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ABSTRACT

The National Animal Nutrition Program “National 
Research Support Project 9” supports efforts in livestock 
nutrition, including the National Research Council’s 
committees on the nutrient requirements of animals. 
Our objective was to review the status of experimenta-
tion and data reporting in animal nutrition literature 
and to provide suggestions for the advancement of 
animal nutrition research and the ongoing improvement 
of field-applied nutrient requirement models. Improved 
data reporting consistency and completeness represent 
a substantial opportunity to improve nutrition-related 
mathematical models. We reviewed a body of nutrition 
research; recorded common phrases used to describe 
diets, animals, housing, and environmental conditions; 
and proposed equivalent numerical data that could 
be reported. With the increasing availability of online 
supplementary material sections in journals, we devel-
oped a comprehensive checklist of data that should be 
included in publications. To continue to improve our re-
search effectiveness, studies utilizing multiple research 
methodologies to address complex systems and mea-

sure multiple variables will be necessary. From the cur-
rent body of animal nutrition literature, we identified 
a series of opportunities to integrate research focuses 
(nutrition, reproduction and genetics) to advance the 
development of nutrient requirement models. From our 
survey of current experimentation and data reporting 
in animal nutrition, we identified 4 key opportunities to 
advance animal nutrition knowledge: (1) coordinated 
experiments should be designed to employ multiple 
research methodologies; (2) systems-oriented research 
approaches should be encouraged and supported; (3) 
publication guidelines should be updated to encourage 
and support sharing of more complete data sets; and 
(4) new experiments should be more rapidly integrated 
into our knowledge bases, research programs and prac-
tical applications.
Key words: nutrition, agricultural animals, models, 
experimental design, data sharing

INTRODUCTION

A mathematical model is a quantitative representa-
tion of measurable natural phenomena (Ford, 2009). 
Within animal sciences, mathematical models have 
quantified metabolism in specific organs (Freetly et al., 
1993; Hanigan and Baldwin, 1994; Hanigan et al., 2007, 
2009; Huber et al., 2014), whole-animal nutrient parti-
tioning and the role of nutrition in reproduction (Bald-
win et al., 1987c; Baldwin and Sainz, 1995; Kebreab 
et al., 2004; McNamara and Shields, 2013; Lean et al., 
2016), animal performance (McMillian, 1981; Brother-
stone et al., 2000; Grossman et al., 2000; Schinckel et 
al., 2003), farm systems (Rotz et al., 2005; St-Pierre, 
2007; Beukes et al., 2008), and environmental impact 
(Schils et al., 2007; Beauchemin et al., 2010; Del Prado 
et al., 2013).

Systems approaches and mathematical models have 
been used in both research and application to great 
effect to synthesize the current body of literature, 
identify gaps within current understanding, and quan-
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titatively evaluate biological relationships (France and 
Thornley, 1984; Baldwin, 1995; St-Pierre, 2001; Dym, 
2004; Thornley and France, 2006; Ford, 2009; Lean et 
al., 2016). Although by necessity, many specific stud-
ies focus on only one or a few elements of the system 
(metabolites, pathways, cells, organs, animals, herds), 
a systems approach is, at its simplest, a recognition 
and, at best, a full integration of all new information on 
any piece of the system into the system as whole (see 
several chapters in Baldwin, 1995). Models by necessity 
are simplifications, but as our understanding of biology 
is furthered through basic research, so too must the 
intricacy of the models used to summarize that biology, 
whether for research purposes or practical application 
(Nicholson et al., 2004). Several factors constrain the 
use of models, including a lack of knowledge of their 
use in research (not just for on-farm application); in-
sufficient funding and cooperation among universities; 
and publication constraints that limit the amount of 
data reported. Some of these barriers are now breaking 
down. A substantial amount of input data is required 
to appropriately parameterize complex models (Cobe-
lli et al., 1979; Carson et al., 1981; Brun et al., 2001; 
Cornish-Bowden, 2005). In the current body of animal 
science literature, inconsistent and incomplete report-
ing of data frequently prohibits the efficient advance of 
modeling research efforts.

In partial fulfillment of our role as a National Re-
search Support Committee, our objective in this paper 
was to review the status of experimentation and data 
reporting in animal nutrition literature and to provide 
suggestions for the advancement of animal nutrition 
research and the ongoing improvement of field-applied 
nutrient requirement models. Thus, we provide a syn-
opsis on the purposes and uses of experimental designs 
and mathematical models, and highlight opportunities 
for future experiments, coordinated among researchers, 
to contribute to model development that represents 
our knowledge base leading to future research direc-
tions and practical field applications of new scientific 
knowledge.

A QUANTITATIVE APPROACH TO BIOLOGY

Animal sciences research is, in large form, quantita-
tive; that is, it attempts to define specific relationships 
of biological processes over time such as growth, repro-
duction, and milk production (France and Thornley, 
1984; Baldwin, 1995; Mogilner et al., 2006; Thornley 
and France, 2006; Laubichler and Müller, 2007). A rich 
history of focused, quantitative research has led to our 
extensive knowledge base and ability to predict require-
ments or performance quite well in a wide range of 
animal production systems (Brody, 1945; Kleiber, 1961; 

Blaxter, 1989). To make practical recommendations for 
feeding, genetic selection, breeding, housing, and other 
management strategies, stakeholders require quantita-
tive relationships that define expected outcomes as a 
function of specific inputs. Nutritionists, for example, 
routinely use expected animal performance (milk yield, 
BW gain, egg production, or wool growth) to calculate 
feed inputs required (nutrient content and DMI) and 
the lowest cost diet that achieves those nutrient inputs. 
The same is true in genetic selection: a known improve-
ment with a known variation is to be expected from 
mating animals with given breeding values. Reproduc-
tive management is quantified as the improvement in 
pregnancy rate or eggs produced per day expected from 
certain genetic selection, nutritional, and management 
strategies.

The examples listed above have primarily focused 
on the whole-animal or farm level for practical appli-
cation; however, we have known for some time that 
it is the complex molecular, cellular, and organismal 
biology that results in desired practical outcomes, and 
as such, basic biological science research is a key ele-
ment of animal sciences. Although basic fundamental 
research and research in application do not always have 
similar goals, in much of the animal sciences, including 
nutrition, studies on mechanisms of cellular or organ 
function are often conducted within the context of 
eventual quantitative application in genetics, breeding, 
or nutrition to enhance knowledge in a more completely 
quantitative way. One of the founders of systems biol-
ogy across several levels of biological organization, who 
helped pave the transition from the more empirical 
whole-animal work to a more integrated approach, was 
Ransom Leland (Lee) Baldwin V, who initiated and 
conducted a 40-yr program of combined practical and 
basic studies to ask more complex questions to improve 
animal production (Baldwin, 1995; McNamara, 2012).

Because animal sciences and even animal nutri-
tion research and applications encompass a variety 
of biological systems and applications, there exists 
tremendous variation in design, conduct, and report-
ing of experiments in the animal sciences. This is not 
inherently a flaw, and there are practical reasons of cost 
and availability of research funding and resources (too 
few cows on a university dairy; the expense of doing 
large-scale studies that take into account most the ani-
mal and environmental factors affecting a set of inputs 
or outputs; the cost of collecting additional samples 
or conducting additional analyses on existing samples 
when these measures are not central to the experiment-
ers’ hypothesis). There are also philosophical reasons: 
“I’m a biologist, not a mathematician”; or “that’s ap-
plied research, not basic science.” However, the com-
plexity of research designs and approaches provides a 
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challenge to incorporation of findings into the body of 
knowledge and to practical application. Nevertheless, 
the animal sciences fields have a rich history of basic 
and applied mechanistic and quantitative research, and 
we have accumulated an impressive body of knowledge 
to guide future research and help support decision mak-
ing on the farm. One clear example of this continued 
success is the National Academy of Science’s National 
Research Council (NRC) “Nutrient Requirements” se-
ries. For more than a century, scientists have conducted 
research that has continually added to our quantitative 
knowledge on feed chemistry, feeding management, nu-
trient requirements, and expected responses of animals 
to diets; this new knowledge is encoded in subsequent 
releases of the NRC series. These models have allowed 
increasingly accurate and precise management deci-
sions on the farm. In this example, the NRC models 
by design are aggregated at or close to the animal level 
(early versions included just “crude protein” or varied 
milk fat and milk protein together). As animal scien-
tists secured research funding to discover more specific 
aspects of basic biology, that information was included 
in the animal-level models, making them somewhat less 
aggregated and more specific, such as adding limiting 
amino acids or separating production of milk fat and 
milk protein. The long-term coordination of basic infor-
mation to more efficiently describe the applied (animal) 
situation actually drove a significant amount of research 
funding. However, the connection between development 
of these “basic” concepts and field application has been 
inconsistent and often qualitative in nature. A more 
specific quantitative approach can be taken, and the 
continued restraints on funding, resources, people, and 
time will dictate that we must continually improve the 
efficiency of our research approaches.

One proven way to achieve this is to take a quantita-
tive approach to all experiments and to closely coordi-
nate research projects. The increasing interest in more 
integration of genetics, nutrition, and reproduction has 
arisen from the fact that our body of knowledge and 
understanding now dictates that we recognize that “nu-
trition,” “genetics,” and “reproduction” do not exist, 
truly, as separate disciplines. In fact, although scien-
tists may concentrate on one specialty, we know that 
“the cow does it all at the same time” (McNamara and 
Shields, 2013).

For example, a mathematical model of nutrient use 
by an animal is a quantitative representation of our 
understanding of metabolism. It is a structured set of 
equations that describes metabolic pathways or nutrient 
use at some level of biological organization. Additional 
functions, such as reproduction, can be added to such a 
description of metabolism, or the metabolism functions 
can be incorporated, possibly in aggregated form, into 

a reproduction model. In both cases, the links between 
the systems can be explicitly represented (McNamara 
and Shields, 2013). It is understood that for purposes 
of this review, we include all types of models (applied, 
research; deterministic, stochastic; dynamic, static) 
without value judgment of one approach or another; 
rather, our goal is to encourage proper development 
and application of the modeling technique pertinent to 
the objective at hand.

A model is built by first identifying the important 
components of the system being modeled. In the case of 
some nutrition models, the equations describing rates 
of nutrient and energy flow among these components 
are the core of the model. In certain types of metabolic 
or nutritional models at the cellular, organ, or animal 
levels, the model is solved by integrating the rate equa-
tions for specific animals or specific situations, which 
can then be adapted to other situations as needed. The 
NRC nutrient requirement compilations are an example 
of this approach using a highly aggregated representa-
tion of the inputs (nutrient composition and intake) 
and outputs (growth rate, milk production, reproduc-
tive activity) to determine the quantity of each input 
required to achieve the desired level of production.

Nutrition modeling, however, cannot be separated 
from the biological sciences and processes, but is in 
fact a key element of them. Cells do not act randomly; 
mammary glands do not make a random amount of milk 
based on whatever genes are being expressed; rather, 
cellular, metabolic, organ, and whole-animal systems 
are absolutely, structurally, and functionally quantita-
tive in nature, with a given set of chemical rates and 
equilibria behind every biological process and output.

With the increased availability and use of high-
throughput technologies such as genomic, transcriptom-
ic, proteomic, and metabolomic technologies and the 
massive expansion of computer storage and processing, 
one can obtain a large amount of data at several levels 
of metabolic control. However, obtaining and publish-
ing tables or figures of such data are only the first steps. 
Quantitative integration of the data across biological 
processes is possible and should be undertaken to gain 
a full understanding at the organismal level. Such in-
tegration can occur at multiple levels of organization. 
For example, regression techniques can be used to 
compare changes in mRNA transcript abundance with 
enzyme amount or activity or metabolic flux through a 
pathway. This knowledge can then be incorporated into 
more complex models to assess the knowledge with re-
spect to function in other tissues or animal subsystems. 
From this, we can get a more quantitative and com-
plete description of metabolic control, and from there, 
we can improve selection and application of selection 
or feeding on the farm. Recently, the USDA National 
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Institute of Food and Agriculture (Washington, DC) 
funding model has taken a dramatic shift to funding 
more integrated, cross-disciplinary studies. This is a 
good step, but if it is to succeed fully, more resources 
must be provided and more incentives must be put in 
place to encourage scientists to conduct research across 
disciplines and among various organizations.

The reasons for taking a strict quantitative approach 
to animal sciences and animal systems research have 
been well stated previously. An excellent example comes 
from the introduction to Modeling Ruminant Digestion 
and Metabolism (Baldwin, 1995): “There is general 
agreement among most informed authors that products 
of animal agriculture will continue to contribute to 
the world food supply. However, the key challenge of 
ascertaining how much animals should contribute has 
not been resolved. This is a long-term goal that will re-
quire the availability of advanced dynamic, mechanistic 
models of ruminant digestion and metabolism…” The 
current systems biology approaches are a continuing 
example of such an approach.

Another limiting factor in expanding the use of mod-
els in animal science research may be the mispercep-
tion that “models” are only applied science, such as 
the NRC, and are not applicable to basic biological 
sciences. The complete refutation of this misperception 
would fill many books, and indeed has, as many biologi-
cal scientists, programs, departments, and funding bod-
ies have rejected this notion and conducted excellent 
quantitative research for 4 decades (Carson et al., 1981; 
Baldwin, 1995; Cornish-Bowden et al., 2007; Hood and 
Rowen, 2013; Hood and Price, 2014). The approach has 
not been as well accepted in animal sciences research 
but there are notable exceptions (Black et al., 1993a,b; 
Hanigan and Baldwin, 1994; Beukes et al., 2008; Hani-
gan et al., 2009; McNamara and Shields, 2013).

In recent years, the term “systems biology” has come 
into wide use to recognize the interconnections between 
levels of biological processes (from the molecular to the 
whole animal) as well as between various disciplines. A 
large impetus for the increased work in systems biology 
has been the explosion of techniques for molecular ge-
netics, which demands a systems approach to integrate 
genomic and transcriptomic knowledge with that of me-
tabolism and end effect. In the animal sciences, much 
of the model work has applied primarily to “on-farm 
models” such as the NRC or extension publications on 
decision support tools for nutrition, reproduction, or 
health, and there has been less of a modeling approach 
to basic nutrition research. A systems biology and mod-
eling approach has been in use for many decades and 
has been highly successful in integration of available 
concepts and data, in a quantitative manner, to evalu-

ate our understanding of animal function (Baldwin et 
al., 1987a,b,c; Dijkstra et al., 1992, 1993; Black et al., 
1993a,b; Cannas et al., 2004; Thornley and France, 
2006; Hanigan et al., 2007, 2009; Beukes et al., 2008; 
McNamara, 2012; McNamara and Shields, 2013). The 
use of systems models is in keeping with biology: the 
quantitative output of an individual animals or herd of 
animals is a mathematically definable function of the 
underlying chemical processes.

WHAT ARE MATHEMATICAL MODELS  
AND WHAT CAN THEY DO?

Models can and do mean many different things. In the 
context of animal biology, a model can be described as 
“a simplified description, usually a mathematical one, 
of a system or process, to assist calculations and predic-
tions” (Oxford Dictionary; http://www.oxforddiction-
aries.com). Another definition is a representation of the 
behavior of real devices and objects in a mathematical 
manner (Dym, 2004; Ford, 2009). Models have been 
and are a major mechanism of research and applica-
tion in farm animal nutrition (see Baldwin, 1995, and 
the many references therein). An imperfect description 
of animal responses identified by a model highlights 
the inadequacies in our understanding of the system. 
Commonly used methods of classifying models, model 
development, and model testing have been extensively 
reviewed (Baldwin, 1995; Dym, 2004; Tedeschi, 2006; 
Thornley and France, 2006; Ford, 2009).

Within energy modeling, 2 general types of models 
are widely used: nutrient partitioning models (NRC, 
2001, 2012, 2016; Fox et al., 2004; Tylutki et al., 2008; 
Tedeschi et al., 2010) and metabolic models (Baldwin 
et al., 1987c). Either type of model estimates the per-
formance of an animal when given a specific diet under 
specific environmental conditions; some also describe 
the response to a change in nutrients, although the 
more aggregated models were not necessarily designed 
for the latter.

Nutrient partitioning models apportion nutrients 
to supportive (maintenance) costs and among vari-
ous productive functions according to predetermined 
rules (Baldwin and Sainz, 1995). These rules may take 
the form of statements of maintenance requirements, 
efficiencies of conversion of nutrients to product, and 
priorities for use of limiting nutrients. The results are 
summed to predict whole-animal performance. Meta-
bolic models estimate the rates of various biochemical 
conversions, including those associated with supportive 
(maintenance) functions and protein and fat synthesis 
and degradation. Highly aggregated metabolic models 
can be used to estimate whole-animal performance 
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(Baldwin et al., 1987c). Less aggregated, more detailed 
models may deal with only a single organ or tissue, 
such as mammary gland (Hanigan and Baldwin, 1994), 
adipose tissue (Baldwin, 1995; McNamara and Bald-
win, 2000; McNamara et al., 2016), or liver (Freetly et 
al., 1993). Although there is a large body of research on 
quantitative estimates of obligatory energy and amino 
acid losses (maintenance) (Moe and Tyrrell, 1975; 
Ouellet et al., 2002; Agnew et al., 2003) and efficiencies 
of amino acid (Doepel et al., 2004; Lapierre et al., 2005; 
Metcalf et al., 2008; Arriola Apelo et al., 2014) and en-
ergy use (Moe and Tyrrell, 1975; Schwager-Suter et al., 
2001; Olson et al., 2010), we still do not understand, in 
a quantitatively complete manner, their interactions by 
various genotypes under varying dietary and manage-
ment conditions.

The rigor imposed by mathematical modeling directs 
researchers to important questions and to significant 
gaps in knowledge. It raises questions that might not 
otherwise be raised. The simultaneous consideration by 
a model of many factors raises key questions about in-
teractions among those factors and can aid in the iden-
tification and design of experiments. Modeling can help 
us form specific questions to be addressed by various 
types of experiments, and thus help us gain efficiency 
and relevance in research. Modeling, as a component of 
a research program at any level of biological organiza-
tion, improves efficiency by reducing inefficiency and 
redundancy; knowledge encoded in the model can be 
tested for consistency, accuracy, and precision against 
existing data, and if it is found to be robust, there 
is no further need to examine that mechanism. The 
advancement and growth of systems biology research 
and bioinformatics research is simply another example 
of modeling (Ideker et al., 2001; de Jong, 2002; Kitano, 
2002).

For example, various models of ruminal digestion 
and microbial breakdown of feed particles and liquid 
and solid passage rates may describe animal production 
with a standard deviation (SD) of 10% of the mean 
(Bannink et al., 2000, 2006, 2008; Hanigan et al., 2009), 
but comparing observational data on nutrient diges-
tion to the model suggests that predictions of fiber and 
starch digestion are not as robust as one might desire, 
which likely contributes to errors in predicting produc-
tion of fermentable carbohydrates and VFA. Such ob-
servations highlight the need for more research on car-
bohydrate degradation in the rumen. Another example 
that has had serious attention for many years is the 
lack of studies measuring actual VFA production in the 
rumen, thereby limiting our ability to form equations 
and parameters that describe this process better than 
within a standard deviation of 20% (concentrations) 

to 60% (production) (Bannink et al., 2000, 2006, 2008; 
Ghimire et al., 2014). This suggests that effort should 
be focused on the following questions: What exactly 
more do we need to know about VFA production? If we 
had more precise estimates of VFA production, what 
would be the quantitative gain in our knowledge (e.g., 
to predict within 10 or 20% instead of 40–60%)? If we 
spent the money and time to do such research, what 
would be the scientific and practical return on invest-
ment?’

In addition to being an integral component of nu-
trition, genetics, and reproduction research, models 
are useful teaching and extension tools (Thornley and 
France, 1984; Black et al., 1993b; Passmore and Stew-
art, 2002; Wilensky and Reisman, 2006). Mathemati-
cal models show students or livestock producers how 
animals respond to key factors, and how the responses 
can be altered by interacting factors. This can be much 
more effective than lectures or slide sets, which require 
the recipient to integrate a large amount of information 
over time, with the resultant degradation of precision 
in understanding. A model can point out the effects of 
decisions on feeding or research problems quite easily to 
introductory or advanced students.

Models are and have been invaluable guides used 
daily in livestock feeding programs (NRC, 2001, 2012). 
They are being used to assist nutritionists and pro-
ducers in fine-tuning diet formulations to fit variable 
conditions such as genotype, ambient temperature, and 
voluntary feed intake (Tylutki et al., 2008). Prospective 
improvements in efficiency of animal agriculture from 
the use of more advanced models are promising. To 
fully realize these potential benefits, a larger quantity 
and more complete data are needed. Thus, we must 
improve the consistency and completeness of data re-
porting and sharing.

EXPERIMENTAL DESIGNS AND ANALYSES  
IN SYSTEMS RESEARCH

Past and Future Designs

The availability of data from an experiment is pri-
marily determined by the experimental design. As our 
knowledge of animal biology continues to expand, we 
must set more-complex hypotheses that encompass sev-
eral systems (cells, organs, animals, herds) in a variety 
of environmental situations, climatic areas, and often 
over long periods. In the past, limitations of knowledge, 
funding, animals, statistical methodology, and most im-
portantly, scientific approach resulted in many smaller 
studies with narrow focuses, the global applicability of 
which was often undefinable. These experiments can 
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often be aggregated to yield a more comprehensive data 
set, provided the needed array of inputs required by 
more complicated models has been reported for all of 
the experiments, which is often not the case. Contem-
porary research technologies have expanded to allow 
relatively low-cost measures of cellular and subcellular 
processes. The concurrent improved understanding of 
statistical strategies and analytical programs has fa-
cilitated design, implementation, and interpretation of 
more complex, multivariate experiments. The advan-
tage to these larger experiments is that the data are 
typically distributed throughout the observed range, 
yielding complete response surfaces within an experi-
ment as opposed to inferring a response surface from 
multiple independent experiments.

Experimental Designs

Factorial experiments designed with 2 levels of each 
factor are very useful in identifying mechanisms. How-
ever, once a mechanism has been identified as being 
important, follow-up work is required using experimen-
tal designs involving several levels of one or more fac-
tors, and thus producing further in-depth quantitative 
understanding. Also, if 2 or more factors are studied, all 
cell means or regression parameters should be reported 
or the work will have limited value in the integrative 
modeling environment. Here we include just a few 
examples of experimental designs that are useful for 
answering questions regarding nutritional biology.

Multivariate Analysis. Multivariate analysis 
quantifies concurrent effects of explanatory variables 
on multiple response variables. Factorial designs are 
often required to obtain sufficient data for a multi-
variate analysis as these designs measure one or more 
response variables from experimental units treated 
with unique combination of levels from 2 or more ex-
planatory variables. The most common multivariate 
statistical procedures include multivariate ANOVA, 
multivariate regression analysis, principal components 
analysis, and factor analysis (Hair et al., 2006). Several 
examples of multivariate analysis are available within 
the animal science literature (van Milgen and Noblet, 
1999; Noguera et al., 2002; Reverter et al., 2004; To-
daro et al., 2005). From an experimental standpoint, 
the principal benefit of multivariate analysis is the 
control of type I and type II error rates by avoiding 
several, independent tests of the same explanatory 
variables on a series of response variables (Haase and 
Ellis, 1987). From a modeling standpoint, multivariate 
analysis allows for assessment of the correlations and 
interdependence among dependent variables, as well as 
between independent and dependent variables (Haase 
and Ellis, 1987).

Randomized Complete Block Design. Block 
designs are commonly used in the animal science lit-
erature (Steele and Torrie, 1980; Firkins et al., 1985; 
Wondra et al., 1995). A randomized complete block 
design is a unique type of block design that randomly 
assigns treatments to experimental units within a block 
where each treatment appears within each block (Ott 
and Longnecker, 2010). The experimental design is 
advantageous because it is simple to design, construct, 
and analyze. However, randomized complete block 
designs are most useful when comparing relatively 
few treatment combinations, as treatments must be 
homogenized within blocks. This design also only 
controls for only one extraneous source of variability 
(Ott and Longnecker, 2010). The primary advantage to 
data from randomized complete block designs within 
modeling applications is the uniformity of the explana-
tory parameters, as all treatments must be represented 
within all blocks.

Latin Square Designs. Latin square designs are 
widely used and can be very efficient in testing hypoth-
eses about responses to nutrients when animal numbers 
are limited and especially when the response is likely 
to be relatively quick or short-lived (Steele and Torrie, 
1980; Tempelman, 2004, 2009). An example would be 
the effect of changing nutrient or physical characteris-
tics of a ruminant diet on the rumen flora and fauna. 
These adaptations tend to be measured within hours 
and often are complete within several days. Thus, lon-
ger-term experiments need not be conducted. However, 
that same strength means caution should be applied in 
extrapolating the effects to any longer period. This is 
an issue in designs in growing animals with a long grow-
ing period (as in cattle) or in lactating cattle, where it 
is not always likely that the response seen within a few 
days or weeks will extend over several months. The 
Latin square design may be inappropriate when it is 
likely that there will be carryover effects of a treatment 
into ensuing periods, requiring much longer “washout” 
periods between treatments. Latin square designs can 
be used in these situations if it is known that the car-
ryover effects may not be large or last long, and various 
sources describe these carryover designs (Steele and 
Torrie, 1980; Tempelman 2004, 2009). As long as these 
limitations are known, the Latin square can continue to 
be a very useful design in experimental nutrition.

Split Plot Designs. Practical constraints associated 
with working with live animals often mean that stud-
ies using a large number of treatments with sufficient 
experimental units are infeasible. Split plot designs 
apply one factor to a large experimental unit that is 
then split to smaller units. A second factor is then ap-
plied to the smaller units. Split plot designs can have 
more than one level or organization (split-split-plot, 
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split-split-split-plot) and have been used in a variety 
of applications throughout animal science literature 
(Wheeler et al., 1990; Hill et al., 1993; McGlone et al., 
1993). The primary experimental benefits of split plot 
designs are the ease of applying treatments and (often) 
the benefit of improved uniformity of treatment ap-
plication (Ott and Longnecker, 2010). Much like the 
basic randomized complete block design, the advantage 
of a split plot experiment from a modeling perspective 
is the completeness and uniformity of the data.

Split Plot in Time (Repeated Measures). Re-
peated-measures designs are a special application of a 
split plot where sampling time is treated as a subplot. 
Experimentally, repeated-measures designs make ef-
ficient use of resources as multiple responses are col-
lected per subject (Ott and Longnecker, 2010). Because 
animals are often a constraining factor in experiments, 
repeated measures are common in animal sciences, 
and specific resources on running these experiments 
are available (Gill and Hafs, 1971; Littell et al., 1998; 
Wang and Goonewardene, 2004). Repeated-measures 
designs yield particularly useful data as they involve 
time-series measurements that can usually be used to 
fit more reliable models than point-in-time, aggregated 
treatment means.

INFORMATION REQUIREMENTS  
FOR MODELING STUDIES

Due to the complexity of existing nutritional knowl-
edge, the more advanced mathematical models require 
substantial input data to run, evaluate, and param-
eterize. These are not superfluous additions to the 
model; they are additions that have been dictated by 
the knowledge base over time. To improve on current 
models, the existing body of biological knowledge must 
be expanded, and the experiments contained in this 
expansion must describe all inputs in enough detail to 
allow simulation with current models. The following 
information deficits represent a few key areas where 
new data could be collected to improve the efficiency 
and adequacy of mathematical models commonly used 
in animal nutrition.

Information for Improvement of Metabolic Models

For purposes of this discussion, “metabolic models” 
are used as an example of systems models describing 
pathway biochemistry and its control and integration 
in the context of explaining the more aggregated nutri-
tional partitioning models. Nutrient partitioning models 
also describe differential use of nutrients within animals 
but at a more aggregated and empirical level that does 

not generally include pathway biochemistry. Most such 
models are based on mass respiration calorimetry or 
comparative slaughter studies that can “partition” car-
bohydrate, fat, protein, and in some cases, amino acid 
pools, but do not include specific enzymatic or hormonal 
control except at an empirical level. Presently, metabol-
ic models depend upon estimates of kinetic parameters 
(including maximal velocity and affinity constants) of 
metabolic pathways (Baldwin, 1995; McNamara, 2004). 
To parameterize, test, or improve these models, direct 
estimates of these parameters under varying conditions 
are needed. Arteriovenous difference studies of nutri-
ent uptake and utilization by tissues such as mammary 
glands, liver, viscera, and hind limbs are particularly 
valuable in this regard when a range of conditions that 
can justify both equation forms and parameterization 
are feasible. If these are not feasible, in vitro studies 
can provide valuable information on relative changes 
in metabolism, on tissue- or cell-level equation forms, 
and on nutrient interactions. These types of studies are 
especially necessary for tissue-level models. A detailed 
discussion of the proper role and application of in vitro 
research and application to whole-animal performance 
is beyond the scope of this paper, but an excellent dis-
cussion can be found in Chapter 6 of Baldwin (1995). 
For example, by measuring the cost of ion pumping 
in liver cells in vitro (Milligan and McBride, 1985), of 
protein turnover cost in mammary cells (Hanigan et al., 
2009), or of metabolic flux in adipose tissue lipid syn-
thesis and mobilization (McNamara and Hillers, 1989; 
McNamara and Baldwin, 2000; McNamara, 2004), 
better estimates and mechanistic explanations of the 
costs of maintenance and productive functions at the 
whole-animal level have been obtained.

There is a pressing need to incorporate metabolic 
hormones explicitly into metabolic models, but a 
lack of understanding and knowledge of quantitative 
relationships remains a barrier. Descriptions of tissue 
sensitivities to hormones under various conditions are 
also needed. Estimates of the alteration in kinetic pa-
rameters caused by changes in hormone concentrations 
during different physiological and nutritional states are 
needed. A widely used metabolic model that simulates 
bovine metabolism (Baldwin et al., 1987a,b,c) has pro-
vided guidance on areas of research that were not pres-
ent in the literature and would be most applicable to 
the advancement of that model; however, development 
efforts geared at generating similar metabolic models 
in other species or at the organ level will also ben-
efit from this improved information availability. Many 
examples of such experiments using a combination of 
animal-level, tissue- and cell-level, and molecular-level 
data collection can be found in references in Baldwin 
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(1995) and in references in recent reviews (McNamara, 
2012; McNamara and Shields, 2013).

Information for Improvement of Nutrient  
Partitioning Models

Animal-level nutrient requirement models often re-
quire fewer inputs than metabolic models. Substantial 
improvements in these models can be made with more 
complete reporting of data in experimental studies. In 
species that have established nutrient requirement mod-
els (Fox et al., 1992; NRC, 2001, 2012, 2016; Cannas et 
al., 2004), a notable opportunity for improvement is in 
the prediction of intake. Intake varies substantially with 
feed form, nutrient concentration, productive stage, 
health status, age, performance level, genetic merit, 
body fat composition, and many other factors. With-
out consistent reporting of many of these important 
indicators, minimal improvement in intake equations 
can be made. Recent research on “physically effective 
NDF” and its relation to feed intake in dairy cattle is 
an excellent example of the need for more detailed and 
integrated models of digestion, metabolism, and pro-
duction (Jones, 2014). In the field, we have recognized 
for many years that there is a relationship among NDF, 
the form of NDF, plant maturity, forage conservation, 
and voluntary intake of ruminants, primarily dairy 
cattle. Several excellent studies have been conducted 
to describe this relationship precisely, and this work 
has resulted in on-farm improvement of nutritional effi-
ciency. However, we still do not understand the specific 
chemical, microbiological, and biological mechanisms 
that truly drive these animal-level functions. This is 
an example of “had we had the inclination, resources, 
and funding” we could have done experiments that 
measured both the animal-level empirical relations and 
the underlying biological mechanisms, and we could 
have reduced the cost and time involved in improving 
knowledge and application.

Many estimates of patterns and partial efficiencies of 
energy use are available (for some examples: Lofgreen 
and Garrett, 1968; Close, 1978; Yan et al., 1997; Tede-
schi et al., 2002, 2013; Marcondes et al., 2013), but we 
need similar data on amino acid utilization. Such esti-
mates are also useful to provide a background for more 
detailed metabolic studies. We need more quantitative 
descriptions of the apportionment of energy and amino 
acids among various function (e.g., protein vs. fat ac-
cretion) in situations when these supplies are limiting. 
Quantitative estimates of the maximum capacities for 
protein and fat deposition throughout the life cycle and 
maximum rates of tissue mobilization as lactating ani-
mals deplete their body stores are also needed (see, for 
example, Tedeschi et al., 2013).

Information for the Improvement  
of All Nutritional Models

Given the growing interest in nutrigenomics (Müller 
and Kersten, 2003), inclusion of specific, consistent, 
and relevant indicators of genotype in manuscripts is 
imperative to future modeling efforts. Accurately de-
scribing genotypes is becoming easier, if not required, 
in mathematical models of energy use by animals. The 
proliferation of genomic genotyping tools and the re-
duction in cost would seem to dictate that all animals 
should be genotyped using molecular screens to allow 
use of the data in development of better genetic selec-
tion strategies and tools. On a large production study 
with 60 animals, this would add $3,000 to the cost of 
the experiment at today’s prices. Such a cost is not 
insignificant but it would provide information that 
should generate great returns on the investment in the 
future, and the cost of the measurement will continue 
to fall as techniques improve and volume increases. In 
the case of smaller metabolism studies, it would be a 
trivial cost increment and thus should be undertaken.

However, it is not just collecting the genomic data 
that provides full understanding. Existing knowledge of 
the role of the gene in regulating cellular function and 
eventual animal performance must be used to interpret 
the role of the differences in genotype, or new research 
must be done to define the full contribution of the gen-
otype and phenotype to eventual production indices. 
Meaningful discussion among industry stakeholders, 
geneticists, and nutritionists will be essential in iden-
tifying species-specific, appropriate levels of detail for 
reporting genetic parameters. In poultry, genetic line 
has been used to identify genotype (Jones et al., 1995); 
this is a commercially available, relevant metric; how-
ever, the short generation interval of poultry results in 
high turnover of genetic information, even within a line. 
In beef cattle research, breed has been used to define 
genotype (Baker and Lunt, 1990; Jenkins and Ferrell, 
1994). In the NRC (2016), breed codes were used to 
incorporate genetic differences into nutrient recom-
mendations. Although reasonably durable because 
cattle have a long generation interval, there is minimal 
opportunity to assess the effect of improved genetic 
merit on animal performance and efficiency with this 
approach. As our understanding of genetic interactions 
with animal nutrition improves, the discussion between 
industry stakeholders and researchers should continue 
to identify workable parameters that can be used to 
define animal genotypes consistently. This might be as 
simple as potential production capacity. Alternatively, 
genotypes can be defined in terms of parameters such 
as efficiency of energy or amino acid use, maintenance 
costs for energy or amino acids, and maximum rates 
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and affinity constants for specific metabolic pathways 
or hormonal functions. At a more specific level, geno-
type can be defined in terms of specific gene sequences, 
quantitative trait loci, or single nucleotide polymor-
phisms.

A further area of opportunity within most models 
involves the addition of parameters to reflect health 
status or environmental stress. A multitude of studies 
have been conducted on the influence of health (Sykes, 
1994; Foley et al., 2008; Delgado and Wolt, 2010), 
housing system (Gentry et al., 2002; Shimmura et al., 
2007; Mugnai et al., 2009), and environmental condi-
tions (Black et al., 1993a; Nienaber et al., 1999; West, 
2003) on productivity. From these bodies of literature, 
consensus must be drawn on specific, quantitative met-
rics that can be incorporated into models estimating 
nutrient requirements. These data must then be consis-
tently reported in the literature. In the absence of such 
a consensus, it seems prudent to collect and report the 
basic environmental parameters during the experiment, 
which would include among other variables, the mean 
daily high and low temperatures and dew point and the 
deviations in those values. These data can be used to 
describe much of the effect of climate. Use of climate 
mitigation equipment should also be reported. Wind 
speed is also useful, but this is more problematic as 
local wind speed within the facility may not be well 
represented by the nearest weather station, thus requir-
ing measurements within the facility to gain the needed 
precision.

Scientists planning particularly large or integrated 
studies that are likely to yield information useful for 
building or testing models are encouraged to contact 
those actively working with related models. It may be 
that a small change in experimental design and mea-
surements would enhance its usefulness for modeling, 
without detrimental effects with regard to other objec-
tives of the experiment.

DATA REPORTING AND SHARING

Consistent and complete data reporting is good 
research practice and may be the single most impor-
tant opportunity to advance modeling research efforts. 
Models, like experiments, are becoming more complex, 
and substantial data sets are required to parameterize 
the encoded relationships. Even comparatively simple 
models such as the NRC nutrient requirement predic-
tions (NRC, 1994, 2001, 2012) and the Cornell Net 
Carbohydrate and Protein System (Russell et al., 1992; 
Sniffen et al., 1992; O’Connor et al., 1993; Fox et al., 
2004; Tylutki et al., 2008) require a multitude of inputs 
defining animal, production system, feedstuffs, and the 
environment. To evaluate these models comprehen-

sively, all these input data are required in addition to 
measures of animal performance. As such information 
is typically not reported, data mining (retrieving data 
from the literature) is frequently relied upon, which 
reduces precision in describing inputs; that is, the 
tabular mean for an ingredient cannot be expected to 
represent the exact situation for all experiments. Even 
that effort is often compromised due to the failure to 
report the diet and animal conditions in enough detail 
within the manuscript to allow reconstruction of the 
missing details. This failure often occurs because this 
level of data reporting is deemed extraneous to the 
objectives of the publication and may be removed by 
authors, reviewers, or editors. There is also the practi-
cal limitation in printing many pages of data. However, 
the advent of online supplements, cheap storage, and 
instantaneous data transmission makes this point irrel-
evant. If the large annual investment in animal research 
is to be fully leveraged, descriptions of the experimental 
conditions as complete as possible should be included 
in all publications or made available upon request. A 
small investment in measurement and reporting will 
enhance the value of the work by extending the impact 
of the work beyond the stated experimental objectives 
to inclusion in a database that could be used for future 
model development.

Tables 1, 2, and 3 show several examples of phrases 
frequently found in papers that replace data and the 
data that should be included in their place. Figure 1 
provides a data inclusion checklist for editors, review-
ers, or authors. Required data can be roughly divided 
into 3 classifications: feed information, animal descrip-
tions, and housing/environment. A consistent and com-
plete description of these 3 experimental components, 
on a treatment-specific basis, could effect substantial 
improvements in modeling research efficiency.

The NANP is not suggesting that several tables of 
additional data or raw data numbers be published in 
paper format. However, we are suggesting that jour-
nal management committees discuss and develop ways 
to publish in electronic format such data from peer-
reviewed and accepted studies, to be made available 
to interested researchers. In addition, the NANP is 
charged with supporting the efforts of the USDA and 
NRC in improving and publishing the NRC’s nutrient 
requirement updates and, in that capacity, is developing 
a website and data repository that may be appropriate 
for publication and sharing of detailed experimental 
data. We are also not suggesting that authors measure 
the amino acid composition of all of their feedstuffs 
in all studies but rather supply sufficient information 
about ingredients such that this information could be 
obtained from existing databanks. Given the integrated 
nature of nutritional biology, we often publish stud-
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ies on carbohydrates, fats, or proteins and then later 
discover or admit that a change in one caused a change 
in another and that such interactions may have more 
precisely explained the “treatment response.” This 
inefficiency in our research can be diminished quickly 
if we expend more time and effort in design of more 
specific and often more complex experiments or provide 
more complete descriptions of our experiments, so that 
we can avoid such mistakes in future studies and pre-
cisely describe the underlying interactions in nutrient 
metabolism that affect practical responses to genetics, 
nutritional, or reproductive management.

Types of Data

Feed Information. Feed information is reported 
with great variability across studies, and imprecise 
statements (Table 1) are frequently used to define diet 
composition and ingredient quality. Feed composition 
varies substantially with batch, age, storage method, 

source, weather, and many other parameters (Kertz, 
1998). Although book values can be useful in teach-
ing or extension applications, precise measurements of 
feedstuff composition should be conducted in research 
settings. The results of these measurements, naturally, 
must be reported in publications on a treatment-specific 
basis. Much like biological understanding, feed evalua-
tion methods have improved with time, and proximate 
analysis is no longer an adequate description of a feed. 
Amino acid composition and digestibility affect feed 
intake and performance of most animals more acutely 
than dietary CP content (Holsheimer and Veerkamp, 
1992; Kerr et al., 2003), and substantial associative ef-
fects between energy and protein content have been 
outlined across species (Oldham, 1984). For example, 
in addition to feed composition information, the AOAC 
method number (or the appropriate protocol in other 
countries or societies) for the assay used to determine 
composition should be included in the study, along with 
any modifications to the established protocol.

Table 1. Phrases used to describe diets within publications and examples of specific numerical data to be reported

Phrase  Data

“Diets were constructed to meet or exceed NRC 
 nutrient requirements”

• Complete listing of feeds used in diet 
• Proportion of each feed within diet (mg/kg, %) 
• Nutrient composition of diet (Mcal, MJ, %, mg, IU)

“Diets used high quality grass hay” • Any measurements of feedstuff quality (chemical composition, digestibility, DM) 
• Shaker box or other particle size measurements

“Pasture was sampled periodically throughout 
 the trial”

• Dates (in terms of study days) of samples (d) 
• Time-series measurements of pasture quality (chemical composition, digestibility, DM) 
• Yield (kg/ha) 
• Stage of maturity

“The diet was prepared to meet specifications” • Physical form of diet (ground, pellet, chopped, TMR, unprocessed)
“A commercial protein supplement was fed” • Nutrient composition of supplements or mixes 

• Ingredient composition of supplements or mixes
“Forage composition was measured” • AOAC method number for assay used to determine nutrient content 

• Modifications to established protocol (if any)

Table 2. Phrases used to describe housing and environmental conditions and examples of specific numerical data to be reported

Phrase  Data

“Pigs were housed in standard pens” • Dimensions of housing unit (m2) 
• Number of animals per housing unit (n) 
• Feeder and waterer space per animal 
• Type of housing used

“The trial took place over summer of 2013” • Temperature (mean, low, high) 
• Wind speed (km/h) 
• Dew point 
• Days experiencing heat/cold stress (d)

“Cooling mechanisms were used” • Description of cooling system 
• Temperature in housing system during cooling 
• Temperature between cooling events

“Animals were brought to the parlor twice daily” • Exercise level: distance walked, terrain description
“Animals were kept on native range” • Terrain description (hilly, flat) 

• Stocking density 
• Forage mass per area (kg/m2)

“Two animals were culled for health reasons” • Exact reason for culling 
• Frequency of illness (specific) within culled and retained animals 
• Any available subclinical indicators of illness
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Housing and Climate Data. Thorough descrip-
tions of the housing system and climate conditions 
should be reported. Heat stress is an economically im-
portant problem in many parts of the world (St-Pierre 
et al., 2003). Reporting of standard climate parameters 
for each experimental unit can help researchers solidify 
quantitative representations of animal performance 
responses to temperature stress. This is paramount 
given growing concerns about climate change (IPCC, 
2007) and the future security of the food supply (FAO, 
2009). Several studies have identified production ben-
efits from use of climate-control or cooling technology 
(Armstrong, 1994; Bull et al., 1997; Mader and Davis, 
2004). Without information about the use of these 
technologies, models cannot effectively incorporate pa-
rameters to estimate this benefit. Additionally, housing 
system has been shown to affect health, welfare, and 
productivity of animals (Ekkel et al., 1995, 1996). Until 
housing system parameters are reported consistently 
across studies, limited data are available to incorporate 
these influences into models.

Performance Data. Animal information makes up 
the most complex and most completely reported data 
type. A substantial opportunity for improving animal 
descriptions included in publications is to provide 
time-series data. In all studies, descriptions of animals 
(weight, age, parity, productivity) should be provided 
at the beginning, end, and at appropriate intervals dur-
ing the experiment. When assessing growing animals, 
at a minimum, data should include start weight, end 
weight, days on feed, breed, and starting age. Key in-

dicators of body composition (backfat thickness, BCS) 
are important and, when possible, composition of gain 
should be reported. Studies assessing lactating or lay-
ing animals should include basic age, parity (lactation), 
weight, and weight change parameters in addition to 
milk or egg yield and milk or egg composition (protein, 
sugars, fat, and fatty acid, as appropriate). Studies 
assessing reproductive efficiency should note concep-
tion rate and number of services required or breeding 
window, as appropriate. When taking blood samples, 
nutrient (glucose, fatty acids, amino acids, urea, VFA) 
and hormone concentrations should be thoroughly re-
ported. Depending on the study focus, any measures 
of metabolic or physiological conditions that were col-
lected should be included. Previous nutritional history 
and plane of nutrition are also important to report 
because the preceding conditions of the animal have 
real and significant effects on the future requirements 
and responses to nutritional changes (e.g., feeding in 
late pregnancy for an early-lactation cow; energy intake 
in the first 6 mo of age for studies on animals in later 
growth).

Experimental Design and Data Reporting

Animal scientists typically use some sort of factorial 
arrangement to design experiments. Although report-
ing data for the mean response in one factor across 
levels of another factor is a common practice, complete 
data reporting requires treatment means for each fac-
tor combination. Presenting these mean response data 

Table 3. Phrases used to describe animals and animal performance and examples of specific numerical data items to be reported

Phrase  Preferred data

“Weaned animals were used” • Average starting age 
• Average ending age 
• Average starting BW 
• Average ending BW

“Mature cows” • Parity 
• Frame size or height

“Body composition was estimated” • Backfat thickness 
• BCS

“A highly productive line and a lowly productive line” • Lean tissue growth rate 
• Milk production 
• Mature BW 
• Genotypic measures (if available)

“Sows were previously fed a commercial, balanced ration” • Previous plane of nutrition
“Various metabolic parameters were measured” • Blood metabolite concentrations (all available) 

• Hormone measurements (all available)
“Estrus was synchronized” • Specific program used 

• Modifications to program 
• Conception rate

“Several additional performance indicators were measured” • Average daily gain 
• Lean tissue gain 
• Milk yield 
• Milk composition 
• Egg yield 
• Egg composition
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Figure 1. Checklist for data that should be included in publications. Many of the parameters will not be available across different study 
types. This list can be used to guide authors, reviewers, and editors to ensure maximum efficiency in data reporting.
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is often justified by lack of statistical significance in 
the measured response data. However, there may be 
multiple reasons for failing to detect a statistically sig-
nificant response. Study measurements are affected by 
uncontrolled experimental factors, measurement tech-
nique and equipment, or simply unknown variation. 
When assessing studies individually, it is difficult to 
ascertain how these experimental differences can bias 
results; however, when assessed from a meta-analytic 
standpoint, these exogenous sources of variation can be 
identified and their relationship with the response vari-
ables can be quantified (Thompson and Sharp, 1999; 
Higgins and Thompson, 2002). When treatment means 
are not reported, limited data are available for meta-
analysis and identifying a global relationship between 
parameters is difficult.

Another important aspect of all collected and re-
ported data are the variance structure and various 
measures of dispersion. In many cases, means and 
standard deviations or standard errors of the mean are 
not sufficiently robust to fully understand the scope of 
the animal sample being used or the variation in treat-
ment or other response. Although figures and tables in 
most publications by necessity must be summaries, it 
is simple to include ranges (e.g., of feed chemical com-
positions, starting BW, age, DIM) that better define 
the study population, as well as means and ranges in 
response variables.

Defining relevant data within a study is a substan-
tial barrier to improving the completeness and consis-
tency of data reporting in animal science studies. For 
example, in a study assessing hormone or metabolite 
responses to varying levels of nutritional input, it may 
seem inappropriate or extraneous to include informa-
tion on housing parameters or genetic merit. However, 
this is not correct, as we clearly understand that genetic 
variation and housing conditions will result in variation 
in response to nutrient intake or hormonal functions. 
Several examples have been supplied in the list of refer-
ences; one is the series of studies demonstrating how 
dairy cattle from bulls of different genetic merit for 
milk production had specific metabolic differences in 
pathway flux and mRNA expression in adipose tissue 
(McNamara and Hillers, 1989; Khan et al., 2013; Rocco 
and McNamara, 2013). Including such detail will help 
us determine common responses and which are vari-
able due to genetic background and the extent of the 
variation.

In most experiments, a treatment is applied over 
time and a series of measurements is taken during the 
experimental timeframe. Although mean responses over 
the entire experiment are generally reported, inclusion 
of the intermediate time-series data would greatly 
improve data availability for modeling investigations. 

Time-series data are remarkably useful in fitting, evalu-
ating, and improving mathematical models as most 
nutrition models have some dynamic consideration, 
whether the model is formally dynamic or static. By 
collecting information over a period of time, more data 
are available to better specify how relationships change 
with time, production level, age, BW, and other related 
factors. Furthermore, time-series data more precisely 
relate animal performance to nutritional inputs and 
relevant covariates. Because experiments are conducted 
over time, treatment means, by necessity, are the aver-
age response over a wide range of BW, age, production 
level, and so on. Time-series data improve precision in 
estimating these relationships because smaller ranges 
are assumed in the data set (i.e., BW ranges over 1 wk 
rather than 3 mo).

A final reporting opportunity that will be necessary 
to the improvement of future nutrition models is shar-
ing individual animal data wherever possible, in the 
manuscript, in a managed database, or by personal 
communication. Although this level of detail is likely 
inappropriate in a print publication, online supplemen-
tary material is an appropriate location, and online 
data repositories (NANP, http://nanp-nrsp-9.org/) 
have been made available specifically for this type of 
data. Individual animal information is essential to fit-
ting model responses or evaluating the availability of a 
model to accurately represent the responses in animals 
of differing genetic merit. A shift in research culture 
toward sharing individual animal data will greatly im-
prove opportunities to incorporate genetic improvement 
into future nutrition models. This shift needs to occur 
concurrently with discussions on appropriate metrics 
of genetic merit so that as individual response data 
becomes available, useful genetic parameters can also 
be reported.

Options for Data Sharing and Reporting

True scientific and quantitative understanding comes 
from analysis of a body of knowledge, not usually from 
a single or small number of studies. One study obvi-
ously cannot answer all questions at once, thus data 
reviews, data mining, and meta-analytical techniques 
are powerful tools to bring us to a more sophisticated 
understanding. Inherent in the ability to do such work 
is the willingness and ability to share all data, not just 
data published in tables or figures. Most often, access 
to individual data such as animal weights, individual 
intakes, and milk production and composition is nec-
essary to fully analyze and understand the biology 
involved. For good reason, not all data collected can 
always be included in a publication, but it is now stan-
dard practice (and, in fact, required for many studies 
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in the United States and other countries) that data 
be made available, either in an accessible repository 
or upon request. Making sure these data are available 
in a common location will improve research efficiency. 
Recent research support efforts have developed a com-
mon location for preservation and distribution of mod-
eling data (https://nanp-nrsp-9.org/perf/search/?anim
al=all&dataset=all&table=Studies&column=Year&c
omparator=exact&value=), for the discussion of cur-
rently available nutrient requirement models (https://
nanp-nrsp-9.org/forum/), and examples of model codes 
(https://nanp-nrsp-9.org/resources/examples/).

CONCLUSIONS

Our biological understanding of animal production 
has advanced and now necessitates complex hypotheses 
integrating multiple systems with interacting factors. 
As experiments are designed to test these hypotheses, 
the design process should be conducted to produce data 
that are conducive to improving and advancing models 
of animal metabolism, nutrient requirements, and pro-
duction. To make better use of research resources, en-
hanced integration between model-based research and 
experimental research should be a primary focus. Mak-
ing data available in a consistent form within research 
publications and in supported and managed databases 
that are available to researchers will be paramount in 
this effort and will greatly advance biological under-
standing of livestock production.
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