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Abstract. Transurethral resection of bladder tumor (TURBT) under white light cystoscopy (WLC) is the cornerstone for the
diagnosis, removal and local staging of non-muscle invasive bladder cancer (NMIBC). Despite technological improvements
over the decades, significant shortcomings remain with WLC for tumor detection, thereby impacting the surgical quality and
contributing to tumor recurrence and progression. Enhanced cystoscopy modalities such as blue light cystoscopy (BLC) and
narrow band imaging (NBI) aid resections by highlighting tumors that might be missed on WLC. Optical biopsy technologies
such as confocal laser endomicroscopy (CLE) and optical coherence tomography (OCT) characterize tissue in real-time to
ensure a more thorough resection. New resection techniques, particularly en bloc resection, are actively under investigation
to improve the overall quality of resections and aid pathologic interpretation. Moreover, new image processing computer
algorithms may improve perioperative planning and longitudinal follow-up. Clinical translation of molecular imaging agents
is also on the horizon to improve optical diagnosis of bladder cancer. This review focuses on emerging technologies that can
impact the quality of TURBT to improve the overall management of NMIBC.
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INTRODUCTION

Since the first description of endoscopic ful-
guration of papillary bladder tumors in 1910 [1],
transurethral resection of bladder tumor (TURBT)
under white light cystoscopy (WLC) has played the
central role in bladder cancer diagnosis, removal,
and local staging. The goal of TURBT is complete
resection of all papillary tumors with concomitant
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biopsy of suspicious flat lesions. For non-muscle
invasive bladder cancer (NMIBC), high quality
TURBT is critical in reducing tumor recurrence and
progression [2].

Advances in modern WLC and TURBT include
fiber-optic illumination, high definition cameras, and
bipolar resection [3]. Nevertheless, significant short-
comings remain including missed tumors, incomplete
resection, difficult differentiation of carcinoma in situ
(CIS) from inflammation, and understaging [4]. In
patients undergoing second look TURBT, residual
tumors are noted in up to 80% of the surgical spec-
imens within 6 weeks of initial resection [5, 6].
Substantial understaging of high risk bladder cancer
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Case study

A 60 years old male with a significant history of smoking developed gross hematuria and underwent office
cystoscopy as part of workup. A 3 cm papillary tumor was found on the right lateral wall and bladder
wash cytology was suspicious. At a later date, monopolar TURBT under WLC was performed under spinal
anesthesia and an additional patch of erythema along the posterior bladder was noted and biopsied. During
the tumor resection, a significant obturator reflex was triggered and the procedure was terminated. Pathology
revealed high grade T1 papillary urothelial carcinoma with muscle present. Biopsy of the erythematous
area was inconclusive. Five weeks later, a second look TURBT was performed under general anesthesia.
An additional 0.5 cm tumor was found in the right anterior bladder, along with erythematous patches
in posterior bladder. The tumor was resected, the erythematous patches biopsied, and deeper resection
of the prior resection bed performed. Pathology showed HG T1 cancer, negative resection bed biopsy, and CIS.

Potential benefits of advanced technologies

BLC, NBI or molecular imaging

• Small papillary tumor found on second TURBT may have been present during the first procedure but not
obvious under WLC alone

• Inconclusive erythematous patch may have been initially found to be CIS

CLE

• May provide adjunctive information on the erythematous lesion for targeting biopsy site with sufficient
urothelium for pathological analysis.

OCT

• Provide real time assurance of adequate depth of resection

Bipolar energy

• May reduce the risk of obturator nerve reflex.

3D reconstruction and digital bladder mapping

• Improve perioperative planning and longitudinal follow-up
• 3D images might indicate if tumor on the second TURBT was initially missed or a recurrence.

is noted in about 50% of cases when comparing
TURBT clinical staging with pathologic staging from
cystectomy [7]. Indeed, second look TURBT is rec-
ommended for high risk NMIBC after suboptimal
initial TURBT, as incomplete resection and under-
staging have potentially lethal consequences for these
patients.

Significant advances in optical imaging technolo-
gies and resection techniques have been developed
with the goal of assisting surgeons to better identify
bladder lesions and improve the quality of TURBT.
Enhanced cystoscopy technologies are supported by
several prospective trials and meta-analysis [8–10]
and included in European Association of Urology
(EAU) and American Urology Association (AUA)
guidelines for NMIBC [2, 11]. Emerging optical

biopsy technologies hold the promise to sig-
nificantly augment the precision of TURBT in
regards to providing real time tissue characterization.
New en bloc resection techniques preserve tumor
architecture, facilitates better pathological assess-
ment, and potentially offer improved safety profile
[12].

The hypothetical case in Box 1 illustrates some of
the well-known challenges associated with standard
TURBT under WLC, including missed tumors, flat
lesion characterization, resection margin assessment,
complications of obturator reflex, and pathologic
assessment. Here, we review emerging imaging and
resection technologies that offer opportunities to sig-
nificantly enhance TURBT and potentially improve
bladder cancer management.
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IMPROVING TUMOR DETECTION AND
CHARACTERIZATION

Tumor persistence and early recurrence may be
due to missed tumors, incomplete resection, reim-
plantation of tumor cells after resection, and de novo
tumor formation [13]. CIS is particularly problem-
atic given the challenges of distinguishing CIS from
benign bladder lesions leading to a high risk of cancer
recurrence and progression.

Blue light cystoscopy (BLC), also known as photo-
dynamic diagnosis or fluorescence cystoscopy, is the
most well validated form of enhanced cystoscopy to
improve tumor detection [8]. BLC requires preoper-
ative intravesical instillation of hexaminolevulinate
(HAL), a photosensitizer that preferentially accu-
mulates in neoplastic cells. Under blue light, red
fluorescence is emitted by neoplastic cells (Fig. 1A).
A meta-analysis of 2,949 patients revealed 92% sen-
sitivity with BLC for tumor detection compared with
71% with WLC alone [14]. Another meta-analysis of
551 patients showed 87% detection rate for CIS with
BLC combined with WLC, whereas WLC alone had
75% detection rate [15]. In addition, under BLC up
to 20% more bladder tumors can be detected with
a 39% increase in detection of CIS [16]. A prospec-
tive, randomized study found a delay in time to tumor

recurrence after BLC-assisted TURBT (16.4 months)
compared to WLC alone (9.4 months) [17], and meta-
analysis with 634 patients noted a recurrence rate of
34.5% with BLC at 12 months and 45.4% without
BLC [8].

Since HAL is not completely cancer-specific, false
positive findings associated with BLC can occur [18],
particularly in patients with inflammation, recent
TURBT, or recent treatment with bacillus Calmette-
Guerin (BCG) [19, 20]. The meta-analysis by Mowatt
et al. showed that WLC has a higher specificity than
BLC (72% vs 57%) [14]. There have been negative
studies as well. BLC did not improve the detec-
tion rate for patients with known positive cytology
in a prospective multicenter randomized trial [21]
and other prospective randomized studies did not
find improvement on disease recurrence rates with
addition of BLC [14, 22, 23]. Weighing the benefit
of improved sensitivity in detecting bladder cancer
against the drawback of higher false-positive rate,
a cost effectiveness study reported that the incor-
poration of BLC resulted in lower costs over 5
years compared to WLC alone ($25,921 vs $30,581,
respectively) [24]. In an earlier study looking at BLC
with 5-ALA instillation in 191 patients in Germany
over 99 months, BLC resulted in D 1597 lower cost
compared to WLC [25]. A study in Sweden of 2032

Fig. 1. Imaging modalities for improved bladder tumor detection. Papillary and CIS bladder lesions visualized with BLC, NBI, and CLE
with corresponding white light images. (A) Positive, red fluorescence of small, satellite papillary tumors seen on BLC that may be missed
on WLC. For CIS, red fluorescence also noted on BLC of what appears to be normal urothelium on WLC. (B) NBI improves visualization
of aberrant tumor vasculature. Two papillary tumors are more easily visualized on NBI (encircled). For CIS detection, a patch of erythema is
more pronounced under NBI compared to a relatively normal appearing urothelium on WLC. CIS images for NBI obtained with permission
from [80]. (C) CLE of papillary tumors and CIS provide microscopic detail that can augment macroscopic imaging. A fibrovascular stalk
may be visualized as noted in the top left of the papillary CLE example. CIS is notable for a disorganized architecture with pleomorphic
cells and indistinct cellular borders.
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newly diagnosed bladder cancer patients predicted a
total saving of SEK1,321,716 with the use of BLC as
an adjunct to WLC, with reduction of 23 cystectomies
and 180 TURBTs [26]. While the number of studies
calculating cost effectiveness is limited, current data
indicates a potential for long term cost savings with
the use of BLC.

Under narrow band imaging (NBI), white light
is filtered into blue (415 nm) and green (540 nm)
wavelengths that are preferentially absorbed by
hemoglobin. NBI improves visualization of tumor-
associated aberrant mucosal and submucosal vascula-
ture, without the need for exogenous imaging agents
(Fig. 1B). NBI has been shown to increase detec-
tion of both papillary and flat lesions compared to
WLC (94.7% versus 79.2%, respectively) [27], and
NBI-assisted TURBT decreased 1-year recurrence
compared to standard WLC TURBT (32.9% versus
51.4%, respectively) [28]. A meta-analysis of 1557
patients from six studies found a decreased recur-
rence rate at 12 months with NBI-assisted TURBT
compared to WLC (26% versus 38.6%, respectively)
[29]. However, a multicenter randomized trial com-
paring NBI with standard WLC TURBT revealed no
difference in recurrence rates at 1 year follow up
(27.1% WLC, 25.4% NBI). It was notable, however,
that there was a significant decrease in recurrence
in low risk patients (27.3% WLC, 5.6% NBI) [30].
NBI has relatively high false positive rates ranging
from 36% to 50% [29, 31, 32], likely related to the
subjective nature of image interpretation.

Optical biopsy technologies, which provide high
spatial resolution and sub-surface imaging, are com-
plementary to wide field imaging modalities such
as WLC, BLC, and NBI. In particular, confocal
laser endomicroscopy (CLE) provides micron-scale,
histology-like imaging. CLE is FDA approved for
application within the urinary tract. For CLE in the
bladder, intravesical or intravenous fluorescein is
given as the contrast agent and for image acquisi-
tion, a fiber-optic probe based on a 488-nm laser is
inserted via the working channel of standard cys-
toscopes and placed in direct contact of the tissue
[33–35]. Video sequences (up to 12 hertz) display
dynamic imaging of tissue micro-architecture, cellu-
lar morphology and vascular flow. Using CLE image
criteria described for diagnosis and grading of blad-
der tumors [36], a study of inter-observer agreement
revealed that the sensitivity for discerning cancer-
ous lesions was 89% for urologists using WLC and
CLE together [37]. As CIS is often difficult to dif-
ferentiate from benign flat lesions under WLC, CLE

provides microscopic details (Fig. 1C) to better char-
acterize cellular features that may improve the yield
of targeted biopsy. As CLE is probe-based with
cross-platform compatibility, it may be combined
with WLC and enhanced cystoscopy technologies
(BLC and NBI).

High resolution cross-sectional imaging including
CT and MRI, as the standard to evaluate the upper
urinary tract, has been investigated in pre-TURBT
settings for tumor characterization and staging. In a
prospective study of 22 patients, Rosenkrantz et al.
investigated the accuracy of MRI alone and 18F-FDG
simultaneous PET/MRI using a diuresis protocol in
bladder cancer patients [38]. PET/MRI increased
bladder tumor detection from 77% to 86%, metastatic
pelvic lymph nodes detection from 76% to 95% and
non-nodal pelvic malignancy to 91% to 100% com-
pared to MRI alone. Further investigation is needed
with larger sample sizes to assess the possibility
of applying this approach in initial bladder cancer
evaluation.

IMPROVING BLADDER TUMOR
RESECTION

In addition to better visualization and characteri-
zation of tumors and suspicious lesions, adjunctive
imaging technologies enhance the technical imple-
mentation of TURBT and the completeness of
resection. Incomplete resection contributes to under-
staging of disease that has been noted in up to 50% of
patients correlating TURBT-based clinical staging to
matched cystectomy specimen [7]. Factors contribut-
ing to incomplete TURBT also include decreased
visibility due to bleeding and cautery artifacts, and
inadequate visualization/differentiation of cancerous
tissue at the resection margins.

A key strength of enhanced cystoscopy with BLC
and NBI is that the surgeon can toggle back-and-
forth between WLC and the enhanced imaging mode,
thereby facilitating dynamic implementation during
TURBT. This dynamic response allows for real-time
assessment of the resection margin. Figure 2A and 2B
show resection sites with residual disease identified
by BLC and NBI, respectively. Residual tumor that
is challenging to detect under WLC may appear to be
well delineated compared to the surrounding benign
mucosa under BLC as shown in Fig. 2A where the
residual BLC enhanced areas correspond to low grade
(Patient 1 and 2) and high grade papillary urothelial
carcinoma (Patient 3). Future works are needed to
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Fig. 2. Imaging of resection bed. (A) BLC can be used to detect residual tumor during TURBT as positive fluorescence is noted at the outside
edges of the resection beds in these examples. There are residual tumors noted for patients 2 and 3 even within the resection bed on BLC
that is not noted on WLC. (B) Residual tumor at the edge of the resection bed is noted on NBI. NBI images obtained with permission from
[80]. (C) CLE can be used to interrogate the resection bed to determine adequate depth of resection. Features such as elastin strands, muscle
fibers and perivesical fat can be visualized in the deep resection bed to verify adequate resection to the muscle layer in real time. All three
WLC + CLE images with picture-in-picture are from the same resection bed. In the first image, elastin strands are noted on CLE in the deep
resection bed. At the resection bed border, cautery artifact is noted with mostly absence of features seen in the muscle layer. On the normal
side of the resection bed, CLE visualizes a capillary network typically seen in normal lamina propria. ∗ – Indicates area within the resection
bed. Dashed lines delineate the resection bed border.

determine objectively how enhanced imaging tech-
nologies can improve the dynamic aspects of TURBT.

Whereas enhanced cystoscopy technologies are
useful to assess the edges of the resection bed, opti-
cal biopsy technologies may be utilized to investigate
microscopic features of the resection bed, including
muscularis propria and perivesical fat [33, 36, 39].
Figure 2C shows an example of using a 0.85 mm
CLE imaging probe to interrogate the resection bed,
border, and surrounding benign mucosa. Further stud-
ies are needed to prospectively determine the clinical
utility of resection bed imaging and in combination
with enhanced imaging technologies. Nevertheless,
this strategy may provide additional confirmation

regarding the depth of resection and residual disease
at the time of TURBT.

OCT is another optical biopsy technology that pro-
vides mucosal and submucosal imaging in the Z-axis
to a depth of 2 mm and spatial resolution of 10 �m,
and does not require exogenous contrast agents [40].
A key strength of OCT is the depth of penetration,
which enables the possibility of tumor staging. OCT
is currently under clinical investigation, with results
from several single center studies reported. A sin-
gle center, retrospective analysis comparing staging
by in vivo OCT with histopathology revealed 100%
sensitivity and 90% specificity in detecting mus-
cle invasive bladder tumors [41], and another single
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center prospective study reported 100% sensitivity
in detecting invasion of tumors beyond the lamina
propria but only 65% overall specificity for bladder
tumor detection [40]. Additional studies are needed
to determine the suitability of OCT for resection bed
imaging.

NEW RESECTION TECHNIQUES

Beyond innovations in imaging modalities, the
quality of TURBTs can be improved with advance-
ments in resection techniques. Bipolar, or plasmaki-
netic, TURBT has emerged in recent years as an
alternative to standard monopolar TURBT. The main
advantages of bipolar resection include the ability
to use isotonic irrigation fluids to decrease the risk
of TUR syndrome and potentially improved safety
profile compared to monopolar energy [3]. Numer-
ous studies that compared bipolar with monopolar
TURBT have found decreased bladder injury asso-
ciated with obturator nerve reflex [42–44] and
improved detrusor sampling [45]. The advantages of
bipolar resection may be limited to the safety of the
surgical procedure and not clinical outcomes, as most
studies find no significant effect of bipolar resection
on recurrence rates [42, 46, 47].

Pathological interpretation of TURBT samples are
known to be challenging, as resected tumor fragments
are subjected to cautery damage, crush artifacts,
tangential sections, and lack of spatial orientation
caused by random embedding of bladder tissue [12].
En bloc resection improves pathological assessment
by better preserving tumor architecture and orien-
tation. En bloc resection can be performed using
standard electrocautery, lasers, or water jet com-
bined with monopolar energy [48]. Laser sources
including holmium [49], thulium:YAG [50], and
potassium-titanyl-phosphate (green light) [51] have
been investigated.

In addition to better preservation of tissue ori-
entation, laser-based en bloc resection may reduce
surgical morbidity by decreasing bladder perforation
through obturator nerve reflex, and post-operative
bladder irritation [52]. Impact on cancer-specific
outcomes are mixed, as no significant differences
in recurrence using en bloc resection was noted
in 3 prospective studies [53–55], but one small
prospective study showed a significant decrease in
recurrence (en bloc 28.6%, standard TURBT 62.5%)
[56]. A multicenter study did not show differences
in recurrence between laser (holmium and thulium)

or electrical (monopolar and bipolar) sources [57].
The utility of en bloc resection is still under investi-
gation with additional studies needed for validation
of cancer-specific outcomes, and standardization of
the technique will need to be addressed to facilitate
comparison of the various approaches.

PERIOPERATIVE PLANNING AND
LONGITUDINAL FOLLOW UP: 3D
BLADDER RECONSTRUCTION

Improvements in perioperative care and long term
follow up can positively impact bladder cancer man-
agement and patient outcomes. Currently, standard
documentation of suspicious bladder lesions from
cystoscopy, whether in the office or operating room
settings, is based on a written description of lesion
location, number, size, and morphology. To stan-
dardize documentation, the use of a bladder diagram
has been advocated in urologic guidelines [2, 58].
Particularly in settings where multiple urologists
(e.g. second opinion) are involved in treatment,
improved documentation could facilitate communi-
cation and follow-up, pre-TURBT surgical planning,
and longitudinal surveillance of suspected mucosal
lesions. Modern WLC, particularly with the new
generation of cameras and videoendoscopes, gener-
ates high definition (HD) videos and has enormous
data potential. However, WLC is typically used only
for real-time guidance and data are not routinely
stored.

Recently, a computational method to reconstruct
and visualize a 3D model of organs from standard
cystoscopic HD videos that captures the shape and
surface appearance of the organ has been devel-
oped [59]. The algorithm utilizes advanced computer
vision techniques and standard cystoscopes for image
acquisition (Fig. 3). In contrast to prior efforts
[60–62], this algorithm does not require additional
hardware. It uses a priori data to reconstruct the blad-
der surface, and presents a complete software-based
pipeline to convert the cystoscopic images into a 3D
textured model of the bladder. The image prepro-
cessing technique utilizes a structure-from-motion
algorithm and the robustness of the reconstruction
was tested using tissue-mimicking bladder phantoms.
Potential clinical utility was demonstrated using
intraoperative cystoscopy videos. Successful recon-
struction was achieved for 66.7% of the datasets
whereas the definition of successful was that at least
25% of the camera poses could be computed.



T.C. Chang et al. / Image-Guided Transurethral Resection of Bladder Tumor 155

Fig. 3. Reconstruction from a clinical dataset of human bladder. Cystoscopy image reconstruction views from the (A) anterior, (B) posterior,
(C) left lateral, and (D) right lateral walls. Black circle and arrow in (C) show regions of a papillary tumor and scarring, respectively. Regions
that appear dark represent the interior of the bladder. From [59] with permission.

In a separate 2017 study, image processing and
stitching software was used in 12 consecutive whole
organ cystoscopies of patients undergoing TURBT
to generate panoramic images of the bladders. The
authors successfully created HD panoramic images
(4096 × 2048 pixel) in 10 out of 12 cases. However,
with this technique there was decreased resolution
of the anterior bladder wall as well as low image
quality in patients with severe gross hematuria, which
interfered with collection of high quality images [63].

Potential applications of these promising 3D recon-
struction algorithms include a platform for complete
visual medical record of bladder lumen that may be
utilized for preoperative surgical planning, cancer
surveillance through longitudinal studies of mucosal
changes, and trainee or patient education. However,
these techniques are at early stage and need further
clinical validation. A critical point to consider is that
while these emerging technologies provide adjunc-
tive information to standard WLC, timely access to
office cystoscopy for hematuria work-up and standard
TURBTneeds tobeprioritized, regardlessof theavail-
ability of adjunctive imaging technologies [64, 65].

MOLECULAR IMAGE-GUIDED
SURGERY – THE FUTURE?

Optical molecular imaging enables the visual-
ization and characterization of biological processes
at the molecular level [66, 67]. To improve the

specificity of intraoperative cancer imaging, there
is significant interest to develop targeted imaging
agents based on fluorescent antibodies, peptides or
small molecules. The urinary bladder is an ideal organ
for molecular imaging as intravesical application of
imaging and therapeutic agents are well established.
Through the instillation of molecular imaging agents
that bind to specific cancer targets, malignant tumors
can be differentiated from benign lesions using endo-
scopic imaging modalities. The ideal imaging agents
would be safe, stable, have appropriate pharmacoki-
netics, and sensitive and specific for cancer.

For imaging applications, surface antigens are
easily accessible for binding to fluorescently
labeled antibodies. Although epidermal growth fac-
tor (EGFR) and prostate stem cell antigen (PSCA)
are potential targets due to contrasting expression
patterns between malignant and benign urothelial car-
cinomas [68–72], they are not ubiquitously expressed
on bladder tumors and thus lack the sensitivity
needed as imaging targets. CD47, a cell surface
protein that is a negative regulator of phagocyto-
sis, is a promising imaging target [73, 74]. CD47
is expressed on the surface of more than 80% of
bladder cancer cells but is not expressed on the
luminal cells of normal urothelium [74, 75]. Suc-
cessful ex vivo endoscopic imaging of bladder cancer
using an anti-CD47 antibody has been reported
[75]. Both CLE and BLC were used to detect an
intravesically instilled fluorescently tagged antibody
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Fig. 4. Molecular imaging of human bladder tumors. Ex vivo molecular imaging of human bladder using anti-CD47-Qdot625 (Anti-CD47)
imaged with BLC and indocyanine green with pH low insertion peptide (pHLIP) agent imaged with da Vinci Si NIRF imaging system. The
respective imaging systems for the two molecular imaging strategies are capable of detecting both (A) papillary tumors and (B) CIS with
high sensitivity and specificity. Anti-CD47 images from [75], reprinted with permission from AAAS. pHLIP images obtained from [79]
with permission from PNAS.

against human CD47 in ex vivo human bladders.
BLC imaging of the fluorescent anti-CD47 had 82.9%
sensitivity and 90.5% specificity for bladder cancer
(Fig. 4).

Small peptides such as pH low insertion peptides
(pHLIPs) are a class of membrane-binding pep-
tides that specifically target acidic cells by crossing
through the cell membrane in low pH extracellular
environments [76, 77]. Tumor cells typically have
higher metabolic activity leading to the production
of acidic environments [78] that could be targets
for pHLIPs. A near infrared fluorescence (NIRF)
imaging system was used to image indocyanine
green (ICG) conjugated pHLIPs in an ex vivo study
of radical cystectomy specimen from 22 patients
(Fig. 4) [79]. Sensitivity was 97% and specificity
was 100% in detecting bladder cancer. However,
when necrotic and post-chemotherapy tissue were
included, the false positive rate increased and the
specificity dropped to 80%. The strategy of devel-
oping targeted, specific imaging agents is promising,
and further studies are needed to assess in vivo per-
formance and toxicity.

The molecular imaging approaches discussed
(CD47 and pHLIPs) are in early stages of inves-
tigation, and in vivo human studies have not been
established, pending development of clinical grade
labeled antibodies and peptides for in vivo human
appliactions. Further investigations are needed before
potential application in the clinical setting. However,
targeted molecular imaging is a promising avenue

toward improved sensitivity and specificity for cancer
detection.

CONCLUSION

The technologies highlighted in this review illus-
trate the range of technologies at various stages of
development aimed at addressing the shortcomings
of standard WLC based TURBT. BLC and NBI are
recommended in current practice guidelines while
molecular imaging of bladder cancer has only been
demonstrated to date in ex vivo models. As the clin-
ical impact and efficacy of these technologies are
validated with further studies, we envision that the
future TURBT will harness and combine the advan-
tages of multiple adjunctive technologies to improve
the overall quality of TURBT.
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