
ar
X

iv
:1

71
0.

02
04

9v
3

 [
cs

.C
R

]
 8

 A
pr

 2
01

9

0 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

A method for unbounded verification of

privacy-type properties

Lucca Hirschi a,∗ David Baelde b Stéphanie Delaune c,∗∗

a Inria & LORIA, France
E-mail: lucca.hirschi@inria.fr
bLSV, ENS Paris-Saclay, CNRS & Université Paris-Saclay, France
E-mail: david.baelde@lsv.fr
cUniv Rennes, CNRS, IRISA, France
E-mail: stephanie.delaune@irisa.fr

Abstract. In this paper, we consider the problem of verifying anonymity and unlinkability in the symbolic model,
where protocols are represented as processes in a variant of the applied pi calculus, notably used in the ProVerif
tool. Existing tools and techniques do not allow to verify directly these properties, expressed as behavioral equiv-
alences. We propose a different approach: we design two conditions on protocols which are sufficient to ensure
anonymity and unlinkability, and which can then be effectively checked automatically using ProVerif . Our two
conditions correspond to two broad classes of attacks on unlinkability, i.e. data and control-flow leaks. This the-
oretical result is general enough that it applies to a wide class of protocols based on a variety of cryptographic
primitives. In particular, using our tool, UKano, we provide the first formal security proofs of protocols such as
BAC and PACE (e-passport), Hash-Lock (RFID authentication), etc. Our work has also lead to the discovery
of new attacks, including one on the LAK protocol (RFID authentication) which was previously claimed to be
unlinkable (in a weak sense).

Keywords: formal verification, security protocols, symbolic model, equivalence-based properties

1. Introduction

Security protocols aim at securing communications over various types of insecure networks (e.g.
web, wireless devices) where dishonest users may listen to communications and interfere with
them. A secure communication has a different meaning depending on the underlying application.
It ranges from the confidentiality of data (medical files, secret keys, etc.) to, e.g. verifiability

*This work was conducted when Lucca Hirschi was working at LSV, ENS Paris-Saclay & Université Paris-Saclay,
France and then at ETH Zurich, Switzerland.

**Corresponding author. E-mail: stephanie.delaune@irisa.fr. This work has received funding from the European
Research Council (ERC) under the EU’s Horizon 2020 research and innovation program (grant agreement No
714955-POPSTAR) and the ANR project SEQUOIA ANR-14-CE28-0030-01.

http://arxiv.org/abs/1710.02049v3

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 1

in electronic voting systems. Another example of a security notion is privacy. In this paper, we
focus on two privacy-related properties, namely unlinkability (sometimes called untraceability),
and anonymity. These two notions are informally defined in the ISO/IEC standard 15408 [2] as
follows:

– Unlinkability aims at ensuring that a user may make multiple uses of a service or resource
without others being able to link these uses together.

– Anonymity aims at ensuring that a user may use a service or resource without disclosing its
identity.

Both are critical for instance for Radio-Frequency Identification Devices (RFID) and are thus
extensively studied in that context (see, e.g. [52] for a survey of attacks on this type of protocols),
but they are obviously not limited to it.

One extremely successful approach when designing and analyzing security protocols is the use
of formal verification, i.e. the development of rigorous frameworks and techniques to analyze
protocols. This approach has notably lead to the discovery of a flaw in the Single-Sign-On protocol
used e.g. by Google Apps. It has been shown that a malicious application could very easily access
to any other application (e.g. Gmail or Google Calendar) of their users [10]. This flaw has been
found when analyzing the protocol using formal methods, abstracting messages by a term algebra
and using the Avantssar validation platform. Another example is a flaw on vote-privacy discovered
during the formal and manual analysis of an electronic voting protocol [34]. All these results
have been obtained using formal symbolic models, where most of the cryptographic details are
ignored using abstract structures. The techniques used in symbolic models have become mature
and several tools for protocol verification are nowadays available, e.g. the Avantssar platform [11],
the Tamarin prover [46], and the ProVerif tool [19].

Unfortunately, most of these results and tools focus on trace properties, that is, statements that
something bad never occurs on any execution trace of a protocol. Secrecy and authentication are
typical examples of trace properties: a data remains confidential if, for any execution, the attacker
is not able to produce the data. However, privacy properties like unlinkability and anonymity
are generally not defined as trace properties. Instead, they are usually defined as the fact that
an observer cannot distinguish between two situations, which requires a notion of behavioural
equivalence. Based on such a notion of equivalence, several definitions of privacy-type properties
have been proposed (e.g. [7,23] for unlinkability, and [36,12] for vote-privacy). In this paper, we
consider the well-established definitions of strong unlinkability and anonymity as defined in [7].
They have notably been used to establish privacy for various protocols either by hand or using ad
hoc encodings (e.g. eHealth protocol [38], mobile telephony [8,9]). We provide a brief comparison
with alternative definitions in Section 3.3.

Considering an unbounded number of sessions, the problem of deciding whether a protocol
satisfies an equivalence property is undecidable even for a very limited fragment of protocols (see,
e.g. [30]). Bounding the number of sessions suffices to retrieve decidability for standard primitives
(see, e.g. [16,29]). However, analysing a protocol for a fixed (often low) number of sessions does
not allow to prove security. Moreover, in the case of equivalence properties, existing tools scale
badly and can only analyse protocols for a very limited number of sessions, typically 2 or 3.
Another approach consists in implementing a procedure that is not guaranteed to terminate.
This is in particular the case of ProVerif, a well-established tool for checking security of protocols.

2 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

ProVerif is able to check a strong notion of equivalence (called diff-equivalence) between processes
that share the same structure. Despite recent improvements on diff-equivalence checking [28]
intended to prove unlinkability of the BAC protocol (used in e-passport), ProVerif still cannot
be used off-the-shelf to establish unlinkability properties, and therefore cannot conclude on most
of the case studies presented in Section 6. Recently, similar approaches have been implemented
in two other tools, namely Tamarin [15] and Maude−NPA [49]. They are based on a notion of
diff-equivalence, and therefore suffer from the same drawbacks.

Our contribution. We believe that looking at trace equivalence of any pair of protocols is a too
general problem and that much progress can be expected when one focuses on a few privacy goals
and a class of protocols only (yet large and generic enough). We follow this different approach.
We aim at proposing sufficient conditions that can be automatically checked, and that imply
unlinkability and anonymity for a large class of security protocols. The success of our solution
will be measured by confronting it to many real-world case studies.

More precisely, we identify a large class of 2-party protocols (simple else branches, arbi-
trary cryptographic primitives) and we devise two conditions called frame opacity and well-
authentication that imply unlinkability and anonymity for an unbounded number of sessions.
We show how these two conditions can be automatically checked using e.g. the ProVerif tool,
and we provide tool support for that. Using our tool UKano (built on top of ProVerif), we have
automatically analysed several protocols, among them the Basic Access Control (BAC) protocol
as well as the Password Authenticated Connection Establishment (PACE) protocol that are both
used in e-passports. We notably establish the first proof of unlinkability for ABCDH [5] and for
the BAC protocol followed by the Passive Authentication (PA) and Active Authentication (AA)
protocols. We also report on an attack that we found on the PACE protocol, and another one
that we found on the LAK protocol [44] whereas it is claimed untraceable in [52]. It happens that
our conditions are rather tight, and we believe that the overall methodology and proof method
could be used for other classes of protocols and other privacy goals.

Our sufficient conditions. We now give an intuitive overview of our two sufficient conditions,
namely frame opacity and well-authentication. In order to do this, assume that we want to
design a mutual authentication protocol between a tag T and a reader R based on symmetric
encryption, and we want this protocol to be unlinkable. We assume that k is a symmetric key
shared between T and R.

A first attempt to design such a protocol is presented using Alice & Bob notation as follows
(nR is a fresh nonce):

1. R → T ∶ nR

2. T → R ∶ {nR}k

This first attempt based on a challenge-response scheme is actually linkable. Indeed, an active
attacker who systematically intercepts the nonce nR and replaces it by a constant will be able to
infer whether the same tag has been used in different sessions or not by comparing the answers
he receives. Here, the tag is linkable because, for a certain behaviour (possibly malicious) of the
attacker, some relations between messages leak information about the agents that are involved
in the execution. Our first condition, namely frame opacity, actually checks that all outputted

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 3

messages have only relations that only depend on what is already observable. Such relations can
therefore not be exploited by the attacker to learn anything new about the involved agents.

Our second attempt takes the previous attack into account and randomises the tag’s response
and should achieve mutual authentication by requiring that the reader must answer to the chal-
lenge nT . This protocol can be as follows:

1. R → T ∶ nR

2. T → R ∶ {nR, nT }k

3. R → T ∶ {nT }k

Here, Alice & Bob notation shows its limit. It does not specify how the reader and the tag are
supposed to check that the messages they received are of the expected form, and how they should
react when the messages are not well formed. This has to be precisely defined, since unlinkability
depends on it. For instance, assume the tag does not check that the message he receives at step 3

contains the nonce nT . We assume that it only checks that the received message is an encryption
with its own key k, and it aborts the session otherwise. In such a flawed implementation, an active
attacker can eavesdrop a message {nT }k sent by R to a tag T , and try to inject this message
at the third step of another session played by T ′. The tag T ′ will react by either aborting or by
continuing the execution of this protocol. Depending on the reaction of the tag, the attacker will
be able to infer if T and T ′ are the same tag or not.

In this example, the attacker adopts a malicious behaviour that is not detected immediately by
the tag who keeps executing the protocol. The fact that the tag passes successfully a conditional
reveals crucial information about the agents that are involved in the execution. Our second
condition, namely well-authentication, basically requires that when an execution deviates from
the honest one, the agents that are involved cannot successfully pass a conditional, thus avoiding
the leak of the binary information success/failure.

Our main theorem states that these two conditions, frame opacity and well-authentication,
are actually sufficient to ensure both unlinkability and anonymity. This theorem is of interest as
our two conditions are fundamentally simpler than the targeted properties: frame opacity can
be expressed and established relying on diff-equivalence (without the aforementioned precision
issue) and well-authentication is only a conjunction of reachability properties. In fact, they are
both in the scope of existing automatic verification tools like ProVerif and Tamarin.

Some related work. The precision issue of diff-equivalence is well-known (acknowledged e.g. in
[37,28,21,35]). So far, the main approach that has been developed to solve this issue consists
in modifying the notion of diff-equivalence to get closer to trace equivalence. For instance, the
swapping technique introduced in [37] and formally justified in [21] allows to relax constraints
imposed by diff-equivalence in specific situations, namely in process algebras featuring a notion of
phase, often used for modelling e-voting protocols. Besides, the limitation of the diff-equivalence
w.r.t. conditional evaluations has been partially addressed in [28] by pushing away the evaluation
of some conditionals into terms. Nevertheless, the problem remains in general and the limitation
described above is not addressed by those works (incidentally, it is specifically acknowledged for
the case of the BAC protocol in [28]). We have chosen to follow a novel approach in the same
spirit as the one presented in [23]. However, [23] only considers a very restricted class of protocols
(single-step protocols that only use hash functions), while we target more complex protocols.

4 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

This paper essentially subsumes the conference paper that has been published in 2016 [42].
Compared to that earlier work, we have greatly generalized the scope of our method and improved
its mechanization. First, we consider more protocols, including protocols where one party has a
single identity (e.g. DAA) as well as protocols where sessions are executed sequentially instead of
concurrently (e.g. e-passport scenarios). Second, we consider a much more general notion of frame
opacity, which enables the analysis of more protocols. As a result of these two improvements, we
could apply our method to more case studies (e.g. DAA, ABCDH).

Outline. In Section 2, we present our model inspired from the applied pi calculus as well as the
class of protocols we consider. We then introduce in Section 3 the notion of trace equivalence that
we then use to formally define the two privacy properties we study in this paper: unlinkability and
anonymity. Our two conditions (frame opacity and well-authentication) and our main theorem
are presented in Section 4. Finally, we discuss how to mechanize the verification of our conditions
in Section 5 and present our case studies in Section 6, before concluding in Section 8. A detailed
proof of our main result is provided in Appendix.

2. Modelling protocols

We model security protocols using a process algebra inspired from the applied pi calculus [4].
More specifically, we consider a calculus close to the one which is used in the ProVerif tool [20].
Participants are modeled as processes, and the communication between them is modeled by
means of the exchange of messages that are represented by a term algebra.

2.1. Term algebra

We consider an infinite set N of names which are used to represent keys and nonces, and two
infinite and disjoint sets of variables, denoted X and W. Variables in X will typically be used
to refer to unknown parts of messages expected by participants, while variables in W, called
handles, will be used to store messages learned by the attacker. We assume a signature Σ, i.e. a
set of function symbols together with their arity, split into constructor and destructor symbols,
i.e. Σ = Σc ⊔Σd.

Given a signature F and a set of initial data A, we denote by T (F ,A) the set of terms built
from elements of A by applying function symbols in F . Terms of T (Σc,N ∪ X) will be called
constructor terms. We note vars(u) the set of variables that occur in a term u. A message is a
constructor term u that is ground, i.e. such that vars(u) = ∅. We denote by x, n, u, t a (possibly
empty) sequence of variables, names, messages, and terms respectively. We also sometimes write
them (n1, n2, . . .) or simply n (when the sequence is reduced to one element). Substitutions
are denoted by σ, the domain of a substitution is written dom(σ), and the application of a
substitution σ to a term u is written uσ. The positions of a term are defined as usual.

Example 1. Consider the following signature:

Σ = {enc, dec, ⟨ ⟩, proj1, proj2, ⊕, 0, eq, ok}.

The symbols enc and dec of arity 2 represent symmetric encryption and decryption. Pairing is
modeled using ⟨ ⟩ of arity 2, and projection functions proj1 and proj2, both of arity 1. The function

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 5

symbol ⊕ of arity 2 and the constant 0 are used to model the exclusive or operator. Finally, we
consider the symbol eq of arity 2 to model equality test, as well as the constant symbol ok. This
signature is split into two parts: Σc = {enc, ⟨ ⟩,⊕,0,ok}, and Σd = {dec,proj1,proj2, eq}.

As in the process calculus presented in [20], constructor terms are subject to an equational
theory; this has proved very useful for modelling algebraic properties of cryptographic primitives
(see e.g. [33] for a survey). Formally, we consider a congruence =E on T (Σc,N∪X), generated from
a set of equations E over T (Σc,X). Thus, this congruence relation is closed under substitution
and renaming. We assume that it is not degenerate, i.e. there exist u, v such that u ≠E v.

Example 2. To reflect the algebraic properties of the exclusive or operator, we may consider the
equational theory generated by the following equations:

x⊕ 0 = x x⊕ x = 0 x⊕ y = y ⊕ x (x⊕ y)⊕ z = x⊕ (y ⊕ z)

In such a case, we have that enc(a⊕ (b⊕ a), k) =E enc(b, k).

We also give a meaning to destructor symbols through the notion of computation relation. As
explained below, a computation relation may be derived from a rewriting system but we prefer to
not commit to a specific construction, and therefore we introduce a generic notion of computation
relation. Instead, we assume an arbitrary relation subject to a number of requirements, ensuring
that the computation relation behaves naturally with respect to names, constructors, and the
equational theory.

Definition 1. A computation relation is a relation over T (Σ,N) × T (Σc,N), denoted ⇓, that
satisfies the following requirements:

1. if n ∈ N , then n ⇓ n;
2. if f ∈ Σc is a symbol of arity k, and t1 ⇓ u1, . . . , tk ⇓ uk, then f(t1, . . . , tk) ⇓ f(u1, . . . , uk);
3. if t ⇓ u then tρ ⇓ uρ for any bijective renaming ρ;
4. if t′ is a context built from Σ and N , t ⇓ u, and t′[u] ⇓ v then t′[t] ⇓ v;
5. if t′ is a context built from Σ and N , and t1, t2 are constructor terms such that t1 =E t2 and
t′[t1] ⇓ u1 for some u1, then t′[t2] ⇓ u2 for some u2 such that u1 =E u2;

6. if t ⇓ u1 then we have that t ⇓ u2 if, and only if, u1 =E u2.

The last requirement expresses that the relation ⇓ associates, to any ground term t, at most
one message up to the equational theory E. When no such message exists, we say that the
computation fails; this is noted t �. We may sometimes use directly t⇓ as a message, when we
know that the computation succeeds and the choice of representative is irrelevant.

A possible way to derive a computation relation is to consider an ordered set of rules of the
form: g(u1, . . . , un)→ u where g is a destructor, and u,u1, . . . , un ∈ T (Σc,X). A ground term t

can be rewritten into t′ if there is a position p in t and a rule g(u1, . . . , un) → u such that
t∣p = g(v1, . . . , vn) and v1 =E u1θ, . . . , vn =E unθ for some substitution θ, and t′ = t[uθ]p (i.e. t in
which the subterm at position p has been replaced by uθ). Moreover, we assume that u1θ, . . . , unθ
as well as uθ are messages. In case there is more that one rule that can be applied at a given
position p, we consider the one occurring first in the ordered set. We denote →∗ the reflexive and
transitive closure of →, and ⇓ the relation induced by →, i.e. t ⇓ u when t→∗ u′ and u′ =E u.

Proving that an ordered set rewriting rules as defined above induces a computation relation is
beyond the scope of this paper but the interested reader will find such a proof in [41].

6 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

Example 3. The properties of symbols in Σd (Example 1) are reflected through the following rules:

dec(enc(x, y), y) → x eq(x,x)→ ok proji(⟨x1, x2⟩) → xi for i ∈ {1,2}

This rewriting system induces a computation relation. For instance, we have that:

dec(enc(c, a ⊕ b), b⊕ a) ⇓ c, dec(enc(c, a ⊕ b), b) �,and dec(a, b)⊕ dec(a, b) � .

Example 4. Ordered rewriting rules are expressive enough to define a destructor symbol neq such
that neq(u, v) ⇓ yes if, and only if, u and v can be reduced to messages that are not equal modulo E.
It suffices to consider neq(x,x) → no and neq(x, y) → yes (in this order) with yes,no ∈ Σc.

For modelling purposes, we split the signature Σ into two parts, namely Σpub and Σpriv. An
attacker builds his own messages by applying public function symbols to terms he already knows
and that are available through variables in W. Formally, a computation done by the attacker is
a recipe, i.e. a term in T (Σpub,W). Recipes will be denoted by R, M , N . Note that, although we
do not give the attacker the ability to generate fresh names to use in recipes, we obtain essentially
the same capability by assuming an infinite supply of public constants in Σc ∩Σpub.

2.2. Process algebra

We now define the syntax and semantics of the process algebra we use to model security
protocols. We consider a calculus close to the one which is used in the ProVerif tool [20]. An
important difference is that we only consider public channels. Our calculus also features, in
addition to the usual replication (where an unbounded number of copies of a process are ran
concurrently), a simple form of sequential composition and the associated repetition operation
(where an unbounded number of copies of a process are ran sequentially, one after the other).

We consider a set C of channel names that are assumed to be public. Protocols are modeled
through processes using the following grammar:

P,Q ∶= 0 null ∣ (P ∣ Q) parallel ∣ !P replication

∣ in(c, x).P input ∣ newn.P restriction ∣ !P repetition

∣ out(c, u).P output ∣ let x = t in P else Q evaluation ∣ P ;Q sequence

where c ∈ C, x ∈ X , n ∈ N , u ∈ T (Σc,N ∪X), and x and t are two sequences of the same length,
respectively over variables (X) and terms (T (Σ,N ∪X)).

We write fv(P) for the set of free variables of P , i.e. the set of variables that are not bound
by an input or a let construct. A process P is ground if fv(P) = ∅. Similarly, we write fn(P) for
the set of free names of P , i.e. the set of names that are not bound by a new construct.

Most constructs are standard in process calculi. The process 0 does nothing and we sometimes
omit it. The process in(c, x).P expects a messagem on channel c and then behaves like P{x ↦m},
i.e. P in which the (free) occurrences of x have been replaced by m. The process out(c, u).P
emits u on channel c, and then behaves like P . The process P ∣ Q runs P and Q in parallel. The
process newn.P generates new names, binds it to n, and continues as P .

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 7

The special construct let x = t in P else Q combines several standard constructions, allowing one
to write computations and conditionals compactly. Such a process tries to evaluate the sequence
of terms t and in case of success, i.e. when t ⇓ u for some messages u, the process P in which x

are replaced by u is executed; otherwise the process Q is executed. The goal of this construct is
to avoid nested let instructions to be able to define our class of protocols in a simple way later
on. Note also that the let instruction together with the eq theory as defined in Example 3 can
encode the usual conditional construction. Indeed, let x = eq(u, v) in P else Q will execute P
only if the computation succeeds on eq(u, v), that is only if u ⇓ u′, v ⇓ v′, and u′ =E v

′ for some
messages u′ and v′. For brevity, we sometimes omit else 0.

The process !P executes P an arbitrary number of times (in parallel). The last two constructs
correspond to sequential compositions. The process (P ;Q) behaves like P at first, and after the
complete execution of P it behaves like Q. The process

!

P executes P an arbitrary number of
times in sequence, intuitively corresponding to (P ;P ;P ; . . .). Such constructions are known to
be problematic in process calculi. Our goal here is however quite modest: as will be visible in our
operational semantics, our sequential composition is only meaningful for restricted processes. It
could in fact be defined using recursion, but there is no point here to consider general recursion:
our study is going to restrict to a simple class of protocols that would immediately exclude it.

Example 5. We consider the RFID protocol due to Feldhofer et al. as described in [40] and which
can be presented using Alice & Bob notation as follows:

1. I → R ∶ nI
2. R → I ∶ {nI , nR}k
3. I → R ∶ {nR, nI}k

The protocol is between an initiator I (the reader) and a responder R (the tag) that share a
symmetric key k. We consider the term algebra introduced in Example 3. The protocol is modelled
by the parallel composition of PI and PR, corresponding respectively to the roles I and R.

PFh ∶= new k. (newnI .PI ∣ newnR.PR)
where PI and PR are defined as follows, with u = dec(x1, k):

PI ∶= out(cI , nI).
in(cI , x1).
let x2, x3 = eq(nI ,proj1(u)),proj2(u) in
out(cI , enc(⟨x3, nI⟩, k))

PR ∶= in(cR, y1).
out(cR, enc(⟨y1, nR⟩, k)).
in(cR, y2).
let y3 = eq(y2, enc(⟨nR, y1⟩, k)) in 0

We may note that there are potentially several ways to implement the last reader’s test. For in-
stance, we may decide to replace the last line of the process PR by let y3 =

eq(⟨nR, y1⟩,dec(y2, k)) in 0. This last check can also be simply removed. Alternatively, it could be
followed by an observable action to make the outcome of the test manifest, e.g. the output of a
public constant open in case of success and close in case of failure. This would be a reasonable
model for many use cases, e.g. in access control scenarios a door may either open or remain close
after the execution of the protocol.

The operational semantics of processes is given by a labelled transition system over configura-
tions (denoted by K) which are pairs (P;φ) where:

– P is a multiset of ground processes where null processes are implicitly removed;

8 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

In (in(c, x).P ∪P;φ) in(c,R)
ÐÐÐÐ→ (P{x ↦ u} ∪P;φ)

where R is a recipe such that Rφ ⇓ u for some message u

Out (out(c, u).P ∪P;φ) out(c,w)
ÐÐÐÐ→ (P ∪P;φ ∪ {w ↦ u})with w a fresh variable in W

New (newn.P ∪P;φ) τ
Ð→ (P ∪P;φ) where n ∩ fn(P, φ) = ∅

Par ({P1 ∣ P2} ∪P;φ) τ
Ð→ ({P1, P2} ∪P;φ)

Then (let x = t in P else Q ∪P;φ) τthen
ÐÐ→ (P{x ↦ u} ∪P;φ) when t ⇓ u for some u

Else (let x = t in P else Q ∪P;φ) τelse
ÐÐ→ (Q ∪P;φ) when ti � for some ti ∈ t

Rep−! (!P ∪P;φ) τ
Ð→ (P ∪ !P ∪P;φ)

Rep−

! (!P ∪P;φ) τ
Ð→ ({P ; !P} ∪P;φ)

Seq (P ∪P;φ) α
Ð→ (P ′ ∪P;φ′) if P ↝ Q and (Q ∪P;φ) α

Ð→ (P ′ ∪P;φ′)

Fig. 1. Semantics for processes

0;Q↝Q

(out(c, u).P);Q ↝ out(c, u).(P ;Q)
(in(c, x).P);Q ↝ in(c, x).(P ;Q) when x /∈ fv(Q)
(newn.P);Q↝ newn.(P ;Q) when n ∩ fn(Q) = ∅

(let x = u in P ′ else P ′′);Q↝ let x = u in (P ′;Q) else (P ′′;Q) when x ∩ fv(Q) = ∅
Fig. 2. Sequence simplification rules

– φ = {w1 ↦ u1, . . . ,wn ↦ un} is a frame, i.e. a substitution where w1, . . . ,wn are variables
in W, and u1, . . . , un are messages.

We often write P ∪P instead of {P}∪P. The terms in φ represent the messages that are known
by the attacker. Given a configuration K, φ(K) denotes its second component. Sometimes, we
consider processes as configurations: in such cases, the corresponding frame is the empty set ∅.

The operational semantics of a process is given by the relation
α
Ð→ defined as the least relation

over configurations satisfying the rules in Figure 1. The rules are mostly standard and correspond
to the intuitive meaning given previously. Rule In allows the attacker to send on channel c a
message as soon as it is the result of a computation done by applying public function symbols
on messages that are in his current knowledge. Rule Out corresponds to the output of a term:
the corresponding term is added to the frame of the current configuration, which means that
the attacker gains access to it. Rule New corresponds to the generation of a fresh name. As is
standard, the bound names n can be renamed to achieve freshness so that the rule can always
fire. The Par rule simply splits parallel compositions. The Then and Else rules correspond to
the evaluation of a sequence of terms t = t1, . . . , tn; if this succeeds, i.e. if there exist messages
u1, . . . un such that t1 ⇓ u1, . . . tn ⇓ un then variables x are bound to those messages, and P is
executed; otherwise the process will continue with Q. Rules Rep−! and Rep−

!

unfold replication

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 9

and repetition operators. The latter gives rise to a sequential composition, whose execution will
have to rely, via the Seq rule, on the simplification rules of Figure 2. These rules only support
a limited set of operators, hence a sequence P ;Q is only executable for a restricted class of
processes P , notably excluding parallel compositions. This is not an issue for our simple needs;
our purpose here is not to define a general (and notoriously problematic) notion of sequence.

We note that our semantics enjoys some expected properties. Reduction is stable by bijective

renaming, thanks to Definition 1, item 3: if K1
α
Ð→K2 then K1ρ

α
Ð→K2ρ where ρ is a bijection over

N , applied here to processes and frames. It is also compatible with our equational theory, thanks

to Definition 1, items 5 and 6: if K1
α
Ð→K2 then K ′1

α
Ð→K ′2 for any K ′1 =E K1 and K ′2 =E K2. By

Definition 1, item 6, we also have that

(P;φ) in(c,R)
ÐÐÐÐ→ (P ′;φ) and Rφ⇓ =E R

′φ⇓ yield (P;φ) in(c,R′)
ÐÐÐÐ→ (P ′;φ) (modulo E).

As usual, the relation
α1...αn
ÐÐÐÐ→ between configurations (where α1 . . . αn is a trace, i.e. a sequence

of actions) is defined as the (labelled) reflexive and transitive closure of
α
Ð→.

Definition 2. Input and output actions are called observable, while all other are unobservable.
Given a trace tr we define obs(tr) to be the sub-sequence of observable actions of tr.

We generally refer to τ , τthen and τelse as unobservable actions. It will become clear later on
why we make a distinction when a process evolves using Then or Else.

Example 6. Continuing Example 5. We have that PFh
tr
Ð→ (∅;φ0) where:

– tr = τ.τ.τ.τ.out(cI ,w1).in(cR,w1).out(cR,w2).in(cI ,w2).τthen.out(cI ,w3).in(cR,w3).τthen;
– φ0 = {w1 ↦ n′I , w2 ↦ enc(⟨n′I , n′R⟩, k′), w3 ↦ enc(⟨n′R, n′I⟩, k′)}.

The names k′, n′I and n′R are fresh names. Actually, this execution corresponds to a normal
execution of one session of the protocol.

2.3. A generic class of two-party protocols

We aim to propose sufficient conditions to ensure unlinkability and anonymity for a generic
class of two-party protocols. In this section, we define formally the class of protocols we are
interested in.

Roles. We consider two-party protocols that are therefore made of two roles called the initiator
and responder role respectively. We assume a set L of labels that will be used to name output
actions in these roles, allowing us to identify outputs that are performed by a same syntactic
output action. These labels have no effect on the semantics.

Definition 3. An initiator role is a process that is obtained using the following grammar:

PI ∶= 0 ∣ ℓ ∶ out(c, u).PR

where c ∈ C, u ∈ T (Σc,N ∪X), ℓ ∈ L, and PR is obtained from the grammar of responder roles:

PR ∶= 0 ∣ in(c, y).let x = t in PI else Pfail with Pfail = 0 ∣ ℓ ∶ out(c′, u′)
where c, c′ ∈ C, y ∈ X , x (resp. t) is a sequence of variables in X (resp. terms in T (Σ,N ∪X)),
u′ ∈ T (Σc,N ∪X), and ℓ ∈ L.

10 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

Moreover, an initiator (resp. responder) role is assumed to be ground, i.e., contain no free
variable, though it may contain free names.

Intuitively, a role describes the actions performed by an agent. A responder role consists of
waiting for an input and, depending on the outcome of a number of tests, the process will continue
by sending a message and possibly waiting for another input, or stop possibly outputting an
error message. An initiator behaves similarly but begins with an output. The grammar forces to
add a conditional after each input. This is not a real restriction as it is always possible to add
trivial conditionals with empty x, and t.

Example 7. Continuing our running example, PI (resp. PR) as defined in Example 5 is an ini-
tiator (resp. responder) role, up to the addition of a trivial conditional in role PR and distinct
labels ℓ1, ℓ2, and ℓ3 to decorate output actions.

Then, a protocol notably consists of an initiator role and a responder role that can interact
together producing an honest trace. Intuitively, an honest trace is a trace in which the attacker
does not really interfere, and that allows the execution to progress without going into an else

branch, which would intuitively correspond to a way to abort the protocol.

Definition 4. A trace tr (i.e. a sequence of actions) is honest for a frame φ if τelse ∉ tr and obs(tr)
is of the form out(_,w0).in(_,R0).out(_,w1).in(_,R1). . . . for arbitrary channel names, and
such that Riφ⇓wiφ for any action in(_,Ri) occurring in tr.

Identities and sessions. In addition to the pair of initiator and responder roles, more information
is needed in order to meaningfully define a protocol. Among the names that occur in these two
roles, we need to distinguish those that correspond to identity-specific, long-term data (e.g. k
from Example 5), called identity parameters and denoted k below, and those which shall be
freshly generated at each session (e.g. nI , nR from Example 5), called session parameters and
denoted nI and nR below. We will require that any free name of roles must be either a session
or an identity parameter. When necessary, we model long-term data that is not identity-specific
(i.e. uniform for all agents) as private constants (i.e. terms in Σc ∩ Σpriv).Depending on the
protocol to be modelled, we shall see that either both the initiator and the responder or only
one of those roles have identity parameters. The former case arises for protocols that involves
different identities for each party while the latter concerns protocols whose only one party can
be instantiated by different agents (see Examples 10, 11 below for a more detailed discussion).

We also need to know whether sessions (with the same identity parameters) can be executed
concurrently or only sequentially. For instance, let us assume that the Feldhofer protocol is used
in an access control scenario where all tags that are distributed to users have pairwise distinct
identities. Assuming that tags cannot be cloned, it is probably more realistic to consider that
a tag can be involved in at most one session at a particular time, i.e. a tag may run different
sessions but only in sequence. Such a situation will also occur in the e-passport application
where a same passport cannot be involved in two different sessions of the BAC protocol (resp.
PACE protocol) concurrently. This is the purpose of the components †I and †R in the following
definition. When one role has no identity parameter, we also consider both cases: whether the
only identity instantiating this role may have concurrent sessions or only sequential sessions.
Moreover, we require that the process PΠ which models a single session of the protocol can
produce an honest trace.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 11

Definition 5. A protocol Π is a tuple (k,nI , nR, †I , †R,I,R) where k, nI , nR are three disjoint
sets of names, I (resp. R) is an initiator (resp. responder) role such that fn(I) ⊆ k⊔nI , fn(R) ⊆
k ⊔ nR, and †I , †R ∈ {!,

!}. Labels of I and R must be pairwise distinct. Names k (resp. nI ⊔ nR)
are called identity parameters (resp. session parameters).

Given a protocol Π, we define PΠ ∶= new k.(newnI .I ∣ newnR.R) and we assume that

PΠ
trh
Ð→ (∅;φh) for some frame φh and some trace trh that is honest for φh.

Given a protocol Π, we also associate another processMΠ that represents the situation where
the protocol can be executed by an arbitrary number of identities, with the possibility of exe-
cuting an arbitrary number of sessions for a given identity. The formal definition differs slightly
depending on whether identity parameters occur in both roles or only in the role I (resp. R).

Definition 6. Given a protocol Π = (k,nI , nR, †I , †R,I,R), the process MΠ is defined as follows:

– If k ∩ fn(I) ≠ ∅ and k ∩ fn(R) ≠ ∅, then MΠ = ! new k.(†I newnI .I ∣ †R newnR.R);
– If k ∩ fn(I) = ∅ and k ∩ fn(R) ≠ ∅, then MΠ = †I newnI .I ∣ ! new k. †R newnR.R.

For the sake of simplicity, in case identity parameters only occur in one role, we assume that
this role is the responder role. The omitted case where identity parameters occur only in the
initiator role is very much similar. In fact, swapping the initiator and responder roles can also
be formally achieved by adding an exchange of a fresh nonce at the beginning of the protocol
under consideration. Note that the case where both k ∩ fn(I) and k ∩ fn(R) are empty means
that no identity parameters are involved and therefore there is no issue regarding privacy. As
expected, in such a situation, our definitions of unlinkability and anonymity (see Definition 12
and Definition 10) will be trivially satisfied.

Example 8. Let ΠFh = (k,nI , nR, !, !, PI , PR) with PI and PR as defined in Example 5 (up to
the addition of a trivial conditional). Let PFh = new k.(newnI .PI ∣ newnR.PR), trh = tr (up
to the addition of an action τthen), and φh = φ0 as defined in Example 6. They satisfy the
requirements stated in Definition 5, and therefore ΠFh is a protocol according to our definition.
For this protocol, the identity parameter k occurs both in the role PI and PR, and therefore we
have that MΠFh

= !new k.(! newnI .PI ∣ ! newnR.PR).
Example 9. In order to illustrate our method and the use of the repetition operator, we introduce a
toy protocol which, as we shall see later, satisfies unlinkability only when sessions of the initiator
role are executed sequentially. Using Alice & Bob notation, this protocol can be described as
follows:

1. T → R ∶ nT
2. R → T ∶ nR
3. T → R ∶mac(⟨nR, nT ⟩, k)
4. R → T ∶mac(⟨nT , nR⟩, k)

The protocol is between a tag T (the initiator) and a reader R (the responder) which share a
symmetric key k. To avoid an obvious reflection attack (where nT = nR), we assume that the tag
systematically checks that the first message it receives is not the one he sent initially.

To formalise such a protocol, we consider

Σc = {mac, ⟨ ⟩,ok, yes,no},and Σd = {proj1,proj2, eq,neq}.

12 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

All symbols of the signature are public: ok, yes, and no have arity 0; proj1 and proj2 have arity 1;
other function symbols have arity 2. The destructors proj1,proj2, eq and neq are defined as in
Examples 3 and 4. The symbol mac will be used to model message authentication code.

The processes modelling the initiator and the responder roles are as follows:

P ′T ∶= out(cT , nT).
in(cT , x1).
let xtest = eq(yes,neq(x1, nT)) in
out(cT ,mac(⟨x1, nT ⟩, k)).in(cT , x2).
let x′test = eq(x2,mac(⟨nT , x1⟩, k)) in 0

P ′R ∶= in(cR, y1).
out(cR, nR).
in(cR, y2).
let ytest = eq(y2,mac(⟨nR, y1⟩, k)) in
out(cR,mac(⟨y1, nR⟩, k)). 0

We may note that different choices can be made. For instance, we may decide to replace the
process 0 occurring in P ′T with out(cT ,ok) to make the outcome of the test manifest. The tuple

Π

!

Toy = (k, (nT), (nR),

!

, !, P ′T , P
′
R) is a protocol according to Definition 5. For this protocol, we

have again that k occurs both in the roles P ′T and P ′R, and therefore:

M
Π

!

Toy

= !new k.(!

newnT .P
′
T ∣ ! newnR.P ′R).

As a last example, we will consider one for which identity parameters only occur in one role.
This example can be seen as a simplified version of the Direct Anonymous Attestation (DAA)
sign protocol that will be detailed in Section 6.

Example 10. We consider a simplified version of the protocol DAA sign (adapted from [50]). Note
that a comprehensive analysis of the protocol DAA sign (as well as the protocol DAA join) will be
conducted in Section 6. Before describing the protocol itself, we introduce the term algebra that
will allow us to model the signature and zero knowledge proofs used in that protocol. We consider:

– Σc = {sign, zk,pk, ⟨ ⟩, tuple,ok, skI, error}, and
– Σd = {checksign, checkzk,publiczk,proj1,proj2,proj41,proj42,proj43,proj44}.

We consider the computation relation induced by the empty set of equations, and the rules:

checksign(sign(x, y),pk(y)) → x proji(⟨y1, y2⟩) → yi i ∈ {1,2}
checkzk(zk(sign(⟨xk, xid ⟩, zsk), xk, tuple(y1, y2, y3,pk(zsk)))) → ok

publiczk(zk(x, y, z)) → z proj4i (tuple(y1, y2, y3, y4)) → yi i ∈ {1,2,3,4}

The protocol is between a client C (the responder) and a verifier V (the initiator). The client is
willing to sign a message m using a credential issued by some issuer and then he has to convince V
that the latter signature is genuine. The client C has a long-term secret key kC , an identity idC ,
and some credential credC = sign(⟨kC , idC⟩, skI) issued by some issuer I having skI as a long-term
signature key. Such a credential would be typically obtained once and for all through a protocol
similar to DAA join. We give below an Alice & Bob description of the protocol:

1. V → C ∶ nV
2. C → V ∶ zk(credC , kC , tuple(nV , nC ,m,pk(skI)))

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 13

The verifier starts by challenging the client with a fresh nonce, the latter then sends a complex
zero-knowledge proof bound to this challenge proving that he knows a credential from the expected
issuer bound to the secret kC he knows. Before accepting this zero-knowledge proof, the verifier V
(i) checks the validity of the zero-knowledge proof using the checkzk operator, and (ii) verifies
that this proof is bound to the challenge nV and to the public key of I using the publiczk operator.
The processes PC and PV are defined as follows:

PV ∶= out(cV , nV).
in(cV , x1).
let x2, x3, x4 =

eq(checkzk(x1),ok), eq(proj41(publiczk(x1)), nV), eq(proj44(publiczk(x1)),pk(skI)) in 0

else out(cV , error)
PC ∶= in(cR, y1).

out(cR, zk(sign(⟨kC , idC⟩, skI), kC , tuple(y1, nC ,m,pk(skI)))).
This protocol falls in our class, the two parties being the verifier PV and the client PC . The

protocol DAA sign, and the simplified version we consider here, has been designed to provide
privacy (i.e. unlinkability and anonymity as defined in Section 3) to users (i.e. clients) inside a
group associated to a single issuer. In other words, the privacy set [48] that is typically considered
is the set of users who obtained a credential from a single, given issuer. Therefore, as we are
interested in modelling different clients having credentials signed by the same issuer, we model skI
as a private constant in Σc ∩Σpriv rather than as an identity parameter (we explore this different
modelling choice in Example 11).

The tuple ΠDAA = ((kC , idC), nV , (nC ,m), !, !, PV , PC) is a protocol according to our Defini-
tion 5. We have that kC or idC only occur in PC , and therefore following Definition 6, we have
that:

MΠDAA
= (! newnV .PV) ∣ (! new (kC , idC). ! new (nC ,m).PC)

This models infinitely many different clients who obtained credentials from a single issuer having
the signature key skI. Any of those clients may take part to infinitely many sessions of the protocol
with any verifier associated to that issuer, which executes always the same role (he has no proper
identity). We consider here a scenario where sessions can be executed concurrently (both for
clients and verifiers). We shall see that our verification methods allows one to automatically prove
that privacy is preserved in this scenario.

Example 11 (Continuing Example 10). The flexibility of our notion of protocol allows for a subtly
different scenario to be analyzed by considering skI as being identity-specific (i.e. as an identity
parameter) instead of being uniform for all identities (i.e. private constant). Privacy would then
be considered between users associated to different issuers (the privacy set being all users); this
is a stronger property that the protocol is not expected to meet. Indeed, a verifier sends ZK proofs
whose public parts contain the public key of its credential issuer. We still consider the two parties
PV and PC but we now model skI as an identity parameter. Therefore, we remove skI from Σc

defined in Example 10. The tuple ΠDAA = ((skI, kC , idC), nV , (nC ,m), !, !, PV , PC) is a protocol
according to our Definition 5. We have that skI occurs both in PC and PV , and therefore following

14 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

Definition 6, we have that:

M
Π

skI
DAA

= ! new (skI, kC , idC). (! newnV .PV ∣ ! new (nC ,m).PC)

This models (i) infinitely many different clients who obtained pairwise different credentials from
infinitely many issuers having pairwise different signature keys skI, and, (ii) infinitely many
different verifiers who check for credentials that have been signed by pairwise different issuers.
Any of those clients and verifiers may take part to infinitely many sessions of the protocol. We
consider here a scenario where users and verifiers sessions can be executed concurrently. Note
however that only one user per group (associated to a single issuer) is considered. Relaxing this
constraint would require a more generic notion of protocols with 3 parties (this limitation will be
discussed in Section 7.1.2). Even for such a weaker scenario, we shall see that our verification
methods allows one to find that privacy (unlinkability and anonymity) is already broken (see
Figure 3 and details in Section 6.6.2).

Discussion about shared and non-shared protocols. As mentioned earlier and shown in Defini-
tion 6, we distinguish two cases depending on whether (i) both roles use identity parameters (i.e.
when fn(I) ∩ k ≠ ∅ and fn(R) ∩ k ≠ ∅) or (ii) only one role uses identity parameters (i.e. when
fn(I)∩ k = ∅ and fn(R)∩ k ≠ ∅, the other case being symmetrical). The case (i) corresponds to
the case where we should consider an arbitrary number of users for each role, whereas regarding
case (ii) it is sufficient to consider an arbitrary number of users for role R only. In addition to
this distinction, note that there are two different kinds of protocols that lie in class (i):

(i-a) The shared case when fn(I) ∩ fn(R) ≠ ∅. In such a situation, roles I and R share names
in fn(I) ∩ fn(R). In practice, this shared knowledge may have been established in various
ways such as by using prior protocols, using another communication channel (e.g. optical
scan of a password as it is done with e-passports, use of PIN codes) or by retrieving the
identity from a database that matches the first received message as it is often done with
RFID protocols. For such protocols, it is expected that an initiator user and a responder
user can communicate successfully producing an honest execution only if they have the
same identity (i.e. they share the same names k).

(i-b) The non-shared case when fn(I) ∩ fn(R) = ∅. In such a case, both roles do not share any
specific prior knowledge, and it is therefore expected that an initiator and a responder can
communicate successfully producing an honest execution whatever their identities.

Unlinkability and anonymity will be uniformly expressed for the cases (i-a) and (i-b) but our
sufficient conditions will slightly differ depending on the case under study.

3. Modelling security properties

This section is dedicated to the definition of the security properties we seek to verify on
protocols: unlinkability and anonymity. Those properties are defined using the notion of trace
equivalence which relates indistinguishable processes.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 15

3.1. Trace equivalence

Intuitively, two configurations are trace equivalent if an attacker cannot tell whether he is
interacting with one or the other. Before formally defining this notion, we first introduce a notion
of equivalence between frames, called static equivalence.

Definition 7. A frame φ is statically included in φ′ when dom(φ) = dom(φ′), and

– for any recipe R such that Rφ ⇓ u for some u, we have that Rφ′ ⇓ u′ for some u′;
– for any recipes R1,R2 such that R1φ ⇓ u1, R2φ ⇓ u2, and u1 =E u2, we have that R1φ

′⇓ =E
R2φ

′⇓, i.e. there exist v1, v2 such that R1φ
′ ⇓ v1, R2φ

′ ⇓ v2, and v1 =E v2.

Two frames φ and φ′ are in static equivalence, written φ ∼ φ′, if the two static inclusions hold.

Intuitively, an attacker can distinguish two frames if he is able to perform some computation
(or a test) that succeeds in φ and fails in φ′ (or the converse).

Example 12. Let φ0 be the frame given in Example 6, we have that φ0⊔{w4 ↦ k′} /∼ φ0⊔{w4 ↦ k′′}.
An attacker may observe a difference relying on the computation R = dec(w2,w4).

Then, trace equivalence is the active counterpart of static equivalence, taking into account the
fact that the attacker may interfere during the execution of the process. In order to define this,
we first introduce trace(K) for a configuration K = (P;φ):

trace(K) = {(tr, φ′) ∣ (P, φ) tr
Ð→ (P ′;φ′) for some configuration (P ′;φ′)}.

Definition 8. Let K and K ′ be two configurations. We say that K is trace included in K ′,
written K ⊑ K ′, when, for any (tr, φ) ∈ trace(K) there exists (tr′, φ′) ∈ trace(K ′) such that
obs(tr′) = obs(tr) and φ ∼ φ′. They are in trace equivalence, written K ≈ K ′, when K ⊑ K ′ and
K ′ ⊑K.

Example 13. Resuming Example 8, we may be interested in checking whether the configurations
K = (!PΠFh

;∅) and K ′ = (MΠFh
;∅) are in trace equivalence. This equivalence models the fact that

ΠFh is unlinkable: each session of the protocol appears to an attacker as if it has been initiated by a
different tag, since a given tag can perform at most one session in the idealised scenario K. This
equivalence actually holds. It is non-trivial, and cannot be established using existing verification
tools such as ProVerif or Tamarin. The technique developed in this paper will notably allow one
to establish it automatically.

3.2. Security properties under study

In this paper, we focus on two privacy-related properties, namely unlinkability and anonymity.

3.2.1. Unlinkability
According to the ISO/IEC standard 15408 [2], unlinkability aims at ensuring that a user may

make multiple uses of a service or a resource without others being able to link these uses together.
In terms of our modelling, a protocol preserves unlinkability if any two sessions of a same role
look to an outsider as if they have been executed with different identity names. In other words,
an ideal version of the protocol with respect to unlinkability, allows the roles I and R to be

16 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

executed at most once for each identity names. An outside observer should then not be able to
tell the difference between the original protocol and the ideal version of this protocol.

In order to precisely define this notion, we have to formally define this ideal version of a
protocol Π. This ideal version, denoted SΠ, represents an arbitrary number of agents that can
at most execute one session each. Such a process is obtained from MΠ by simply removing the
symbols ! and

!

that are in the scope of identity names. Indeed, those constructs enable each
identity to execute an arbitrary number of sessions (respectively concurrently and sequentially).
Formally, depending on whether identity names occur in both roles, or only in the responder
role, this leads to slightly different definitions.

Definition 9. Given a protocol Π = (k,nI , nR, †I , †R,I,R), the process SΠ is defined as follows:

– If k ∩ fn(I) ≠ ∅ and k ∩ fn(R) ≠ ∅, then SΠ ∶= ! new k.(newnI .I ∣ newnR.R);
– If k ∩ fn(I) = ∅ and k ∩ fn(R) ≠ ∅, then SΠ ∶= †I newnI .I ∣ ! new k.newnR.R.

Unlinkability is defined as a trace equivalence between SΠ (where each identity can execute at
most one session) and MΠ (where each identity can execute an arbitrary number of sessions).

Definition 10. A protocol Π = (k,nI , nR, †I , †R,I,R) ensures unlinkability if MΠ ≈ SΠ.

Example 14. Going back to our running example (Example 8), unlinkability is expressed through
the equivalence given in Example 13 and recalled below:

! new k.(! newnI .PI ∣ ! newnR.PR) ≈ ! new k.(newnI .PI ∣ newnR.PR).

This intuitively represents the fact that the real situation where a tag and a reader may execute
many sessions in parallel is indistinguishable from an idealized one where a given tag and a given
reader can execute at most one session for each identity.

Although unlinkability of only one role (e.g. the tag for RFID protocols) is often considered
in the literature (including [7]), we consider a stronger notion here since both roles are treated
symmetrically. As illustrated through the case studies developed in Section 6 (see Sections 6.2
and 6.4), this is actually needed to not miss some practical attacks.

Example 15. We consider the variant of the toy protocol described in Example 9 where concurrent
sessions are authorised for the initiator: Π!

Toy ∶= (k, (nT), (nR), !, !, P ′T , P ′R). We may be interested
in checking unlinkability as in Example 14, i.e. whether the following equivalence holds or not:

!new k.(! newnT .P ′T ∣ ! newnR.P ′R) ≈ !new k.(newnT .P ′T ∣ newnR.P ′R)

Actually, this equivalence does not hold. When concurrent sessions are authorised, the following
scenario is possible: two tags of the same identity can start a session. Then, the attacker just
forwards messages from one tag to the other. They can thus complete the protocol. In particular,
the mac-key verification stage goes well and the attacker observes that the last conditional of the
two tags holds. Such a scenario (which is possible on the left-hand side of the equivalence) cannot
be mimicked on the right-hand side (each tag can execute only once). Therefore we have a trace
that can only be executed by the multiple sessions process: the equivalence does not hold.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 17

However, we shall see that the original toy protocol of Example 9 (with sessions of the initiator
running sequentially only) can be shown unlinkable using the technique developed in this paper.
Formally, the following equivalence holds:

!new k.(newnT .P ′T ∣ newnR.P ′R) ≈ !new k.(

!

newnT .P
′
T ∣

!

newnR.P
′
R)

3.2.2. Anonymity
According to the ISO/IEC standard 15408 [2], anonymity aims at ensuring that a user may

use a service or a resource without disclosing its identity. In terms of our modelling, a protocol
preserves anonymity of some identities id ⊆ k, if a session executed with some particular (public)
identities id0 looks to an outsider as if it has been executed with different identity names. In
other words, an outside observer should not be able to tell the difference between the original
protocol and a version of the protocol where the attacker knows that specific roles I and R with
identities id0 (known by the attacker) are present.

Definition 11. Given a protocol Π = (k,nI , nR, †I , †R,I,R), and id ⊆ k, the process M
Π,id

is
defined as follows:

– If k∩fn(I) ≠ ∅ and k∩fn(R) ≠ ∅, thenM
Π,id
∶=MΠ ∣ new k.(†I newnI .I0 ∣ †R newnR.R0).

– If k ∩ fn(I) = ∅ and k ∩ fn(R) ≠ ∅, then M
Π,id
∶=MΠ ∣ new k. †R newnR.R0.

where I0 = I{id ↦ id0} and R0 =R{id ↦ id0} for some fresh public constants id0.

Definition 12. Let Π = (k,nI , nR, †I , †R,I,R), and id ⊆ k. We say that Π ensures anonymity
w.r.t. id if M

Π,id
≈MΠ.

Example 16. Going back to Example 10, anonymity w.r.t. identity of the client (i.e. idC) is
expressed through the following equivalence:

! newnV .PV ∣ (! new (kC , idC). ! new (nC ,m).PC) ∣ (new (kC , idC).! new (nC ,m).PC{idC ↦ id0})
≈ ! newnV .PV ∣ (! new (kC , idC). ! new (nC ,m).PC)

This intuitively represents the fact that the situation in which a specific client with some known
identity id0 may execute some sessions is indistinguishable from a situation in which this client
is not present at all. Therefore, if these two situations are indeed indistinguishable from the point
of view of the attacker, it would mean that there is no way for the attacker to deduce whether a
client with a specific identity is present or not.

3.3. Discussion

The notion of strong unlinkability that we consider is inspired by [7]. In this paper, the authors
first propose a definition of weak unlinkability that is not expressed via a process equivalence,
then they give a notion of strong unlinkability that implies the former notion and is expressed
via a labelled bisimilarity. The authors argue that, compared to weak unlinkability, the strong
variant is too constraining but has the advantage of being more amenable to verification. The first
claim is based on an example protocol [7, Theorem 1] where a reader emits an observable “beep”
when it sees the same tag twice, which breaks strong unlinkability but not weak unlinkability.
Unlike the authors of [7], we do not consider this to be a spurious attack, but a potentially

18 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

threatening linkability issue. The second claim is only substantiated by the fact that tools exist for
automatically verifying bisimilarities. As discussed before, this is not sufficient. Moreover, there
might be spurious attacks on strong unlinkability just because bisimilarity is a very restrictive
equivalence: for this reason we would also consider that the strong unlinkability of [7] is too
strong, and instead advocate for our variant based on trace equivalence.

We now show formally that, in the setting that we consider, our notion of unlinkability (defi-
nition 10) indeed corresponds to the strong unlinkability of [7, Definition 12] where trace equiv-
alence is required rather than bisimilarity. In this original formulation, strong unlinkability is a
property of one specific role and not of the whole protocol. As a more technical difference, pro-
tocols in [7] may involve more than two roles, and agents may use private channels. In practice,
this is used to communicate honest identities in setup phases, as is the case in their BAC case
study. If we specialise the setting of [7] to two roles R and T (for Reader and Tag) which fall into
the format of definition 3 and do not use the distinguished private channel c, strong unlinkability
of the tag role T corresponds to the following labelled bisimilarity:

new c. ((! new k. ! out(c, k).newnT .T) ∣ (! in(c, k).newnR.R))
≈ℓ new c. ((! new k. out(c, k).newnT .T) ∣ (! in(c, k).newnR.R)) (1)

As communications on channel c are private, eq. (1) is equivalent to:

! new k. ((! newnT .T) ∣ (! newnR.R)) ≈ℓ ! new k. ((newnT .T) ∣ (newnR.R)) (2)

The key observation here is that, even though we had only removed replication for the tag role
(on the right of eq. (1)), replications are removed for both tags and readers in eq. (2) because
communications on c are linear (i.e. can be triggered only once). Thus, in this particular case,
the only difference between strong unlinkability and our unlinkability is that we rely on trace
equivalence rather than labelled bisimilarity.

Several other definitions of unlinkability have been proposed in the literature (see, e.g. [24,22]
for a comparison). In particular, various game-based formulations have been considered, both
in the computational and symbolic models. We first discuss the most common kind of games,
called two-agents games in [24] and seen e.g. in [13,43,32]. As we shall see, these games can be
accurately verified through diff-equivalence, but systematically miss some linkability attacks. We
will not need any formal definition, but simply rely on the general idea behind these games,
which run in two phases:

1. Learning phase: During this phase, the attacker can trigger an arbitrary number of sessions
of the two roles (namely tag and reader) with the identity of his choice. This allows him to
gain some knowledge. Eventually, the attacker chooses to end the learning phase and enter
the second phase.

2. Guessing phase: The challenger chooses an identity x among two distinguished identities
id1 and id2. The attacker is allowed to interact again (an arbitrary number of times) with
roles of x, or of identities other than id1 and id2.

The attacker wins the game if he can infer whether x is id1 or id2, i.e. if he is able to distinguish
between these two scenarios. The following example shows that these two-agent games miss some
linkability attacks, and do not imply unlinkability in our sense for this reason.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 19

Example 17. We consider a protocol between a tag T and a reader R sharing a symmetric key k.
We consider that sessions can be executed in parallel, and we assume that T aborts in case the
nonce nR he receives is equal to the nonce nT he sent previously (in the same session).

1. T → R ∶ {nT }k
2. R → T ∶ {nR}k
3. T → R ∶ {nR ⊕ nT }k

We consider the term algebra introduced in Example 1, and the equational theory introduced
in Example 2 with in addition the equation dec(enc(x, y), y) = x. To show that the property
formally stated in Definition 10 does not hold, consider the following scenario.

1. T → R ∶ {nT }k
1′. T ′ → R ∶ {n′T }k

2. I(R)→ T ∶ {n′T }k
2′. I(R)→ T ′ ∶ {nT }k

3. T → R ∶ {n′T ⊕ nT }k
3′. T ′ → R ∶ {nT ⊕ n′T}k

A same tag starts two sessions1 and therefore generates two nonces nT and n′T . The attacker
answers to these requests by sending back the two encrypted messages to the tag who will accept
both of them, and sends on the network two messages that are actually equal (the exclusive or
operator is commutative). Therefore the attacker observes a test, namely the equality between
the last two messages, which has no counterpart in the single session scenario. Therefore, this
protocol does not ensure unlinkability. In practice, this can be very harmful. Suppose, for example,
that tags are distributed among distinct groups (e.g. for access control policies) sharing each the
same key k. By interacting with two tags, the attacker would then be able to know if they belong
to the same group and thus be able to trace groups.

The previous example illustrates a general phenomenon: two-agent games do not capture con-
current attacks. This is also seen with the protocol of Example 9, which suffers from the attack
shown in Example 15, but is secure in the sense of two-agent games — this can actually be
proved in ProVerif because the protocol does not involve the exclusive-or primitive. Due to this
general weakness, two-agent games do not adequately express unlinkability. They are however
convenient for automation, as they can be directly and accurately expressed using the notions
of diff-equivalence available in ProVerif or Tamarin. For instance, two-agent games have been
used in [13] for unbounded sessions of the DAA protocols — although in this work the security
property expressed in this way is called pseudonymity rather than unlinkability.

As pointed out in [24], three-agent games have also been considered where the challenge phase
is changed as follows: the attacker chooses three tags (a, a1, a2) and must distinguish interactions
with several tags including tags x and y with the same identity as a, and interactions with x

and y having the respective identities of a1 and a2. This allows to capture the attacks described
above which the two-agent games missed. Three-agent games have successfully been used in [23]

1This is possible if different physical tags share the same identity, as may be the case e.g. in access control
scenarios. In such cases, two different physical tags may run sessions concurrently.

20 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

for automated verification of unlinkability, though only for a restrictive class of protocols and for
bounded sessions only.

We suspect that three-agent games still miss some linkability attacks, though counter-example
protocols are likely to be artificial. Further generalisations of these games could then be con-
sidered to obtain stronger security properties, and get closer to our notion of unlinkability. In
any case, it is important to remark that this line of thought fundamentally relies on having a
centralised reader since the attacker must distinguish between scenarios that differ only in the
identities of some tags. This contrasts with our notion of unlinkability, which does not assume
a centralised reader but treats symmetrically the tag and reader role, more generally called ini-
tiator and responder. Such a symmetric treatment is required to model unlinkability when the
two parties share a dedicated channel or have an initial shared knowledge, e.g. in secure mes-
saging protocols. We also argue that our definition has some value even when analysing proto-
cols featuring centralised readers. In such cases, having reader roles expecting a specific identity
seems artificial, but it can actually be seen as a way to model the successive states of a reader
(e.g. in LAK, where the tags and reader evolve a common state almost in synchronisation) or
a pre-established communication (e.g. in BAC or PACE, where an optical scan is performed
to securely exchange a first secret). In any case, our analysis of the aforementioned protocols
using our notion of unlinkability has revealed actual attacks that were previously unknown (see
Section 6).

4. Our approach

We now define our two conditions, namely frame opacity and well-authentication, and our
result which states that these conditions are sufficient to ensure unlinkability and anonymity as
defined in Section 3. Before doing that, we shall introduce annotations in the semantics of our
processes, in order to ease their analysis.

4.1. Annotations

We shall now define an annotated semantics whose transitions are equipped with more infor-
mative actions. The annotated actions will feature labels identifying which concurrent process
has performed the action. This will allow us to identify which specific agent (with some specific
identity and session names) performed some action.

Given a protocol Π = (k,nI , nR, †I , †R,I,R) and id ⊆ k, consider any execution ofM
Π,id

,MΠ

or SΠ. In such an execution, τ actions are solely used to create new agents (i.e. instantiations
of I and R with new names or constants from id0) by unfolding replications (i.e. !) or repetitions
(i.e.

!

), breaking parallel compositions or choosing fresh session and identity parameters. Actions
other than τ (that is, input, output and conditionals) are then only performed by the created
agents. Formally, we say that an agent is either an instantiation of one of the two roles with
some identity and session parameters, or its continuation after the execution of some actions.
When †A = !, agents of role A are simply found at toplevel in the multiset of processes. When
†A =

!

, they may be followed by another process. For instance, in traces of MΠ when †I =

!

,
newly created initiator agents occur on the left of the sequence in processes of the form:

I{k ↦ l, nI ↦ n}; !newm. I{k ↦ l, nI ↦m}.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 21

The previous remark allows us to define an annotated semantics for our processes of interest.
We consider annotations of the form A(k,n) where A ∈ {I,R} and k, n are sequences of names, or
constants from id0. Annotations are noted with the letter a, and the set of annotations is noted A.
We can then define an annotated semantics, where agents are decorated by such annotations,
indicating their identity and session parameters. An agent P decorated with the annotation a

is written P [a], and the actions it performs are also decorated with a, written α[a]. Note that
this includes τthen and τelse actions; in the annotated semantics, the only non-annotated action
is τ . For instance, let us consider MΠ in the annotated semantics when †I =

!

. Newly created
initiator agents now appear as I{k ↦ l, nI ↦ n}[I(l, n)]; !newm. I{k ↦ l, nI ↦m}; they execute
actions of the form α[I(l, n)] with α ≠ τ ; upon termination of the agent, unannotated τ actions
can be executed to create a new agent annotated I(l,m) for fresh names m. We stress that
agents having constants id0 as identity parameters shall be annotated with some A(k,n) where
id0 ⊆ k. Intuitively, in such a case, we keep in the annotation the information that the identity
parameters id0 of that agent has been disclosed to the attacker.

Traces of the annotated semantics will be denoted by ta. We assume2 that nI ≠ ∅ and nR ≠ ∅,
so that at any point in the execution of an annotated trace, an annotation a may not decorate
more than one agent in the configuration. Thus, an annotated action may be uniquely traced
back to the annotated process that performed it. We also assume that labels used to decorate
output actions (i.e. elements of L) are added to the produced output actions so that we can refer
to them when needed: output actions are thus of the form ℓ ∶ out(c,w)[a].

In annotated traces, τ actions are not really important. We sometimes need to reason up to
these τ actions. Given two annotated trace ta and ta′, we write ta

τ
= ta′ when both traces together

with their annotations are equal up to some τ actions (but not τthen and τelse). We write K
ta
Ô⇒K ′

when K
ta′

Ð→K ′ for some ta′ such that ta
τ
= ta′.

Example 18. Considering the protocol ΠFh defined in Example 8, process SΠFh
can notably perform

the execution seen in Example 6. The annotated execution has the trace ta given below (up to
some τ), where k′, n′I and n′R are fresh names, aI = I(k′, n′I) and aR = R(k′, n′R):

ta = ℓ1 ∶ out(cI ,w1)[aI].in(cR,w1)[aR].τthen[aR].
ℓ2 ∶ out(cR,w2)[aR].in(cI ,w2)[aI].τthen[aI].
ℓ3 ∶ out(cI ,w3)[aI].in(cR,w3)[aR].τthen[aR]

After the initial τ actions, the annotated configuration is ({IσI[aI], RσR[aR], SΠ};∅) where
σI = {k ↦ k′, nI ↦ n′I}, and σR = {k ↦ k′, nR ↦ n′R}. The structure is preserved for the rest of
the execution with three processes in the multiset (until they become null). After ta, the annotated
configuration is ({SΠFh

};φ0) where φ0 has been defined in Example 6.

Example 19. Going back to Example 16 and starting withM
Π,id

, a possible annotated configura-

tion obtained after some τ actions can be K = (P;∅) where P is a multiset containing:

– PC{kC ↦ k0C , idC ↦ id0, nC ↦ n0C ,m ↦m0
C}[a0C];

– !new (nC ,m).PC{kC ↦ k0C , idC ↦ id0};

2 This assumption only serves the purpose of uniquely identifying agents. The assumed session nonces do not
have to occur in the corresponding roles, so this does not require to change the protocol under study.

22 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

– PV {nV ↦ n1V }[a1V]; and
– MΠDAA

.

where a1V = I(ǫ,n1V) and a0C = R((k0C , id0), (n0C ,m0)). We may note that the annotation a1V
contains the empty sequence ǫ since the initiator role does not rely on identity names; and the
annotation a0C contains id0.

4.2. Frame opacity

In light of attacks based on leakage from messages where non-trivial relations between out-
putted messages are exploited by the attacker to trace an agent, our first condition will express
that all relations the attacker can establish on output messages only depend on what is already
observable by him and never depend on a priori hidden information such as identity names of
specific agents. Therefore, such relations cannot be exploited by the attacker to learn anything
new about the agents involved in the execution. We achieve this by requiring that any reach-
able frame must be indistinguishable from an idealised frame that only depends on data already
observed in the execution, and not on the specific agents (and their names) of that execution.

As a first approximation, one might take the idealisation of a frame {w1 ↦ u1, . . . ,wl ↦ un} to
be {w1 ↦ n1, . . . ,wl ↦ nl} where the n1, . . . , nl are distinct fresh names. It would then be very
strong to require that frames obtained in arbitrary protocol executions are statically equivalent
to their idealisation defined in this way. Although this would allow us to carry out our theoretical
development, it would not be realistic since any protocol using, e.g. a pair, would fail to satisfy
this condition. We thus need a notion of idealisation that retains part of the shape of messages,
which a priori does not reveal anything sensitive to the attacker. We also want to allow outputs
to depend on session names or previous inputs in ways that are observable, e.g. to cover the
output of the signature of a previously inputted message.

Our idealised frames will be obtained by replacing each message, produced by an output of
label ℓ, by a context that only depends on ℓ, whose holes are filled with fresh session names and
(idealisations of) previously inputted messages. Intuitively, this is still enough to ensure that the
attacker does not learn anything that is identity-specific. In order to formalise this notion, we
assume two disjoint and countable subsets of variables: input variables X i = {xi1, xi2, . . .} ⊆ X , and
name variables X n = {xn1, xn2, . . .} ⊆ X . We also consider a fixed but arbitrary idealisation operator
ideal(⋅) ∶ L → T (Σ,X i

∪X n). Variables xij intuitively refers to the j-nth variable received by the
agent of interest. Therefore, we assume that our idealisation operator satisfies the following: for
all ℓ ∈ L, we have that ideal(ℓ)∩X i ⊆ {xi1, . . . , xik} where k is the number of inputs preceding the
output labelled ℓ.

Definition 13. Let fr ∶ A × X n → N be an injective function assigning names to each agent and
name variable. We define the idealised frame associated to ta, denoted Φfr

ideal(ta), inductively on
the annotated trace ta:

– Φfr
ideal(ǫ) = ∅ and Φfr

ideal(ta.α) = Φfr
ideal(ta) if α is not an output;

– Φfr
ideal(ta.(ℓ ∶ out(c,w)[a])) = Φfr

ideal(ta) ∪ {w ↦ ideal(ℓ)σiσn⇓} where

∗ σn(xnj) = fr(a,xnj) when xnj ∈ X
n, and

∗ σi(xij) = RjΦ
fr
ideal(ta) when xij ∈ X

i and Rj is the recipe corresponding to the j-th input of
agent a in ta.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 23

We may note this notion is not necessarily well-defined, as ideal(ℓ)σiσn may not compute to a
message. Note also that well-definedness does not depend on the choice of the function fr. Remark
also that, by definition, Φfr

ideal(ta) never depends on the specific identity names occurring in ta.
In particular, idealised frames do not depend on whether agents rely on the specific constants
id0 or not.

Example 20. Continuing Example 18, we consider the idealisation operator defined as follows:
ℓ1 ↦ xn1, ℓ2 ↦ xn2, ℓ3 ↦ xn3. Let fr be an injective function such that fr(aI , xnj) = nIj and

fr(aR, xnj) = nRj . We have that Φfr
ideal(ta) = {w1 ↦ nI1,w2 ↦ nR2 ,w3 ↦ nI3}.

On the latter simple example, such an idealisation will be sufficient to establish that any
reachable frame obtained through an execution ofMΠFh

is indistinguishable from its idealisation.
However, as illustrated by the following two examples, we sometimes need to consider more
complex idealisation operators.

Example 21. Continuing Example 9, to establish our indistinguishability property, namely frame
opacity defined below, we will consider:

ℓ1 ↦ xn1, ℓ2 ↦ xn2, ℓ3 ↦ xn3, ℓ4 ↦ xn4

assuming that the four outputs are labelled with ℓ1, ℓ2, ℓ3, and ℓ4 respectively.

Example 22. Regarding Example 10, we also need to define an idealisation that retains the shape
of the second outputted message. Moreover, the idealisation of the second outputted message will
depend on the nonce previously received. Assuming that the outputs are labelled with ℓ1 and
ℓ2 respectively, we consider: ℓ1 ↦ xn1, ℓ2 ↦ zk(sign(⟨xn2, xn3⟩, skI), xn2, tuple(xi1, xn4, xn5,pk(skI))).
Note that such an idealisation would not work for Example 11; there skI is an identity-parameter
which, following Definition 13, cannot occur in ideal(ℓ2). It turns out that frame opacity cannot
be established (for any heuristics considered by our tool UKano) for a good reason: unlinkability
fails to hold for this variant. Essentially, this is because verifiers send ZK proofs whose the public
parts contain the public key of their issuers.

The following proposition establishes that the particular choice of fr in Φfr
ideal(ta) is irrelevant

with respect to static equivalence. We can thus note Φideal(ta) ∼ φ instead of there exists fr such
that Φfr

ideal(ta) ∼ φ.

Proposition 1. Let Φfr
ideal(ta) (resp. Φfr′

ideal(ta)) be the idealised frame associated to ta relying on fr

(resp. fr′). We have that Φfr
ideal(ta) ∼ Φfr′

ideal(ta).

Proof. It is sufficient to observe that Φfr
ideal(ta) and Φfr′

ideal(ta) are equal up to a bijective renaming
of names.

We can now formalise the notion of frame opacity as announced: it requires that all reachable
frames must be statically equivalent to idealised frames.

Definition 14. The protocol Π ensures frame opacity w.r.t. ideal if for any execution (M
Π,id

;∅) ta
Ð→

(Q;φ) we have that Φideal(ta) is defined and Φideal(ta) ∼ φ.

24 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

There are many ways to choose the idealisation operator ideal(⋅). We present below a syntactical
construction that is sufficient to deal with almost all our case studies. This construction has been
implemented as a heuristic to automatically build idealisation operators in the tool UKano. The
tool UKano also provides other heuristics that generally lead to better performance but are less
tight (i.e. they cannot always be used to establish frame opacity). We explain how UKano verifies
frame opacity and compare the different heuristics it can leverage in Section 6.

At first reading, it is possible to skip the rest of the section and directly go to Section 4.3 since
proposed canonical constructions are just instantiations of our generic notion of idealisation.

4.2.1. Syntactical idealisation

Intuitively, this construction builds the idealisation operator by examining the initiator and
responder roles as syntactically given in the protocol definition. The main idea is to consider
(syntactical) outputted terms one by one, and to replace identity parameters, as well as variables
bound by a let construct by pairwise distinct names variables, i.e. variables in X n.

Definition 15. Let Π = (k,nI , nR, †I , †R,I,R) be a protocol that uses input variables
{xi1, xi2, . . .} ⊆ X i (in this order) for its two roles, and distinct variables from Xlet in let con-

structions. Let σ ∶ k ∪ nR ∪ nI ∪Xlet → X
n be an injective renaming. The syntactical idealisation

operator maps any ℓ ∈ L occurring in an output action ℓ ∶ out(c, u) in I or R (for some c and
some u) to uσ.

Example 23. Continuing Example 8, we first perform some renaming to satisfy the conditions
imposed by the previous definition. We therefore replace x1 by xi1 in role I, and y1, y2 by xi1, x

i
2

in role R. We assume that x2, x3, and y3 are elements of Xlet. We consider a renaming σ that
maps k,nI , nR, x2, x3, y3 to xn1, . . . , x

n
6. We obtain the following idealisation operator:

ℓ1 ↦ xn2; ℓ2 ↦ enc(⟨xi1, xn3⟩, xn1); ℓ3 ↦ enc(⟨xn5, xn2⟩, xn1).

Considering fr as defined in Example 20, i.e. such that fr(aI , xnj) = nIj and fr(aR, xnj) = nRj ,
and relying on the idealisation operator defined above, and ta as given in Example 18, we have
that: Φfr

ideal(ta) = {w1 ↦ nI2, w2 ↦ enc(⟨nI2, nR3 ⟩, nR1), w3 ↦ enc(⟨nI5, nI2⟩, nI1)}. This idealisation is
different from the one described in Example 20, but it also allows us to establish frame opacity.

Example 24. Continuing Example 10, we consider a renaming σ that maps: kC , idC , nV , nC ,
m, x2, x3, x4, y3 to xn1, x

n
2, . . . , x

n
9. We obtain the following idealisation operator:

ℓ1 ↦ xn3; ℓ2 ↦ zk(sign(⟨xn1, xn2⟩, skI), xn1, tuple(xi1, xn4, xn5,pk(skI))); ℓ3 ↦ error.

Such an idealisation operator is also suitable to establish frame opacity.

As illustrated by the previous examples, the syntactical idealisation is sufficient to conclude on
most examples. Actually, using this canonical construction, we automatically build the idealisa-
tion operator and check frame opacity for all the examples we have introduced in the previous
sections and for most of the case studies presented in Section 6.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 25

4.2.2. Semantical idealisation
The previous construction is clearly purely syntactic and therefore closely connected to the

way the roles of the protocol are written. Its main weakness lies in the way variables are bound
by let constructions. Since there is no way to statically guess the shape of messages that will
be instantiated for those variables, the previous technique replaces them by fresh session names.
False negatives may result from such over-approximations. We may therefore prefer to build an
idealisation operator looking at the messages outputted during a concrete execution. In such a
case, we may simply retain part of the shape of messages, which a priori does not reveal anything
sensitive to the attacker (e.g. pairs, lists). This can be formalised as follows:

Definition 16. A symbol f (of arity n) in Σ is transparent if it is a public constructor symbol
that does not occur in E and such that: for all 1 ≤ i ≤ n, there exists a recipe Ri ∈ T (Σpub,{w})
such that for any message u = f(u1, . . . , un), we have that Ri{w ↦ u} ⇓ vi for some vi such that
vi =E ui.

Example 25. Considering the signature and the equational theory introduced in Example 1 and
Example 2, the symbols ⟨ ⟩ and ok are the only ones that are transparent. Regarding the pairing
operator, the recipes R1 = proj1(w) and R2 = proj2(w) satisfy the requirements.

Once the set Σt of transparent functions is fixed, the idealisation associated to a label ℓ
occurring in Π will be computed relying on a particular (but arbitrary) message u that has
been outputted with this label ℓ during a concrete execution of MΠ. The main idea is to go
through transparent functions until getting stuck, and then replacing the remaining sub-terms
using distinct name variables from X n.

Example 26. Considering the protocol given in Example 8, the resulting idealisation associated
to Π (considering messages in φ0 as defined in Example 6) is: ℓ1 ↦ xn1; ℓ2 ↦ xn2; ℓ3 ↦ xn3. Even
if this idealisation operators is quite different from the one presented in Example 23. it is also
suitable to establish frame opacity.

In [42], the idealisation operator associated to Π was exclusively computed using this method.
The technique is implemented in the tool UKano, and yields simple idealisations for which frame
opacity often holds and can be established quickly. However, it happens to be insufficient to
establish frame opacity in presence of function symbols that are neither transparent nor totally
opaque such as signatures. Indeed, a signature function symbol is not transparent according to
our definition: an attacker can make the difference between a signature sign(m,sk(A)) and a
random nonce. Therefore, replacing such a term by a fresh session name will never allow one to
establish frame opacity. That is why we also defined other types of idealisations that produce
more complex idealised messages but allow for a much better level of precision. In practice, our
tool UKano has three different built-in heuristics for computing idealisations which span the
range between precision (syntactical idealisation) and efficiency (semantical idealisation).

4.3. Well-authentication

Our second condition will prevent the attacker from obtaining some information about agents
through the outcome of conditionals. To do so, we will essentially require that conditionals
of I and R can only be executed successfully in honest, intended interactions. However, it is
unnecessary to impose such a condition on conditionals that never leak any information, which are

26 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

found in several security protocols. We characterise below a simple class of such conditionals, for
which the attacker will always know the outcome of the conditional based on the past interaction.

Definition 17. For a protocol Π, a conditional let z = t in P else Q occurring in A ∈ {I,R} is safe
if t ∈ T (Σpub,{x1, . . . , xn} ∪ {u1, . . . , um}), where the xi are the variables bound by the previous
inputs of that role, and ui are the messages used in the previous outputs of that role.

Example 27. Consider the process out(c, u).in(c, x).let z = neq(x,u) in P else Q. The conditional
is used to ensure that the agent will not accept as input the message he sent at the previous step.
Such a conditional is safe according to our definition.

Note that trivial conditionals required by the grammar of protocols (Definition 3) are safe and
will thus not get in the way of our analysis. We can now formalise the notion of association, which
expresses that two agents are having an honest, intended interaction, i.e. the attacker essentially
did not interfere in their communications. For an annotated trace ta and annotations a and a′,
we denote by ta∣a,a′ the subsequence of ta that consists of actions of the form α[a] or α[a′].
Definition 18. Given a protocol Π, two annotations a1 = A1(k1, n1) and a2 = A2(k2, n2) are
associated in (ta, φ) if:

– they are dual, i.e. A1 ≠ A2, and k1 = k2 when fn(R) ∩ fn(I) ≠ ∅ (the shared case);
– the interaction ta∣a1,a2 is honest for φ (see Definition 4).

Example 28. Continuing Example 18, I(k′, n′I) and R(k′, n′R) are associated in (ta, φ0).
Finally, we can state our second condition.

Definition 19. The protocol Π is well-authenticating if, for any (M
Π,id

;∅) ta.τthen[a]
ÐÐÐÐÐ→ (P;φ),

either the last action corresponds to a safe conditional of I or R, or there exists a′ such that:

(i) The annotations a and a′ are associated in (ta, φ);
(ii) Moreover, when fn(R) ∩ fn(I) ≠ ∅ (the shared case), a′ (resp. a) is only associated with a

(resp. a′) in (ta, φ).
Intuitively, this condition does not require anything for safe conditionals as we already know

that they cannot leak new information to the attacker (he already knows their outcome). For
unsafe conditionals, condition (i) requires that whenever an agent a evaluates them positively
(i.e. he does not abort the protocol), it must be the case that this agent a is so far having an
honest interaction with a dual agent a′. Indeed, as discussed in introduction, it is crucial to avoid
such unsafe conditionals to be evaluated positively when the attacker is interfering because this
could leak crucial information. In the rest of the paper, when considering a protocol Π, we will
say that a conditional in a process resulting from M

Π,id
or SΠ is safe when it corresponds to a

safe conditional in I or R.
As illustrated in the following example, condition (ii) is needed to prevent from having execu-

tions where an annotation is associated to several annotations, which would break unlinkability
in the shared case (i.e. when fn(R) ∩ fn(I) ≠ ∅).

Example 29. We consider a protocol between an initiator and a responder that share a symmetric
key k. The protocol can be described informally as follows:

1. I → R ∶ {nI}k
2. R → I ∶ nR

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 27

Assuming that the two outputs are labelled with ℓ1 and ℓ2 respectively, the idealisation operator
ℓ1 ↦ xn1, ℓ2 ↦ xn2 is suitable to establish frame opacity. We may note that the only conditional
is the one performed by the responder role when receiving the ciphertext. He will check whether
it is indeed an encryption with the expected key k. When an action τthen[R(k,nR)] occurs, it
means that a ciphertext encrypted with k has been received by R(k,nR) and since the key k is
unknown by the attacker, such a ciphertext has been sent by a participant: this is necessarily
a participant executing the initiator role with key k. Hence condition (i) of well-authentication
holds (and can actually be formally proved). However, condition (ii) fails to hold since two
responder roles may accept a same ciphertext {nI}k and therefore be associated to the same
agent acting as an initiator. This corresponds to an attack scenario w.r.t. our formal definition
of unlinkability since such a trace will have no counterpart in SΠ. More formally, the trace
tr = out(cI ,w0).in(cR,w0).τthen.out(cR,w1).in(cR,w0).τthen.out(cR,w2) will be executable starting
from MΠ and will allow one to reach φ = {w0 ↦ enc(nI , k); w1 ↦ nR; w2 ↦ n′R}. Starting
from SΠ the second action τthen will not be possible, and more importantly this will prevent the
observable action out(cR,w2) to be triggered.

While the condition (i) of well-authentication is verifiable quite easily by expressing it as simple
reachability properties (as explained in Section 5.2), the required condition (ii) for the shared-
case is actually harder to express in existing tools. We therefore shall prove that, for the shared
case, once condition (i) of well-authentication is known to hold, condition (ii) is a consequence
of two simpler conditions that are easier to verify (as shown in Section 5.2.2). First, the first
conditional of the responder role should be safe — remark that if this does not hold, similar
attacks as the one discussed above may break unlinkability. Second, messages labelled by some ℓ
outputted in honest interactions by different agents should always be different.

Lemma 1. Let Π = (k,nI , nR, †I , †R,I,R) be a protocol such that fn(I)∩ fn(R) ≠ ∅ (shared case)
that satisfies condition (i) of well-authentication. Then well-authentication holds provided that:

(a) the first conditional that occurs in R is safe;

(b) for any execution (M
Π,id

;∅) ta
Ð→ (P;φ), if ta1 = ta∣a1,b1 and ta2 = ta∣a2,b2 are honest with

a1 ≠ a2 then for any ℓ ∶ out(c,w1)[a1] ∈ ta1 and ℓ ∶ out(c,w2)[a2] ∈ ta2 then φ(w1) /=E φ(w2).

Proof. Consider an execution M
Π,id

ta.τthen[a
′]

ÐÐÐÐÐ→ (P;φ) where two agents a and a′ are associated

and a′ has performed the last τthen. If this test corresponds to a safe conditional, there is nothing
to prove. Otherwise, we shall prove that a is only associated to a′, and vice versa.

Agent a′ is only associated to a. Consider the last input of a′ (the one just before τthen[a′]) and
the output of a that occurs before this input of a′:

M
Π,id

ta.out(c,wℓ)[a].ta
′.in(c′,R)[a′].ta′′.τthen[a

′]
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (P;φ)

We have Rφ ⇓ φ(wℓ) where wℓ is labelled ℓ. Assume, for the sake of contradiction, that a′ is
associated to another agent b ≠ a. Then, we have Rφ ⇓=E φ(w′ℓ) for some handle, and thus thanks
to Item 6 of Definition 1, we have that φ(wℓ) =E φ(w′ℓ), for a handle w′ℓ corresponding to some
output of b labelled ℓ in the honest trace ta∣a′,b. This contradicts assumption (b).

28 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

Agent a is only associated to a′. Agent a must have performed an input in ta: this is obvious if a is
a responder, and follows from assumption (a) otherwise. Let ℓ ∶ out(c,wℓ)[a′] be the output label
(with annotation a′) occurring in ta just before the input of a mentioned above. The considered
execution is thus of the following form:

M
Π,id

ta.out(c,wℓ)[a
′].ta′.in(c,R)[a].ta′′.τthen[a

′]
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (P;φ)

We know that the message m, satisfying Rφ ⇓m, which is inputted by a is equal (modulo E) to
the previous output of a′, that is φ(wℓ). As for the previous case, condition (b) implies that it
cannot be equal to the output of another agent having an honest interaction in ta, thus a is only
associated to a′.

4.4. Main result

Our main theorem establishes that the previous two conditions are sufficient to ensure unlink-
ability and anonymity.

Theorem 1. Consider a protocol Π = (k,nI , nR, †I , †R,I,R) and some identity names id ⊆ k. If the
protocol ensures both well-authentication and frame opacity w.r.t. id, then Π ensures unlinkability
and anonymity w.r.t. id.

Note that, when id = ∅, we have that M
Π,id
≈MΠ and our two conditions coincide on M

Π,id
andMΠ. We thus have as a corollary that ifMΠ ensures well-authentication and frame opacity,
then Π is unlinkable.

The proof of this theorem is detailed in Appendix A, and we explain in Section 5 how to check
these two conditions in practice relying on existing verification tools. We apply our method on
various case studies that are detailed in Section 6. Below, we only briefly summarize the result
of the confrontation of our method to our various running examples, focusing on unlinkability.

Protocol Frame Well- Unlinkability
opacity authentication

Feldhofer (Example 8) ✓ ✓ safe
Toy protocol with ! (Example 15) ✓ ✕ attack
Toy protocol with

!

(Example 9) ✓ ✓(with Tamarin) safe
DAA-like with one issuer (Example 10) ✓ ✓ safe
DAA-like with many issuers (Example 11) ✕ ✓ attack

Fig. 3. Summary of our running examples.

We note ✓ for a condition automatically checked using UKano and ✕ when the condition
does not hold. For the analysis of the Toy protocol with

!

, we do not rely on UKano (which
is based on ProVerif) since ProVerif does not support the

!

operator. We establish the well-
authentication property using Tamarin and frame opacity using ProVerif by allowing sessions to
run concurrently and thus doing a sound over-approximation of the protocol’s behaviors. Frame
opacity has been established relying on the syntactical idealisation as well as the semantical one,
except for Example 10. Indeed, as explained at the end of Section 4.2, the semantical idealisation
is not suitable in this case.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 29

5. Mechanization

We now discuss how to verify unlinkability and anonymity in practice, through the verification

of our two conditions. More specifically, we describe how appropriate encodings allow one to

verify frame opacity (Section 5.1) and well-authentication (Section 5.2), respectively through

diff-equivalence and correspondence properties in ProVerif.

We additionally provide a tool, called UKano [51] (Section 5.3), which mechanises the encodings

described in this section. Our tool takes as input a specification of a protocol in our class,

computes encodings, and calls ProVerif to automatically check our two conditions, and thus

unlinkability and anonymity. As briefly mentioned in Section 4 and detailed in Section 6, UKano

concludes on many interesting case studies.

5.1. Frame opacity

We shall describe how to encode frame opacity using the diff-equivalence of ProVerif [20]. In a

nutshell, we will check this strong notion of equivalence between M
Π,id

and a modified version

of it that produces idealised outputs instead of real ones, in order to check static equivalence be-

tween all pairs of frames of the form (Φ,Φideal(ta)) where ta is executable byM
Π,id

and Φ is the

resulting frame. The main issue in implementing this idea arises from diff-equivalence being too

strong regarding tests and computations of idealized terms. In [42], we had proposed a solution

that avoided this problem by largely over-approximating the set of executable traces, which is

sound but very imprecise. Moreover, this first solution is only adequate for the notion of idealiza-

tion considered in [42], and not for the generalization proposed in the present paper. We describe

below a simpler solution, that is much more precise and efficient, and can accommodate our

generalized notion of idealization, at the cost of a slight extension of ProVerif’s diff-equivalence.

We shall start with a brief reminder on diff-equivalence in ProVerif, in order to describe how we

extend it, before showing how this extension allows us to naturally encode frame opacity.

Diff-equivalence. Intuitively, diff-equivalence is obtained from trace equivalence by forcing the

two processes (or configurations) being compared to follow the same execution. It has been

introduced in [20] as a means to automatically verify observational equivalence in ProVerif. This

paper deals with the full process algebra supported by ProVerif, which is more general but

compatible with the process algebra of the present paper, the main difference being that we

do not account for private channels. Processes of [20] are equipped with a reduction semantics,

noted P → P ′. This allows to define observational equivalence, which implies trace equivalence

in our sense. The key notion in [20] is that of a bi-process, that is a process in which some terms

are replaced by bi-terms of the form choice[u1, u2]. Given a bi-process P , its first projection

fst(P) is defined by taking the first component of all choice operators occurring in it. The second

projection snd(P) is defined analogously. Bi-processes are given a reduction semantics by taking

30 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

the same rules as those for processes (which we do not recall) with three modified rules3:

out(c, u).Q ∣ in(c, x).P → Q ∣ P{x ↦ u} (Red I/O)
let x = t in P else Q → P{x ↦ choice[u1, u2]} if fst(t) ⇓ u1 and snd(t) ⇓ u2 (Red Fun 1)
let x = t in P else Q → Q if fst(t) /⇓ and snd(t) /⇓ (Red Fun 2)

A bi-process execution step thus consists of strongly synchronized execution steps of its two
projections. In particular, a conditional in a bi-process succeeds (resp. fails) if it succeeds (resp.
fails) for both of its projections. Formally, we have that P → P ′ implies fst(P) → fst(P ′) and
snd(P)→ snd(P ′). However, it could be that some execution step of fst(P) (resp. snd(P)) cannot
be obtained in this way from an execution step of P . In fact, [20, Theorem 1] shows that the two
projections of a bi-process P are observationally equivalent if, for all C, all reducts of C[P] are
uniform in the following sense:

Definition 20 ([20]). A bi-process P is uniform if for all reductions fst(P) → P1, there exists P ′

such that P → P ′ and fst(P ′) = P1, and symmetrically for snd(P).
From now on, we say that a bi-process is diff-equivalent when it satisfies the condition of [20,

Theorem 1]. By extension, we say that the two projections of a bi-process are diff-equivalent
when the bi-process is.

Diff-equivalence verification in ProVerif. The next contribution of [20] is to show that diff-
equivalence can be automatically verified in ProVerif by adapting its Horn clause encoding and
resolution algorithm to bi-processes. We will not recall the encoding and its modifications in detail
here, but only present some key ideas at a high level. In the single-process case, a unary predicate
att(⋅) is used to encode that the attacker knows some message. The attacker’s capabilities are
expressed as Horn clauses involving this predicate, e.g. the ability to encrypt is translated as

∀x∀y. att(x) ∧ att(y)⇒ att(enc(x, y)).

Then, a process fragment of the form in(c, x).let y = dec(x,k) in out(c′, t), where t is a constructor
term with free variable y, is encoded as

∀y. att(enc(y, k))⇒ att(t).

Note that the variable x does not appear in the clause, but has been refined into enc(y, k) as
part of the translation.

Consider now the analogue bi-process fragment

in(c, x).let y = dec(x,k) in out(c′, choice[t1, t2]).

It corresponds to two processes, each of which may receive a message and attempt to decrypt it
using k. Upon success, the processes output t1 and t2 respectively, relying on the value y obtained

3 We use our own notations here, taking advantage of the fact that our calculus is a simplification of the one
used in [20]: in particular, channels are public constants and choice operators cannot be used in channel positions.
We also use the notation choice[⋅, ⋅] as in the tool ProVerif , rather than diff[⋅, ⋅] as in [20].

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 31

from the respective decryptions. In ProVerif, this bi-process would translate into the Horn clause

∀y1∀y2. att
′(enc(y1, k), enc(y2, k))⇒ att′(t′1, t′2)

where t′1 (resp. t′2) is t1 (resp. t2) in which all the occurrences of y have been replaced by y1
(resp. y2). This time, a binary predicate att′(⋅, ⋅) is used to encode the attacker’s knowledge on
each side of the bi-process run: the clause roughly says that if, at some point of the execution of
the bi-process, the attacker can deduce (using the same derivation) a term of the form enc(y1, k)
from the left frame and a term enc(y2, k) from the right frame, then he will learn t1 on the
left and t2 on the right. The attacker’s capabilities are also modified to encode the effect of the
attacker’s capabilities on each side of the bi-process run, e.g. for encryption:

∀x1∀x2∀y1∀y2. att
′(x1, x2) ∧ att′(y1, y2)⇒ att′(enc(x1, y1), enc(x2, y2)).

An extension of bi-processes. In the original notion of bi-processes [20], the two sides of a bi-
process are isolated and can execute independently. However, the Horn clause encoding of bi-
processes that is used for verification in ProVerif makes it easy to lift this restriction in a way that
enables interesting new applications of diff-equivalence. Specifically, we introduce the possibility
of binding two variables at once in a bi-process input, which we write in(c, choice[x1, x2]).P .
For simplicity, we can consider that all inputs feature such choice variables, as the usual form
in(c, x).P can be replaced by in(c, choice[x1, x2]).P{x ↦ choice[x1, x2]}. The intuitive semantics
of such a construct is that x1 is bound to the message received on the left side of the bi-process
run, while x2 is bound to the message received on the right. Formally, we change the (Red I/O)
rule as follows:

out(c, u).Q ∣ in(c, choice[x1, x2]).P → Q ∣ P{x1 ↦ fst(u), x2 ↦ snd(u)}.

Crucially, each side of the bi-process will then have access to both x1 and x2, allowing a form of
communication between the two sides.

With this modification, [20, Theorem 1] does not hold anymore. In fact, fst(P) and snd(P)
may not be ground processes when P uses choice variables in inputs, so that it does not even
make sense to compare them for observational equivalence. More generally, we cannot talk in
general of the projection of a bi-process execution: the fact that P → P ′ implies fst(P)→ fst(P ′)
becomes not only false but also ill-defined in general. However, the notion of uniformity is still
meaningful, if properly adapted to be mathematically well-defined: a bi-process P is uniform if,
whenever fst(P) is ground, it is the case that for all reductions fst(P)→ P1 there exists P ′ such
that P → P ′ and fst(P ′) = P1, and symmetrically for snd(P). Furthermore, we shall see that
it can be useful in cases where at least one projection of the executions of a bi-process is well-
defined, as will be the case with our encoding of the notion of frame opacity through (extended)
diff-equivalence.

Besides the problem of the new meaning of diff-equivalence, an important question is whether
extended diff-equivalence can be verified automatically, and how. We claim that it is straightfor-
ward, as the Horn clause encoding of bi-processes already features what is needed for adequately
encoding extended bi-processes, namely the duplicated input variables seen in the above example
— accordingly, we only had to modify a few tenth of lines of the ProVerif tool to implement

32 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

our extension. A formal justification of this claim would require to adapt the long technical de-
velopment of [20], and is thus out of the scope of the present paper. We simply illustrate the
idea here by getting back to our running example illustrating the various Horn clause encodings,
considering now the process fragment

in(c, choice[x1, x2]).let y = dec(x1, k) in out(c′, choice[t1, t2])

where t1 and t2 are constructor terms with free variable y. This would be encoded as

∀y1∀x2. att
′(enc(y1, k), x2)⇒ att′(t′1, t′2)

where t′1 (resp. t′2) is t1 (resp. t2) in which all the occurrences of y have been replaced by y1. This
time, x2 is not refined since the bi-process does not attempt to deconstruct it, on either side.
The clause expresses that if the attacker can derive a term enc(y1, k) on the left (regardless of
what would be the corresponding term on the right) then he will learn t′1 on the left and t′2 on
the right.

Encoding frame opacity through extended diff-equivalence. Using this extended notion of bi-
process, we can now directly express frame opacity as the diff-equivalence of a bi-process. This bi-
process will haveM

Π,id
as its first projection. Its second projection should replace each message

output with its idealization, so that diff-equivalence of P ideal implies Φ ∼ Φideal(ta) for any ta

that is executable by M
Π,id

with Φ as the resulting frame. In itself, this can be achieved easily,
as it suffices to create new names to use as values for X n variables and use appropriate input
variables for the X i variables. The difficulty lies with tests (and computation failures) which
need to be carefully used to obtain a correct encoding of frame opacity.

First, we need to ensure that any reduction of M
Π,id

(in any context) can be obtained as the

projection of a reduction of P ideal (in the same context). In other words, the second projection
of any test should agree with its first projection, which corresponds to a normal execution of
M

Π,id
. This would not hold in general if we performed the same test on the idealizations which

are computed in the second projection. We obtain the desired behaviour using our extension of
bi-processes, by performing tests using only left-hand side input variables.

Second, we need to ensure that computation failures that occur while computing idealizations
result in a diff-equivalence failure. This is necessary to obtain a match with frame opacity, which
requires that idealizations are well-defined even when destructors are involved. Hence, when
the bi-process computes idealized values in its second projection, a failsafe computation should
happen in the first projection. Moreover, idealizations should be computed using the values of
the input variables from the right side of the bi-process execution, in line with the definition of
idealization, i.e. Definition 13.

Before proving more formally that our translation is adequate, let us illustrate it on our running
example, i.e. Example 8. We first give in Figure 4 the description of the protocol in ProVerif

syntax. This syntax is actually very close to the one we introduced in Section 2. The main
difference is the fact that ProVerif relies on types, and here any name or variable is given the
generic type bitstring. Next, we show in Figure 5 the bi-process expressing frame opacity as
described above, using the syntaxic idealisation (Section 4.2.1). Note that, when decrypting the
first input of the initiator role, the variable x is used, corresponding to the left side of the bi-

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 33

let I (k:bitstring) =
new nI:bitstring ;
out(ci , nI);
in(ci , x:bitstring);
let (=nI , xnr: bitstring) = dec(x, k)

in
out(ci , enc ((xnr ,nI),k)).

let R (k:bitstring) =
new nR:bitstring ;
in(cr , ynI:bitstring);
out(cr , enc ((ynI , nR), k));
in(cr , y: bitstring);
let (=nR ,=ynI) = dec(y,k) in
out(cr , ok).

let FH = ! new k:bitstring ; ! (I(k) | R(k)).

Fig. 4. Our running example (Feldhofer) using ProVerif ’s syntax

process execution. The variable xid, correspond to the right (idealized) side, is not used in that
case because this input is not used in idealizations. However, the variable ynIid corresponding
to an idealized input in the responder role is used in the first output. In this example, the
idealisation operator does not contain any destructor, hence the computation of the idealisation
can never fail. If destructors were present, they would be computed using let constructs inside
the right component of the choice[⋅, ⋅] operator4 in output, so that their failure would result in a
non-equivalence.

We now conclude with a formal correctness argument.

Proposition 2. Let ideal be an idealisation operator, and note P ideal the corresponding encoding
of a process P into a bi-process. Assume that, for all C and B such that C[P ideal] →∗ B, B is
uniform. Then P satisfies frame opacity wrt. ideal.

Proof. Assume, by contradiction, that there exists an execution (P ;∅) ta
Ð→ (Q;Φ) with Φ /∼

Φideal(ta). Then there exists a test T = (let y = u in out(o,ok)) with fv(T) = fv(u) ⊆ dom(Φ) such
that TΦ can perform an output (after the successful evaluation of its let) while TΦideal(ta) cannot.
Further, we can construct in a standard way5 from ta a context Cta such that Cta[P] →∗ TΦ,
with only communications and internal reductions of P in that reduction. Because of this, the
reduction can be lifted to the idealized bi-process as follows, by definition of P ideal:

Cta[P ideal]→∗ T ′ = T{w ↦ choice[Φ(w),Φideal(ta)(w)]}w∈dom(Φ)

We have obtained our contradiction, since T ′ is not uniform: indeed, the reduction step fst(T ′)→
out(c,ok) cannot be obtained as a projection of a reduction of T ′, which in fact cannot perform
any reduction at all.

4 This is not possible with the theoretical notion of bi-process, where choice[⋅, ⋅] operators can only contain
terms, which cannot contain let constructs. However, it is available in (vanilla) ProVerif as syntactic sugar: it is
equivalent to performing the let outside the choice[⋅, ⋅] with a dummy first projection, which is exactly what we
need.

5 Define Cta[●] = (● ∣ Tta) with Tǫ = T , Tτ.ta = Tta, Tout(c,w).ta = in(c,w).Tta and Tin(c,R).ta = out(c,R).Tta. In full
details, the last case should include the creation of names that are used in R but not previously in the trace.

34 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

let SYSTEM =
(!

new k : bitstring ;
!
((

new nI: bitstring ;
out(ci , nI);
in(ci , choice[x,xid]: bitstring);
let ((=nI ,xnr: bitstring)) = dec(x,k) in
new hole__xnr_I_0 : bitstring ;
new hole__k_I_1 : bitstring ;
out(ci , choice[enc ((xnr ,nI),k),enc ((hole__xnr_I_0 ,nI),hole__k_I_1)])

)|(
in(cr , choice[ynI ,ynIid]: bitstring);
new nR: bitstring ;
new hole__k_R_2 : bitstring ;
out(cr , choice[enc ((ynI ,nR),k),enc ((ynIid ,nR),hole__k_R_2)]);
in(cr , choice[y,yid]: bitstring);
let ((=nR ,= ynI)) = dec(y,k) in
out(cr , ok)

))
).

Fig. 5. ProVerif file checking frame opacity generated by UKano (Feldhofer)

Practical application. Our tool UKano automatically constructs the bi-process described above
from a description of the protocol, and calls the extension of ProVerif in order to check frame
opacity. Until this extension is integrated in the next release of ProVerif, the source files of this
slight extension of ProVerif are distributed with UKano [51]. Out tool does not require the user
to input the idealisation function. Instead, a default idealisation is extracted from the protocol’s
outputs. The user is informed about this idealisation, and if he wants to, he can bypass it using
annotations or choose another heuristic to build idealisation operators. In practice, this is rarely
necessary; we provide more details about this in Section 5.3. Also note that, although ProVerif

does not support the repetition operator

!

, we can over-approximate the behaviours of protocols
using it by replacing occurrences of

!

with ! before checking frame opacity.

5.2. Well-authentication

We explain below how to check condition (i) of well-authentication (see Definition 19). Once
that condition is established, together with frame opacity, we shall see that condition (ii) is
actually a consequence of a simple assumption on the choice of idealisation, which is always
guaranteed when using UKano. This result is established relying on the sub-conditions that have
been proved to be sufficient in Lemma 1.

5.2.1. Condition (i)
Condition (i) of well-authentication is basically a conjunction of reachability properties, which

can be checked in ProVerif using correspondence properties [3]. To each syntactical output
out(c,m0) of the initiator role, we associate an event, namely Iouti(kI , nI ,mI) which uniquely
identifies the action. We have that:

– kI are the identity parameters used in the intiator role;

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 35

– nI are the sessions parameters; and
– mI are the messages inputted and outputted so far in this role including m0.

Such an event is placed just before the action out(c,m0). We proceed similarly for each syntactical
input in(c,m0) putting the event Iini(kI , nI ,mI) just after the corresponding input. Lastly, we
also apply this transformation on the responder role using events of the form Routi(kR, nR,mR)
and Rini(kR, nR,mR). To be able to express condition (i) relying on events, we need to consider
some events that will be triggered when conditional are passed successfully. Therefore, we add
events of the form Itesti(kI , nI ,mI) (resp. Rtesti(kR, nR,mR)) at the beginning of each then

branch of the initiator (resp. responder) role.

For each conditional of the protocol, we first check if the simple syntactical definition of safe
conditionals holds (see Definition 17). If it is the case we do nothing for this conditional. Other-
wise, we need to check condition (i) of well-authentication. This condition can be easily expressed
as a correspondence property relying on the events we have introduced. Let kI = (k1I , . . . , kpI)
and kR = (k1R, . . . , kqR). We denote xI = (xk1

I
, . . . , xkp

I
) and xR = (xk1

R
, . . . , xkq

R
). Note that when

kI ∩ kR ≠ ∅ (shared case), we have also that xI ∩ xR ≠ ∅ and the correspondence property (see
below) will therefore allow us to express duality of the two underlying agents.

For instance, given a conditional of the initiator role tagged with event Itesti(kI , nI ,mI), we
express as a correspondence property the fact that if the conditional is positively evaluated, then
the involved agent must be associated to a dual agent as follows:

1. when the event Itesti(xI , yI , (z1, . . . , zℓ)) is fired,
2. there must be a previous event Iini(xI , yI , (z1, . . . , zℓ)) (the one just before the conditional),
3. and a previous event Routj(xR, yR, (z1, . . . , zℓ)) (the one corresponding to the output that

fed the input Iini in an honest execution),
4. and a previous event Rinj(xR, yR, (z1, . . . , zℓ−1)) (the one just before the output Routj),

etc.

Note that by using the same variables (z1, . . . , zℓ) in both the intiator and responder roles, we
express that the messages that are outputted and inputted are equal modulo the equational
theory E. We provide in Figure 6 the process obtained by applying the transformation on the
Feldhofer protocol (Example 8). In Figure 7, we show the ProVerif queries we have to consider
to check condition (i) on the two conditionals.

Some practical considerations. In our tool, safe conditionals are not automatically identi-
fied. Actually, the tool lists all conditionals and tells which ones satisfy condition (i) of well-
authentication. The user can thus easily get rid of the conditionals that he identifies as safe.
Furthermore, the structure of the ProVerif file produced by UKano makes it easy for the user
to remove the proof obligations corresponding to safe conditionals. To obtain more precise en-
codings once the translation in Horn clauses is performed by ProVerif, we sometimes push the
creation of session parameters (i.e. instructions of the form new nI). Therefore, in order to ensure
the existence of at least one session parameter in each event, we systematically introduce a fresh
session parameter sessI (resp. sessR) which is is generated at the beginning of the initiator
(resp. responder) role. Such parameters are systematically added in the events, and since they
do not occur in the messages exchanged during the protocol execution, there is no need to push
them.

36 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

let SYSTEM = (! new k : bitstring ; !((
new nI:bitstring ;
event Iout_1(k,nI ,nI); out(ci , nI);
in(ci , x:bitstring); event Iin_1(k,nI ,nI ,x)
let ((=nI ,xnr:bitstring)) = dec(x,k) in event Itest_1(k,nI ,nI ,x);
event Iout_2(k,nI ,nI ,x,enc((xnr ,nI),k)); out(ci , enc ((xnr ,nI),k))

)|(
new nR: bitstring ;
in(cr , ynI: bitstring); event Rin_1(k,nR ,ynI);
event Rout_1(k,nR ,ynI ,enc((ynI ,nR),k)); out(cr , enc ((ynI ,nR),k));
in(cr , y:bitstring); event Rin_2(k,nR ,ynI ,enc((ynI ,nR),k),y);
let ((=nR ,= ynI)) = dec(y,k) in event Rtest_1 (k,nR ,ynI ,enc((ynI ,nR),k),y);
event Rout_2(k,nR ,ynI ,enc((ynI ,nR),k),y,ok); out(cr , ok)

))).

Fig. 6. Process modelling the Feldhofer protocol with events

query x:bitstring ,
y1:bitstring , y2:bitstring ,
z1:bitstring , z2:bitstring ;

(event(Itest_1(x,y1 ,z1 ,z2)) ==>
(event(Iin_1(x,y1 ,z1 ,z2)) ==>
(event(Rout_1(x,y2 ,z1 ,z2)) ==>
(event(Rin_1(x,y2 ,z1)) ==>
(event(Iout_1(x,y1 ,z1))))))).

query x:bitstring , y1:bitstring ,
y2:bitstring , z1:bitstring ,
z2:bitstring , z3:bitstring ;

(event(Rtest_1 (x,y2 ,z1 ,z2 ,z3)) ==>
(event(Rin_2(x,y2 ,z1 ,z2 ,z3)) ==>
(event(Iout_2(x,y1 ,z1 ,z2 ,z3)) ==>
(event(Iin_1(x,y1 ,z1 ,z2)) ==>
(event(Rout_1(x,y2 ,z1 ,z2)) ==>
(event(Rin_1(x,y2 ,z1)) ==>
(event(Iout_1(x,y1 ,z1))))))))).

Fig. 7. ProVerif queries for checking condition (i) on the Feldhofer protocol

Note that, for some examples, we also verified condition (i) of well-authentication using Tamarin

by encoding the queries described above as simple lemmas. In our case, one of the most important
advantage of Tamarin over ProVerif is its capability to model the repetition operator

!

and thus
protocols for which a role executes its sessions in sequence. Relying on Tamarin, we were thus
able to verify condition (i) for protocols that ensure unlinkability when sessions are running
sequentially but not when they are running concurrently, e.g. we automatically verified the toy
example described in Example 9.

5.2.2. Condition (ii) - shared case
To verify Condition (ii) of well-authentication, we rely on Lemma 1 which provides two suffi-

cient sub-conditions. Condition (a) of Lemma 1 can be checked manually; UKano leaves it to the
user. Condition (b) may in general be very difficult to verify. While it is surely possible to reduce
the verification of this sub-condition to classical reachability properties verifiable in ProVerif, we
prefer to give a more direct verification technique.

Indeed, once frame opacity is known to hold, condition (b) actually follows immediately from
simple properties of the idealisation function, since checking that honest outputs cannot be
confused in executions ofM

Π,id
is equivalent to checking that they cannot be confused in idealised

executions. Often, the idealisation function uses only function symbols that do not occur in E

and such that at least one session variable xn ∈ X n occurs in ideal(ℓ) for each honest output

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 37

label ℓ. Checking that the idealisation function enjoys these properties is straightforward. Let us
now show that it implies condition (b) of Lemma 1.

Proposition 3. Let Π = (k,nI , nR, †I , †R,I,R) be a protocol such that fn(I) ∩ fn(R) ≠ ∅ (shared
case). Consider an idealisation operator ideal(⋅) such that, for any label ℓ ∈ L occurring in the
honest execution of Π, some name variable x ∈ X n appears in ideal(ℓ) in a position only under
symbols f ∈ Σc that do not occur in equations of E. If Π satisfies frame opacity for the idealised
operator ideal(⋅) then condition (b) of Lemma 1 holds.

Proof. Consider an execution ta of M
Π,id

where agent a1 performs an output with label ℓ and
handle w1, and agent a2 ≠ a1 performs another output with label ℓ and handle w2. We assume
that ℓ occurs in the honest execution of Π and we note φ the resulting frame from the above
execution. Assume, for the sake of contradiction, that φ(w1) =E φ(w2). Since the protocol ensures
frame opacity for the idealised operator ideal(⋅), we deduce that Φfr

ideal(ta)(w1) =E Φfr
ideal(ta)(w2).

By hypothesis, some name variable x1 ∈ X
n occurs in ideal(ℓ) in a position which (even after

a substitution) cannot be erased by the equational theory nor the computation relation. In
other words we have that fr(a1, xn) occurs in Φfr

ideal(ta)(w1), and similarly fr(a2, xn) occurs in

Φfr
ideal(ta)(w2), at the same position under non-malleable constructor symbols only. Since we

have assumed (in Section 2.1) that our equational theory is non-degenerate, this implies that
fr(a1, xn) =E fr(a2, xn) and contradicts the injectivity of fr.

5.3. The tool UKano

As mentioned earlier, the tool UKano [51] automatises the encodings described in this section. It
takes as input a ProVerif model specifying the protocol to be verified (and the identity names id)
and returns:

1. whether frame opacity could be established or not: in particular, it infers an idealisation
operator that, when in the shared case, satisfies the assumptions of Proposition 3;

2. and the list of conditionals for which condition (i) of well-authentication holds.

If frame opacity holds and condition (i) of well-authentication holds for all conditionals — possi-
bly with some exceptions for conditionals the user can identify as safe — then the tool concludes
that the protocol given as input ensures unlinkability and anonymity w.r.t. id . Note that the tool
detects whether fn(I) ∩ fn(R) = ∅ or not and adapts the queries for verifying item (i) of well-
authentication accordingly. Our tool uses heuristics to build idealised operators that always sat-
isfy the assumptions of Proposition 3. Actually, three different heuristics have been implemented.

Syntaxic heuristic. The syntaxic heuristic fully adopts the canonical syntactical construction
from Section 4.2 (and displays a warning message when in the shared case, since all re-
quirements are not met in this case). It can be enabled using the option –ideal-syntaxic.

Semantic heuristic. The semantic heuristic (enabled with the option –ideal-semantic) follows
the semantical construction from Section 4.2 with only tuples identified as transparent.
Roughly, idealisation of a tuple is a tuple of idealisations of the corresponding sub-terms
and idealisation of any other term is a fresh session variable in X n. Such an idealised
operator is much less precise (i.e. may lead to more false negatives) but since idealised
messages are much simpler, it allows better performance when it works.

38 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

Quasi-syntaxic heuristic. This heuristic follows the canonical syntactical construction described
in Section 4.2 except that sub-terms having a function symbol at top-level that is involved
in the equational theory will be replaced by a fresh session name in order to comply with
hypothesis of Proposition 3. This is the default heuristic in UKano.

Finally, the user can also define its own idealisations and the tool UKano will check that
assumptions of Proposition 3 are satisfied when in the shared case.

At a technical level, we built UKano on top of ProVerif. We only re-used the lexer, parser and
AST of ProVerif and build upon those a generator and translator of ProVerif models implement-
ing our sufficient conditions via the above encodings. This effort represents about 2k OCaml
LoC. The official page of the tool UKano with distributed releases of the tool can be found at
http://projects.lsv.ens-cachan.fr/ukano/. We also distribute ProVerif v1.97 modified for
handling extended diff-equivalence (see Section 5.1). The difference between our modified version
of ProVerif v1.97 and the original one is about 60 lines of code.

6. Case studies

In this section we apply our verification method to several case studies. We rely on our tool
UKano to check whether the protocol under study satisfies frame opacity and well-authentication
as defined in Section 4. We also discuss some variations of the protocols to examine how privacy
is affected. Remind that if privacy can be established for concurrent sessions (i.e. †I = †R =!)
then it implies privacy for all other scenarios as well, i.e. when †I , †R ∈ {

!

, !}. We thus model
protocols with concurrent sessions and discuss alternative scenarios only when attacks are found.
The source code of our tool and material to reproduce results can be found at

http://projects.lsv.ens-cachan.fr/ukano/.

All case studies discussed in this section except two (i.e. DAA in Section 6.4 and ABCDH in
Section 6.5) have been automatically verified using our tool UKano without any manual effort. We
discuss little manual efforts needed to conclude for DAA and ABCDH in the dedicated sections.
We used UKano v0.5 based on ProVerif v1.97 on a computer with following specifications:

– OS: Linux 3.10-2-amd64 #1 SMP Debian 3.10.5-1x86_64 GNU/Linux
– CPU / RAM: Intel(R) Xeon(R) CPU X5650 @ 2.67GHz / 47GO

6.1. Hash-Lock protocol

We consider the Hash-Lock protocol as described in [43]. This is an RFID protocol that has
been designed to achieve privacy even if no formal proof is given. We suppose that, initially, each
tag has his own key k and the reader maintains a database containing those keys. The protocol
relies on a hash function, denoted h, and can be informally described as follows.

Reader→ Tag ∶ nR
Tag→ Reader ∶ nT , h(nR, nT , k)

This protocol falls into our generic class of 2-party protocols in the shared case, and frame
opacity and well-authentication can be automatically established in less than 0.01 second. We

http://projects.lsv.ens-cachan.fr/ukano/
http://projects.lsv.ens-cachan.fr/ukano/

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 39

can therefore conclude that the protocol preserves unlinkability (note that anonymity does not
make sense here). Actually, all implemented heuristics were able to successfully establish frame
opacity automatically.

figure

6.2. LAK protocol

We present an RFID protocol first introduced in [44], and we refer to the description given
in [52]. To avoid traceability attacks, the main idea is to ask the tag to generate a nonce and
to use it to send a different message at each session. We suppose that initially, each tag has his
own key k and the reader maintains a database containing those keys. The protocol is informally
described below (h models a hash function). In the original version (see e.g. [52]), in case of
a successful execution, both parties update the key k with h(k) (they always store the last
two keys). Our framework does not allow one to model protocols that rely on a mutable state.
Therefore, we consider here a version where the key is not updated at the end of a successful
execution allowing the key k to be reused from one session to another. This protocol lies in the
shared case since the identity name k is used by the reader and the tag.

Reader→ Tag ∶ r1
Tag→ Reader ∶ r2, h(r1 ⊕ r2 ⊕ k)

Reader→ Tag ∶ h(h(r1 ⊕ r2 ⊕ k)⊕ k ⊕ r1)

Actually, this protocol suffers from an authentication attack. The protocol does not allow the
reader to authenticate the tag. This attack can be informally described as follows (and already
exists on the original version of this protocol). By using algebraic properties of ⊕, an attacker
can impersonate a tag by injecting previously eavesdropped messages. Below, I(A) means that
the attacker plays the role A.

I(Reader)→ Tag ∶ r1
Tag→ Reader ∶ r2, h(r1 ⊕ r2 ⊕ k)

Reader→ Tag ∶ r′1
I(Tag)→ Reader ∶ rI2 , h(r1 ⊕ r2 ⊕ k)
Reader→ Tag ∶ h(h(r1 ⊕ r2 ⊕ k)⊕ k ⊕ r′1)

where rI2 = r
′
1 ⊕ r1 ⊕ r2, thus h(r1 ⊕ r2 ⊕ k) =E h(r′1 ⊕ rI2 ⊕ k).

Due to this, the protocol does not satisfy our well-authentication requirement even with sessions
in sequence for Tag and Reader. Indeed, the reader can end a session with a tag whereas the tag
has not really participated to this session. In other words, the reader passes a test (which does
not correspond to a safe conditional) with success, and therefore performs a τthen action whereas
it has not interacted honestly with a tag. Actually, this trace can be turned into an attack
against the unlinkability property (for any combination of †I , †R ∈ {

!

, !}). Indeed, by continuing
the previous trace, the reader can send a new request to the tag generating a fresh nonce r′′1 .
The attacker I(Tag) can again answer to this new request choosing his nonce r′′2 accordingly, i.e.
r′′2 = r

′′
1 ⊕ r1 ⊕ r2. This execution, involving two sessions of the reader talking to the same tag,

cannot be mimicked in the single session scenario, and corresponds to an attack trace.

40 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

More importantly, this scenario can be seen as a traceability attack on the stateful version of
the protocol leading to a practical attack. The attacker will first start a session with the targeted
tag by sending it a nonce r1 and storing its answer. Then, later on, he will interact with the
reader as described in the second part of the attack scenario. Two situations may occur: either the
interaction is successful meaning that the targeted tag has not been used since its last interaction
with the attacker; or the interaction fails meaning that the key has been updated on the reader’s
side, and thus the targeted tag has performed a session with the reader since its last interaction
with the attacker. This attack shows that the reader may be the source of leaks exploited by the
attacker to trace a tag. This is why we advocate for the strong notion of unlinkability we used,
taking into account the reader and considering it as important as the tag.

We may note that the same protocol was declared untraceable in [52] due to the fact that they
have in mind a weaker notion of unlinkability. Actually, their notion captures the intuitive notion
that a tag is untraceable if for any execution in which two actions are performed by the same
tag, there is another execution indistinguishable from the original one in which the actions have
been performed by two different tags. We may note that in the attack scenario described above,
the tag in itself does not leak anything but the reader does, explaining why this weak notion of
untraceability missed this attack.

Now, to avoid the algebraic attack due to the properties of the xor operator, we may replace it
by the pairing operator. The resulting protocol is a 2-party protocol that falls into our class, and
for which frame opacity and well-authentication can be established (with concurrent sessions)
using UKano (any heuristic is suitable for that). Therefore, Theorem 1 allows us to conclude that
it preserves unlinkability.

6.3. BAC protocol and some others

An e-passport is a paper passport with an RFID chip that stores the critical information printed
on the passport. The International Civil Aviation Organization (ICAO) standard [1] specifies
several protocols through which this information can be accessed. Before executing the Basic
Access Control (BAC) protocol, the reader optically scans a weak secret from which it derives
two keys kE and kM that are then shared between the passport and the reader. Then, the BAC
protocol establishes a key seed from which two sessions keys are derived. The session keys are
then used to prevent skimming and eavesdropping on subsequent communications.

In [7], two variants of the BAC protocol are described and analysed. We refer below to these
two variants as the French version and the United Kingdom (U.K.) version. The U.K. version is
claimed unlinkable (with no formal proof) whereas an attack is reported on the French version.
We first give an informal description of the BAC protocol using Alice & Bob notation:

Tag → Reader ∶ nT
Reader → Tag ∶ {nR, nT , kR}kE ,mac({nR, nT , kR}kE , kM)
Tag → Reader ∶ {nT , nR, kT }kE ,mac({nT , nR, kT }kE , kM)

Then, to explain the difference between the two versions, we give a description of the passport’s
role in Figure 8. We do not model the getChallenge constant message that is used to initiate
the protocol but it is clear this message does not play any role regarding the security of the
protocol. We consider the signature given in Example 1 augmented with a function symbol mac

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 41

T (kE , kM) = newnT .new kT .out(cT , nT).in(cT , x).
let xE = proj1(x), xM = proj2(x), ztest = eq(xM ,mac(xE , kM)) in

let z′test = eq(nT ,proj1(proj2(dec(xE , kE)))) in out(cT , ⟨m,mac(m,kM)⟩)
else out(errorNonce)

else out(errorMac)

where m = enc(⟨nT , ⟨proj1(dec(xE , kE)), kT ⟩⟩, kE).
Fig. 8. Description of the passport’s role

of arity 2. This is a public constructor whose purpose is to model message authentication code,
taking as arguments the message to authenticate and the mac key. There is no rewriting rule and
no equation regarding this symbol. We also assume public constants to model error messages.
The U.K. version of the protocol does not distinguish the two cases of failure, i.e. errorMac and
errorNonce are the same constant, whereas the French version does. The relevant point is the fact
that, in case of failure, the French version sends a different error message indicating whether the
failure occurs due to a problem when checking the mac, or when checking the nonce. This allows
the attacker to exploit this conditional to learn if the mac key of a tag is the one used in a given
message ⟨m,mac(m,k)⟩. Using this, he can very easily trace a tag T by first eavesdropping an
honest interaction between the tag T and a reader.

The U.K. version of the BAC protocol is a 2-party protocol according to our definition. Note
that since the two error messages are actually identical, we can merge the two let instructions,
and therefore satisfy our definition of being a responder role. Then, we automatically proved
frame opacity and well-authentication using UKano. It took less than 0.1 second independently
of the chosen heuristic regarding frame opacity. Therefore, Theorem 1 allows us to conclude that
unlinkability is indeed satisfied.

Regarding the French version of this protocol, it happens that the passport’s role is neither an
initiator role, nor a responder role according to our formal definition. Indeed, our definition of
a role, and therefore of a 2-party protocol does not allow to model two sequences of tests that
will output different error messages in case of failure. As illustrated by the attack on the French
version of the BAC protocol, imposing this syntactic condition is actually a good design principle
w.r.t. unlinkability.

Once the BAC protocol has been successfully executed, the reader gains access to the infor-
mation stored in the RFID tag through the Passive and Active Authentication protocols (PA
and AA). They are respectively used to prove authenticity of the stored information and prevent
cloning attacks, and may be executed in any order. A formal description of these protocols is
available in [6]. These two protocols also fall into our class and our conditions can be checked
automatically both for unlinkability and anonymity properties. We can also use our technique to
analyse directly the three protocols together (i.e. the U.K. version of the BAC together with the
PA and AA protocols in any order). We analysed both orders, i.e. BAC followed by PA, and then
AA, as well as BAC following by AA, and then PA. We establish unlinkability and anonymity
w.r.t. all private data stored in the RFID chip (name, picture, etc.). UKano concludes within 1
second to establish both well-authentication and frame opacity (independently of the selected
heuristic).

42 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

1. Tag→ Reader ∶ {sT }k
2. Reader→ Tag ∶ gnR

3. Tag→ Reader ∶ gnT

4. Both parties compute G = gen(sT , gnRnT).
5. Reader→ Tag ∶ Gn′R

6. Tag→ Reader ∶Gn′T

7. Both parties compute k′ = Gn′Rn′T

8. Reader→ Tag ∶ mac(Gn′T , k′)
9. Tag→ Reader ∶mac(Gn′R , k′)

Fig. 9. PACE in Alice & Bob notation

6.4. PACE protocol

The Password Authenticated Connection Establishment protocol (PACE) has been proposed
by the German Federal Office for Information Security (BSI) to replace the BAC protocol. It has
been studied in the literature [18], [17], [27] but to the best of our knowledge, no formal proofs
about privacy have been given. Similarly to BAC, its purpose is to establish a secure channel
based on an optically-scanned key k. This is done in four main steps (see Figure 9):

– The tag chooses a random number sT , encrypts it with the symmetric key k shared between
the tag and the reader and sends the encrypted random number to the reader (message 1).

– Both the tag and the reader perform a Diffie-Hellman exchange (messages 2 & 3), and
derive G from sT and gnRnT .

– The tag and the reader perform a Diffie-Hellman exchange based on the parameter G com-
puted at the previous step (messages 5 & 6).

– The tag and the reader derive a session key k′ which is confirmed by exchanging and checking
the authentication tokens (messages 8 & 9).

Moreover, at step 6, the reader is not supposed to accept as input a message which is equal to
the previous message that it has just sent.

To formalise such a protocol, we consider Σc = {enc, dec, dh, mac, gen, g, ok}, and Σd = {neq}.
Except g and ok which are public constants, all these function symbols are public constructor
symbols of arity 2. The destructor neq has already be defined in Example 4. The symbol dh is
used to model modular exponentiation whereas mac will be used to model message authentication
code. We consider the equational theory E defined by the following equations:

dec(enc(x, y), y) = x dh(dh(x, y), z) = dh(dh(x, z), y)

We consider the process RPACE as described in Figure 10. We do not detail the continuation R′

and we omit trivial conditionals. The process modelling the role IPACE can be obtained in a
similar way. Then, we consider ΠPACE = (k, (sT , nT , n′T), (nR, n′R), !, !,IPACE ,RPACE) which falls
into our generic class of 2-party protocols. Unfortunately, ProVerif cannot handle the equation
above on the dh operator (due to some termination issues). Instead of that single equation, we
consider the following equational theory that is more suitable for ProVerif:

dh(dh(g, y), z) = dh(dh(g, z), y) dh(dh(gen(x1, x2), y), z) = dh(dh(gen(x1, x2), z), y)

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 43

RPACE ∶= in(cR, y1).
out(cR,dh(g, nR)).in(cR, y2).
out(cR,dh(G,n′R)).in(cR, y3).
let ytest = eq(yes,neq(y3,dh(G,n′R))) in
out(cR,mac(y3, k′));
in(cR, y4).
let y5 = eq(y4,mac(dh(G,n′R), k′)) in R′.

where G = gen(dec(y1, k),dh(y2, nR)) and k′ = dh(y3, n′R).
Fig. 10. Process RPACE

This is sufficient for the protocol to work properly but it obviously lacks equations that the
attacker may exploit.

First, we would like to highlight an imprecision in the official specification that may lead to
practical attacks on unlinkability. As the specification seems to not forbid it, we could have
assumed that the decryption operation in G = gen(dec(y1, k),dh(y2, nR)) is implemented in such
a way that it may fail when the key k does not match with the key of the ciphertext y1. In that
case, an attacker could eavesdrop a first message c0 = enc(s0T , k0) of a certain tag T 0 and then, in
a future session, it would let the reader optically scan a tag T but replace its challenge enc(sT , k)
by c0 and wait for an answer of the reader. If it answers, he learns that the decryption did not
fail and thus k = k0: the tag T is actually T 0. We discovered this attack using our method since,
in our first attempt to model the protocol, we modelled dec(⋅, ⋅) as a destructor (that may fail)
and the computation of G as an evaluation:

let G = gen(dec(y1, k),dh(y2, nR)) in [...]

In order to declare the protocol well-authenticating, this conditional computing G which is not
safe has to satisfy our requirement (see Definition 19). However, as witnessed by the attack
scenario described above (the reflection attack), the condition actually fails to hold. Incidentally,
the same attack scenario shows that the protocol does not ensure unlinkability (this scenario
cannot be observed when interacting with SΠ). Similarly to the attack on LAK, we highlight
here the importance to take the reader into account and give it as much importance as the tag
in the definition of unlinkability. Indeed, it is actually a leakage from the reader that allows an
attacker to trace a specific tag.

Second, we now consider that decryption is a constructor, and thus cannot fail, an we re-
port on an attack that we discovered using our method on some models of PACE found in the
literature [18],[17],[27]. Indeed, in all those papers, the first conditional of the reader

let ytest = eq(yes,neq(y3,dh(G,n′R))) in

is omitted. Then the resulting protocol is not well-authenticating. To see this, we simply have
to consider a scenario where the attacker will send to the reader the message it has outputted
at the previous step. Such an execution will allow the reader to execute its role until the end,
and therefore execute τthen, but the resulting trace is not an honest one. Again, this scenario can
be turned into an attack against unlinkability as explained next. As before, an attacker could

44 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

eavesdrop a first message c0 = enc(s0T , k0) of a certain tag T 0. Then, in a future session, it would
let the reader optically scan a tag T but replace its challenge enc(sT , k) by c0. Independently of
whether k is equal to k0 or not, the reader answers gnR . The attacker then plays the two rounds
of Diffie-Hellman by reusing messages from the reader (he actually performs a reflection attack).

More precisely, he replies with gnT = gnR , Gn′T = Gn′R and mac(Gn′R , k′) = mac(Gn′T , k′). The
crucial point is that the attacker did not prove he knows k (whereas he is supposed to do so
to generate G at step 4) thanks to the reflection attack that is not detected. Now, the attacker
waits for the reader’s answer. If it is positive (the process R′ is executed), he learns that k = k0:
the tag T is actually the same as T 0.

Third, we turn to PACE as properly understood from the official specification: when the
latter test is present and the decryption may not fail. In that case, we report on a new attack.
UKano found that the last test of the reader violates well-authentication. This is the case for
the following scenario: the message enc(sT , k) sent by a tag T (k,nT) is fed to two readers
R(k,n1R),R(k,n2R) of same identity name. Then, the attacker just forwards messages from one
reader to the other. They can thus complete the two rounds of Diffie-Hellman (note that the test
avoiding reflection attacks holds). More importantly, the mac-key verification phase (messages 8
and 9 from Figure 9) goes well and the attacker observes that the last conditional of the two
readers holds. This violates well-authentication but also unlinkability because the latter scenario
cannot be observed at all in SΠ: if the attacker makes two readers talk to each other in SΠ they
cannot complete a session because they must have different identity names. In practice, this flaw
seems hard to exploit but it could be a real privacy concern: if a tag initiates multiple readers,
an attacker may learn which ones it had initiated by forwarding messages from one to another. It
does not seem to be realistic in the e-passport scenario, but could be harmful in other contexts.
It seems that, in the e-passport context, a modelling with sequential sessions would be more
realistic. We come back to such a modelling at the end of this section.

Further, we propose a simple fix to the above attack by adding tags avoiding confusions between
reader’s messages and tag’s messages. It suffices to replace messages 8 and 9 from Figure 9
by respectively mac(⟨cr,Gn′

T ⟩, k′) and mac(⟨ct,Gn′
R⟩, k′) where cr, ct are public constants, and

adding the corresponding checks. Well-authentication can be automatically established using
UKano in around 1 minute. Frame opacity can be automatically established using any heuristic
described in Section 5.3. Heuristics producing more complex idealisations (i.e. the syntaxic one)
are less efficient. Nevertheless, the tool concludes in at most 16 seconds. We thus conclude that
PACE with tags preserves unlinkability in the model considered here.

6.5. Attributed-based authentication scenario using ABCDH protocol

Most authentication protocols are identity-based: the user needs to provide his identity and
prove to the service provider he is not trying to impersonate somebody else. However, in many
contexts, the service provider just needs to know that the user has some non-identifying attributes
(e.g. age, gender, country, membership). For instance, a liquor shop just needs to have the proof
that the user has the right to buy liquors (i.e. that he is old enough) and does not need to know
the full identity of the user (e.g. as it is currently done when showing ID cards). Attribute-based
authentication protocols solve this problem and allow a user to prove to another user, within a
secure channel, that he has some attributes without disclosing its identity.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 45

We used our method to automatically establish unlinkability of a typical use case of such a
protocol taking part to the IRMA project6. We analysed a use case of the protocol ABCDH as
defined in [5]. This protocol allows a smartcard C to prove to some Verifier V that he has the
required attributes. The protocol aims at fulfilling this goal without revealing the identity of C
to V or to anyone else. One of its goal is also to avoid that any other smartcard C ′ replays
those attributes later on. The protocol should also ensure unlinkability of C. To the best of our
knowledge, there was no prior formal analysis of that security property for this protocol.

The key ingredient of this protocol is attribute-based credential (ABC). It is a cryptographic
container for attributes. In ABC, attributes are signed by some issuers and allow for selective
disclosure (SD): it is possible to produce a zero-knowledge (ZK) proof revealing a subset of
attributes signed by the issuer along with a proof that the selected disclosed attributes are
actually in the credential. This non-interactive proof protocol can be bound to some fresh data
to avoid replay attacks. We shall use the notation SD(ai;n) to denote the selective disclosure of
attributes ai bound to n. Note that SD(∅;n) (no attribute is disclosed) still proves the existence of
a credential. There are two majors ABC schemes: Microsoft U-Prove [47] and IBM’s Idemix [25].
We decided to model IBM’s scheme (since it is the one that is used in IRMA) following the
formal model given in [26]. We may note that we consider here some privacy issues whereas the
security analysis presented in [26] is dedicated to the analysis of some reachability properties. It
involves complex cryptographic primitives (e.g. commitments, blind signature, ZK proofs) but
ProVerif can deal with them all. In this scheme, each user has a master secret never revealed to
other parties. Issuers issue credentials bound to the master secret of users (note that users are
known to issuers under pseudonyms). A SD consists in a ZK proof bound to n proving some
knowledge: knowledge of the master secret, knowledge of a credential bound to the master secret,
knowledge that the credential has been signed by the given organisation, knowledge that the
credential contains some given attributes.

We analyse the ABCDH [5] using the model of SD from [26] used in the following scenario:

– an organisation Oage issues credentials about the age of majority;
– an organisation Ocheck issues credentials giving the right to check the age of majority;
– a user C wants to watch a movie rated adult-only due to its violent contents; his has a

credential from Oage with the attribute adult;
– a movie theatre V wants to verify whether the user has the right to watch this movie; it has

a credential from Ocheck with the attribute canCheckAdult.

The scheme is informally given in Figure 11.
nV , nC and n are fresh nonces. Functions f1/1,f2/1 and f3/2 are independent hash functions;

we thus model them as free constructor symbols. The construction SD(⋅; ⋅) is not modelled atom-
ically and follows [26] but we do not describe here its details. We note however that when V

(respectively C) sends a SD(⋅; ⋅), the corresponding message we do not detail here contains an
identity-parameter userV (respectively userC).

This is a 2-party protocol that falls into our class. Actually, we have that userV ∈ fn(I)∩k ≠ ∅
and userC ∈ fn(R) ∩ k ≠ ∅, but fn(I) ∩ fn(R) = ∅ (non-shared case). The complete model of
this protocol is quite complex and can be found in [51]. Frame Opacity can be automatically
established using the syntaxic heuristic (see Section 5.3) in less than 40 seconds. The other

6For more information about IRMA (“I Reveal My Attributes”), see https://www.irmacard.org.

https://www.irmacard.org.

46 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

1. V →C ∶ dh(g,nV),SD(canCheckAdult; f1(dh(g,nV)))
2. C → V ∶ dh(g,nC),SD(∅; f1(dh(g,nV)),dh(g,nC))
3. V →C ∶ enc(⟨0x00,ok⟩, k)
4. C → V ∶ enc(⟨0x01,ok⟩, k)
5. V →C ∶ enc(⟨n,requestAdult⟩, k)
6. C → V ∶ enc(⟨adult,SD(adult; f3(n,seed))⟩, k)

Fig. 11. ABCDH (where seed = dh(dh(g,nC), nV) and k = f2(seed))

heuristics were not enough precise to conclude (yielding negative results) showing the importance
of having the choice between heuristics that are precise but less efficient and ones that are more
efficient but less precise. Regarding well-authentication, due to the length of the protocol, the
queries are also quite long. Because of the latter and the high complexity of the underlying term
algebra, it required too much time for ProVerif to terminate. We addressed this performance
issue by soundly splitting up big queries into smaller ones. This way, we successfully established
well-authentitcation for this protocol within 3 hours.

6.6. DAA join & DAA sign

A Trusted Platform Module (TPM) is a hardware device aiming at protecting cryptographic
keys and at performing some cryptographic operations. Typically, a user may authenticate himself
to a service provider relying on such a TPM. The main advantage is to physically separate the
very sensitive data from the rest of the system. On the downside however, such devices may be
used by malicious agents to breach users’ privacy by exploiting their TPMs. Direct Anonymous
Attestation (DAA) protocols have been designed to let TPMs authenticate themselves whilst
providing accountability and privacy.

In a nutshell, some issuers issue credentials representing membership to a group to the TPM
using group signatures via the DAA join protocol. Those credentials are bound to the internal
secret of the TPM that must remain unknown to the service provider. Then, when a TPM is
willing to prove to a verifier its membership to a group, it uses the DAA sign protocol. We
analysed the RSA-based DAA join and sign protocols as described in [50]. Both protocols rely
on complex cryptographic primitives (e.g. blind signatures, commitments, and Zero Knowledge
proofs) but ProVerif can deal with them all. Note that the authors of [50] have automatically
established a game-based version of unlinkability of the combination of DAA Join and DAA Sign
using ProVerif. We only provide an analysis of each protocol in isolation since the combination
of the two protocols is a 3-party protocol.

6.6.1. DAA join
In the RSA-based DAA join protocol, the TPM starts by sending a credential request in the

form of a commitment containing its internal secret, some session nonce and the public key of the
issuer. The issuer then challenges the TPM with some fresh nonces encrypted asymmetrically
with the public key of the TPM. After having received the expected TPM’s answer, the issuer
sends a new nonce as second challenge. To this second challenge, the TPM needs to provide
a ZK proof bound to this challenge proving that he knows the internal secret on which the
previous commitment was bound. Finally, after verifying this proof, the issuer blindly signs the
commitment allowing the TPM to extract the required credential.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 47

1. TPM→ Issuer ∶NI ,U

2. Issuer→ TPM ∶ penc(ne, n,pk(skTPM))
3. TPM→ Issuer ∶ h((U,ne))
4. Issuer→ TPM ∶ ni
5. TPM→ Issuer ∶ nt,ZKjoin((tsk,nv), (zetaI ,NI ,U, (nt, ni)))
6. Issuer→ TPM ∶ clsign((U, r), skI)

Fig. 12. DAA Join

We give in Figure 12 an Alice & Bob description of the protocol between the TPM and
the issuer. The message zetaI = h((0, bsnI)) relies on bsnI: using a fresh bsnI allows to en-
sure that the session of DAA Join will be unlinkable from previous ones. The message tsk =
h((h((DAAseed,h(KI))), cnt,0)) combines the internal secret of the TPM (i.e. DAAseed) with
the public long-term key of the issuer (i.e. KI). The commit message NI = commit(zetaI , tsk)
binds zetaI with the internal secret while the commit message U = clcommit(pk(skI), nv , tsk)
expresses a credential request for a signature key skI . The goal of the TPM will be to get the
message U signed by the issuer. More precisely, the issuer will blindly sign the message U with
the signature key skI after making sure that the TPM can decrypt challenges encrypted with its
public key (step 2.) and that he can provide a fresh ZK proof showing he knows its internal secret
binds in U and NI (step 5.). Finally, if all checks are successful, the issuer will blindly sign the
credential request U (step 6.). We note clsign((U, r), skI) the blind signature of a commitment U
with signature key skI and some random r. The function penc denotes a randomized asymmetric
encryption scheme. Note that ZK(⋅, ⋅) has two arguments: the first one should contain private
data and the second one should contain public data. One can always extract public data from
ZK proofs and one can check if both public and private data match as expected.

This protocol falls in our class and lies in the shared case7 (i.e. fn(I)∩fn(R) = {skTPM}). UKano
automatically established frame opacity in less than 30 seconds using the syntaxic idealisation,
and in less that 3 seconds when using the quasi-syntaxic heuristic. Note that the semantic one is
not precise enough to allow one to conclude. Regarding well-authentication, we had to leverage
the same splitting technique explained in Section 6.5 so that UKano could conclude in a reasonable
amount of time (around 30 seconds).

6.6.2. DAA sign
Once a TPM has obtained such a credential, it may prove its membership using the DAA sign

protocol. This protocol is played by a TPM and a verifier: the verifier starts by challenging the
TPM with a fresh nonce (step 1.), the latter then sends a complex ZK proof bound to this nonce
(step 2.). The latter ZK proof also proves that the TPM knows a credential from the expected
issuer bound to a secret he knows (essentially a message clsign((U, r), skI) received in a previous
session of DAA join). The verifier accepts only if the ZK proof can be successfully checked (step
3.).

We give in Figure 13 an Alice & Bob description of the protocol between a verifier and the TPM
willing to sign a message m using its credential cred = clsign((U, r), skI) he received from a past

7Both roles share the identity name skTPM (but note that the Issuer only uses pk(skTPM)). Indeed, before
executing the join protocol, the TPM and the issuer should establish a one-way authenticated channel that is not
specified by the DAA scheme. Therefore, an Issuer session is associated to a single TPM’s identity it is expected
to communicate with.

48 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

DAA join session. From its credential cred, the TPM will compute a new credential dedicated to
the current sign session: cred′ = clcommit((pk(skI), cred), nc). Indeed, if the TPM had directly
used cred then two sessions of DAA sign would have been trivially linkable. The TPM also
computes a commit of tsk that was used to obtain the credential: NV = commit(tsk, zetaV)
where zetaV is a fresh nonce8.

1. Verifier→ TPM ∶ nv
2. TPM→ Verifier ∶ (zetaV ,pk(skI),NV , cred

′, nt,

ZKsign((tsk,nc), (zetaV ,pk(skI),NV , cred
′, (nt, nv,m))))

3. Verifier→ TPM ∶ accept/reject
Fig. 13. DAA Sign

Similarly to Examples 10,11, we distinguish two cases whether skI is considered as a private
constant or as an identity parameter. We recall that this choice critically impacts the privacy
property that is modeled. Indeed, the privacy set [48] is considered to be (a) the set of users who
obtained a credential from a given issuer in the former case, or, (b) the set of all users in the
latter case.

(a) skI as a private constant. This 2-party protocol falls in our class and lies in the non-shared
case. Indeed, we model infinitely many different TPMs that may take part to the DAA sign proto-
col with any verifier whose role is always the same (he has no proper identity). We automatically
analysed this protocol with UKano and established both frame opacity and well-authentication in
less than 4 seconds. Frame opacity has been established using a well-chosen idealisation adapted
from the syntaxic heuristic.

(b) skI as an identity parameter. This 2-party protocol falls in our class and lies in the shared case.
Indeed, we model infinitely many different TPMs with credentials signed by pairwise different
issuers that may take part to the DAA sign protocol with a verifier who is checking credential
from the corresponding issuer9. We automatically analysed this protocol with UKano and we
found that frame opacity is violated for any of UKano heuristic (note that the idealisation for
the case (a) is not conform for (b)). By inspecting the attack trace returned by UKano, one
can quickly rebuild an attack against unlinkability and anonymity. Indeed, the attack on frame
opacity shows that an attacker can exploit the fact that the ZK proof contains in its public part
the public key of the issuer (i.e. pk(skI))). A passive eavesdropper is thus able to learn the issuer
that has signed the credential used in a ZK proof sent by a prover, hence breaking anonymity
and unlinkability. This is not surprising as the privacy mechanism of DAA sign was intended to
protect users’ privacy inside a certain group (associated with an issuer), which is a property we
have checked, and which holds, with the variant (a).

6.6.3. Summary
We now summarise our results in Table 1. We only summarize results obtained regarding

unlinkability and considering concurrent sessions. For each protocol, we mention the identity
parameters of each role. Most of our case studies fall into the shared case with fn(I)∩fn(R) ≠ ∅.

8The protocol also specifies a mode that makes different signatures linkable by construction using zetaV =

h((0, bsnV)). We focus on the other mode for which unlinkability is expected to hold.
9We discuss a more precise modelling and why it cannot be analyzed in our framework in 7.1.2.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 49

We indicate the verification time in seconds to verify both conditions. When there is an attack,
we give the time ProVerif takes to show that one of the condition fails to hold. We note ✓ for
a condition automatically checked using our tool UKano and ✕ when the condition does not
hold. Note that all positive results were established automatically using our tool UKano (which
is based on ProVerif) without any manual effort (except for the cases indicated by ✓

∗ for which
little manual efforts were needed).

Protocol
Identity parameters Frame

opacity
Well-
auth. Unlink. Verification

timein role I in role R

Hash-Lock k k ✓ ✓ safe < 1s

Fixed LAK k k ✓ ✓ safe < 1s

BAC kE , kM kE , kM ✓ ✓ safe < 1s

BAC/PA/AA kE , kM kE , kM ✓ ✓ safe < 1s

BAC/AA/PA kE , kM kE , kM ✓ ✓ safe < 1s

PACE (faillible dec) k k − ✕ attack < 30s

PACE (as in [18]) k k − ✕ attack < 1m

PACE k k − ✕ attack < 2m

PACE with tags k k ✓ ✓ safe < 2m

ABCDH (irma) userV userC ✓ ✓
∗

safe < 3h

DAA join DAAseed, skTPM skTPM ✓ ✓
∗

safe < 5s

DAA sign (a) ∅ DAAseed, cnt, r ✓
∗

✓ safe < 5s

DAA sign (b) skI skI ,DAAseed, cnt, r ✕ ✓ attack < 1s

Table 1

Summary of our case studies regarding unlinkability with concurrent sessions

7. Limitations of our approach

In this section, we would like to discuss some further limitations of our approach. We first
explain some limitations that come from the approach itself in Section 7.1. In Section 7.2, we
then discuss some limitations of our tool UKano which inherits some of the limitations of the
ProVerif tool on which it is based.

7.1. Limitations of our Theorem 1

Our approach consists of providing two sufficient conditions under which anonymity (see Def-
inition 12) and unlinkability (see Definition 10) are satisfied. These condtions, even if they are
satisfied by many concrete examples, may not be fullfilled by some protocols that are never-
theless anonymous and unlinkable (see examples described in Section 7.1.1). We then discuss in
Section 7.1.2 some limitations that come from the class of protocols we consider.

50 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

7.1.1. Tightness of our conditions
As illustrated by the toy protocols given in Examples 30 and 31, our conditions are sufficient

but not necessary to ensure unlinkability or anonymity.

Example 30. We suppose that, initially, each tag has its own key k and the reader maintains a
database containing those keys. The protocol relies on symmetric encryption, and can be infor-
mally described as follows.

Tag→ Reader ∶ {id}k

Once the reader receives the encryption, it opens it and checks the identity of the tag before
accepting (or not) to grant access to the tag. This protocol falls into our generic class of 2-party
protocols (shared case). Anonymity w.r.t. id is satisfied but unlinkability is not: a given tag always
sends the same message.

Regarding our conditions, frame opacity does not hold. Consider

φ = {w1 ↦ {id1}k1 , w2 ↦ {id1}k1 , w3 ↦ {id2}k2}.

Such a frame can be obtained when executing the MΠ process. The syntactical idealisation will
rename both occurrences of id1 (resp. k1) using different names whereas the semantical idealisa-
tion will idealise each output using a fresh names. In both cases, the resulting idealised frame is
not statically equivalent to φ. Thus, frame opacity cannot be established using these idealisations.
Actually, no idealisation will be able to idealise the two first outputs in the same way and the two
last outputs in different way at the same time. This illustrates that frame opacity is a too strong
condition when considering anonymity.

Regarding well-authentication, we can establish that such a condition does not hold as well.
Still considering the execution leading to the frame φ above, we can then consider a reader that
starts two sessions accepting twice w1 as an input. It will then continue by executing its condi-
tionals positively. The annotations of these two conditionals will be respectively R({k1, id1}, sid)
and R({k1, id1}, sid ′). Therefore, condition (ii) of Definition 19 is not satisfied. These two con-
ditionals are not safe and they are both associated to the same annotation (the one carried out
by the output w1). This does not break anonymity but simply shows that replaying messages is a
scenario that allows an attacker to fool one party (here the reader) up to some point (here until
the end).

Example 31. In order to ensure unlinkability, we now suppose that the tag sends its identity
accompanied with a freshly generated random number r. Therefore, we have that:

Tag→ Reader ∶ {⟨r, id ⟩}k.

This protocol falls into our generic class of 2-party protocols (shared case). The identity param-
eters of both roles are id and k whereas r is the session parameter of role I. As in the previous
example, anonymity w.r.t. id holds. Unlinkability should hold, assuming that the reader does not
output any message indicating whether the test has been passed with success or not.

Actually, frame opacity can be established relying on either the syntaxical idealisation or the
semantical one. The fresh random number inside each encryption allows one to ensure that all

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 51

the ciphertexts are different. However, for the same reason as the one explained in the previous
example, well-authentication does not hold: condition (ii) is not satisfied.

We recall that this can be considered as a false attack only if the protocol and the use case both
enforce that the continuation of the protocol in case the test passes is always indistinguishable
from the continuation in the other case; this is a strong assumption.

7.1.2. Class of protocols
Among the limitations coming from our definition of protocols, we first reconsider the DAA

sign and PACE protocols to highlight some limitations of our approach.

Two parties only. Our notion of protocols only covers 2-party protocols. This obviously excludes
important protocols with more than 2 parties such as secure group communication protocols [45],
e-voting protocols [37], make mobile communication protocols [14], the combination of DAA join
and DAA sign [37] that features 3 parties, etc. This also excludes scenarios where privacy is
considered between group of entities. For instance for DAA sign (see Example 10 or Section 6.6.2),
verifiers and clients may be associated to different issuers. Using our framework, one can analyze
privacy between users in a single group (as in Example 10), or between groups but where each
goup has only one user (as in Example 11). In the latter case, one would rather want to model
privacy between groups where each group contains an unbounded number of users, but this is
out of the scope of our approach. This is not surprinsing since such a scenario actually features
three parties: clients, verifiers, issuers (forming groups); all with unbounded number of entities.

Honest trace. Now, we want to report on a potential limitation we discovered when analysing
the PACE protocol using Tamarin. Our initial aim was to investigate the scenario where sessions
can be executed only sequentially. We have turned to Tamarin since ProVerif is not able to
faithfully model such scenarios. We wrote a Tamarin model encoding well-authentication and
found surprisingly that this condition does not hold, even with the tagged version. This contrasts
with the positive result obtained with ProVerif. Actually, this comes from the fact that Tamarin

models Diffie-Hellman exponentiation in a more faithful way than ProVerif. Some behaviours that
were not possible in the ProVerif model become possible, and it happens that well-authentication
is not satisfied in such a model.

Indeed, the attacker can alter the Diffie-Hellman shares, as informally depicted in Figure 14,
without impacting the successive conditionals. This is problematic because successful tests will

1. Tag→ Reader ∶ {sT }k
2. Reader→ Attacker ∶ gnR

2′. Attacker → Tag ∶ (gnR)X
3. Tag→ Attacker ∶ gnT

3′. Attacker → Reader ∶ (gnT)X

Fig. 14. Example of successful but dishonest interaction (X can be any message)

pass (independently of the message X) while such interactions are not honest according to our
current definition of honest trace (see Definition 4). This problematic interaction is however not
detected in ProVerif, due to the lack of equations in the underlying equational theory: the final
keys computed by both parties will be different, ((gnR)X)nT for the tag and ((gnT)X)nR for the

52 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

reader. Therefore such an interaction cannot be completed sucessfully, and well-authentication
will be established.

The failure of well-authentication described above does not yield a failure of unlinkability. It
is thus a case where one might want to make well-authentication less restrictive. One direction
for weakening it is to extend the notion of “honest trace associated to a protocol” (Definition 5):
instead of a single honest trace we would associate to a protocol a set of symbolic traces that
are, roughly, traces with (possibly) variables in recipes. For PACE, one may for instance use
trh = out(cI ,w1).in(cR,dh(w1,X)).out(cR,w2).in(cI ,dh(w2,X)). . . . in addition to the standard
trace. However, in order to adapt our proof technique, we need to make sure that whatever the
recipes chosen to fill in the variables (e.g. X in trh), the resulting concrete trace can be executed
by the protocol and the produced frame always has the same idealisation. Remark that this is
the case for trh in the case of the PACE protocol.

In practice, this limitation on the well-authentication condition does not seem very important,
as the issue is tied to the peculiar use of two Diffie-Hellman rounds in PACE and, expanding the
discussion beyond privacy, the attack on well-authentication shows a potential weakness in that
protocol. Indeed, Tag and Reader fail to establish an agreement on each other’s Diffie-Hellman
shares from the first round (i.e. gnR and gnT). Therefore, an attacker is able to manipulate those
shares without being detected, which goes against best practices in protocol design. In contrast,
the MAC messages 8 and 9 (see Figure 9) allow the Tag and Reader to agree on each other’s Diffie-

Hellman shares from the second round (i.e. Gn′
T and Gn′

R) and on the shared key resulting from
the first round (i.e. gnRnT in G). Adding gnT (respectively gnR) to the first (respectively second)
MAC message would fix this lack of agreement. We have formally verified with Tamarin that
PACE with this modification indeed satisfies well-authentication, thus providing an agreement
on the full protocol transcript.

Stateless only. Our framework and our theorem only applies to stateless protocols (i.e. no mu-
table states persistent across sessions). This immediately excludes numerous real-world protocols
such as secure messaging protocols [31], mobile communication protocols [14], etc.

7.2. Limitations of our tool UKano

Our tool UKano also suffers from some limitations. In particular, the heuristics we propose
to build idealisation could be improved. For instance, in case of DAA sign, we were unable to
establish frame opacity fully automatically: we had to propose a well-chosen idealisation adapted
from the syntaxic heuristic. Note that, in general the syntaxic heuristic is a good choice but yields
large messages that may cause some efficiency issues to ProVerif. The semantical heuristic is less
precise but much more efficient. In case of DAA sign, we make a trade-off betweeen these two
choices to establish frame opacity. Regarding well-authentication, the resulting queries happen
to be quite big and may also cause some troubles to ProVerif. This can be adressed by soundly
splitting the query (see Section 6.5) but this feature has not been implemented in UKano.

Besides the limitations of our tool UKano, we also inherit some of the limitations of the backend
tool, i.e. ProVerif. For instance, in terms of cryptographic primitives, we have seen that ProVerif
only consider a very abstract model for modular exponentiation, and does not allow one to model
all the algebraic properties of the exclusive-or operator. We are also unable to faithfully model
scenarios involving sequential compositions. This feature could be modeled in ProVerif relying on

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 53

private chanels but abstractions performed by ProVerif when modeling private channels will not
allow us to benefit from the extra information of that encoding. Of course, this limits the scope of
our approach but progress made on existing verification tools will directly benefit to our approach
as well. In particular, a natural extension for our tool UKano would be to consider Tamarin as a
backend. This would bring precise support for sequential composition, a more faithful model for
Diffie-Hellman exchange, and also the recent extension to deal with the exclusive-or operator [39].

8. Conclusion

We have identified two conditions, namely well-authentication and frame opacity, which imply
anonymity and unlinkability for a wide class of protocols. Additionally, we have shown that these
two conditions can be checked automatically using the tool ProVerif, and we have mechanised
their verification in our tool UKano. This yields a new verification technique to check anonymity
and unlinkability for an unbounded number of sessions. It has proved quite effective on various
case studies. In particular, it has brought first-time unlinkability proofs for the BAC protocol
(e-passport) and ABCDH protocol. Our case studies also illustrated that our methodology is
useful to discover attacks against unlinkability and anonymity as illustrated by the new attacks
we found on PACE and LAK.

In the future, we plan to improve the way our sufficient conditions are checked. For instance,
we would like to let UKano build idealisations in a cleverer way; notably in the choice of heuristics
to adopt, and we are interested in other tools we may leverage as back-ends (e.g. Tamarin). We
are also interested in simplifying further the verification of our conditions towards completely
reducing the verification of equivalence-based properties to pure reachability verifications, which
are known to be much simpler. Specifically, we believe that frame opacity could be verified via
reachability and syntactical checks only. Obtaining such a result would certainly be useful, as it
would allow us to use a richer toolset to verify case studies.

Based on limitations discussed in Section 7.1.2, we also identify a number of research problems
aimed at generalizing the impact of our technique. We would like to investigate the extension of
our main theorem to the case of protocols with states. This is certainly technically challenging,
but would make it possible to model more protocols, or at least model them more faithfully.
We are also interested in extending our method to protocols with more than 2 parties which are
commonplace (e.g. the combination of DAA join and DAA sign is essentially a 3-party protocol).

Finally, we believe that the overall methodology developed in this paper (i.e. privacy via suf-
ficient conditions) could be applied in other contexts where privacy is critical: e.g. e-voting,
attribute-based credentials, blockchain technologies, transparent certificate authorities. In our
opinion, the privacy via sufficient conditions approach also sheds light on the privacy notions
themselves. Indeed, each sufficient condition helps to get a better grasp of necessary ingredi-
ents for preserving privacy. It might thus be interesting to translate such conditions into more
comprehensive guidelines helping the design of new privacy-enhancing protocols.

Acknowledgement. We would like to thank Bruno Blanchet for his valuable help regarding
the mechanisation in ProVerif of our frame opacity condition. The extension of bi-processes in
Section 5.1 is due to him. We also thank Solène Moreau for her useful feedback on earlier versions
of this paper.

54 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

References

[1] PKI for machine readable travel documents offering ICC read-only access. Technical report, International
Civil Aviation Organization, 2004.

[2] Iso 15408-2: Common criteria for information technology security evaluation - part 2: Security functional
components, July 2009.

[3] M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for certified email. In Static Analysis,
pages 316–335. Springer, 2003.

[4] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proceedings of POPL’01.
ACM Press, 2001.

[5] G. Alpár and J.-H. Hoepman. A secure channel for attribute-based credentials:[short paper]. In Proceedings
of the 2013 ACM workshop on Digital identity management, pages 13–18. ACM, 2013.

[6] M. Arapinis, V. Cheval, and S. Delaune. Verifying privacy-type properties in a modular way. In Pro-
ceedings of the 25th IEEE Computer Security Foundations Symposium (CSF’12), pages 95–109, Cambridge
Massachusetts, USA, June 2012. IEEE Computer Society Press.

[7] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and anonymity using the applied
pi calculus. In Proceedings of CSF’10. IEEE Comp. Soc. Press, 2010.

[8] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Borgaonkar. New privacy issues
in mobile telephony: fix and verification. In Proceedings of the ACM conference on Computer and communi-
cations security, pages 205–216. ACM, 2012.

[9] M. Arapinis, L. I. Mancini, E. Ritter, and M. Ryan. Privacy through pseudonymity in mobile telephony
systems. In NDSS, 2014.

[10] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal analysis of SAML 2.0 web
browser single sign-on: breaking the SAML-based single sign-on for Google apps. In Proc. 6th ACM Workshop
on Formal Methods in Security Engineering (FMSE’08), pages 1–10. ACM, 2008.

[11] A. Armando et al. The AVANTSSAR platform for the automated validation of trust and security of service-
oriented architectures. In Proc. 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’12), volume 7214, pages 267–282. Springer, 2012.

[12] M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting protocols in the
applied pi-calculus. In Proceedings of the 21st IEEE Computer Security Foundations Symposium, CSF 2008,
Pittsburgh, Pennsylvania, 23-25 June 2008, pages 195–209. IEEE Computer Society, 2008.

[13] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and automated verification
of the direct anonymous attestation protocol. In Security and Privacy, 2008. SP 2008. IEEE Symposium on,
pages 202–215. IEEE, 2008.

[14] D. Basin, J. Dreier, L. Hirschi, S. Radomirović, R. Sasse, and V. Stettler. Formal analysis of 5G authentication.
arXiv preprint arXiv:1806.10360, 2018.

[15] D. Basin, J. Dreier, and R. Sasse. Automated symbolic proofs of observational equivalence. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 1144–1155. ACM,
2015.

[16] M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th Conference on
Computer and Communications Security. ACM, 2005.

[17] J. Bender, Ö. Dagdelen, M. Fischlin, and D. Kügler. The pace aa protocol for machine readable travel
documents, and its security. In Financial Cryptography and Data Security, pages 344–358. Springer, 2012.

[18] J. Bender, M. Fischlin, and D. Kügler. Security analysis of the pace key-agreement protocol. In Information
Security, pages 33–48. Springer, 2009.

[19] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In Proceedings of CSFW’01,
pages 82–96. IEEE Comp. Soc. Press, 2001.

[20] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for security protocols.
Journal of Logic and Algebraic Programming, 2008.

[21] B. Blanchet and B. Smyth. Automated reasoning for equivalences in the applied pi calculus with barriers.
In Proc. 29th Computer Security Foundations Symposium, 2016.

[22] M. Brusó. Dissecting Unlinkability. PhD thesis, Technische Universiteit Eindhoven, 2014.
[23] M. Brusó, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for RFID systems. In

Proceedings of CSF’10, 2010.
[24] M. Brusó, K. Chatzikokolakis, S. Etalle, and J. Den Hartog. Linking unlinkability. In Trustworthy Global

Computing, pages 129–144. Springer, 2012.
[25] J. Camenisch, A. Lehmann, and G. Neven. Electronic identities need private credentials. IEEE Security &

Privacy, 10(1):80–83, 2012.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 55

[26] J. Camenisch, S. Mödersheim, and D. Sommer. A formal model of identity mixer. In Formal Methods for
Industrial Critical Systems, pages 198–214. Springer, 2010.

[27] L. Cheikhrouhou, W. Stephan, Ö. Dagdelen, M. Fischlin, and M. Ullmann. Merging the cryptographic
security analysis and the algebraic-logic security proof of pace. In Sicherheit, pages 83–94, 2012.

[28] V. Cheval and B. Blanchet. Proving more observational equivalences with ProVerif. In Proc. 2nd Conference
on Principles of Security and Trust, volume 7796 of LNCS, pages 226–246. Springer, 2013.

[29] V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests and non-
determinism. In Proceedings of CCS’11. ACM Press, 2011.

[30] R. Chrétien, V. Cortier, and S. Delaune. From security protocols to pushdown automata. ACM Transactions
on Computational Logic, 17(1:3), Sept. 2015.

[31] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal security analysis of the
signal messaging protocol. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium on, pages
451–466. IEEE, 2017.

[32] H. Comon and A. Koutsos. Formal computational unlinkability proofs of rfid protocols. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pages 100–114, Aug 2017.

[33] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in cryptographic protocols.
Journal of Computer Security, 14(1):1–43, 2006.

[34] V. Cortier and B. Smyth. Attacking and fixing Helios: An analysis of ballot secrecy. Journal of Computer
Security, 21(1):89–148, 2013.

[35] S. Delaune and L. Hirschi. A survey of symbolic methods for establishing equivalence-based properties in
cryptographic protocols. Journal of Logical and Algebraic Methods in Programming, 2016.

[36] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic voting protocols.
Journal of Computer Security, (4), 2008.

[37] S. Delaune, M. D. Ryan, and B. Smyth. Automatic verification of privacy properties in the applied pi-calculus.
In Proceedings of the 2nd Joint iTrust and PST Conferences on Privacy, Trust Management and Security
(IFIPTM’08), volume 263 of IFIP Conference Proceedings. Springer, 2008.

[38] N. Dong, H. Jonker, and J. Pang. Formal analysis of privacy in an ehealth protocol. In Computer Security–
ESORICS 2012, pages 325–342. Springer, 2012.

[39] J. Dreier, L. Hirschi, S. Radomirovic, and R. Sasse. Automated unbounded verification of stateful crypto-
graphic protocols with exclusive or. In 31st IEEE Computer Security Foundations Symposium (CSF’2018),
2018.

[40] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID systems using the AES
algorithm. In Cryptographic Hardware and Embedded Systems-CHES 2004, pages 357–370. Springer, 2004.

[41] L. Hirschi. Automated Verification of Privacy in Security Protocols: Back and Forth Between Theory &
Practice. PhD thesis, École Normale Supérieure Paris-Saclay, April 2017.

[42] L. Hirschi, D. Baelde, and S. Delaune. A method for verifying privacy-type properties: the unbounded case.
In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P’16), San Jose, California, USA,
May 2016. IEEE Computer Society Press.

[43] A. Juels and S. A. Weis. Defining strong privacy for RFID. ACM Transactions on Information and System
Security (TISSEC), 13(1):7, 2009.

[44] S. Lee, T. Asano, and K. Kim. RFID mutual authentication scheme based on synchronized secret information.
In Symposium on cryptography and information security, 2006.

[45] C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues and trends. IEEE journal
on selected areas in communications, 21(1):44–54, 2003.

[46] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The Tamarin Prover for the Symbolic Analysis of Security
Protocols. In Proc. 25th International Conference on Computer Aided Verification (CAV’13), volume 8044
of LNCS, pages 696–701. Springer, 2013.

[47] C. Paquin and G. Zaverucha. U-prove cryptographic specification v1.1 (revision 3), December 2013.
[48] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and pseudonymity—a proposal for terminology.

In Designing privacy enhancing technologies, pages 1–9. Springer, 2001.
[49] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer. A formal definition of protocol indistinguishability

and its verification using maude-npa. In Security and Trust Management, pages 162–177. Springer, 2014.
[50] B. Smyth, M. D. Ryan, and L. Chen. Formal analysis of privacy in direct anonymous attestation schemes.

Science of Computer Programming, 111:300–317, 2015.
[51] UKano tool and case studies. http://projects.lsv.ens-cachan.fr/ukano/. Accessed: 12-11-2018.
[52] T. Van Deursen and S. Radomirovic. Attacks on RFID protocols. IACR Cryptology ePrint Archive, 2008:310,

2008.

http://projects.lsv.ens-cachan.fr/ukano/

56 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

Appendix

We provide in this appendix the proof of our main result (Theorem 1). Our main argument
consists in showing that, for any execution of M

Π,id
, there is an indistinguishable execution

of SΠ (the other direction being easy). This indistinguishable execution will be obtained by a
modification of the involved agents. We will proceed via a renaming of agents applied to an
abstraction of the given execution ofM

Π,id
. We then prove that the renamed executions can still

be executed and produce an indistinguishable frame.

We fix a protocol Π = (k,nI , nR, †I , †R,I,R), some identity names id and some fresh con-
stants id0 yielding a process M

Π,id
as defined in Section 3. We denote id0i (resp id i, ki, and k′i)

the ith element of the sequence id0 (resp. id , k, and k′). The construction of the proof will slightly
differ depending on †I , †R (sequential vs concurrent sessions) and whether fn(I) ∩ fn(R) = ∅ or
not (non-shared case vs shared case).

A. Abstraction of configurations

Instead of working with M
Π,id

,MΠ, and SΠ, it will be more convenient to work with ground
configurations. Intuitively, we will associate to each execution of M

Π,id
,MΠ, and SΠ, a ground

configuration that contains all agents involved in that execution, already correctly instantiated.
By doing so, we are able to get rid of technical details such as unfolding replications and repeti-
tions a necessary number of times, create necessary identity and session parameters, etc. These
ground configurations are generated from sequences of annotations satisfying some requirements.

A.1. Sequences of annotations

The sequence of annotations from which we will build ground configurations shall satisfy some
requirements that we list below. Essentially, the goal is to make sure that no freshness condition
over session and identity names is violated.

Definition 21. A sequence S of annotations is well-formed if the following conditions hold.

– In all annotations A(k′, n′) with A ∈ {I,R}, the session parameters n′ are names, and the
identity parameters k′ are made of names or constants id0. We also have that ∣n′∣ = ∣nA∣ and
∣k′∣ = ∣k∣. Moreover, when id0 ∩ k′ ≠ ∅, k′i = id0j if, and only if, ki = id j .

– No name appears both as identity and session parameter in any two annotations.
– Two different annotations never share a session parameter.
– Two annotations either have the same identity parameters, or do not share any identity

parameter at all.

We say that a sequence of annotations S is single-session when two different annotations of the
same role never share an identity parameter and no annotation contains a constant in id0.

We straightforwardly lift those definitions to annotated traces by only keeping the underlying
sequence of annotations and dropping actions. A well-formed (resp. well-formed, single-session)
sequence of annotations contains annotations of agents that can be instantiated from M

Π,id

(resp. SΠ). Conversely, we may note that given an annotated trace ta such that M
Π,id

ta
Ð→ K ′,

we have that ta is well-formed.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 57

A.2. Ground configurations

After the introduction of some notations, we explain how ground configurations are obtained
from well-formed sequences of annotations. Given a well-formed sequence of annotations S, and
some role A ∈ {I,R}, we introduce the following notations:

– idA(S) is the set of identity parameters of agents of role A occurring in S, i.e.

idA(S) = {k ∣ A(k,n) ∈ S}.

– for l ∈ idA(S), we note sessA(S, l) the set of session parameters of agents of role A and
identity parameters l occurring in S, i.e. sessA(S, l) = {n ∣ A(l, n) ∈ S}.

– for l ∈ idA(S), we note sess
seq
A (S, l) the sequence made of elements from sessA(S, l), without

repetition, in order of first occurrence in S.

Finally, for some sequence of elements L = e1, e2, e3, . . . and a process P (e) parametrized by e,
we denote by ∐e∈LP (e) the process P (e1); (P (e2); (P (e3); . . .)).
Definition 22. Let S be a well-formed sequence of annotations. The ground configuration asso-
ciated to S, denoted by K(S), is the multiset PI ⊔ PR where PI is defined as follows depending
on †I :

– if †I = ! then PI = { (I{k ↦ l, nI ↦m})[I(l,m)] ∣ I(l,m) ∈ S };
– if †I =

!

then PI = { ∐m∈S
l
(I{k ↦ l, nI ↦m})[I(l,m)] ∣ l ∈ idI(S) and S

l
= sess

seq
I
(S, l) } .

The multiset PR is computed in a similar way, replacing I, nI and I by R, nR and R respectively.

Example 32. Consider the following toy protocol Πtoy ∶= (k,nI , nR,

!

,

!

,I,R) where I =
out(cI , enc(nI , k)) and R = in(cR, x). We have that

MΠtoy =! new k.(

!

newnI .I ∣

!

newnR.R) ta
Ð→ (Q;φ)

for ta = τ.τ.τ.τ.τ. ℓ ∶ out(cI ,w0)[I(k,nI)].τ.τ.τ. ℓ ∶ out(cI ,w1)[I(k,n′I)]. The ground configura-
tion associated to ta is the following multiset with one element:

K(ta) = {(out(cI , enc(nI , k))[I(k,nI)]); (out(cI , enc(n′I , k))[I(k,n′I)])}.

Note that K(ta) is also able to produce the annotated trace ta up to some τ actions.

We lift those definitions to annotated traces as before. A ground configuration associated to a
well-formed sequence of annotations is essentially an “unfolding” of M

Π,id
. Therefore, there is a

strong relationship between the original process and the one obtained through K(⋅) as established
in the following proposition.

Proposition 4. Let ta be a well-formed annotated trace. We have that:

(1) IfM
Π,id

ta
Ô⇒K (resp. SΠ

ta
Ô⇒K), then K(ta) ta

Ô⇒K ′ for some K ′ such that φ(K) = φ(K ′).
(2) If K(ta) ta

Ô⇒K, then M
Π,id

ta
Ô⇒K ′ for some K ′ such that φ(K) = φ(K ′).

58 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

(3) If K(ta) ta
Ô⇒ K and ta is single-session, then SΠ

ta
Ô⇒ K ′ for some K ′ such that φ(K) =

φ(K ′).
(4) If ta = ta1.ta2 and K(ta1.ta2) ta1

Ð→ K then K(ta1) ta1
Ð→ K ′ for some K ′ such that φ(K) =

φ(K ′).

Proof. Item (1) holds by construction of the operator K(⋅), which has been built by closely
mimicking how M

Π,id
and SΠ create agents. We thus have that when an agent is at top-level

in a configuration in the execution of M
Π,id

(or SΠ) then it is also available in the execution

of K(ta). In general, less τ actions are necessary for the execution starting with K(ta) than for
the executions starting withM

Π,id
or SΠ. Indeed, there is no need, in ground configurations, to

spawn agents by unfolding replications or repetitions or creating fresh names. This is because
agents are (more) immediately available in K(ta).

Item (2) heavily relies on the well-formedness of ta. One can thus prove that all agents in K(ta)
can be created along the execution by choosing appropriate names when triggering rules New.
For instance, the first item of Definition 21 makes sure that the arity of parameters in agents
matches the number of names to be created. The second and third items of Definition 21 ensure
that the freshness guard conditions of the rule New holds for names to be created. Finally, the
fourth item of Definition 21 implies that when an agent a = A(k,n) must be created then either
(i) names in k are completely fresh and this identity k can be created fromM

Π,id
by unfolding !

and create names k or (ii) names in k have already been created and thus the agent a can be
created from the last replicated process used to create identity k in the first place.

Item (3) is similar to (2). The single-session hypothesis provides exactly what is needed to
mimic the execution using SΠ rather than M

Π,id
.

Finally, item (4) stems from a simple observation. Compared to K(ta1), the multiset of pro-
cesses K(ta1.ta2) adds processes in parallel and in sequence after some processes of K(ta1). How-
ever, these extra processes are unused when executing ta1, thus K(ta1) can perform the same
execution.

A.3. Renamings of annotations

As mentioned before, we shall prove that for any execution ofM
Π,id

, there is an indistinguish-
able execution of SΠ. This indistinguishable execution that SΠ can perform will be obtained by
a renaming of annotations. We define next a generic notion of such renamings of annotations.
However, the crux of the final proof is to find a good renaming that implies: (i) the executability
by SΠ of the renamed trace, and (ii) the static indistinguishability of the resulting frames (before
and after the renaming).

Definition 23. A renaming of annotations (denoted by ρ) is an injective mapping from annotations
to annotations such that:

– for any well-formed sequence of annotations S, Sρ is well-formed;
– ρ is role-preserving: i.e. initiator (resp. responder) annotations are mapped to initiator (resp.

responder) annotations;
– for any two annotations a1 = A1(k1, n1), a2 = A2(k2, n2), if ρ(a1) and ρ(a2) have the same

identity parameters, then k1 = k2.

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 59

The two first conditions are expected: renaming of annotations shall only modify session and
identity parameters whilst preserving well-formedness. The final condition ensures that renam-
ings do not create more “sequential dependencies” between agents (i.e. agents sharing the same
identity and whose role can execute sessions only sequentially): after renaming, less pairs of
agents have same identity.

Next, we define taρ as the annotated trace obtained from ta by applying ρ to annotations only.
Note that, by definition of renamings, the resulting taρ is well-formed as well.

One can also define the effect of renamings on ground configurations. If ρ(A(k,n)) = A(k′, n′),
the renaming σ induced by ρ on A(k,n) is the (injective) mapping such that kσ = k′ and

nσ = n′. Given a ground configuration P = {∐j P
i
j [aij]}i, we define Pρ = {∐j P

i
jσ

i
j[ρ(aij)]}i where

σij is the renaming induced by ρ on aij . Note that the renaming on parameters induced by a

renaming of annotations may conflict: this happens, for example, when ρ(A(k,n)) = A(k1, n)
and ρ(A(k,m)) = A(k2,m).

A renaming of annotations can break executability. Even when executability is preserved, it
is not obvious to relate processes before and after the renaming, as messages can be affected
in complex ways and conditionals may not evaluate to the same outcome. Fortunately, frame
opacity and well-authentication will provide us with strong properties to reason over executions,
as seen in the next subsections.

Example 33. Consider the annotated trace ta from Example 18 that M
Π,id

can execute. The

ground configuration K(ta) can execute it as well, using Ô⇒. We now define ρ as follows:
ρ(I(k′, n′I)) = I(k1, n′I) and ρ(R(k′, n′R)) = R(k2, n′R) for some fresh names k1, k2. The trace taρ

can no longer be executed by M
Π,id

nor by K(ta)ρ (even using Ô⇒) because the first output sent

by R(k2, n′R) (i.e. enc(⟨n′I , n′R⟩, k2)) will not be accepted by I(k1, n′I) since k1 ≠ k2.

B. Control is determined by associations

We show in that section that the outcome of tests is entirely determined by associations. This
will be useful to show that, if we modify an execution (by renaming agents) while preserving
enough associations, then the control flow is left unchanged.

Proposition 5. We assume that Π satisfies item (i) of the well-authentication condition. Let
ta = ta0.τx[a1] with τx ∈ {τthen, τelse} be a well-formed annotated trace such that

K(ta) ta0.τx[a1]
ÐÐÐÐÐ→ (P;φ)

and the last action (i.e. τx[a1]) is performed by an unsafe conditional. We have that τx = τthen
if, and only if, there exists a2 ∈ A such that a1 and a2 are associated in (ta0, φ).

Proof. (⇒) We start by applying Proposition 4 to obtain an execution

M
Π,id

ta0.τthen[a1]
ÔÔÔÔÔ⇒ (P ′;φ) and thus M

Π,id

ta∗
0
.τthen[a1]

ÐÐÐÐÐÐ→ (P ′′;φ).

60 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

for some ta∗0
τ
= ta0. As a consequence of well-authentication, item (i) applied on the above exe-

cution, we obtain that for some a2 ∈ A, a1 and a2 are associated in (ta∗0 , φ). Since ta0
τ
= ta∗0 , they

are also associated in (ta0, φ).
(⇐) For this other direction, we observe that (up to changes of recipes that do not affect the

resulting messages) if two agents are associated in the above execution (starting with K(ta)), then
they are executing the honest trace of Π modulo a renaming of parameters, thus the considered
test must be successful. We thus assume that a1 = A1(k1, n1) and a2 = A2(k2, n2) are associated
in (ta0, φ) we shall prove that τx = τthen. By association, ta0∣a1,a2 is honest: its observable actions
are of the form out(c1,w1).in(c′1,M1) . . . out(cn,wn).in(c′n,Mn) with possibly an extra output
at the end, and are such that Miφ ⇓=E wiφ for all 1 ≤ i ≤ n. Consider ta′ obtained from ta0
by replacing each recipe Mi by wi. Since this change of recipes does not affect the resulting
messages, the modified trace can still be executed by K(ta) and yields the same configuration
(P;φ). But now ta′∣a1,a2 is a self-contained execution, i.e. if P and Q are the processes (possibly
sub-processes) respectively annotated a1 and a2 in K(ta), we have:

({P [a1],Q[a2]};∅)
ta′∣a1,a2
ÐÐÐÐ→ ({P ′[a1],Q′[a2]};φ′)

τx[a1]
ÐÐÐ→ ({P ′′[a1],Q′[a2]};φ′).

In the shared case (i.e. fn(I) ∩ fn(R) ≠ ∅), by definition of association, the identity parameters
of a1 are equal to those of a2. Otherwise, it holds that fn(I)∩ fn(R) = ∅. In both cases, we thus
have:

({new k.(new nI .I ∣ new nR.R)};∅) τ∗

Ð→ ({P [a1],Q[a2]};∅)
ta′∣a1,a2
ÐÐÐÐ→ ({P ′[a1],Q′[a2]};φ′)
τx[a1]
ÐÐÐ→ ({P ′′[a1],Q′[a2]};φ′).

In that execution, everything is deterministic (up to the equational theory) and thus the execution
is actually a prefix of the honest execution of Π (from the process PΠ defined in Definition 5),
up to a bijective renaming of parameters (note that P and Q do not share session parameters).
Remind that all tests must be positive in the honest execution (i.e. τelse does not occur in the
honest execution). Therefore, τx = τthen concluding the proof.

C. Invariance of frame idealisations

In general, a renaming of annotations can break executability: as illustrated in Example 33,
mapping two dual annotations to annotations with different identities breaks the ability of the two
underlying agents to communicate successfully. Moreover, even when executability is preserved,
parameters change (so do names) and thus frames are modified. However, as stated next in
Proposition 6, such renamings do not change idealised frames. We obtain the latter since we
made sure that idealised frames only depend on what is already observable and not on specific
identity or session parameters. In combination with frame opacity, this will imply (Proposition 7)
that a renaming of annotations has no observable effect on the resulting real frames.

Proposition 6. Let ta be an annotated trace such that Φideal(ta) is well-defined. Let ρ be a re-
naming of annotations. We have that Φideal(ta) ∼ Φideal(taρ).

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 61

Proof. Let ta be an annotated trace such that Φideal(ta) is well-defined. Let ρ be a renaming of
annotations. Let fr1 be an arbitrary name assignment, and fr2 be an injective function satisfying
fr2(aρ,x) = fr1(a,x). First, we show, by induction on ta, that Φfr1

ideal
(ta) = Φfr2

ideal
(taρ). The only

interesting case is when ta = ta0.(ℓ ∶ out(c,w)[a]). In such a case, we have that:

Φfr1
ideal
(ta0.(ℓ ∶ out(c,w)[a])) = Φfr1

ideal
(ta0) ∪ {w ↦ ideal(ℓ)σi1σn1⇓}

with σn1(xnj) = fr1(a,xnj) and σi1(xij) = RjΦ
fr1
ideal
(ta0) where Rj is the j-th input of a in ta0. The

idealised frame Φfr2
ideal
(taρ) is defined similarly, i.e.

Φfr2
ideal
(ta0ρ.(ℓ ∶ out(c,w)[aρ])) = Φfr2

ideal
(ta0ρ) ∪ {w ↦ ideal(ℓ)σi2σn2⇓}

with σn2(xnj) = fr2(aρ,xnj) and σi2(xij) = Rρ
jΦ

fr2
ideal
(ta0ρ) where Rρ

j is the j-th input of aρ in ta0ρ. By

induction hypothesis we know that Φfr1
ideal
(ta0) = Φfr2

ideal
(ta0ρ). Therefore, to conclude, it remains

to show that ideal(ℓ)σi1σn1 = ideal(ℓ)σi2σn2 . Actually, we have that Rρ
j = Rj, thus σi1(xij) = σi2(xij),

and σn2(xnj) = fr2(aρ,xnj) = fr1(a,xnj) = σn1(xnj).
We have shown that Φfr1

ideal
(ta) = Φfr2

ideal
(taρ) and relying on Proposition 1, we easily deduce

that Φideal(ta) ∼ Φideal(taρ).
Proposition 7. We assume that Π satisfies frame opacity. Let ρ be a renaming of annotations

and ta be a well-formed annotated trace. If K(ta) ta
Ô⇒ (P1;φ1) and K(taρ) taρ

Ô⇒ (P2;φ2), then
we have that φ1 ∼ φ2.
Proof. We start by applying Proposition 4 on the two given executions to obtain two executions
starting fromM

Π,id
:

– M
Π,id

ta∗

Ð→ (P ′1;φ1) with ta∗
τ
= ta; and

– M
Π,id

ta∗ρ
Ð→ (P ′2;φ2) with ta∗ρ

τ
= taρ.

Relying on frame opacity, we know that Φideal(ta∗) (resp. Φideal(ta∗ρ)) is well-defined and
Φideal(ta∗) ∼ φ1 (resp. Φideal(ta∗ρ) ∼ φ2).

Note that, if ta1 and ta2 are two annotated traces such that ta1
τ
= ta2 and fr1 is a name

assignment, then Φfr1
ideal
(ta1) = Φfr1

ideal
(ta2). Thanks to this remark, we easily deduce that

Φideal(ta) ∼ Φideal(ta∗) and Φideal(taρ) = Φideal(ta∗ρ). Thanks to Proposition 6, we know that
Φideal(ta) ∼ Φideal(taρ) and by transitivity of ∼, we conclude that φ1 ∼ φ2.

D. A sufficient condition for preserving executability

We can now state a key lemma (Lemma 2), identifying a class of renamings which yield indis-
tinguishable executions. More precisely, this lemma shows that for renamings satisfying some re-
quirements, if K(ta) can execute an annotated trace ta then K(ta)ρ has an indistinguishable exe-
cution following the annotated trace taρ. Remark that, in the conclusion, the renaming is applied
after building the ground configuration (K(ta)ρ) instead of building the ground configuration

62 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

of the renamed trace (K(taρ)). Both variants are a priori different. However, in the final proof
and in order to leverage previous propositions, we will need to relate executions of K(ta) with
executions of K(taρ). The following easy proposition bridges this gap. We also state and prove
a variant of Proposition 4, item (4) when ρ is applied after building the ground configuration.

Proposition 8. Let ta be a well-formed annotated trace and ρ be a renaming of annotations.

If K(ta)ρ taρ
Ð→ (P ′;φ) then K(taρ) taρ

Ô⇒ (P ′′;φ).
Proof. Essentially, the proposition follows from the fact that there are less agents in sequence in
K(taρ) than in K(ta)ρ, thanks to the third item of Definition 23.

More formally, by considering K(taρ) and K(ta)ρ as multiset of processes without sequence
(by removing all sequences and taking the union of processes), we obtain the same multisets.
Next, it suffices to prove that no execution is blocked by a sequence in K(taρ). By definition of
the renaming ρ (third requirement in Definition 23), if an agent P [ρ(a)] occurring in K(taρ) is in
sequence with an agent ρ(a′) before him, then P [aρ] occurring in (K(ta)ρ) must be in sequence
with a before him as well. Hence, when a process P [ρ(a)];Q is available (i.e. at top-level) at
some point in the execution from K(ta)ρ, then a similar process P [ρ(a)];Q′ is also available at
the same point in the execution from K(taρ). However, a process may become available in the
execution from K(ta)ρ only after having performed rule Seq, while the same process may be
immediately available in the multiset in the execution from K(taρ). This is why we only obtain

a weak execution K(taρ) taρ
Ô⇒ (P ′′;φ).

Proposition 9. If ta = ta1.ta2 is a well-formed annotated trace and K(ta1.ta2)ρ
ta1ρ
ÐÐ→ K then

K(ta1)ρ
ta1ρ
ÐÐ→K ′ with φ(K) = φ(K ′).

Proof. The argument is the same as for Proposition 4, item (4): the processes that are added to
K(ta1)ρ when considering K(ta1.ta2)ρ are unused in the execution of ta1ρ; moreover, the effect
of ρ on the processes of K(ta1) is obviously the same as in K(ta1.ta2).

Finally, after having defined the notion of connection between agents, we can state our key
lemma.

Definition 24. Annotations a and a′ are connected in (ta, φ) if they are associated in (ta0, φ) for
some prefix ta0 of ta that contains at least one τthen action of an unsafe conditional annotated
with either a or a′.

Lemma 2. We assume that Π satisfies frame opacity and item (i) of well-authentication. Let ta

be a well-formed annotated trace such that K(ta) ta
Ð→ (P;φ). Let ρ be a renaming of annotations.

Moreover, when fn(I) ∩ fn(R) ≠ ∅ (shared case), we assume that for any annotations a, a′, it
holds that a and a′ are connected in (ta, φ), if, and only if, ρ(a) and ρ(a′) are dual.

We have that K(ta)ρ taρ
Ð→ (Q;ψ) for some ψ such that φ ∼ ψ.

Proof. The ground configurations K(ta) and K(ta)ρ have the same shape: these processes only
differ by their terms. Thus, we can put them together to form a bi-process10, i.e. a process

10 The bi-process considered here does not make use of the extension of diff-equivalence presented before: its
inputs are of the form in(c, x) and not in(c, choice[x, y]).

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 63

in which terms are bi-terms of the form choice(t1, t2). Given a bi-process B, we denote fst(B)
(resp. snd(B)) the process obtained from B by replacing any bi-term choice[t1, t2] by t1 (resp.

t2). Moreover, we write B
α[choice[a,a′]]
ÐÐÐÐÐÐÐÐ→ B′ to indicate that fst(B) executes α with annotation

a and snd(B) performs α in the same way but with annotation a′. More generally, we write

B
choice[ta,ta′]
ÐÐÐÐÐÐÐ→ B′ to indicate that the bi-process B executes the trace ta on the left and ta′ on

the right, where the two traces differ only in their annotations.
For the sake of simplicity, we decorate outputs of the biprocess obtained from K(ta) and K(ta)ρ

with pairwise distinct handles from W, and we assume that the handle that decorates an output
will be used to store the output message when it will be executed. Lastly, we associate a vector of
terms in T (Σpub,W∪X) to each safe conditional of the protocol: recall that let z = t in P else Q is

identified as a safe conditional only if there exists a sequence R of terms in T (Σpub,W ∪X) such

that R{w1 ↦ u1, . . . ,wm ↦ um} = t where ui are the messages used in outputs occurring before
the conditional and wi is the handle associated to ui; R is the vector of terms associated to the
safe conditional. Note that R may contain variables from X corresponding to inputs performed
before the conditional, which will be instantiated by ground terms before the execution of the
conditional. When executing a process with labels on conditionals, we assume that the execution
of an input in(c, x) with recipe Rin will instantiate the variable x occurring in the label of the
conditional with Rin.

For any prefix K(ta) ta0
Ð→ (P0;φ0) of the execution K(ta) ta

Ð→ (P;φ), we prove that there exists

an execution K(ta)ρ ta0ρ
ÐÐ→ (Q0;ψ0) such that:

(a) B
choice[ta0,ta0ρ]
ÐÐÐÐÐÐÐÐ→ B0 with fst(B0) = (P0;φ0) and snd(B0) = (Q0;ψ0).

(a’) Any bi-conditional let z = choice[tl, tr] in BP else BQ labeled with R is such that R =

C[R1, . . . ,Rk] with C a sequence of contexts built on Σpub, and Ri ∈ T (Σpub,W∪X) is either
a variable in X or a w /∈ dom(φ0) or a recipe i.e. a term in T (Σpub,dom(φ0)). Moreover,
assuming that u ⇓ u for any constructor term (even if it contains some variables), we have
that C[R1φ

+
0 ⇓, . . . ,Rkφ

+
0 ⇓] = tl and C[R1ψ

+
0 ⇓, . . . ,Rkψ

+
0 ⇓] = tr where φ+0 (resp. ψ+0) is φ0

(resp. ψ0) extended with w ↦ u for each output out(c, u) decorated with w preceding the
conditional in fst(B0) (resp. snd(B0)).

(b) φ0 ∼ ψ0;
(c1) when fn(I)∩ fn(R) = ∅ (non-shared case), ρ(a) and ρ(a′) are associated in (ta0ρ,ψ0) if,

and only if, a and a′ are associated in (ta0, φ0);
(c2) when fn(I) ∩ fn(R) ≠ ∅ (shared case), ρ(a) and ρ(a′) are associated in (ta0ρ,ψ0) if, and

only if, a and a′ are associated in (ta0, φ0) and connected in (ta, φ).
We proceed by induction on the prefix ta0 of ta.

Case ta0 is empty. In such a case, ta0ρ can obviously be executed. Condition (b) is trivial since
both frames are empty. In order to check conditions (c1) and (c2), note that association coincides
with duality for empty traces. We start by establishing condition (c1). Being dual simply means
being distinct roles, hence one obviously has that ρ(a) and ρ(a′) are dual if, and only if, a
and a′ are. This allows us to conclude for condition (c1). Now, we establish condition (c2). By
hypothesis, we have that a and a′ are connected in (ta, φ) if, and only if, ρ(a) and ρ(a′) are dual,
this allows us to conclude regarding one direction. Now, if ρ(a) and ρ(a′) are dual, then a and a′

64 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

are dual too by definition of an agent renaming. Hence, we have the other direction. Condition
(a) holds and condition (a’) holds since by definition of being safe, we have the expected R.

Case the prefix of ta is of the form ta0.α. The action α may be an input, an output, a conditional
(i.e. τthen or τelse). By (a), we know that there is a process in Q0 which is able to perform an
action of the same nature. We consider separately the case where α is an input, an output or
a conditional. In those cases α is necessarily annotated, say by a, and has been produced by
a process annotated a in P0. By induction hypothesis we have (P0;φ0) and (Q0;ψ0) and the
following executions

K(ta) ta0
Ð→ (P0;φ0)

α[a]
ÐÐ→ (P ′0;φ′0) and K(ta)ρ ta0ρ

ÐÐ→ (Q0;ψ0)

satisfying all our invariants. Note that one has (ta0.α[a])ρ = (ta0ρ).α[ρ(a)]. Moreover, we have

that B
choice[ta0,ta0ρ]
ÐÐÐÐÐÐÐÐ→ B0 with fst(B0) = (P0;φ0) and snd(B0) = (Q0;ψ0). Now, we have to prove

that there exists B′0 such that B0

choice[α,αρ]
ÐÐÐÐÐÐ→ B′0 with fst(B′0) = (P ′0;φ′0).

Case where α is an output. We immediately have that Q0 can perform α[ρ(a)], on the same
channel and with the same handle. We now have to check our invariants for ta0.α[a]. Let
out(c,w)[a] be α. Conditions (a) is obviously preserved. Regarding condition (a’), it is easy to
see that the result holds. The term that was added in φ+0 (resp. ψ+0) is now present in φ′0 (resp.
ψ′0).

Conditions (c1) and (c2) follow from the fact that association is not affected by the execution
of an output: ρ(a) and ρ(a′) are associated in (ta0.α[a])ρ if, and only if, they are associated
in ta0ρ, and similarly without ρ. Finally, we shall prove (b): φ′0 ∼ ψ′0 where φ′0 (resp. ψ′0) is
the resulting frame after the action α[a] (resp. α[aρ]). Applying Proposition 4 item (4) on the
execution before renaming and Proposition 9 on the execution after renaming, one obtains

K(ta0.α[a])
ta0.α[a]
ÐÐÐÐ→ (P ′′0 ;φ′0) and K(ta0.α[a])ρ

(ta0ρ).α[aρ]
ÐÐÐÐÐÐ→ (Q′0;ψ′0).

We finally conclude φ′0 ∼ ψ′0 using Proposition 8 on the execution on the right and then Propo-
sition 7.

Case where α is a conditional. We first need to make sure that the outcome of the test is the
same for a and aρ. We let τx (resp. τy) be the action produced by evaluating the conditional
of a (resp. aρ) and shall prove that τx = τy. We distinguish two cases depending on whether the
conditional has a label (i.e. has been identified as safe) or not.

– If the conditional has a label R, since this conditional is now at toplevel, we know that φ+0 = φ0
and ψ+0 = ψ0, and R = C[R1, . . . ,Rk] only contains variables from dom(φ0) = dom(ψ0). On
the left, we have that the conditional will be evaluated to true iff tl ⇓ is a message, i.e. iff
C[R1φ

+
0 ⇓, . . . ,Rkφ

+
0 ⇓] ⇓ is a message, i.e. iff C[R1, . . . ,Rk]φ0 ⇓ is a message and similarly

on the right. Since φ0 ∼ ψ0, this allows us to conclude that the two conditionals have the
same outcome.

– If the conditional is unsafe, we make use of Proposition 5 to show that the outcome of
the conditional is the same on both sides. First, we deduce the following executions from

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 65

Proposition 4 item (4) applied on the execution before renaming and Proposition 9 applied
on the execution after renaming:

K(ta0.τx[a])
ta0.τx[a]
ÐÐÐÐÐ→ (P ′′0 ;φ0) and K(ta0.τy[a])ρ

(ta0ρ).τy[aρ]
ÐÐÐÐÐÐÐ→ (Q′0;ψ0).

To infer τx = τy from Proposition 5, it remains to prove that a and a′ are associated in
(ta0, φ0) if, and only if, ρ(a) and ρ(a′) are associated in (ta0ρ,ψ0). When fn(I)∩ fn(R) = ∅
(non-shared case), this is given by the invariant (c1). Otherwise, when fn(I) ∩ fn(R) ≠ ∅
(shared case), (c2) gives us that ρ(a) and ρ(a′) are associated in (ta0ρ,ψ0) if, and only if,
a and a′ are associated in (ta0, φ0) and connected in (ta, φ). Therefore, to conclude, it is
actually sufficient to show that if a and a′ are associated in (ta0, φ0) then ρ(a) and ρ(a′) are
associated in (ta0ρ,ψ0). Since a and a′ are associated in (ta0, φ0), thanks to Proposition 5,
we know that the outcome of the test will be positive (i.e. τx = τthen), and thus a and a′ are
connected in (ta0.ττthen , φ0), and therefore a and a′ are also connected in (ta, φ). Thanks to
(c2) we have that ρ(a) and ρ(a′) are associated in (ta0ρ,ψ0), and we are done.

After the execution of this conditional producing τx = τy, condition (a) and (a’) obviously still
hold since τx = τy implying that both agents go to the same branch of the conditional. Invariant
(b) is trivial since frames have not changed. Conditions (c1) and (c2) are preserved because the
association between a and a′ is preserved if, and only if, the outcome of the test is positive, which
is the same before and after the renaming.

Case where α = in(c,Rin) is an input. We immediately have that Q0 can perform α[ρ(a)] on

the same channel and with the same recipe Rin (since dom(φ0) = dom(ψ0) follows from φ0 ∼ ψ0).
Conditions (a) and (b) are obviously preserved. Let us establish Condition (a’). We consider
a bi-conditional let z = choice[tl, tr] in BP else BQ labeled with R before executing α. Thus,

we know that (a′) holds, i.e. R = C[R1, . . . ,Rk] such that C[R1φ
+
0 ⇓, . . . ,Rkφ

+
0 ⇓] = tl and

C[R1ψ
+
0 ⇓, . . . ,Rkψ

+
0 ⇓] = tr. After executing α, either this conditional is kept unchanged and the

result trivially holds, or tl becomes tl{x ↦ Rinφ0 ⇓} and we have that the label of this conditional

is now R
′
= R{x↦ Rin}, and we have that Rinφ0 ⇓ (and thus Rinψ0 ⇓) is a message. To conclude,

it remains to show that C[R1{x ↦ Rin}φ+0 ⇓, . . . ,Rk{x ↦ Rin}φ+0 ⇓] = tl{x ↦ Rinφ0 ⇓} (and
similarly for ψ0). Either Ri = x and we have that Ri{x ↦ Rin}φ+0 ⇓= Rinφ0 ⇓= (Riφ

+
0 ⇓){x ↦

Rinφ0 ⇓}. Otherwise, Ri does not contain x, and we have that Ri{x ↦ Rin}φ+0 ⇓= Riφ
+
0 ⇓=

(Riφ
+
0 ⇓){x ↦ Rinφ0 ⇓}.

Thus, we have that C[R1{x ↦ Rin}φ+0 ⇓, . . . ,Rk{x ↦ Rin}φ+0 ⇓] = C[(R1φ
+
0 ⇓){x ↦

Rinφ0}, . . . , (Rkφ
+
0 ⇓){x ↦ Rinφ0}] = C[R1φ

+
0 ⇓, . . . ,R1φ

+
0 ⇓]{x ↦ Rinφ0 ⇓} = tl{x ↦ Rinφ0 ⇓}.

This allows us to conclude.
Conditions (c1) and (c2) are preserved because honest interactions are preserved by the renam-

ing, since φ0 ∼ ψ0 by invariant (b). We only detail one direction of (c1), the other cases being
similar. Assume that ρ(a) and ρ(a′) are associated in ((ta0.α[a])ρ,ψ0). The renamed agents
ρ(a) and ρ(a′) are also associated in (ta0ρ,φ′), thus a and a′ are associated in (ta0, φ′). Now,
because α did not break the association of ρ(a) and ρ(a′) in (ta0ρ,ψ0), it must be that the input
message in α = in(c,Rin) corresponds to the last output of ρ(a′) in ta0ρ. Formally, if that last
output corresponds to the handle w in ψ0, we have Rinψ0 ⇓=E wψ0. But, because φ0 ∼ ψ0 by
invariant (b), we then also have Mφ0 ⇓=E wφ0 and the association of a and a′ in (ta0, φ0) carries
over to (ta0.α[a], φ0).

66 L. Hirschi et al. / A method for unbounded verification of privacy-type properties

E. Final proof

Thanks to Lemma 2, we can transform any execution of M
Π,id

into an indistinguishable ex-
ecution of SΠ, provided that an appropriate renaming of annotations exists. In order to prove
that such a renaming exists in Proposition 11, we show below that in the shared case, agents
cannot be connected multiple times.

Proposition 10. Assume that Π satisfies item (ii) of well-authentication and that fn(I) ∩ fn(R) ≠
∅ (shared case). Consider a well-formed annotated trace ta and an execution K(ta) ta

Ð→ (P;φ).
Let a, a1, and a2 be three annotations such that a and a1 (resp. a and a2) are connected in
(ta, φ), then we have that a1 = a2.

Proof. Consider the first unsafe conditional performed in ta by one of the three agents a, a1 or
a2. This conditional exists and must be successful, otherwise the agents would not be connected
in ta. In other words, we have ta = ta′.τthen[x].ta′′ where x ∈ {a, a1, a2} and ta′ does not contain
any unsafe conditional performed by one of our three agents. Since a is connected with both a1
and a2 in ta, it is associated with both a1 and a2 in ta′. This contradicts condition (ii) of well-
authentication applied to ta′.τthen[x].

Proposition 11. Let Π be a protocol satisfying item (ii) of well-authentication, and ta be a well-

formed annotated trace such that K(ta) ta
Ð→ K. There exists a renaming of annotations ρ such

that:

– taρ is single-session;
– Moreover, when fn(I)∩ fn(R) ≠ ∅ (shared case), for any annotations a and a′, we have that
a and a′ are connected in (ta, φ), if, and only if, ρ(a) and ρ(a′) are dual.

Proof. For k ∈ idI(ta) ∪ idR(ta), we define Co(k) as follows:

– when fn(I) ∩ fn(R) = ∅ (non-shared case), we let Co(k) be the empty set.
– when fn(I) ∩ fn(R) ≠ ∅ (shared case), we let Co(k) be the set of all (n1, n2) such that
I(k,n1) and R(k,n2) are connected in (ta, φ(K));

Essentially, Co(k) denotes the set of pairs of (dual) sessions that the renaming to be defined
should keep on the same identity. Applying Proposition 10, we deduce that for any k ∈ idA(ta)
and (n1, n2), (n3, n4) ∈ Co(k), then either (i) n1 = n3 and n2 = n4 or (ii) n1 ≠ n3 and n2 ≠ n4.

Next, we assume the existence of a function kc ∶ N ∗ × N ∗ ×∗ N ∗ ↦ N ∗ that associates to
any sequence of names (k,n1, n2) a vector of names of the length of identity parameters of Π:
k′ = kc(k,n1, n2). These name vectors are assumed to be all disjoint and not containing any name
already occurring in the annotations of ta. This gives us a mean to pick fresh identity parameters
for each combination of k,n1, n2 taken from the annotations of ta. We also assume a function
k1 such that the vectors k1(k,n1) are again disjoint and not overlapping with annotations of ta

and any kc(k′, n′1, n′2), and similarly for k2(k,n2) which should also not overlap with k1 vectors.
These last two collections of identity parameters will be used to give fresh identities to initiator

L. Hirschi et al. / A method for unbounded verification of privacy-type properties 67

and responder agents, independently. We then define ρ as follows:

I(k,n1)↦ I(kc(k,n1, n2), n1) if (n1, n2) ∈ Co(k)
↦ I(k1(k,n1), n1) otherwise

R(k,n2)↦R(kc(k,n1, n2), n2) if (n1, n2) ∈ Co(k)
↦R(k2(k,n2), n2) otherwise

We now prove that the renaming ρ defined above satisfies all requirements.

The mapping ρ is a renaming. First, for any well-formed ta′, the fact that ta′ρ is well-formed
follows from the following: (i) session names are not modified and (ii) identity names are all
pairwise distinct and never intersect except for agents ρ(I(k,n1)) and ρ(R(k,n2)) such that
(n1, n2) ∈ Co(k) but there cannot be a third agent sharing the same identity names according to
the result obtained above. The mapping ρ is obviously role-preserving. Finally, if ρ(a) and ρ(a′)
share the same identity parameters then (a) fn(I) ∩ fn(R) ≠ ∅ and (b) a and a′ are connected
in (ta, φ) and are thus dual implying that a and a′ share the same identity parameters as well.

The renaming ρ is single-session. First, id0 never occurs in the image of ρ. Second, all agents
are mapped to agents having fresh, distinct identity parameters except for agents a, a′ that were
connected in (ta, φ). However, as already discussed, in such a case, there is no third agent sharing
those identity parameters and a and a′ are necessarily dual.

To conclude, we shall prove that, in the shared case, for any annotations a, a′, it holds that a
and a′ are connected in (ta, φ), if, and only if, ρ(a) and ρ(a′) are dual. This is actually a direct
consequence of the definition of the renaming ρ.

We are now able to prove our main theorem.

Proof of Theorem 1. We have that SΠ ⊑MΠ ⊑MΠ,id
, and we have to establish thatM

Π,id
⊑ SΠ.

Consider an execution M
Π,id

ta
Ð→ (P;φ). First, thanks to Proposition 4, there is an annotated

trace ta′
τ
= ta such that K(ta) ta′

Ð→ (P ′;φ). Let ρ be the renaming obtained in Proposition 11

for ta′. By Lemma 2, we have that K(ta)ρ ta′ρ
ÐÐ→ (Q;φρ) for some frame φρ such that φρ ∼ φ.

We then deduce from Proposition 8 that K(taρ) ta′ρ
ÔÔ⇒ (Q′;φρ), and thus K(taρ) taρ

Ô⇒ (Q′;φρ).
Since taρ is single-session, Proposition 4 implies that (SΠ;∅)

taρ
Ô⇒ (Q′′;φρ), and this allows us

to conclude.

