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ABSTRACT

Subclinical metabolic disorders such as ketosis cause 
substantial economic losses for dairy farmers in addi-
tion to the serious welfare issues they pose for dairy 
cows. Major hurdles in genetic improvement against 
metabolic disorders such as ketosis include difficulties 
in large-scale phenotype recording and low heritability 
of traits. Milk concentrations of ketone bodies, such as 
acetone and β-hydroxybutyric acid (BHB), might be 
useful indicators to select cows for low susceptibility 
to ketosis. However, heritability estimates reported for 
milk BHB and acetone in several dairy cattle breeds 
were low. The rumen microbial community has been 
reported to play a significant role in host energy ho-
meostasis and metabolic and physiologic adaptations. 
The current study aims at investigating the effects of 
cows’ genome and rumen microbial composition on 
concentrations of acetone and BHB in milk, and iden-
tifying specific rumen microbial taxa associated with 
variation in milk acetone and BHB concentrations. We 
determined the concentrations of acetone and BHB in 
milk using nuclear magnetic resonance spectroscopy on 
morning milk samples collected from 277 Danish Hol-
stein cows. Imputed high-density genotype data were 
available for these cows. Using genomic and microbial 
prediction models with a 10-fold resampling strategy, 
we found that rumen microbial composition explains 
a larger proportion of the variation in milk concentra-
tions of acetone and BHB than do host genetics. More-
over, we identified associations between milk acetone 
and BHB with some specific bacterial and archaeal op-

erational taxonomic units previously reported to have 
low to moderate heritability, presenting an opportunity 
for genetic improvement. However, higher covariation 
between specific microbial taxa and milk acetone and 
BHB concentrations might not necessarily indicate 
a causal relationship; therefore further validation is 
needed before considering implementation in selection 
programs.
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INTRODUCTION

Intensive genetic selection for enhanced productiv-
ity over the past several decades has deteriorated most 
functional traits, leading to, among other problems, 
increased prevalence of metabolic diseases in high-
producing dairy cattle breeds (Buckley et al., 2000; 
Boichard and Brochard, 2012). Subclinical metabolic 
disorders such as ketosis cause substantial economic 
losses for dairy farmers (Gohary et al., 2016), in ad-
dition to the welfare issues they pose for dairy cows 
(Oltenacu and Algers, 2005). With increasing public 
awareness of animal welfare as well as economic loses, 
calls have arisen for better attention to metabolic dis-
order traits in dairy cattle breeding goals (Boichard 
and Brochard, 2012; Pryce et al., 2016). However, the 
difficulties of large-scale phenotyping and low herita-
bility remain major hurdles in genetic improvement of 
metabolic disorders such as ketosis.

Ketosis is among the most frequent disorders in dairy 
cattle (Koeck et al., 2014; Pryce et al., 2016). This dis-
order is characterized by the accumulation of ketone 
bodies, mainly BHB, acetoacetate, and acetone, which 
can be measured in the body fluids, including blood, 
urine, and milk (Geishauser et al., 1998). Ketosis may 
be clinical or subclinical depending on the presence or 
absence of clinical signs indicative of the disease (Cote 
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et al., 1969). Subclinical ketosis cannot be observed 
but, rather, must be measured using indicators in body 
fluids. Conventionally, cows with at least one blood 
test of BHB concentration >1.2 mmol/L (Geishauser 
et al., 1998; Jorritsma et al., 1998; McArt et al., 2012) 
or nonesterified fatty acid concentrations >1.0 mM 
(Raboisson et al., 2014) are declared to be in a state 
of subclinical ketosis. Heritability of subclinical ketosis 
based on such measurements has been reported in the 
range of 0.01 to 0.16 across several studies (Pryce et 
al., 2016). Strong correlations (r > 0.80) have been re-
ported between concentrations of ketone bodies in the 
milk and in the blood (Andersson, 1984). Owing to 
the emergence of cheap and high-throughput methods 
to quantify detailed milk composition, such as Fourier-
transform infrared spectroscopy (Heuer et al., 2001; de 
Roos et al., 2007), milk acetone and BHB levels have 
been suggested as useful indicators of subclinical keto-
sis (Nielsen et al., 2005; Boichard and Brochard, 2012).

Studies in mice and other model animals indicate 
that the gut microbial community plays a significant 
role in host energy homeostasis and metabolic and 
physiologic adaptations to periods of nutrient depri-
vation (Bäckhed et al., 2004; Crawford et al., 2009; 
Cotter et al., 2013). As early as the 1800s, the link 
between metabolic disorders and rumen contents was 
known to farmers in Europe, who would inoculate ru-
minant livestock that did not ruminate with the cud of 
healthy stock to stimulate rumination (DePeters and 
George, 2014). The bovine rumen harbors diverse com-
munities of microbes, whose compositions are shaped 
by both diet and species of the host (Henderson et al., 
2015). Zhu et al. (2018) demonstrated large changes 
in rumen bacteria and archaea composition in dairy 
cows over parturition and early lactation, when ketosis 
is most prominent. Difford et al. (2018) showed that 
certain bacteria and archaea taxa were associated with 
methane (CH4) emissions in Holstein cows—observa-
tions recently confirmed in a multi-country, multi-breed 
study by Wallace et al. (2019). So far, however, the 
contribution of rumen microbial composition to varia-
tion in susceptibility to subclinical ketosis has not been 
studied in dairy cattle. If sizable proportions of the 
variation in subclinical ketosis can be explained by the 
relative abundance of rumen microbial taxa, especially 
those that are influenced by the host genotype (Difford 
et al., 2018), it might lead to a possibility of improving 
prediction for ketosis susceptibility.

Therefore, the objectives of this study were as fol-
lows: (1) to estimate the proportion of variation in the 
concentrations of BHB and acetone in milk explained 
by host genetics and rumen microbial composition; 
(2) to investigate the predictive value of the rumen 

microbiome in milk BHB and acetone concentrations; 
and (3) to identify rumen microbial taxa whose rela-
tive abundance is associated with BHB and acetone 
concentrations in milk.

METHODS

Animals and Phenotypes

Morning milk samples were collected once from 277 
Danish Holstein cows that were at first and second par-
ity, with DIM ranging between 3 and 517 d. The cows 
belonged to 3 different commercial farms in Denmark 
with similar feeding regimens. Cows were fed TMR 
ad libitum and were milked individually in automated 
milking systems.

Milk samples were placed on ice immediately after 
sampling for transport to the laboratory, where the 
samples were aliquoted and skimmed, as described by 
Jensen et al. (2012). Skim milk samples were kept at 
−80°C until further analysis.

Nuclear magnetic resonance (NMR) spectroscopy 
was performed as described previously by Sundekilde 
et al. (2013). Before NMR spectroscopy, skim milk sam-
ples were thawed and thoroughly shaken for homogeni-
zation. Samples were filtered to remove residual lipids 
and protein using an Amicon Ultra 0.5 mL, 10-kDa 
cutoff spin filter (Millipore, Billerica, MA) at 10,000 
× g for 30 min. Four hundred microliters of filtered 
sample were mixed with 200 μL of deuterium oxide 
(D2O) containing 0.025% sodium trimethylsilyl-[2,2,3,3-
2H4]-1-propionate (Sigma-Aldrich, Brondby, Denmark), 
which served as an internal chemical shift reference. 
The 1H NMR spectroscopy was performed at 298 K on 
a Bruker Avance III 600 spectrometer operating at a 
1H frequency of 600.13 MHz and equipped with a 5-mm 
1H TXI probe (Bruker Biospin, Ettlingen, Germany). 
Standard 1-dimensional spectra were acquired using a 
single 90° pulse experiment with a relaxation delay of 
5 s. Water suppression was achieved by irradiating the 
water peak during the relaxation delay, and a total of 
64 scans were collected into 32,000 data points that 
spanned a spectral width of 12.15 ppm. Before Fourier 
transformation, the data were multiplied by a 0.3-Hz 
line-broadening function. The proton NMR spectra 
were phase- and baseline-corrected manually using 
Topspin 3.0 (Bruker Biospin), and the NMR signals 
were assigned in accordance with existing literature, 
the Human Metabolome Database (http:​/​/​www​.hmdb​
.ca/​), and the Biological Magnetic Resonance Data 
Bank (http:​/​/​www​.bmrb​.wisc​.edu/​; Hu et al., 2004; 
Ulrich et al., 2008; Wishart et al., 2009; Klein et al., 
2010). Relative quantification of the well-resolved reso-
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nances of acetone (δ 2.23 ppm; s, 6H) and BHB (δ 1.20 
ppm; d, J = 6.29 Hz, 3H) was performed in Matlab 7.9 
(MathWorks Inc., Natick, MA).

Rumen Sampling, DNA Extraction, Prokaryotic 
Sequencing Analysis

Approximately 40 g of rumen content (both liquid 
and particle matter) was sampled with a flora rumen 
scoop before first feeding the same morning that milk 
samples were taken, and a representative subsample 
was immediately frozen to −80°C for DNA extraction. 
The structure of the bacterial and archaeal commu-
nity was assessed by sequencing the 16S rRNA gene: 
the V1–V3 region for bacteria (27F: 5′-AGAGTTT-
GATCCTGGCTCAG-3′, and 534R: 5′-ATTACCGCG-
GCTGCTGG-3′) and the V4–V6 region for archaea 
(S-D-Arch-0519-a-S-15 5′-CAGCMGCCGCGGTAA-3′ 
and S-D-Arch-1041-a-A-18 5′-GGCCATGCACCW-
CCTCTC-3′). Extraction of DNA and sequence library 
construction and sequencing were conducted at a 
commercial company (GATC Biotech, Constance, Ger-
many). Sequences with lengths longer than 300 bp were 
clustered into operational taxonomic units (OTU) 
based on 97% sequence similarity, using LotuS pipeline 
(Hildebrand et al., 2014). The average numbers of reads 
per sample were 136,561 for archaea and 118,268 for 
bacteria, resulting in 4,018 archaeal and 35, 477 bacte-
rial OTU. Taxonomy was assigned to each OTU using 
the RDP classifier (Wang et al., 2007) with a confidence 
level of 0.8, using greengenes (gg_13_8_otus) as the 
reference database (http:​/​/​www​.metagenomics​.wiki/​
tools/​16s/​qiime/​install/​greengenes). After taxonomic 
classification, 76.4% of archaea and 42.5% of bacteria 
were assigned at genus level. Details of rumen sampling, 
DNA extraction, library generation, and community 
analysis are previously described in Difford et al., 2018.

Genotyping

All sampled cows were genotyped with the Bo-
vineSNP50 BeadChip (Illumina, San Diego, CA) using 
an Illumina Infinium II Multisample assay device. Ge-
nomic DNA was extracted from ear tissue. Genotypes 
were subject to quality control, including (1) minimum 
call rates of 90% for individuals and 95% for loci and 
(2) exclusion of SNP with a minor allele frequency 
lower than 5% before imputation to Illumina BovineHD 
markers using IMPUTE2, v. 2.3.1 (Howie et al., 2011). 
Imputation was based on a reference population of 
3,383 animals, including sires and siblings of some of 
the sampled cows, as described in detail by Gebreyesus 
et al. (2016). Imputation accuracies were assessed based 

on the built-in cross-validation system implemented in 
IMPUTE2, which showed that imputation error was, 
on average, less than 1%. Finally, 436,000 SNP across 
the 29 bovine autosome were available for the analyses. 
Markers in the bovine X chromosome were not avail-
able in our original data set for the imputation; there-
fore, these were not included for either the parameter 
estimation or the genomic prediction analyses.

Computation of Relationship Matrices

The genomic relationship matrix was calculated fol-
lowing VanRaden’s method-1 (VanRaden, 2008). The 
microbial relationship matrix (M) was computed based 
on bacteria counts, as previously described by Difford 
et al. (2018): M = XX′/n, where X is the matrix of 
natural log transformed bacterial and archaeal relative 
abundance for all animals and is computed as follows: 
bacterial and archaeal count matrix are screened for 
OTU present in at least 50% of the samples, resulting 
in 4,018 bacterial and 208 archaeal OTU. Thresholds 
for OTU incidence are somewhat arbitrary, selected 
across literature, ranging from 5 to 80% (Benson et 
al., 2010; Rothschild et al., 2018). Most commonly a 
threshold of 50% is employed, as presence versus ab-
sence can be seen as a binary trait, and a 50% threshold 
is the point at which the variance of binary traits is 
maximized (Goodrich et al., 2014; Difford et al., 2018; 
Fan et al., 2019). Bacterial and archaeal OTU are then 
natural log-transformed after the addition of a small 
constant 0.01 (1% of the lowest possible count 1), which 
is then centered and scaled; n is the number of bacterial 
and archaeal OTU.

Statistical Models

We compared prediction accuracies for BHB and ac-
etone concentrations in milk, using models that include 
either genomic or microbial relationship matrices. The 
models are described as follows:

	
y parity herd b DIM

b g e

ijkl i j k

DIM
l ijkl

k

= + + +

+ × + +− ×

µ 1

2
0 05exp ;. 	 [1]

	
y parity herd b DIM

b m e

ijkl i j k

DIM
l ijkl

k

= + + +

+ × + +×

µ 1

2
10 05exp ,. 	 [2]

where yijkl is the phenotype of cow l in parity i and herd 
j; μ is the fixed intercept effect; b1 is the regression coef-
ficient for DIMk, which is a covariate describing the ef-
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fect of DIM; b2 is the regression coefficient for the 

Wilmink adjustment exp .− ×( )0 05 DIMk  of DIM (Wilmink, 

1987); eijkl is a random residual effect assumed normally 
distributed with e I~ , ,N e0

2( )  where I is an identity 

matrix. Additionally, gl is the random additive genetic 
effect of the animal, ml is the random effect associated 
with microbial count, and eijkl is the random residual 
effect. The random effects gl and ml are assumed to be 
independent and normally distributed as follows: 
g G~ ,N a0 2σ( )  and m M~ , ,N 0 2σm( )  where G is the ge-

nomic relationship matrix between individuals and σa
2  

is the additive genetic variation, and M is the micro-
bial relationship matrix with σm

2  microbial variation.
The proportion of the total phenotypic variance 

explained by additive genetic effects (heritability) was 
computed as

	 h a a
2 2 2 2= +( )σ σ σe , 	

where σa
2  was the additive genetic variation, and σe

2  
was the residual variation.

The proportion of the total phenotypic variance 
explained by rumen microbial composition, also called 
microbiability (Difford et al., 2018), was defined as

	 m2 2 2 2= +( )σ σ σm m e , 	

where σm
2  was the variation explained by the microbial 

composition and σe
2  was the residual variation. The 

parameters σg
2  and σm

2  were estimated based on Mod-

els [1] and [2], respectively, and the average values of 
the 10 replicates were used. Analyses were performed 
using DMU software (Madsen and Jensen, 2007).

Cross-Validation and Predictive Ability of the Models

In both prediction models, a resampling strategy 
using cows in 10 validation sets was implemented to 
compare the 2 models for prediction reliability. In each 
resampled analysis, 50 cows were randomly selected to 
create each of the 10 validation sets, which had a cer-
tain amount of random overlaps in assigned cows. For 
the model with random genetic effects (Model [1]), pre-
diction reliability was computed as the squared average 
correlation between genomic EBV and the phenotype 
corrected for fixed effects, from 10 replicates, divided 

by heritability estimates. Similarly, for the model with 
random effect of rumen microbial content (Model [2]), 
prediction reliability was computed as the squared 
average correlation between estimated microbial value 
and the phenotype corrected for fixed effects, divided 
by microbiability estimates.

Association Between Rumen Bacterial and Archaeal 
OTU and BHB and Acetone

The association between the relative abundance of 
each bacterial and archaeal OTU with BHB and acetone 
was calculated using Model [1], where the effect of fixed 
regression of each OTU was estimated separately for 
each of the 203 archaeal and 4,394 bacterial OTU that 
were present in at least 50% of cows. The significance 
threshold was calculated using a Bonferroni correction 
for multiple testing at α = 0.05, corresponding to a 
−log10 P-value of 4.92.

RESULTS

Milk BHB and Acetone

Table 1 presents the descriptive statistics of milk 
BHB and acetone in Danish Holstein cows quantified 
by integration of NMR resonances. A high coefficient 
of variation (CV) was computed for acetone (1.24), 
whereas the CV for BHB was moderate (0.59). Figure 
1 shows milk concentrations of acetone (A) and BHB 
(B) plotted against DIM. Peak concentrations of both 
acetone and BHB in the milk appeared early in lacta-
tion (<50 DIM).

Parameter Estimates

Table 2 shows the variances explained by host ge-
netics and rumen microbial composition along with 
heritability and microbiability estimates. In general, 
heritability estimates were quite low for both traits (h2 
= 0.10 for acetone and 0.03 for BHB). In comparison, 
relatively higher microbiability values were estimated 
for both acetone and BHB (m2 = 0.15). For all parame-
ter estimates except microbiability, the standard errors 
of estimation were generally higher than the parameter 
estimates.

Gebreyesus et al.: RUMEN MICROBIAL COMPOSITION PREDICTS METABOLIC TRAITS

Table 1. Descriptive statistics of milk acetone and BHB in Danish 
Holstein cows

Metabolite Mean CV 5% quantile 95% quantile

Acetone 0.57 1.24 0.21 1.10
BHB 0.89 0.59 0.41 1.64
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Predictability of Milk BHB and Acetone Contents

Prediction reliabilities for BHB and acetone using 
host genetics and rumen microbial composition are 

shown in Figure 2. Using host genetics as the predictor, 
acetone showed relatively higher predictability (aver-
age reliability = 0.25) than BHB (average reliability 
= 0.02). Using rumen microbial composition as the 
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Figure 1. Milk concentrations of acetone (A) and BHB (B) across days in milk.

Table 2. Genetic and rumen microbial composition parameter estimates with standard errors for acetone and 
BHB1

Metabolite σa
2  (±SE) σm

2  (±SE) h2 (±SE) m2 (±SE)

Acetone 0.03 (0.19) 0.03 (0.11) 0.10 (0.14) 0.15 (0.09)
BHB 0.0075 (0.16) 0.017 (0.09) 0.03 (0.13) 0.15 (0.07)

1 σa
2 = additive genetic variance; σm

2  = proportion of variance explained by rumen microbial composition; m2 
= microbiability.
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predictor improved prediction reliability substantially 
for both BHB (∆ = 0.53) and acetone (∆ = 0.10) com-
pared with the model using host genetics for prediction.

Reported prediction reliabilities are based on aver-
age correlations between genomic EBV, or estimated 
microbial value, and the corrected phenotype from the 
10 cross-validation replicates, which generally showed 
lower deviations from the averages across the models 
and in both traits. The mean absolute deviations in 
prediction reliability of the 10 replicates from the re-
ported averages were 0.07 for the model using genomic 
relationships in both acetone and BHB, as well as for 
the model based on microbes in BHB, whereas the 
corresponding value for the model using microbes for 
acetone was 0.12.

Rumen Microbe Composition Associated  
with BHB and Acetone

The top OTU from the microbial-wide association on 
BHB and acetone in milk can be found in Table 3. A 
total of 21 OTU were found to be associated with BHB 
(Figure 3) and 23 with acetone (Figure 4), exceeding 
the stringent Bonferroni threshold for multiple testing 
significance. Among those, 11 OTU were found in com-
mon between BHB and acetone. (See Supplemental File 
S1 for top OTU using the less-stringent false discovery 
rate of 1%: https:​/​/​doi​.org/​10​.3168/​jds​.2019​-17824). 
The bacterial OTU found to be highly significantly as-
sociated were predominantly members of the Prevotel-
laceae and Ruminococcaceae families, whereas the most 
significantly associated archaeal OTU were members of 
the genus Methanobrevibacter. All of the top bacterial 
OTU were depleted in relative abundance with increas-
ing levels of BHB and acetone, whereas the archaeal 

OTU showed enrichment in relative abundance with 
increasing levels of BHB and acetone.

DISCUSSION

This study investigated the potentials of cow genet-
ics and rumen microbial composition to predict milk 
concentrations of 2 major ketone bodies, acetone and 
BHB. Using milk concentrations of ketone bodies will 
allow a noninvasive method for diagnosis of subclinical 
ketosis that can be part of routine application. Methods 
have been developed to predict blood concentrations 
of ketone bodies using infrared-predicted milk BHB 
and acetone (e.g., Chandler et al., 2018). If substantial 
genetic variation is detectable in the milk composition 
of BHB and acetone, this will open a new avenue for 
selection against susceptibility to subclinical ketosis, 
using milk BHB and acetone as indicator traits. Apart 
from genetic differences between cows, differences in 
composition of the rumen microbial community might 
contribute to variation in milk metabolite concentra-
tions. Quantification of the relative contributions of 
host genetics and rumen microbiome to variations in 
milk metabolite concentrations, and identification of 
the specific rumen microbial populations associated 
with these traits, might allow better prediction of ge-
netic merits for resistance to subclinical ketosis.

Effects of Host Genetics and Rumen Microbiome  
in Milk Metabolite Concentrations

Differences between cows in metabolic adaptation 
to negative energy balance underlies differences in 
susceptibility to ketosis. Part of this difference can be 
attributed to genetics. In this study, we showed that 
the additive genetic variation constitutes only a small 
proportion of the variation in milk concentration of the 
major ketone bodies, BHB and acetone. The heritabil-
ity estimate for BHB concentration was close to 0, in 
agreement with reports from several previous studies. 
Lee et al. (2016), for instance, reported heritability 
values ranging between 0.04 and 0.17 for milk BHB in 
Korean Holstein cows, depending on parity and stage of 
lactation. Similarly, heritability values ranging between 
0.07 and 0.29 were reported for milk BHB in several 
other studies for different breeds of cattle (van der Drift 
et al., 2012; Koeck et al., 2014; Penasa et al., 2015; 
Jamrozik et al., 2016). An exception to these reports 
was a higher heritability estimate reported by Buiten-
huis et al. (2013) for milk BHB (h2 = 0.87) using cows 
that were all sampled in mid-lactation. The heritability 
value estimated in our study for milk acetone (h2 = 
0.10) was generally lower than estimates from previous 
studies, which were in the range of 0.22 to 0.31 (Lee et 

Gebreyesus et al.: RUMEN MICROBIAL COMPOSITION PREDICTS METABOLIC TRAITS

Figure 2. Prediction reliability for milk BHB and acetone concen-
trations using host genetics (G) or rumen microbial composition (M) 
as predictors.
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al., 2016; Ranaraja et al., 2018). Generally, heritability 
estimates for milk concentration of ketone bodies might 
vary between studies depending on stages of lactation 
of sampled cows. Ketosis occurs early in lactation, and, 
thus, concentration of ketone bodies in milk drops in 
later stages of the lactation trajectory. In Figure 1, we 
show that acetone and BHB concentrations are very 
low in later stages of lactation (>50 d). Therefore, an 
ideal sampling strategy for genetic parameter estima-
tion would be to focus on cows in the early stage of lac-
tation. In our study, lactation stages of sampled cows 
ranged between 3 and 517 DIM, which may explain the 
difference in heritability estimates from some previous 
studies, and which might be considered a limitation of 
the current study.

In contrast to host genetics, the proportion of varia-
tion explained by cows’ rumen microbial composition 
was higher for both BHB and acetone concentrations 
in milk (m2 = 0.15). This finding suggests that rumen 
microbial composition might be more informative than 
host genetics in prediction of susceptibility to metabolic 

disorders using milk concentration of ketone bodies in 
cows. The microbiability estimated from fecal bacterial 
composition has been shown to be highly informative 
for predicting body mass index, glycemic status, and 
fasting glucose levels in humans (Rothschild et al., 
2018). Similarly the m2 for feed conversion efficiency 
and feed intake in pigs exceeded h2 estimates for these 2 
traits (Camarinha-Silva et al., 2017). Although m2 from 
rumen bacteria was found to be more informative than 
heritability in 5 of the 17 fatty acids tested in bovine 
milk, crucially these include the essential fatty acids 
linoleic acid (C18:​2n​-6) and α-linolenic acid (C18:​3n​
-3) (Buitenhuis et al., 2019). In the studies discussed 
above, m2 is estimated and contrasted with h2 to assess 
the relative importance of additive genetics and host-
associated microbial composition with variation in host 
phenotypes. Difford et al. (2018) further examined the 
shared information between the 2 effects by fitting in 
their model both genomic and microbial relationship 
matrices jointly; they reported negligible changes in the 
estimates of h2 and m2 compared with fitting each effect 
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Table 3. Top operational taxonomic units (OTU) associated with milk acetone and BHB concentrations1

Taxonomical classification

BHB

 

Acetone

Effect (β) ± SE −log10 P-value Effect (β) ± SE −log10 P-value

Methanobrevibacter 0.22 ± 0.05 4.6   0.61 ± 0.14 4.81
Methanobrevibacter 0.18 ± 0.04 4.55      
Unclassified Bacteroidales NC NC   −0.54 ± 0.12 5.02
Unclassified Bacteroidales NC NC   −0.54 ± 0.12 5.16
Unclassified Bacteroidales NC NC   −0.63 ± 0.13 5.36
Unclassified Bacteroidales −0.2 ± 0.04 5.49   −0.56 ± 0.01 5.97
Unclassified Bacteroidales −0.16 ± 0.04 4.1   −0.52 ± 0.1 6.09
Unclassified Bacteroidales −0.19 ± 0.03 7.26   −0.56 ± 0.09 9.03
Unclassified Prevotellaceae NC NC   −0.27 ± 0.06 5.08
Unclassified Prevotellaceae NC NC   −0.42 ± 0.09 5.5
Unclassified Prevotellaceae −0.21 ± 0.05 4.75   NC NC
Prevotella −0.14 ± 0.03 4.57   −0.33 ± 0.09 3.95
Prevotella −0.22 ± 0.05 4.58   −0.55 ± 0.14 4.18
Prevotella −0.18 ± 0.04 4.51   −0.49 ± 0.11 4.97
Prevotella −0.09 ± 0.02 4.16   −0.27 ± 0.06 5.05
Prevotella NC NC   −0.76 ± 0.15 5.8
Prevotella NC NC   −0.49 ± 0.09 6.58
Prevotella NC NC   −0.62 ± 0.1 8.53
Prevotella −0.17 ± 0.04 4.14   −0.74 ± 0.1 11.03
Prevotella −0.25 ± 0.06 4.82   NC NC
Prevotella −0.29 ± 0.06 5.44   NC NC
Unclassified Bacteroidetes −0.11 ± 0.03 4.58   −0.28 ± 0.07 4.14
Unclassified Bacteroidetes −0.11 ± 0.03 4.52   −0.29 ± 0.07 4.57
Saccharibacteria −0.28 ± 0.06 5.11   −0.68 ± 0.16 4.34
Saccharibacteria −0.24 ± 0.05 5.8   −0.65 ± 0.13 6.01
Unclassified Clostridiales −0.16 ± 0.04 4.21   −0.49 ± 0.11 5.19
Unclassified Clostridiales −0.21 ± 0.04 6.59   −0.57 ± 0.11 6.6
Unclassified Ruminococcaceae −0.21 ± 0.05 4.97   −0.58 ± 0.12 5.61
Unclassified Ruminococcaceae −0.16 ± 0.03 7.05   −0.39 ± 0.08 6.07
Unclassified Ruminococcaceae NC NC   −0.76 ± 0.13 7.73
Unclassified Ruminococcaceae −0.11 ± 0.02 4.99   NC NC
Ruminococcus −0.22 ± 0.04 5.99   NC NC
Unclassified Proteobacteria NC NC   −0.64 ± 0.12 6.39
Unclassified Spirochaetaceae −0.19 ± 0.04 4.5   −0.72 ± 0.11 9.13
1NC = nonconvergence of linear mixed model. Bonferroni threshold for multiple testing significance: −log10 (P) = 4.92.
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separately for CH4 production. Similarly, fitting both 
genomic and microbial relationship matrices jointly in 
our study led to negligible changes in estimates of h2 
and m2 compared with fitting the 2 effects separately 
(results not shown).

The rumen microbial ecosystem can exhibit 2 or more 
steady states under the same conditions, often referred 
to as ruminotypes (Kittelmann et al., 2014). Microbial 
ecosystems may switch between states due to pertur-
bations such as removal of species through antibiotics 
or introduction of new species, as well as changes in 
environmental conditions (Faust et al., 2015). Dysbiosis 
occurs when host-associated microbial communities are 
sufficiently perturbed that the symbiotic relationship 
between host and microbes is disrupted; this can result 
in diseases. In humans, dysbiosis in the gut microbiota 
is known to alter host energy balance and feeding be-
havior and to cause chronic inflammation leading to, 
or aggravating, metabolic disorders (Lynch and Ped-
ersen, 2016; Gilbert et al., 2018; Mulders et al., 2018). 
In cattle, metabolic diseases such as subacute ruminal 
acidosis have been associated with rumen microbial 
dysbiosis (Khafipour et al., 2009), but, as far as we can 
tell, subclinical ketosis has not. It is important to note 
that unlike h2, m2 is a measure of covariance that has no 
inherent causal meaning. Thus, a higher m2 indicates an 
association between a phenotype and rumen microbial 

community composition, but controlled dose-response 
studies such as transfaunation experiments are needed 
to confirm a causal link between subclinical ketosis 
and rumen prokaryotic composition (Malmuthuge and 
Guan, 2017; Bickhart and Weimer, 2018).

Predictability of Milk Metabolite Concentrations

We found low reliability of predicting the metabolic 
indicator traits of milk BHB and acetone using cow’s 
genotype. This might be primarily due to the low refer-
ence population size used in the prediction. The ef-
fect of reference population size on genomic prediction 
accuracy is well established (Daetwyler et al., 2008; 
Goddard, 2009). We assessed for possible effects of sig-
nificant population substructures in the sample herds 
through principal component analysis of the genomic 
relationships between sampled animals. Our results 
indicate no evidence of such structure, with the first 
and second principal components together explaining 
merely 12.59% of the variation (results not shown). 
Compared with BHB, prediction reliability for milk 
acetone using cow genetics was relatively higher, in line 
with the heritability estimates for the 2 traits.

With the same reference sample size, we computed 
moderate to high prediction reliabilities for the traits 
using the microbial relationship matrix. Prediction 
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Figure 3. Manhattan plot of rumen bacterial and archaeal operational taxonomic unit (OTU) associations with milk acetone concentration. 
The y-axis is −log10 (P) for association tests. The horizontal line represents the Bonferroni threshold (α = 0.05) for multiple testing significance: 
−log10 (P) = 4.92.
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reliability improved by 53 percentage points for BHB 
when microbial composition of the rumen was used 
in the prediction compared with using host genetics. 
The proportion of the variation in both milk BHB and 
acetone concentrations explained by rumen microbial 
composition was shown to be substantially higher than 
the proportion explained by host genetics. Therefore, 
the finding of higher prediction reliability using the mi-
crobial relationship matrix is in line with the measured 
effects of the rumen microbial composition.

The first attempts at host phenotype prediction 
using associated microbiota were conducted using a 
microbial relationship matrix derived from full metage-
nomic sequences; these demonstrated prediction accu-
racies in excess of 0.45 with as few as 30 cows in the 
reference population (Ross et al., 2013). Similarly, in a 
larger study in pigs (n = 207), Camarinha-Silva et al. 
(2017) used fecal microbiota based on 16S rRNA gene 
sequencing to predict feed intake, daily gain, and feed 
conversion ratio, and found the accuracies of prediction 
based on microbial relationships (0.33 to 0.41) to be 
higher than those based on genomic relationships (0.20 
to 0.35) and to have lower standard errors. Maltecca 
et al. (2019) used Bayesian and machine-learning pre-
diction models to predict fat and average daily gain 
using fecal microbial profiles in 1,043 pigs and achieved 

accuracies in the range of 0.40 to 0.50. More recently, 
the RuminOmics Consortium used microbial relation-
ship matrices and 16S rRNA gene profiling to predict 
numerous phenotypes in diverse European dairy cattle 
breeds and found prediction accuracies for blood BHB 
concentration to range from 0.33 in Finnish Aryshire 
(n = 100) to 0.47 in UK Holsteins (n = 297; Wallace 
et al., 2019).

Association of Rumen Prokaryotes  
with BHB and Acetone

We estimated associations between the abundance 
of rumen bacterial and archaeal OTU with milk BHB 
and acetone concentrations. The most strongly asso-
ciated bacterial OTU are dominated by members of 
the families Prevotellaceae and Ruminococcaeae, both 
of which have shown negative associations with blood 
plasma levels of BHB (Schären et al., 2018; Wallace et 
al., 2019), negative energy balance (Derakhshani et al., 
2017), and feed efficiency metrics such as residual en-
ergy intake and residual feed intake (Jami and Mizrahi, 
2012; Shabat et al., 2016; Sasson et al., 2017). This is 
important because residual feed intake and residual en-
ergy intake are mathematically equivalent to negative 
energy balance and therefore potentially estimators of 

Gebreyesus et al.: RUMEN MICROBIAL COMPOSITION PREDICTS METABOLIC TRAITS

Figure 4. Manhattan plot of rumen bacterial and archaeal operational taxonomic unit (OTU) associations with milk BHB concentration. 
The y-axis is −log10 (P) for association tests. The horizontal line represents the Bonferroni threshold (α = 0.05) for multiple testing significance: 
−log10 (P) = 4.92.
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subclinical ketosis, when mobilization of fat reserves is 
not taken into account in their calculation (Veerkamp, 
2002).

Interestingly, the only archaeal OTU to show a posi-
tive association with milk BHB or acetone concentra-
tions were members of the genus Methanobrevibacter. 
Although cultured representatives of this genera are 
known to produce methane primarily from H2 and CO2 
as well as ethanol and formate (Leahy et al., 2010), the 
relationship with ketosis substrates is not immediately 
apparent. Methanobrevibacter species have been associ-
ated with ketosis and obesity in mice (Turnbaugh et 
al., 2006; Newell et al., 2016) as well as in humans 
(Armougom et al., 2009; Million et al., 2013), where 
it is hypothesized their hydrogen consumption main-
tains optimal conditions of anaerobic fermentation. 
Milk acetone concentrations have been associated with 
decreased methane emissions in dairy cows (Antunes-
Fernandes et al., 2016), and Methanobrevibacter spe-
cies have been associated with residual feed intake in 
beef steers (Zhou et al., 2009), as well as ruminal pH 
(Schären et al., 2018), indicating a possible link be-
tween subclinical ketosis, capacity to harvest energy, 
and methane production. Although Prevotellaceae, Ru-
minococcaeae, and Methanobrevibacter have been shown 
to be heritable in the range of 0 to 0.32 (Difford et al., 
2018; Li et al., 2019; Wallace et al., 2019), we caution 
against selection until the relationships between rumen 
prokaryotes, methane production, feed efficiency, and 
ketosis are elucidated.

CONCLUSIONS

This study examined the predictive abilities of cows’ 
genetics and rumen microbial composition for milk 
concentrations of the major ketone bodies, acetone and 
BHB. In general, our findings suggest an important pre-
dictive ability of the rumen microbial composition with 
regard to dairy cows’ milk BHB and acetone concen-
trations. The group of OTU found to have significant 
association with milk BHB and acetone concentration 
in this study were previously reported to have low to 
moderate heritability, presenting an opportunity for se-
lective breeding. However, higher covariation between 
microbial composition and milk metabolite concentra-
tion might not necessarily indicate causation. Further 
studies are needed to confirm whether such causative 
relationships do exist and to unravel the underlying 
mechanisms.
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