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ABSTRACT

Dairy cattle science has evolved greatly over the past 
century, contributing significantly to the improvement 
in milk production achieved today. However, a new ap-
proach is needed to meet the increasing demand for 
milk production and address the increased concerns 
about animal health and welfare. It is now easy to col-
lect and access large and complex data sets consisting 
of molecular, physiological, and metabolic data as well 
as animal-level data (such as behavior). This provides 
new opportunities to better understand the mechanisms 
regulating cow performance. The recently proposed 
concept of feedomics could help achieve this goal by 
increasing our understanding of interactions between 
the different components or levels and their impact on 
animal production. Feedomics is an emerging field that 
integrates a range of omics technologies (e.g., genom-
ics, epigenomics, transcriptomics, proteomics, metabo-
lomics, metagenomics, and metatranscriptomics) to 
provide these insights. In this way, we can identify the 
best strategies to improve overall animal productivity, 
product quality, welfare, and health. This approach 
can help research communities elucidate the complex 
interactions among nutrition, environment, manage-
ment, animal genetics, metabolism, physiology, and the 
symbiotic microbiota. In this review, we summarize the 
outcomes of the most recent research on omics in dairy 
cows and highlight how an integrated feedomics ap-
proach could be applied in the future to improve dairy 
cow production and health. Specifically, we focus on 2 
topics: (1) improving milk yield and milk quality, and 
(2) understanding metabolic physiology in transition 
dairy cows, which are 2 important challenges faced by 
the dairy industry worldwide.
Key words: omics, feedomics, dairy cow, milk yield 
and milk quality, transition period

INTRODUCTION

Great advances have been made in our knowledge 
of the roles that genetics, nutrition, and management 
have played in milk production from dairy cows over 
the past century. This has resulted in high yields of 
nutritious milk for human consumption produced ever 
more efficiently (McNamara and Lucy, 2017). This suc-
cess has mainly been achieved by selective breeding and 
high-density nutrition using diets based on cereal grain 
and high-quality forage (Overton et al., 2017). However, 
this has increased susceptibility to metabolic diseases, 
reduced reproductive performance, and raised the in-
cidence of mammary gland infectious disease (Zhang 
et al., 2017b). Indeed, up to 50% of high-performance 
dairy cows may be affected by different metabolic dis-
eases during the transition period (LeBlanc, 2010). A 
major goal for the dairy industry now and in the future 
is to achieve more balanced breeding goals that not 
only emphasize production traits but also take into ac-
count health, welfare, and environmental sustainability 
traits (e.g., methane emissions, nitrogen waste secre-
tion, heat stress tolerance, enhanced immune response, 
hoof health and so on; Miglior et al., 2017). To date, 
it remains challenging to identify the key regulatory 
mechanisms underlying the important biological pro-
cesses and their roles in dairy cow productivity, well-
being, and health (Baumgard et al., 2017). Therefore, 
a suite of tools to address these challenges is urgently 
needed. Long-term solutions to maintain sustainable 
production in the future should include advanced and 
novel strategies such as omics-based nutritional inter-
vention and early diagnosis of metabolic disorders (e.g., 
using biomarkers and behavioral predictors). To do 
this, the research community has begun to collect large 
amounts of complex data using high-throughput tech-
niques. However, most studies only focus on a single 
omics technology (we will refer to each omics approach 
as a “layer” of information, which together provide a 
more holistic understanding of the biological system), 
which usually misses important information from other 
biological layers as well as the interplay between differ-
ent layers. The systematic collection and interpretation 
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of these resulting large data sets and the application of 
this knowledge within production systems to improve 
animal performance are very limited.

Recently, feedomics has been proposed as an emerg-
ing approach to study food production animals with 
the aim of dissecting production- and health-related 
traits within each animal study. As the term implies, 
it includes many disciplines, principally combining feed 
science, animal nutrition, physiology, and metabolism, 
together with high-throughput omics technologies 
including genomics, epigenomics, transcriptomics, 
proteomics, metabolomics, and microbiomics (Sun and 
Guan, 2018). Feedomics is not just a combination of 
analytical tools; rather, it is a comprehensive approach 
to study animals with a system-wide overview of in-
teractions among external stimuli (feed, environment, 
management, pathogen), internal molecular informa-
tion (endo-phenotypes or intermediate phenotypes), 
and the symbiotic microbiome. In this way, feedomics 
can reveal the entire molecular profile resulting from 
different stimuli to present an unbiased image of the 
biological landscape.

In this review, we summarize published research on 
dairy cows from January 1901 to September 2018 that 
have used omics technology and that can contribute to 
feedomics. First, we present a brief historical descrip-
tion of research using the major omics technologies and 
their application. Second, we provide more details on 
their applications in 2 topics of major importance in 
dairy cattle research: milk yield and quality and the 
cow’s metabolic status during the transition period. 
Last, we discuss current challenges and future direc-
tions of feedomics in dairy cattle research. This review 
provides new insights into the understanding of dairy 
cow production and metabolism and how the results 
from different biological layers may lead to a more ef-
ficient and sustainable dairy cow industry.

OVERVIEW OF OMICS IN DAIRY COW RESEARCH

Even though the term “feedomics” has been proposed 
only recently (Sun and Guan, 2018), the application 
of genomics technologies (as a layer of feedomics) in 
dairy cows started more than 25 yr ago. For example, 
one of the first studies was the confirmation of bovine 
leukocyte adhesion deficiency by DNA testing (Gilbert 
et al., 1993). Based on the Web of Science database 
(http: / / www .webofknowledge .com/ ), the number of 
papers published in the last 5 yr (up to September 
2018) in each omics category is summarized in Figure 
1A. In total, 1,832 published papers included the ge-
neric term “genomics,” accounting for ~63% of total 
dairy cow omics studies (Figure 1A). The first “high 
density” panel of bovine genetic markers (SNP) was 

released commercially in late 2007, with a set of 54,001 
SNPs. Its characterization (Matukumalli et al., 2009) 
together with the bovine genome sequence (Elsik et al., 
2009) ushered in the era of genomic selection and pro-
vided the basis for all cattle omics applications. This 
breakthrough resulted in the rapid adoption of genomic 
selection in dairy cattle (Meuwissen et al., 2016), and 
more than 100,000 dairy cows have now been geno-
typed across the world (Wiggans et al., 2017). Official 
US genomic evaluations were released for Holstein in 
January 2009, followed by Jersey (August 2009), Brown 
Swiss (2013), and Ayrshire and Guernsey (2016; Wig-
gans et al., 2017). Wiggans and colleagues indicate 
that the rate of genetic improvement doubled in the 
United States as a result of decreased generation in-
terval and increased selection accuracy, and a similar 
response has been reported in Canada (Miglior et al., 
2012). Another advantage of genomics is the potential 
to increase the number of traits that can be genetically 
selected (Chesnais et al., 2016). To date, the outcomes 
of genomics-based dairy research have been extensively 
reviewed (Howard et al., 2017; Wiggans et al., 2017; 
Cole and VanRaden, 2018). Therefore, in this review, 
we will focus on omics approaches other than genomic 
selection, together with their wider potential impact, 
including improved management and the promise of 
precision dairy production.

Studies of the microbiome (sequencing of ribosomal 
RNA gene and the metagenome and metatranscriptome), 
the host (transcriptome, proteome, and epigenome), 
and their metabolic products (metabolome) have be-
come hot topics in dairy cattle research. It has been 
extremely popular for researchers to apply marker gene 
[16S, 18S, and internal transcribed spacer (ITS) rRNA 
gene] sequencing-based microbiomics to study animals’ 
symbiotic microbiome, mainly the rumen microbiota, 
which has led to the second largest group of publica-
tions (n = 396, Figure 1A). The first study using such 
an approach examined the phylogenetic diversity of the 
bacterial community in the rumen fluid of dairy cows in 
1998 (Whitford et al., 1998). The numbers of papers in 
this category has been increasing in the last 5 yr (Figure 
1A), suggesting that gene sequencing continues to play 
an important role in the field. The first papers that 
described epigenomics, transcriptomics, proteomics, 
and metagenomics approaches in dairy cows were all 
published around 2005. This reflects improvements in 
sequencing technologies and the international effort to 
sequence the cattle genome (Goodwin et al., 2016). Ap-
plication of metabolomics and metatranscriptomics in 
dairy cows were first reported in 2009 (Bertram et al., 
2009) and 2016 (Addis et al., 2016), respectively. It is 
notable that the integrated analysis of multiple omics 
approaches is now increasing, with 1, 2, and 8 papers 
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in 2016, 2017, and 2018, respectively (Figure 1A). To 
date, multi-omics analyses mostly used a combination 
of 2 omics technologies such as integration of metabolo-

mics and 16S rRNA gene sequencing (Friedman et al., 
2017; O’Callaghan et al., 2018; Wetzels et al., 2018), 
transcriptomics with 16S rRNA gene sequencing (Wirth 

Figure 1. The numbers of papers published using different omics technologies and their applications in dairy cow research. (A) Number 
of papers published from 1900 to September 2018 using the names of different omics technologies in dairy cows based on the Web of Science 
database. The total number of published papers in each category is labeled. (B) Main applications of omics in dairy cow research areas; darker 
colors represent more omics papers published on the topic.
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et al., 2018), metabolomics with transcriptomics (Sun 
et al., 2018), metabolomics with proteomics (Ceciliani 
et al., 2018), and transcriptomics with proteomics (Dai 
et al., 2018). Only one study used more: metabolomics 
plus 2 microbial genomics approaches (16S marker gene 
sequencing and metagenomics) to study the rumen mi-
crobiome of dairy cows with different feed efficiencies 
(Shabat et al., 2016). The results of that study showed 
the advantage of increasing the depth of information 
on microbial composition, function, and metabolism, 
providing a more convincing description of the contri-
bution of the rumen microbiome to the feed efficiency 
trait and illustrating the proposed extension to feedo-
mics studies.

To date, different omics technologies have mainly 
focused on the topics of milk yield and quality (Jiang 
et al., 2016; Do et al., 2017b; Ammah et al., 2018; Cai 
et al., 2018; Do et al., 2018; Li et al., 2018b; Liu et 
al., 2018; Pegolo et al., 2018; Wang et al., 2018; Wu 
et al., 2018; Xue et al., 2018b), transition metabolic 
challenge (Lima et al., 2015; Cersosimo et al., 2016; 
Bouvier-Muller et al., 2017; Derakhshani et al., 2017; 
Gessner et al., 2017; Zhang et al., 2017a; Dervishi et al., 
2018; Hailemariam et al., 2018; Wei et al., 2018; Zan-
dkarimi et al., 2018), early life nutrition (Song et al., 
2018, 2019; Leal et al., 2018; Qi et al., 2018), utilization 
of crop by-products (Sun et al., 2016, 2018; Wang et al., 
2016; Dai et al., 2017a; Wang et al., 2017; Dai et al., 
2018), ruminal acidosis (Mann et al., 2018; Murovec et 
al., 2018; Xue et al., 2018a), mastitis (Dervishi et al., 
2017; Abdelmegid et al., 2017; Song et al., 2017; Xi 
et al., 2017), heat stress (Min et al., 2016; Srikanth et 
al., 2017; Dado-Senn et al., 2018; Skibiel et al., 2018), 
lactation (Bionaz et al., 2012; Dai et al., 2017b; Sun et 
al., 2017; Yang et al., 2018), and fertility (Walker et 
al., 2013; Ribeiro et al., 2016; Bauersachs et al., 2017; 
Salehi et al., 2017; Moraes et al., 2018; Figure 1B). 
Improving milk yield and quality and the management 
of the transition dairy cow has attracted continued 
attention because these are prerequisites for sustain-
able profitability of dairy farms. Even though many 
advances have taken place related to these 2 topics, 
our understanding of complex regulatory and adaptive 
mechanisms underlying them remains limited. Some 
novel findings have been highlighted by these omics 
studies compared with traditional nutrition research. 
For example, researchers have expanded the current 
understanding to identify variables potentially linked 
to milk yield and quality at the transcriptomic level, 
as well as normal and abnormal metabolic profiles of 
transition dairy cows. However, we suggest that a more 
systematic feedomics approach is necessary to develop 
effective strategies to improve the understanding of all 
of the processes involved.

PROGRESS AND LIMITATIONS OF OMICS-BASED 
APPROACHES IN STUDYING MILK YIELD  

AND MILK QUALITY

Milk yield and milk quality (such as protein and 
fat content) are the most important economic traits 
in dairy production, and are affected by multiple fac-
tors such as breed, genetic potential, lactation stage, 
nutrition, environment, management, and disease (Ol-
tenacu and Broom, 2010). Possible interventions at the 
genetic, physiological, and metabolic levels have been 
widely studied in the past decades. These have included 
use of genetic variants, regulatory genes, protein or me-
tabolite biomarkers, symbiotic microbiota, interaction 
networks, and metabolic pathways by using different 
omics technologies (Suravajhala et al., 2016). Perhaps 
the clearest example is the impact of genomic selection.

We have summarized the main omics results related 
to milk yield and milk quality in dairy cows in Table 
1. The “omics level,” specific technology, breed, sample 
type and numbers, related milk traits, and references 
are also provided. In some cases, the findings are sup-
ported by different omics studies although the number 
of publications with overlapping results is still relatively 
low. For example, the diacylglycerol-acyl transferase 1 
(DGAT1) gene has been identified as being associated 
with milk production traits in several studies (Grisart et 
al., 2002; Buitenhuis et al., 2014; Iso-Touru et al., 2016; 
Do et al., 2018; Yurchenko et al., 2018b). Similarly, the 
genes encoding lysine demethylase 5A (KDM5A; Pegolo 
et al., 2017; Yurchenko et al., 2018b), colony stimulat-
ing factor 2 receptor β common subunit (CSF2RB; 
Raven et al., 2016; Yurchenko et al., 2018b), signal 
transducer and activator of transcription 5A (STAT5A; 
Pegolo et al., 2016; Raven et al., 2016; Yang et al., 
2016), and tribbles pseudokinase 3 (TRIB3; Cui et al., 
2014; Ammah et al., 2018) have also been proposed as 
important gene markers for milk production and milk 
fat in different studies. Variations in the acetyl-CoA 
carboxylase α (ACACA) gene at both the genomic 
(Pegolo et al., 2016) and transcriptomic (Wang et al., 
2018) levels have been shown to affect milk fat percent-
age. Although the transcriptome profiling of mammary 
gland tissue has been performed between high- and 
low-milk-producing dairy cows (Cui et al., 2014; Li et 
al., 2016), the relationship between genetic variation 
and expression of the differentially expressed genes 
that directly affect milk production is lacking. Also, 
research on genome-wide transcriptome profiling in the 
key organs (e.g., rumen, liver, gut tissues) that are in-
volved in milk production is scarce, which prevents the 
application of the proposed gene markers. Therefore, 
identification of genes and their functional roles in milk 
synthesis within the whole animal is essential to en-
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hance our understanding of milk production and could 
provide valuable resources for designing better breeding 
strategies to improve milk quality.

Consistent findings for other factors related to milk 
yield and milk quality at other molecular levels [e.g., 
microRNA (miRNA), metabolites] are shown in Table 
1. Using RNA-sequencing-based miRNAome profiling, 
recent studies suggest that bta-miR-409a in mammary 
gland tissue might play a role as a regulator of milk 
protein in Chinese and Canadian Holstein dairy cows 
(Ammah et al., 2018; Wang et al., 2018). At the me-
tabolite level, the relative concentration of hippuric 
acid was lower in milk with a high level of somatic 
cells compared with low-SCC milk (Sundekilde et al., 
2013). It was also higher in the serum of cows with 
high compared with low milk protein yield (Wu et al., 
2018), indicating that hippuric acid may be a metabolic 
marker linked to milk quality. In addition, the urine 
concentration of hippuric acid was elevated when cows 
were fed low-quality forages (such as corn stover and 
rice straw) compared with high-quality forage (alfalfa; 
Sun et al., 2016). This suggests that dietary forage type 
should be taken into consideration when using hippuric 
acid as a milk quality biomarker.

In addition, rumen microbes have been reported to be 
associated with milk production traits. It was reported 
that 13 and 2 bacterial genera, respectively, were posi-
tively and negatively correlated with milk yield (Xue 
et al., 2018b) and that 9 and 4 genera, respectively, 
were positively and negatively correlated with milk fat 
content. Meanwhile, 3 genera (CF231, p-75-a5, and an 
unclassified genus belonging to the family Prevotella-
ceae) and Lachnospira were positively and negatively 
correlated with milk protein content, respectively (Xue 
et al., 2018b). Some of these relationships have been 
identified in other studies (Indugu et al., 2017; Xu et al., 
2017; Pitta et al., 2018), highlighting potential strate-
gies for manipulating the rumen microbiota to improve 
milk yield and quality in dairy cows. However, a causal 
relationship between individual rumen microbiota and 
milk production needs to be further investigated and 
validated.

How and to what extent the molecular factors identi-
fied by current omics technologies can contribute to im-
proving milk yield and milk quality in dairy cows is still 
largely unknown. Novel findings from different omics 
technologies tend to be reported rather than a system-
atic analysis of different omics approaches, a deficiency 
that often leads to inconsistent conclusions. It is also 
important to be aware of the limitations of omics-based 
studies. First, most of the published studies (except 
for those using genomic selection of genome-wide as-
sociation studies, GWAS) were performed using a rela-
tively small number of animals or samples; therefore, 

checking the probability of a given sample size with 
sufficient confidence (e.g., power analysis) is needed to 
reveal the biological relevance, rather than statistical 
significance (MacCallum et al., 1996). Meanwhile, for 
studies using a large number of samples, a batch effect 
between samples (e.g., different time of experiment or 
sample processing, reagent lots, human handling, and 
so on) may confound the discovery of real explanatory 
variables from large-scale omics data sets and should 
be evaluated to eliminate nonbiological differences 
(Goh et al., 2017). Second, current studies usually end 
with identifying one or several key factors (genes, tran-
scripts, miRNAs, proteins, metabolites, microbial taxa) 
as putative, potential, or candidate indicators for milk 
yield and milk quality from substantial variables in 
omics data sets. Under this circumstance, a predictive 
model with optimal sensitivity (true positive rate) and 
specificity (true negative rate) is important and neces-
sary to test biomarker performance (e.g., discrimina-
tion, probability, accuracy; Xia et al., 2015). Third, at a 
specific biological layer, the molecules (genes, proteins, 
or metabolites) can interact with each other and jointly 
affect internal reactions (Li et al., 2018a). Therefore, 
the correlation patterns (e.g., network analysis) among 
different molecules are needed to identify causal effects 
in these studies. Last, there is a scarcity of integrated 
analysis among different biological layers. It is well 
known that omics events at the genetic, epigenetic, 
transcriptional, translational, and metabolic levels are 
interrelated (Schwanhäusser et al., 2011). Similarly, 
the symbiotic microbiota could affect responses in the 
animal host. It is essential to describe the regulatory 
mechanism of milk yield and milk quality by construct-
ing a “whole-feedomics” picture to determine causal re-
lationships at multiple levels such as genomic variants, 
epigenetic events, gene activation or inhibition, miRNA 
interference, protein modification, metabolite-mediated 
pathways, and composition and function of the associ-
ated microbiota.

APPLICATIONS OF OMICS IN ANALYZING 
METABOLIC CHALLENGES DURING  

THE TRANSITION PERIOD IN DAIRY COWS

The transition period (mostly defined as the 3 wk 
before and after parturition) is an important and 
vulnerable period for high-producing dairy cows; it is 
characterized by abrupt changes in nutrition, physiol-
ogy, and metabolism to fulfill the energy requirements 
for lactation (Drackley, 1999). Cows usually undergo 
different levels of negative energy balance during this 
period because of the increased nutrient demand to 
support gestation and lactation, which exceeds supply 
from feed intake. This results in high susceptibility to 
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postpartum diseases such as metritis, mastitis, hypo-
calcemia, and clinical ketosis (Suthar et al., 2013). It 
is reported that ~75% of diseases in dairy cows occur 
in the first month postpartum and 50% of dairy cows 
suffer from infectious and metabolic diseases during the 
transition period (LeBlanc, 2010). Omics technologies 
have been proposed as powerful tools to understand 
the adaptations of cows during the transition period at 
different molecular levels (or biological layers). These 
tools could play important roles in the early diagno-
sis of postpartum diseases to improve animal welfare, 
productive lifespan, and economic outcomes (Ceciliani 
et al., 2018). In this section, we summarize the main 
applications of omics technologies in transition dairy 
cows, including an understanding of metabolic adap-
tation mechanisms, early diagnosis of transition cow-
related diseases, and the effects of alleviation strategies 
on metabolic disorders using feed additives.

Application of Omics to Understand Adaptations 
During the Transition Period

During the transition period, the diet of dairy cows 
usually shifts from greater fiber and less energy at pre-
partum to less fiber and greater energy after parturi-
tion, and both rumen microbiota and ruminal papillae 
need to adapt to such dietary changes (Pitta et al., 
2014; Derakhshani et al., 2017). In a study that profiled 
the rumen fluid microbiota of 115 high-producing dairy 
cows, it was reported that the main differences in rumen 
microbiota were the abundances of Christensenellaceae 
and S24-7 families between prepartum and postpartum 
(Lima et al., 2015). An increased prevalence of fungi 
was also found in the prepartum rumen microbiota and 
an increased prevalence of protozoa (Litostomatea) in 
the rumen during the postpartum period (Lima et al., 
2015). High correlations were identified between bacte-
rial groups and milk production (R2 = 0.818, 0.817, 
0.610, 0.714 for primiparous prepartum, primiparous 
postpartum, multiparous prepartum, and multiparous 
postpartum respectively; Lima et al., 2015). This sug-
gests that the shift in rumen microbial populations 
might directly affect production traits during the 
transition periods. The enriched energy metabolism 
pathways of ruminal microbiota, increased proteolytic, 
amylolytic, and lactate-producing species (includ-
ing Prevotella, Streptococcus, and Lactobacillus), and 
decreased fibrolytic genera (Ruminococcus and Bu-
tyrivibrio) were identified in postpartum dairy cows 
compared with prepartum cows (Derakhshani et al., 
2017). These findings suggest that the ruminal micro-
biome acclimates, to some degree, to the nutrient-dense 
diet for lactation. In addition to bacteria and fungi, 
the rumen archaea also show significant differences dur-

ing the transition period. For example, higher relative 
abundances of Methanobrevibacter woesei and Metha-
nobrevibacter millerae and lower relative abundances of 
Methanobrevibacter gottschalkii and Methanobrevibacter 
thaueri were reported in the rumen of postpartum cows 
(Cersosimo et al., 2016). Another study also reported 
a significant increase in Methanobacteriales (from 80 
to 89%, prepartum to postpartum) and a decrease in 
Methanomassiliicoccales (from 15 to 2%) in the rumen 
during the transition period (Zhu et al., 2017). How-
ever, whether and how the observed shifts in the rumen 
microbiome affect rumen function and subsequent per-
formance are not clearly defined. Future metagenom-
ics- and metatranscriptomics-based functional analysis 
along with metabolomics may give complementary 
information and drive more solid conclusions. Regard-
less, these findings provide novel insights into the roles 
of rumen microbiome community structure and activity 
in adapting to the dramatic changes in nutrition during 
the transition period.

The changes of diet and rumen microbiome (compo-
sition, function, and metabolites) in transition dairy 
cows will directly alter the nutrients provided for other 
tissues and organs, which may affect the correspond-
ing functions. Several studies have revealed changes in 
metabolites and inflammatory responses in the liver 
(McCarthy et al., 2010; McCabe et al., 2012), uterus 
(Wathes et al., 2009), polymorphonuclear leukocytes 
(Agrawal et al., 2017), and granulosa cells (Girard et 
al., 2015) at the transcriptomic level when transition 
dairy cows were under negative energy balance. Anoth-
er study using transcriptomics confirmed that the ma-
jor hepatic functional changes in transition cows were 
related to fatty acid oxidation, cholesterol metabolism, 
and gluconeogenesis (Ha et al., 2017). They identified 
9 key genes (CYP7A1, APOA1, CREM, LOC522146, 
CYP2C87, HMGCR, FDFT1, SGLE, and CYP26A1) 
involved in metabolic adaptation, which could serve as 
candidate genes for functional changes during transi-
tion. This was supported by other liver transcriptome 
studies (Akbar et al., 2015; Riboni et al., 2016). Dur-
ing the transition period, cows undergo many changes, 
which could be reflected in the blood. Using serum 
metabolomics, it was reported that the adaptation 
processes during the transition period in dairy cows 
were mainly associated with the glycerophospholipids 
and sphingolipids, especially the phosphatidylcholines 
C34:2 and C36:2 (Kenéz et al., 2016). In addition, the 
quantification of the cow plasma proteome showed ob-
vious changes in the expression of 19 stress-associated 
(acute-phase response and defense response) proteins 
before and after calving (Ma et al., 2015). Metabolome- 
and proteome-based research could help us to identify 
new biomarkers and characterize multifaceted metabol-
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ic adaptation of transition dairy cows, which provides 
new insights into understanding host physiological and 
metabolic responses to lactation and parturition stress.

In addition to nutritional changes, heat stress is an-
other major factor affecting the health and production 
of dairy cows during the transition period (Do Amaral 
et al., 2009). Skibiel and colleagues reported that heat-
stressed transition dairy cows suffered from mitochon-
drial dysfunction, increased oxidative stress, accumula-
tion of hepatic lipids, and shifts in precursor supply 
for gluconeogenesis in liver using proteomics (Skibiel 
et al., 2018). These changes in expression of proteins 
and their functions may contribute to fatty liver and 
other transition-related diseases. Elevated malondial-
dehyde concentrations in plasma and enriched nuclear 
factor, erythroid 2 like 2 (Nrf2)-mediated oxidative 
stress response in adipose tissue were also found based 
on proteomics (Zachut et al., 2017), which identified 
the stress-induced phosphoprotein 1 (STIP1) protein in 
adipose tissue as a biomarker of heat stress in transi-
tion dairy cows. The hepatic transcriptome is strongly 
affected by parturition season in transition dairy cows; 
specifically, calving in the summer not only altered 
energy metabolism but also induced an inflammatory 
stress response in the liver (Shahzad et al., 2015). This 
leads to greater susceptibility to metabolic disorders 
and health problems in postpartum cows. Future re-
search on the mechanisms involved in these metabolic, 
proteomic, and transcriptomic changes are needed to 
elucidate the overall biological processes during the 
transition period.

In summary, the above studies provided preliminary 
information to understand the effects of nutritional 
change or heat stress during the transition period on 
the rumen microbiome and tissue/blood transcriptome, 
proteome, and metabolome in dairy cows. However, 
holistic analyses of the changes on these “omes” in 
response to calving are scarce. This deficiency means 
there is a lack of understanding of how dairy cows adapt 
to nutritional and environmental changes by altering 
internal molecular phenotypes and related functions.

Applications of Omics to Predict the Risk  
of Transition-Related Diseases in Dairy Cows

The prevalence of periparturient diseases leads to re-
duced milk production, poor reproductive performance, 
early culling of cows, and associated economic losses. 
It is vital to diagnose early or predict the risk of these 
diseases. Metritis is a bacterial-caused inflammation 
of the uterus wall and affects about 40% of transition 
dairy cows in a herd (Sheldon et al., 2009). Cows with 
metritis have low rates of conception and poor fertility, 
even after successful treatment (Walsh et al., 2011). 

Many efforts have been made to use omics technolo-
gies to develop strategies to predict the risk of metritis 
and find susceptible animals to provide early treat-
ment. Using targeted blood metabolomics, ornithine, 
pyroglutamic acid, d-mannose, glutamic acid, and 
phosphoric acid were identified as potential biomarkers 
for metritis at 4 wk prepartum (Hailemariam et al., 
2018). Urine metabolomics revealed a combination of 
histidine, lysine, xylose, o-phosphocholine, threonine, 
trans-aconitate, isocitrate, and 3-aminoisobutyrate as 
potential biomarkers for metritis risk at 4 wk before 
parturition (Dervishi et al., 2018). Applying a more 
specific and sensitive metabolomic approach, Zhang et 
al. (2017) reported that lysine, lysophosphatidylcho-
line acyl C17:0, lysophosphatidylcholine acyl C18:0, 
isoleucine, and lysophosphatidylcholine acyl C16:0 
and lysine, isoleucine, leucine, sphingomyelin C20:2, 
and lysophosphatidylcholine acyl C17:0 were predicted 
biomarkers at −8 and −4 wk before parturition, re-
spectively. High accuracy (area under the curve >0.98) 
of diagnostic biomarkers (lysine, isoleucine, leucine, 
kynurenine, and phosphatidylcholine) at disease week 
were also reported (Zhang et al., 2017a). These findings 
suggest that serum metabolites have the potential to 
provide predictive, diagnostic, and prognostic strate-
gies and reveal the pathobiology of metritis in transi-
tion dairy cows. However, these studies are limited by 
small sample size (e.g., only 6 metritic and 20 healthy 
dairy cows were used in Zhang et al., 2017a) and lack 
of standard cutoffs for proposed biomarkers. Therefore, 
the predictive accuracy of these biomarkers needs to 
be tested in a large cohort, and the baseline concentra-
tions should be quantified. Another biomarker type, 
circulating miRNAs, was used to investigate prediction 
of bovine metritis. It has been shown that the highly 
expressed blood miRNAs, including bta-miR-15b, bta-
miR-17-3p, bta-miR-16b, bta-miR-148a, bta-miR-26b, 
bta-miR-101, and bta-miR-29b, and lowly expressed 
miRNAs, including bta-miR-148b, bta-miR-199a-3p, 
bta-miR-122, bta-miR-200b, and bta-miR-10a, were 
associated with metritis in transition dairy cows (Kasi-
manickam and Kastelic, 2016). The relative expression 
level of targeted miRNAs was fully addressed in that 
study; however, the validation and functional mecha-
nisms of these miRNA changes and their targeted genes 
should be studied further. The approaches may also 
be combined to investigate whether this improves ac-
curacy.

Omics technologies have also been applied to the 
identification of predictive biomarkers for other transi-
tion diseases, such as ketosis and mastitis. Proteomics 
and metabolomics are the main technologies used to 
understand the etiological factors of transition-related 
disease. The metabolites carnitine, propionyl carnitine, 
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and lysophosphatidylcholine acyl C14:0 in plasma were 
significantly elevated in dairy cows with one or more 
periparturient diseases (metritis, mastitis, laminitis, 
or retained placenta; Hailemariam et al., 2014). These 
results may help to predict which cows would develop 
periparturient diseases. A research team from China 
systematically analyzed blood metabolic and urinary 
proteomic biomarkers of dairy cows with clinical ke-
tosis and subclinical ketosis using nuclear magnetic 
resonance (NMR; Sun et al., 2014), GC-MS (Zhang 
et al., 2013), and liquid chromatography (LC)-MS–
based plasma metabolomics (Li et al., 2014) as well as 
surface-enhanced laser desorption/ionization-time-of-
flight-MS–based urinary proteomics (Xu et al., 2015). 
The 20 biomarkers identified in the above NMR study 
included His, Glu, Gln, Lys, Phe, glucose, lactate, myo-
inositol, formate, citrate, Ala, Pro, Tyr, low-density 
lipoprotein, very low density lipoprotein, acetate, N-
acetylglucosamine (NAG), BHB, acetoacetate, and ace-
tone (Sun et al., 2014). Gas chromatography-MS–based 
metabolomics study detected 32 biomarkers, including 
lactic acid, glucuronic acid, l-Ala, glycolic acid, ribitol, 
pyroglutamic acid, galactose, 2,3,4-trihydroxybutyric 
acid, glucose, Gly, l-Ile, α-aminobutyric acid, ami-
nomalonic acid, α-tocopherol, sitosterol, 3-hydroxy-
3-methylglutaric acid, 3-hydroxyvaleric acid, palmitic 
acid, heptadecanoic acid, stearic acid, BHB, trans-
9-octadecenoic acid, myristic acid, cis-9-hexadecenoic 
acid, 2-piperidinecarboxylic acid, l-Ser, 4-aminobu-
tyric acid, melibiose, erythritol, 3-hydroxyvaleric acid, 
2-methyl-3-hydroxybutyric acid, and xylitol (Zhang et 
al., 2013). The latter LC-MS results showed 13 bio-
markers, including Val, Gly, glycocholic, tetradecenoic 
acid, palmitoleic acid, Arg, aminobutyric acid, Leu, 
Trp, creatinine, Lys, norcotinine, and undecanoic acid 
in plasma (Li et al., 2014). In the proteomic study, the 
authors proposed 11 proteins (VGF, amyloid precursor 
protein, serum amyloid A, fibrinogen, C1INH, apoli-
poprotein C-III, cystatin C, transthyretin, hepcidin, 
human neutrophil peptides, and osteopontin) in urine 
as diagnostic biomarkers for clinical ketosis (Xu et 
al., 2015). These results clarify some of the metabolic 
changes that occur in the pathogenesis of periparturient 
ketosis in dairy cows and may help in developing novel 
diagnostic and disease prevention strategies. However, 
comparative analysis among different technologies to 
determine the most accurate and easy method in prac-
tice is required. In addition, more research should be 
conducted to analyze the complex interactions among 
all of the metabolites detected during ketosis processes 
in transition dairy cows and to relate them to results 
from studies using other omics technologies.

Another highly prevalent and costly disease in transi-
tion dairy cows is clinical mastitis. Omics methods are 

now being used to investigate and identify predictive 
biomarkers to overcome the unsatisfactory perfor-
mance (low accuracy, delayed discovery, time and labor 
consuming) of traditional indicators. For example, 
proteomic profiling revealed that plasma proteins in-
cluding α1-acid glycoprotein, haptoglobin, and serum 
amyloid were dramatically increased in subclinical 
mastitis dairy cows in the transition period (Yang et 
al., 2012). Metabolomics profiling of serum showed 
that 3′-sialyllactose contributed the largest difference 
between healthy cows and those with clinical mastitis 
(Zandkarimi et al., 2018). Potential biomarkers in the 
blood may assist in developing predictive diagnosis and 
early treatment interventions for improving dairy cow 
health and welfare. However, future work should focus 
on integrating these tools with other omics technologies 
such as transcriptomics, microbiomics, and epigenom-
ics to further understand the molecular mechanisms of 
transition disease. Moreover, biomarker validation in 
more experimental conditions as well as in commercial 
farms is required.

Omics to Evaluate the Effects of Feed  
Additives on Metabolic Changes  
in Transition Dairy Cows

There is an increasing interest in supplementing feed 
with micronutrients (e.g., biotin, nicotinamide, boron, 
zinc, manganese, copper) or functional by-products 
(e.g., grape seed, grape meal extract, linseed) to allevi-
ate metabolic disorders in transition dairy cows (Sor-
dillo and Aitken, 2009). The application of omics tech-
nologies would greatly extend our understanding of the 
effect of supplementation of feed additives on metabolic 
changes in transition dairy cows and whether and how 
they work (Chauhan et al., 2016). Investigations using 
metabolomics found that boron effectively prevented 
metabolic disorders in periparturient dairy cows by 
changing lipid-soluble metabolites in serum (Basoglu et 
al., 2017). Recently, it was reported that supplementa-
tion of biotin and nicotinamide significantly changed 
serum metabolites and the pathways of gluconeogen-
esis, glucose circulation, and oxidative stress alleviation 
in transition dairy cows using metabolomics (Wei et 
al., 2018). However, further exploration of the effec-
tive dose of biotin and nicotinamide supplementation 
is needed to determine the optimal treatment. Serum 
metabolomic analysis revealed impaired mitochondrial 
fatty acid β-oxidation with increased concentration of 
tiglylglycine and palmitoylcarnitine in cinnamon-sup-
plemented dairy cows (Sadri et al., 2017), which sug-
gests that supplementing cinnamon may damage rather 
than be helpful when aiming to overcome metabolic 
challenges in transition dairy cows.
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Transcriptomics provides information on the regu-
lation of gene expression and functional pathways in 
different tissues when using additive supplementation 
in transition dairy cow diets. Supplementing zinc, man-
ganese, and copper from amino acid complexes during 
the transition period affected the transcription of a 
variety of genes involved in inflammation status, oxida-
tive processes, and composition of the hoof in dairy 
cows with lameness (Osorio et al., 2016). These results 
expand our understanding of hoof biology and biologi-
cal mechanisms of lameness. It remains to be discerned 
at the molecular level whether these supplementations 
significantly reduce the incidence of other hoof diseases 
in transition dairy cows. It was also shown that tran-
sition dairy cows fed grape seed and grape meal ex-
tract exhibited reduced endoplasmic reticulum stress-
induced unfolded protein response and inflammatory 
processes using functional analysis based on differen-
tial liver transcriptomics (Gessner et al., 2017). Such 
treatment could help mitigate liver-associated diseases 
and improve milk performance. These studies focused 
only on molecular changes at the transcriptomic level 
and largely relied on predicted functions, which lack 
validation at downstream levels; for example, using 
proteomics to identify active proteins and verify post-
translational changes.

At this stage, individual omics technologies have 
provided new information to elucidate the effects of 
supplementing feed additives on metabolic functions at 
various molecular levels in transition dairy cows. More 
detailed functional studies and integrated analysis with 
different feedomics technologies are required in the 
future.

CURRENT CHALLENGES AND FUTURE DIRECTIONS 
TO USE FEEDOMICS IN DAIRY CATTLE RESEARCH

Although different omics tools have been used in 
dairy cow research as stated above, the application of 
a true feedomics approach is still lacking. First, most 
research considers only part of the feedomics approach 
and lacks a comprehensive knowledge of the different 
biological layers. The dairy cow itself is a very complex 
biological system and contains numerous biological re-
actions: changes in one phenotype (especially for com-
plex traits) can be regulated and reflected differently in 
the different biological layers. Typically, a single omics 
technology is only able to identify the key factors in one 
layer (gene, transcript, protein, metabolites, and micro-
bial taxa, respectively); however, it does not determine 
which layer plays the central role. This, therefore, limits 
the investigation of the interactions among the different 
biological layers that drive the mechanisms underlying 
health or disease phenotypes (Camacho et al., 2018). 

Feedomics is a more promising approach to generate 
and incorporate multi-layered information and allow 
access to the interplay of components in each biological 
layer and to discover coherent and informative biological 
signatures. Second, most of the current omics studies in 
dairy cows have numerous limitations in terms of data 
processing and analysis. For example, many published 
studies lack an explanation of coverage and sequencing 
quality, which have a significant impact on the detection 
and quantification of low-abundance variables (Wang 
et al., 2011). This kind of parameter should be selected 
based on sample complexity and research objectives. 
The massive amounts of data generated by various 
omics approaches require sophisticated computer and 
statistical models for data processing and analysis to 
generate appropriate results. Completing this kind of 
work depends largely on bioinformatics knowledge and 
skills (Schneider and Orchard, 2011), which are in short 
supply in animal science. Bioinformatics, especially 
advanced machine learning and artificial intelligence 
approaches that give the computer the ability to learn 
without being strictly programmed, creates new op-
portunities to unravel and understand data-intensive 
processes (Liakos et al., 2018). Advanced bioinformat-
ics can cope with extremely complex biological data in 
large quantities, which is one of the major bottlenecks 
for dairy cow research, and may therefore increase the 
pace of scientific findings.

To avoid errors and bias in data processing and 
analysis, suitable cutoffs (e.g., microbial relative abun-
dance, gene expression threshold, metabolite similarity, 
differential expression cutoff, enriched function cutoff, 
significant impact value of pathways), data preprocess-
ing options (e.g., data baseline filtering and calibration, 
peak alignment, deconvolution analysis, peak identifi-
cation), data normalization, data transformation, and 
data scaling methods should be carefully considered 
and addressed within each future study. These are all 
essential for meta-analysis and global comparisons to 
draw valid conclusions. More research is warranted to 
focus on solid evidence and functional validation to 
help uncover biological mechanisms of the assumptions 
and speculations as proposed in current omics studies. 
In addition, feedomics should be exploited to help solve 
the following scientific issues in dairy cows in the fu-
ture: (1) to apply metagenomics, metatranscriptomics, 
metaproteomics, transcriptomics, and metabolomics to 
reveal the mode of action of the symbiotic microbiome 
in the rumen and its explicit association with cow pro-
duction and health traits; (2) to use epigenomics and 
transcriptomics to investigate stable epigenetic markers 
that can be included in production improvement pro-
grams in dairy cows; for example, using CRISPR-Cas9–
based epigenome editing technology to directly gener-
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ate specific transcriptional outcomes; (3) to combine 
feed metabolomics (and microbiomics for fermented 
ingredients) with animal genomics, transcriptomics, 
proteomics, and metabolomics under different nutri-
tional conditions to construct nutriomics applications; 
and (4) to develop robust bioinformatics methods and 
integrated/interaction analysis pipelines specialized for 
dairy cow feedomics research to present the entire mo-
lecular and biological landscape of all available omics 
levels.

Feed generally accounts for the largest cost in dairy 
farms and greatly affects subsequent biological reac-
tions in the animal (Miller, 2012); it should therefore 
be considered a focus for future feedomics research. 
Here, we propose that feedomics research include feed 
at the ingredient level (including unfermented and 
fermented conventional feed, and unconventional feed) 
and the TMR level, as well as at the animal level (mo-
lecular, physiological, and behavior), to lead to greater 
understanding and improved outputs (productivity, 
well-being and health; Figure 2). Integrated feedomics 
technologies can be applied in feed quality assessment. 
For example, metabolomics combined with gene se-
quencing, metagenomics, and metatranscriptomics will 
provide novel insights into the functional components, 

fermentation process, and quality of fermented feed. 
The holistic analysis of feed and animal omics data will 
help identify the flow of information, from the original 
input to subsequent changes and functional interac-
tions, which may break down the “black box” of regu-
latory mechanism and provide complete clues linked 
to outputs. Further, comprehensive findings identified 
using feedomics should be combined with traditional 
nutrition and feed science knowledge to translate and 
develop intervention strategies such as precision feed-
ing, well-being detection, and early diagnosis of meta-
bolic disorders and disease.

The systematic collection of large data sets from 
different biological layers will help generate a more 
holistic understanding of the biological factors affect-
ing the current challenges for dairy. Furthermore, this 
improved understanding will contribute to the develop-
ment of more accurate and effective management strat-
egies. Feedomics places emphasis on the combination 
of multi-omics with other “big data”; for example, that 
detected by advanced management technologies (e.g., 
using remote sensors communicating with the Internet 
of Things to measure physiological and behavioral 
data, which can then be applied to monitor estrus, 
lameness, or rumination). Indeed, this will be the basis 

Figure 2. Proposed feedomics-based nutrition and management.
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of delivering precision dairy production management 
for the future, with new insights into understanding 
and improving animal production and welfare.

CONCLUSIONS

The current applications of different omics technolo-
gies in dairy cows are generally classified into 2 main 
themes: biomarker screening and biological mechanism 
discovery. To date, omics-based research has revealed 
biological patterns for milk yield and milk quality, dis-
eases, and metabolic functional changes of transition 
dairy cows at the genomic, transcriptomic, proteomic, 
metabolomic, and microbiomic levels. The current 
omics results have laid the foundation for the precision 
dairy production management of the future, with new 
insights into animal production and welfare. However, 
the major limitation of current omics studies in the 
area of dairy cow research is that most studies only 
targeted one type of internal molecular data using a 
single omics technology. This only captures informa-
tion within a certain biological layer and largely omits 
important information from other biological layers as 
well as the interaction among them. As such, these data 
may not contribute sufficiently to our understanding 
of biological or pathological phenomena to be con-
verted into valuable knowledge and new applications. 
Feedomics, which aims to discover coherent biological 
signatures through collection and integrated analysis 
of multiple omics data, should be applied in the future 
dairy research to address this weakness. However, data 
interpretation will present a significant challenge in its 
interpretation. We encourage the research community 
to perform more accurate and comprehensive feedo-
mics to better solve current and future problems for 
the industry. It is expected that with the right inputs 
(funding, deep learning, collaboration), this type of 
investigation will have real advantages in converting 
research to application and helping to achieve sustain-
able dairy production in the future.
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