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Abstract.

Background: Individualized treatment guided by biomarkers certainly will play a crucial role in the more effective treatment
of various neurological diseases in the near future. Identifying the electroencephalographic biomarkers in the brain of patients
with Parkinson’s disease (PD) may help in the decision-making process of health professionals regarding the non-invasive
brain stimulation (NIBS) protocols.

Objective: To summarize quantitative electroencephalographic (QEEG) characteristics of patients with PD with motor
symptoms at rest or during movement to identify potential biomarker associated with motor impairment in PD.

Methods: A systematic search was conducted in the databases MEDLINE/PubMed, LILACS/BIREME, CINAHL/EBSCO,
Web of Science, and CENTRAL, performed according to PRISMA-statement guidelines. Two independent authors searched
for studies that reported qEEG data related to motor outcomes at rest or during movements in patients with PD and compared
the data with control healthy group. The studies’ methodological quality was examined using the Cochrane Handbook.
Studies/sample characteristics, qEEG parameters/analyses, and the studies’ results were summarized. Prospero-register:
CRD42018085660.

Results: Nineteen studies (18 cross-sectional/one cross-over) with 312 PD patients and 277 controls, published between
1994-2018, were included for the qualitative analysis. In comparison to healthy controls, our findings suggest a slowing
down of the cortical activity in patients with PD due to an increase of slower band waves activity and a decrease of fast band
waves at resting and during complex movement execution mainly in the central and frontal cortex.

Conclusion: Slowing down of cortical waves suggest excitatory NIBS for motor impairment in PD. However, qEEG biomarker
for motor symptoms of PD cannot be established yet because the studies that related qEEG with motor outcomes presented
methodological poor quality.
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*Correspondence to: Katia Monte-Silva, Applied Neuroscience eral de Pernambuco, Recife, Pernambuco, Brazil. Tel.: +55 812126
Laboratory, Department of Physical Therapy, Universidade Fed- 7579; E-mail: monte.silvakk @ gmail.com.

ISSN 1877-7171/20/$35.00 © 2020 — IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).


mailto:monte.silvakk@gmail.com

456 L. Shirahige et al. / EEG as a Biomarker for Parkinson’s Disease

INTRODUCTION

In order to provide better clinical intervention
and treatment, several studies have attempted to
identify biomarkers of central nervous system dis-
orders for several neurological diseases including
Parkinson’s disease (PD) [1]. Taking into con-
sideration that biomarker measurements ideally
should be cheap, available and noninvasive and that
electroencephalograpic-abnormalities in brain wave
patterns have been found in patients with PD [2-7],
quantitative electroencephalography (QEEG) seems
to be a promising approach to investigate cortical
biomarkers for PD. Indeed, a previous systematic
review has demonstrated that qEEG could provide
reliable and widely available biomarkers for nonmo-
tor symptoms in PD [8]. However, qEEG patterns
related to motor symptoms remains uncertain [8].

Individualized treatment guided by biomarkers
certainly will play a crucial role in the more effec-
tive treatment of various neurological diseases in the
near future [1]. By identifying the biomarkers in the
brain of patients with PD may help, for example, in
the decision-making process of health professionals
regarding the non-invasive brain stimulation (NIBS)
treatment, a useful and safe approach to sensorimo-
tor rehabilitation for patients with PD [9-11]. Indeed,
NIBS treatment seems to modulate qEEG abnor-
malities in other neurodegenerative disease [12, 13].
Systematic reviews pointed out that both inhibitory
[14, 15] and excitatory [9] NIBS treatment had a
significant improvement of motor symptoms of PD
patients. In contrast, some other studies showed no
positive results after NIBS [16, 17]. The hetero-
geneity of protocols could partially explain different
results between studies. Excitatory or inhibitory pro-
tocols have been applied in different brain target
regions as supplementary motor area [18-21], motor
cortex [9, 21, 22] and cerebellar regions [23].

Thus, we aim to perform a systematic review to
identify EEG profiles associated with motor impair-
ment in patients with PD at resting and during
movements. The identification of EEG biomarkers
in PD patients may help to indicate the best protocol
for NIBS treatment.

METHODS

Review of literature and searching in databases

The systematic review was performed and reported
according to Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses statement
guidelines [24]. An extensive literature search was
conducted using the following databases: Medline
(PubMed), LILACS (BIREME), Web of Science,
CINAHL (EBSCO), and CENTRAL Cochrane
library.

The descriptors used for the search strategy in
all databases were: “electroencephalography” and
“Parkinson Disease”, using the Boolean operator
“AND”. The subheadings “diagnosis”, “diagnostic
imaging” and “analysis” were applied for the search
in the Medline database. None filter was applied in
the search strategy. All searches were conducted in
September 2019.

Two authors (LS and MB) performed the search
strategies and, independently, identified the articles
that met the eligibility criteria from the reading
of titles and abstracts. Any disagreements between
reviewers were resolved by a third reviewer (SR).
Next, full-text studies were retrieved to verify the
study eligibility and further advice was sought from
a third reviewer when there was any disagreement.
Cohen kappa for interrater agreement was calculated
through the SPSS v. 23 for Windows.

Eligibility criteria

We included in our review studies without restric-
tion of language and year of publication that evaluated
cortical alterations related to motor outcomes by
means of cortical (surface) gEEG measures analysed
at rest or during movements in patients with PD and
compared the data with a healthy group. We excluded
review studies that presented patients submitted to
deep brain stimulation (DBS), evaluated qEEG in
animal models or in patients with other pathologies
associated with PD.

Data extraction and analysis

The data for bias risk assessment was performed
independently by the two authors (LS and MB). For
the bias risk analysis, only the following aspects
were observed: (1) Blinding of participants and per-
sonnel (performance bias); (2) Blinding of outcome
assessment (detection bias); (3) Incomplete outcome
data (attrition bias); (4) Selective reporting (reporting
bias); (5) Other bias. A graph for bias risk analysis
was constructed using Revman software version 5.6.

Relevant data as the study information, sample
characteristics and EEG parameters were extracted
independently using a standardized data extraction
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form. We also performed the calculation of levodopa
equivalent dosage (LED), using the tool Levodopa
Equivalent Dose Calculator, available in parkinsons-
measurement.org.

The data of each group (PD and control) were pre-
sented as means and standard deviation (SD). When
means and SDs were not provided, median values
were considered to be equal to mean values if data
were normally distributed and interquartile ranges
were divided by 1.35 to obtain the SD [25]. If nec-
essary, we also calculated the SD from confidence
interval data informed in the studies as recommended
by Chapter 7 of Cochrane Handbook [26].

RESULTS
Identification and selection of studies

Figure 1 shows the flow diagram of study selection
for the meta-analysis. Search strategies yielded 454
results (178 found in MEDLINE, 193 in CINAHL, 22
in Web of Science, 55 in CENTRAL, 4 in LILACS,
and 2 after the search in articles references). After

—

the removal of duplicates, 360 articles were iden-
tified but only 38 remained after reading titles and
abstracts. Of these, 19 were included in the qualita-
tive analysis with 312 PD patients and 277 controls.
The participant’s characteristics are presented in
Table 1. Included studies were published between
1994 [27] and 2018 [28], all of these presenting a
cross-sectional design except for one [2]. The value
of Cohen Kappa of study selection in all databases
was 0.833.

Risk of bias

The risk of bias in each study was classified as
low, uncertain or high risk of bias according to the
Cochrane Handbook for Systematic Review of Inter-
ventions [29]. Figure 2 summarized the risk of bias
of 19 selected studies considering the main outcome.
Most of the studies were classified as high or uncer-
tain risk of bias for at least 2 evaluated items. None
of the included studies presented blinding for evalu-
ators or participants (performance bias). We judged
this item always as low risk of bias since the lack

Additional records identified
through article references

Records excluded
after checking the
inclusion criteria
(n=322)

Full-text articles

Records identified through
database searching
,§ (n=452) (n=2)
<
2
e 1 1
2
Records after duplicates removed
(n=360)
!
Records screened
z (n=360)
g
&
Full-text articles
— assessed for eligibility
(n=38)
z
£ |
o0
5 Studies included in
qualitative synthesis
(n=19)
£ Studies included in
g quantitative analysis
- (n=0)

Fig. 1. Flow diagram of the study.

excluded
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of blindness probably did not influence the corti-
cal activity of the patients. In contrast, the lack of
blindness of outcome assessment (detection bias) was
considered as high risk of bias. For the other risk bias,
the study was considered as a “high risk of bias” if
did not present a declaration of absence of conflict
of interest, discrepancy in the sample characteristic
between groups or problems in capturing or analysing
signals.

One study [30] was categorized as high risk in
reporting bias because statistical analysis and quanti-
tative description of between-group differences were
not done. We classified just one study [31] as high
in the “other bias risk” because the authors reported
that the patients were evaluated in the “almost OFF”
state. Moreover, two study [30, 32] were classified as
uncertain in the “other bias risk”. One [30] because
the authors did not present clinical measures of the
participants and the other [32] because presented non-
equivalent proportion between males and females in
the groups. Thirteen studies [2-7, 31-37] did not
present the results in mean and standard deviation,
and were therefore classified as uncertain risk of bias
for selective reporting aspect.

Sample characteristics

Eight studies evaluated the motor impairment of
PD patients only in ON-medication state, but not in
off [2-6, 27, 28, 38]. The age of participants varied
between 56.5 +26.7 [32] and 72.3 £6.0 [27]. Time
onset of disease varied between 3.7 2.9 [39] and
7.3+3.9 years [32] and men comprised the most
sample. Four studies did not specify if the UPDRS
score was evaluated at ON or OFF state [7, 27, 30,
38].

Eleven studies assessed patients in Hoehn & Yahr
(H&Y) stages 2 and 3 of the disease, five studies [2—4,
30, 31] did not mention the stage and six [5, 6, 33, 34,
37] presented incomplete information. The dosage
of levodopa intake varied between 216.7 & 133.2 [7]
and 1190 4465 mg/day [4]. Seven studies did not
present the dosage of levodopa intake. The partici-
pant’s characteristics are presented in Table 1. We
ordered the Table 1 according the motor impairment
of the sample measured by UPDRS-III. Eight studies
[2, 6, 27, 30, 32, 34, 36, 40] did not mentioned the
UPDRS scores in their results.

General characteristics of the studies

In general, the studies were accomplished in
Europe and USA (Table 1). The number of channels

Beudel etal.,, 2015

Degardin et al., 2009

Emek-Savas etal., 2017

Gobbelé et al., 2008

Liuetal, 2017

Macerollo et al., 2015

Magnani et al., 1998

Neufeld et al., 1994

Praamstra et al., 1998

Serizawa et al., 2008

Smithetal, 2012

Stanzione et al., 1996

Stegemoller et al., 2016

Stemmer et al., 2007

Swannetal, 2015

Tamas et al., 2003

Touge et al., 1995

Van den Heuvel, 2018
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Fig. 2. Risk of bias analysis of included studies. Legend: (+) Low
risk of bias; (?) Uncertain risk of bias; () High risk of bias.
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(Table 2) varied between 2 [4] and 128 [2], and the
most utilized analysis method (Table 1) was the event
related potential (ERP) in different conditions [2, 5,
7,28, 32,34, 35, 40]. Other methods used were spec-
tral analyses [27, 28, 30, 38] focused in alpha [4, 31,
36, 37] and beta frequency band [4, 6, 36, 37], and
somatosensorial evoked potential (SEP) [3, 33].

The task during EEG executed by the volunteers
consisted in upper limb movement [2, 4, 5, 7, 32,
34, 35, 40] or a balance task [28, 37]. Nine studies
evaluated the participants in the resting [3, 6, 27, 30,
31, 33, 36, 38, 39] (Table 1).

We decided not to realize the quantitative analy-
sis of the data because the acquisition and analysis
EEG protocols were highly different among the stud-
ies (Table 2). The studies’ results were summarized
in Table 1.

Cortical biomarkers of PD patients in resting
state

During resting state, SEP in PD patients with
or without medication seems not to be different to
healthy individuals [3, 33]. However, it was observed
that OFF medication, PD patients did not present
attenuation of SEP, whereas ON medication pre-
sented this hallmark. Attenuation is defined as a
cortical response decrease from repeated stimuli [3].
In relation to sensory-evoked delta oscillations, PD
patients seem to present lower amplitudes in the mid-
line locations when compared to control group [39].

Moreover, the spectral analysis demonstrated a
general “slowing down” of PD patients’ cortical
activity. An increase of spectral power of slower band
waves and a decrease of faster band waves were
observed [6, 27, 38]. For beta band analysis, no dif-
ference between PD patients and controls regarding
power spectrum analysis was found [6, 38].

Cortical biomarkers of PD patients during
movement

Compared to healthy controls, most studies found
differences in cortical patterns in central and frontal
cortex regions during the execution of a task [2, 4,
5,7, 32, 34, 37, 39] and these seem to be slower in
PD patients, mainly in the contralateral cortex to the
movement.

Some included studies had presented that beta
activity during a complex motor task is lower in PD
patients compared to controls [2, 4, 37]. However,
Tamas and Colleagues (2003) did not find differences

between groups in beta band when patients executed
self-paced simple finger movements [40].

Additionally, three studies [28, 32, 35] failed to
find difference in ERP between patients and controls.
In contrast, two studies [7, 39] observed a decrease
of ERP in PD during tasks with motor and cognitive
demand. Touge and colleagues (1995) reported that
in aleatory tasks, PD patients presented a suppression
of ERP [32]. Van den Heuvel and colleagues showed
that PD patients seem to present higher power mod-
ulation of beta band (assessed by the mensuration of
SD of power peak over time in each band) only during
a task with incongruent visual feedback [28].

DISCUSSION

The current evidence across qEEG pattern as
biomarker for the motor symptom in patients with
PD involves few studies with reduced sample size
and with high or unclear risk of bias. The summary
of current evidence suggests a slowing down of the
cortical activity in patients with PD at resting and
during complex movement execution, in comparison
to healthy controls.

Potential biases of studies

The studies that assessed qEEG in PD patients
had small sample size and potential critical biases.
Indeed, the most of studies presented no sample size
calculation and blinding of qEEG analyst. Blinding
analysis is considered the only way to trust results
[41] and a precise and accurate conclusion with lesser
probability to leading a type Il error can only be made
by an appropriate sample size [42]. Thus, the results
of our study should be extrapolated with caution.

Other minor biases of included studies could be
cited, as the lack of the information about medication
intake dosage, H&Y stage and motor subtypes of the
patients. The clinical sample characteristics are rel-
evant to external validity of findings. Moreover, PD
prognosis seems to be linked to stage of the disease
[43] and subtypes classification [44, 45], reinforcing
the importance of the adequate description of clinical
data.

Cortical biomarkers of PD patients in resting
state and during movement

The spectral analysis of included studies in resting
demonstrated an increase of spectral power of slower
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band waves and a decrease of faster band waves sug-
gesting a “slowing down” of PD patients’ cortical
activity. Similarly, a recent systematic review iden-
tifies lower dominant frequency or increased theta
power in PD patients [8]. The slowing down of corti-
cal waves seems to related to some motor impairment
as the bradykinesia at OFF state [31] and freezing
[46, 47]. Whereas the decrease of beta frequency
band seems to be associated to general motor function
impairment in PD [48-50].

During movement when compared to healthy sub-
jects, we found an qEEG abnormal pattern (slower
activity), mainly in the contralateral cortex to the
movement, in PD patients with motor impairment
who performed complex task [2, 4, 7, 37, 39]. How-
ever, some studies which the patients performed
simple task [35, 40] failed to find this abnormality.
This discrepancy could be justified by the differ-
ence of the complexity of tasks performed among
the studies. More complex tasks would require higher
cortical activation that are not observed during simple
task [51]. Moreover, Van den Heuvel and colleagues
showed that PD patients seem to present higher power
modulation of beta band during a task with incongru-
ent visual feedback (more complex task). In the same
research, there was no difference between PD and
controls during a task with visual feedback presented
in real time (simple task) [28].

Insights for NIBS treatment based on cortical
biomarkers in PD

In summary, the slower activity found in PD
patients with motor impairment suggests that these
patients could be benefit with excitatory NIBS over
frontal and central cortical areas. Several studies
have demonstrated that excitatory NIBS has bene-
ficial effect for the treatment of motor symptoms in
patients with PD [9—11, 52]. Though the mechanisms
underlying these effects are unclear, the excitatory
NIBS seems to be able to reverse the “slowing
down” of cortical waves. Indeed, previous studies in
healthy controls and in patients with Alzheimer’s dis-
ease demonstrated that excitatory NIBS over parietal
cortex was capable to increase the alpha and beta
power during and after stimulation in several brain
regions [12, 13], whereas inhibitory NIBS produced
a decreased theta power [13].

The excitatory NIBS seems to decrease the spec-
tral analysis of the lower-frequency band and increase
synchronization of all bands [53-60]. However, how

to explain the benefits of inhibitory NIBS on motor
symptoms of patients with PD [14, 15]? The existence
of clinical subtypes- specific cortical endophenotypes
of PD could help in clarifying this discrepancy. A
recent study identified differences in the connectivity
pattern of levodopa-induced changes in neural acti-
vation between patients with tremor dominant and
instability/gait difficulty PD subtype during a motor
task evaluated by fMRI [61]. This reinforces the the-
ory that patients with distinct clinical characteristics
could present different patterns of cortical endophe-
notypes. Therefore, PD patients with distinct clinical
characteristic could answer differently to excitatory
or inhibitory NIBS due the different brain pattern
activation. Further studies are required to clarify this
issue.

It is important to highlight some limitations of
our review. The most of the included studies have
consistently failed in detailing the motor impairment
of patients which made difficult to establish a rela-
tionship between motor symptoms and the patterns
of cortical waves. Moreover, the lack of quantitative
analysis and the heterogeneity of protocols between
the included studies could somehow limit our
conclusion.

Conclusion

The current evidence across electroencephalogra-
phy as an evaluation approach for motor impairment
biomarkers in PD patients involves few studies with
reduced sample size, with high or unclear risk of bias.
The studies included in this review varied a lot in
relation to gEEG acquisition and analysis methods,
positioning and number of electrodes, the objec-
tive and time of task execution which limited the
generalization of the results. Therefore, besides the
studies presented a slowing down of cortical activ-
ity in patients with PD at resting and during complex
activity execution when compared to controls, this
result should be considered with caution due the
methodological heterogeneity and poor quality of the
studies. Thus, there is a need for larger controlled
trials with blinding of qEEG analyst, which could
increase the power of results. In addition, further stud-
ies are also necessary to investigate gEEG biomarkers
considering the different clinical characteristics (as
phenotypes of the disease, time onset diagnosis and
medication issues) and the NIBS effect on cortical
waves, taking into consideration these clinical char-
acteristics of the disease.
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