 1996 registered 
request with GPs

XE42: sight tests in HSI England, Children FHSA 112,987 90 25,100 0.221 0.0394 0.134 0.227 25,683.2
children 1996 aged 

< 16 years
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TABLE 42 Other national health strategy target indicators

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Suicide and PHCDS 1995 Men DHA 228,321 105 34.0 0.000149 1.0 x 10–9 0.000149 0.00000528 2.21
undetermined injury

Suicide and PHCDS 1995 Women DHA 236,771 105 11.6 0.0000490 < 10–9 0.0000490 0.00000124 1.29
undetermined injury

Suicide and PHCDS 1995 All DHA 465,092 105 45.6 0.0000980 < 10–9 0.0000980 0.00000309 2.44
undetermined injury

Suicide PHCDS 1995 Men DHA 228,321 105 24.4 0.000107 < 10–9 0.000107 0.00000461 2.05

Suicide PHCDS 1995 Women DHA 236,771 105 6.78 0.0000286 < 10–9 0.0000286 0.000000359 1.09

Suicide PHCDS 1995 All DHA 465,092 105 31.2 0.0000670 < 10–9 0.0000670 0.00000306 2.42

Fatal accidents PHCDS 1995 Men aged DHA 46,030 105 2.67 0.0000579 < 10–9 0.0000578 0.00000293 1.13
< 15 years

Fatal accidents PHCDS 1995 Women aged DHA 43,696 105 1.30 0.0000298 < 10–9 0.0000298 0.00000757 1.33
< 15 years

Fatal accidents PHCDS 1995 All aged DHA 89,726 105 3.97 0.0000442 < 10–9 0.0000442 0.00000624 1.56
< 15 years

Fatal accidents PHCDS 1995 Men aged DHA 30,052 105 8.31 0.000276 6.0 x 10–9 0.000276 0.0000216 1.65
15–24 years

Fatal accidents PHCDS 1995 Women aged DHA 28,506 105 2.05 0.0000717 < 10–9 0.0000717 0.000000531 1.02
15–24 years

Fatal accidents PHCDS 1995 All aged DHA 58,558 105 10.4 0.000177 2.0 x 10–9 0.000177 0.00000964 1.56
15–24 years

Fatal accidents PHCDS 1995 Men aged DHA 27,740 105 12.2 0.000439 4.0 x 10–9 0.000439 0.00000923 1.26
65–84 years

Fatal accidents PHCDS 1995 Women aged DHA 37,279 105 13.5 0.000362 7.0 x 10–9 0.000362 0.0000181 1.67
65–84 years

Fatal accidents PHCDS 1995 All aged DHA 65,019 105 25.7 0.000398 5.0 x 10–9 0.000395 0.0000134 1.87
65–84 years

TABLE 43 Data for other Public Health Common data set indicators

Variable Source Setting Unit type Cluster Average Number Average Overall Variance Variance Intraclass Design 
of data type cluster of number of pro- component component correlation effect

size clusters cases per portion – between – within coefficient 
cluster cluster cluster

Number of still births PHCDS 1995 All births DHA 5863 105 32.4 0.00552 8.5 x 10–7 0.00549 0.000154 1.90
per total births in 1995

Infant mortality PHCDS 1995 Live births DHA 5831 105 19.0 0.00325 6.1 x 10–7 0.00324 0.000187 2.09
< 7 days of age in 1995

Infant mortality PHCDS 1995 Live births DHA 5831 105 24.1 0.00413 9.6 x 10–7 0.00411 0.000232 2.35
< 28 days of age in 1995

Infant mortality PHCDS 1995 Live births DHA 5831 105 35.4 0.00606 1.4 x 10–6 0.00602 0.000236 2.38
< 1 year of age in 1995

Mortality < 5 years PHCDS 1995 All aged DHA 30,469 105 41.9 0.00137 6.7 x 10–8 0.00137 0.0000489 2.49
of age < 5 years

Mortality < 15 years PHCDS 1995 All aged DHA 89,726 105 50.8 0.000566 1.1 x 10–8 0.000565 0.0000190 2.70
of age < 15 years

Perinatal deaths PHCDS 1995 Live births DHA 5831 105 51.4 0.00880 2.4 x 10–6 0.00872 0.000276 2.61
in 1995

Postneonatal deaths PHCDS 1995 Live births DHA 5831 105 11.3 0.00193 1.8 x 10–7 0.00193 0.0000924 1.54
in 1995
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Our aim in carrying out this review was to
provide concise recommendations which

would be easily applied by those involved in
healthcare evaluation. Over the last few years a
considerable amount of research has been carried
out to address the methodological problems which
are encountered in area- and organisation-based
evaluations. These methods are now sufficiently
accessible to allow implementation in the context
of much healthcare evaluation. Further reviews 
are provided by Murray40 and Donner and 

Klar.11 The reader is also referred to Donner65

for some recent research recommendations. 
For example, further work is needed: to aid the 
design of quasi-experimental cluster-based studies;
to provide intraclass correlations and components
of variance for a range of outcomes and different
types of organisational clustering; to provide
analytical methods for different types of data
including ordinal and survival data; and to 
permit meta-analyses of the results of 
cluster-based studies.

Chapter 10

Concluding remarks
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