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  ABSTRACT 

  In dairy cows, periparturient disease states, such as 
metritis, mastitis, and laminitis, are leading to increas-
ingly significant economic losses for the dairy industry. 
Treatments for these pathologies are often expensive, 
ineffective, or not cost-efficient, leading to production 
losses, high veterinary bills, or early culling of the cows. 
Early diagnosis or detection of these conditions before 
they manifest themselves could lower their incidence, 
level of morbidity, and the associated economic losses. 
In an effort to identify predictive biomarkers for post-
partum or periparturient disease states in dairy cows, 
we undertook a cross-sectional and longitudinal me-
tabolomics study to look at plasma metabolite levels 
of dairy cows during the transition period, before and 
after becoming ill with postpartum diseases. Specifical-
ly we employed a targeted quantitative metabolomics 
approach that uses direct flow injection mass spectrom-
etry to track the metabolite changes in 120 different 
plasma metabolites. Blood plasma samples were col-
lected from 12 dairy cows at 4 time points during the 
transition period (−4 and −1 wk before and 1 and 4 
wk after parturition). Out of the 12 cows studied, 6 
developed multiple periparturient disorders in the post-
calving period, whereas the other 6 remained healthy 
during the entire experimental period. Multivariate 
data analysis (principal component analysis and partial 
least squares discriminant analysis) revealed a clear 
separation between healthy controls and diseased cows 
at all 4 time points. This analysis allowed us to identify 
several metabolites most responsible for separating the 
2 groups, especially before parturition and the start of 
any postpartum disease. Three metabolites, carnitine, 
propionyl carnitine, and lysophosphatidylcholine acyl 
C14:0, were significantly elevated in diseased cows as 
compared with healthy controls as early as 4 wk before 
parturition, whereas 2 metabolites, phosphatidylcholine 
acyl-alkyl C42:4 and phosphatidylcholine diacyl C42:6, 

could be used to discriminate healthy controls from 
diseased cows 1 wk before parturition. A 3-metabolite 
plasma biomarker profile was developed that could pre-
dict which cows would develop periparturient diseases, 
up to 4 wk before clinical symptoms appearing, with a 
sensitivity of 87% and a specificity of 85%. This is the 
first report showing that periparturient diseases can be 
predicted in dairy cattle before their development using 
a multimetabolite biomarker model. Further research 
is warranted to validate these potential predictive bio-
markers. 
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  INTRODUCTION 

  In dairy cows, pathologies associated with parturi-
tion, such as mastitis, metritis, retained placenta, lami-
nitis, ketosis, and milk fever, are very common (Bigras-
Poulin et al., 1990). The prevalence of these diseases is 
disproportionately high during the transition period, 
where 30 to 50% of the cows are affected by one or 
more of these conditions (LeBlanc, 2010). Periparturi-
ent diseases can significantly affect a dairy cow’s pro-
duction efficiency by reducing milk production, altering 
milk composition, reducing reproductive performance, 
increasing treatment costs, or reducing the life expec-
tancy of the cow. Four conditions, metritis, infertility, 
mastitis, and laminitis, have been shown to account for 
the largest share of economic loss suffered by the dairy 
industry. For instance, early culling of dairy cows costs 
the Canadian dairy industry an estimated $200 million 
a year, with 60% of the 160,000 cows culled in Canada 
in 2008 being afflicted with one or multiple of these 4 
diseases (Ametaj et al., 2012). 

  The pathophysiology of postpartum diseases is com-
plex, interrelated, and multifactorial, often driven by 
several interconnected risk factors. Despite major ad-
vances in the knowledge of their etiology, treatments 
for these kinds of diseases are often expensive, inef-
fective, or not cost-efficient. Therefore, early diagnosis 
or detection of those conditions before they manifest 
could reduce their incidence, level of morbidity, and the 
associated economic losses. 
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Genomics, proteomics, and metabolomics technolo-
gies are increasingly being used to help identify disease 
and disease risk biomarkers. Given that little evidence 
exists for a genetic cause to these postpartum or peri-
parturient diseases, it stands to reason that metabolite 
alterations may be more suitable to developing a pre-
dictive biomarker test. More than a decade ago, studies 
in dairy cows established that elevated ketone bodies, 
such as BHBA, acetone, and acetoacetate in milk, could 
serve as metabolic biomarkers for subclinical ketosis 
(Enjalbert et al., 2001). Prepartum NEFA and post-
partum BHBA were both significantly associated with 
development of clinical disease, whereas postpartum 
serum NEFA concentration was most associated with 
the risk of developing displaced abomasum, clinical 
ketosis, metritis, or retained placenta during the first 
30 DIM (Ospina et al., 2010). In another study, cows 
developing postpartum diseases had higher mean serum 
NEFA and lower plasma IGF-I concentrations prepar-
tum when compared with healthy cows (Piechotta et 
al., 2012). Indeed, metabolomics has been shown to be 
a particularly effective platform for investigating the 
pathophysiology of pregnancy-associated diseases in 
humans, such as pre-eclampsia and pregnancy-induced 
diabetes, and identifying predictive biomarkers for 
those conditions (Bahado-Singh et al., 2012, 2013). In 
a previous study using a metabolomics approach, we 
reported unhealthy alterations of rumen metabolites 
with increasing proportions of cereal grains in the diet 
of dairy cows (Ametaj et al., 2010). Extending on those 
observations, our group used multiple metabolomics 
platforms to identify and quantify rumen metabolites, 
confirming detailed rumen metabolite alterations with 
increased grain proportions in the diet (0, 15, 30, and 
45% barley grain on a DM basis), as well as temporal 
changes in the metabolite concentrations during each 
dietary period (Saleem et al., 2012). Moreover, feed-
ing dairy cows diets rich in rumen-degradable carbo-
hydrates and low in fiber led to lower rumen pH and 
large accumulation of rumen endotoxin; the latter was 
correlated with perturbations of plasma metabolites 
allied to carbohydrate and lipid metabolism (Zebeli 
et al., 2011). Nuclear magnetic resonance-based me-
tabolomics elucidated the relationship between the me-
tabolite profile and technological properties of bovine 
milk from 2 dairy breeds (Sundekilde et al., 2011) and 
revealed strong association between milk metabolites 
and SCC in bovine (Sundekilde et al., 2013). Moreover, 
Klein et al. (2012) reported that high concentrations of 
milk glycerophosphocholine along with a high ratio of 
glycerophosphocholine to phosphocholine could be used 
to aid in the reliable selection of healthy and metaboli-
cally stable cows for breeding purposes. Building from 
the success of these efforts, we decided to perform a 

longitudinal and cross-sectional metabolomic study to 
look at plasma metabolite levels of dairy cows during 
the transition period, before and after becoming ill 
with different postpartum pathologies. This was done 
to investigate whether changes in plasma metabolite 
concentrations could be predictive for the development 
of periparturient or postpartum diseases in dairy cows.

Specifically, we employed a targeted quantitative 
metabolomics approach that uses direct flow injection 
MS/MS to track the metabolite changes in 120 differ-
ent plasma metabolites. Blood plasma samples were 
collected from 12 dairy cows at 4 time points during the 
transition period (−4 and −1 wk before and 1 and 4 wk 
after parturition). Out of the 12 cows studied, 6 devel-
oped multiple periparturient diseases during the post-
calving period, whereas the other 6 remained healthy 
during the entire experimental period. From this work, 
we were able to identify at least 5 plasma metabolites 
that can be used as potential predictive biomarkers for 
the early diagnosis and monitoring of multiple peripar-
turient diseases in transition dairy cows.

MATERIALS AND METHODS

Pre- and Postpartum Diets

All cows were fed the same close-up diet starting at 3 
wk before the expected day of parturition. The close-up 
diet is usually offered to the dairy cows when they are 
close to parturition and contained approximately 20% 
concentrate on a DM basis (Table 1). After parturition, 
cows were gradually switched during the first 7 d to a 
fresh lactation diet with a higher proportion of grain 
(up to 50% on a DM basis) to meet the energy demands 
for high milk production (Table 2). Daily ration was 
offered as TMR for ad libitum intake to allow approxi-
mately 10% feed refusals throughout the experiment. 
All cows were fed once daily in the morning at 0800 h.

Sample Collection

Blood samples were collected from the coccygeal 
veins of 12 transition Holstein dairy cows at 4 time 
points: during 4 (25–31 d) and 1 wk (4–10 d) before 
calving (d 0) and during 1 (4–10 d) and 4 wk (25–31 
d) after calving. Multiparous cows, with parities rang-
ing from 2 to 4, were used in the study. Samples were 
collected before the morning feeding at 0800 h using 10-
mL Vacutainer tubes (Becton Dickinson, Franklin Lake, 
NJ) containing a sodium heparin anticoagulant. Blood 
samples were stored on ice and centrifuged within 20 
min at 4°C for 20 min at 3,000 × g in a Rotanta 460 R 
centrifuge (Hettich Zentrifugan, Tuttlingen, Germany) 
to separate the plasma. Plasma samples were stored at 
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−20°C until further analysis. All sick cows were diag-
nosed by a herd veterinarian.

Six cows were free of any diseases during the entire 
experimental period, whereas 6 different cows were di-
agnosed with one or more periparturient pathologies, 
including metritis, mastitis, laminitis, or retained pla-
centa. All experimental procedures were approved by 
the University of Alberta Animal Policy and Welfare 
Committee for Livestock and animals were cared for in 
accordance with the guidelines of the Canadian Council 
on Animal Care (1993).

Plasma Analyses

A total of 48 plasma samples were analyzed using a 
targeted quantitative metabolomics approach employ-
ing a commercially available assay kit-based direct flow 
MS/MS technique (AbsoluteIDQ 180 Kit; Biocrates 
Life Sciences AG, Innsbruck, Austria). This kit assay is 
specifically adapted to work on a 4000 QTrap (Applied 
Biosystems/MDS Sciex, Foster City, CA) mass spec-
trometer and can be used for targeted identification 
and quantification of up to 160 different metabolites, 
including AA, acylcarnitines, glycerophospholipids, 
sphingolipids, and sugars. The method combines the 
derivatization and extraction of analytes with the selec-
tive mass spectrometric detection and quantification us-
ing multiple reaction monitoring pairs. Isotope-labeled 
internal standards are integrated in the kit plate filter 
for metabolite quantification.

The AbsoluteIDQ 180 kit contains a 96 deep-well 
plate with a filter attachment, along with reagents and 
solvents used to prepare the plate assay. The first 8 
wells in the kit are used for reference calibration, with 
1 blank, 3 zero samples (urea solution), 1 standard, and 
3 quality control samples provided with each kit. All 
protocols were followed according the manufacturer’s 
user manual. Prior to analysis, samples were left to 

thaw on ice (~30 min). After thawing they were vor-
texed and centrifuged at 13,000 × g at 4°C for 3 min. 
Ten microliters of supernatant for each plasma sample 
was loaded on a filter paper and dried under a stream 
of nitrogen. Extraction of the metabolites was then 
achieved using methanol containing 5 mM ammonium 
acetate. The extracts were analyzed using a 4000 QTrap 
(Applied Biosystems/MDS Sciex) mass spectrometer. 
A standard flow injection protocol consisting of two 
20-μL injections (one for the positive and one for the 
negative ion detection mode) was applied for all mea-
surements. Multiple reaction monitoring detection was 
used for quantification. Software, which was included in 
the kit, was used to control the entire assay workflow, 
from sample registration to automated calculation of 
metabolite concentrations to the export of the data.

Statistical Analysis

All metabolomic data analyses were performed us-
ing MetaboAnalyst (Xia et al., 2009) and ROCCET 
(Xia et al., 2013). Recommended statistical procedures 
for metabolomic analysis were followed according to 
previously published protocols (Wishart, 2010, Xia et 
al., 2009). Compounds that were frequently (>50%) 
below the limit of detection were removed from consid-
eration; otherwise, a value of one-half the lower limit 
of detection was used to avoid zero-value entries. Log 
scaling was used for normalization of all metabolomic 
concentration data for each of the 4 different sampling 
intervals. Visual inspection of the data confirmed its 
normal or Gaussian distribution for each time period. 
For the purposes of the present study, all periparturient 
pathologies (mastitis, metritis, laminitis, and retained 
placenta) were grouped into one category (diseased). 
Of note, cows had more than one pathology during 
sampling and, because of the low number of diseased 
cows, no differentiation between various pathological 

Table 1. Prepartum diet for dry cows 

Item
Close-up  

diet (CUD)

Ingredient, % of DM
 Alfalfa hay 10.0
 Barley silage 63.0
 Alfalfa silage 00.0
 CUD grain 27.0
Nutrient composition of CUD grain, % in 100 kg of mix
 Barley grain, rolled 55.0
 Canola meal 7.5
 Dairy dry cow micro-premix 6.2
 Limestone 8.7
 Animate 15.7
 Molasses 0.9
 Canola oil 4.1
 Yeast 1.7
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conditions was tested. Furthermore, we hypothesized 
that some metabolic commonalities for at least some 
of these conditions may exist. To perform a standard 
cross-sectional 2-group study, we classified all cows 
that eventually developed periparturient pathologies 
into one category (diseased cows) and all cows that 
remained healthy into another category (healthy cows) 
and compared these groups at each time point (−4, −1, 
1, and 4 wk). To perform the longitudinal or disease tra-
jectory analysis, we performed a similar grouping but 
compared time-dependent metabolite changes within 
each group over the 8-wk period. Univariate analysis 
(t-test) was performed to assess the differences of de-
tected metabolites between the healthy controls and 
diseased cows. Principal component analysis (PCA), 
partial least squares discriminant analysis (PLS-DA), 
and variable importance of projection (VIP) were per-
formed to identify those metabolites showing signifi-

cant differences between healthy and diseased animals 
(in the cross-sectional study) and to identify different 
temporal metabolic trends followed by healthy and 
diseased animals (in the longitudinal study; Wishart, 
2010). Principal component analysis is an unsupervised 
classification technique for transforming a complex 
collection of data points so that the important proper-
ties of the sample can be more simply displayed along 
the X- and Y-axes. Two clearly identified clusters on 
a PCA plot are indicative that significant metabolite 
differences exist between the 2 groups.

Partial least squares discriminant analysis was used 
to enhance the separation between the groups by 
summarizing the data into a few latent variables that 
maximize covariance between the response and the pre-
dictors. To minimize the possibility that the observed 
separation for a PLS-DA plot was due to chance, we 
performed permutation testing. This involved repeated 

Table 2. Ingredients of high grain ration fed to cows during early lactation 

Item
Early  

lactation diet

Ingredient, % of DM
 Alfalfa hay 10.0
 Barley silage 40.8
 Dairy supplement 49.2
Nutrient composition of dairy supplement, 
% in 100 kg of mix (unless otherwise noted)
 ADE Pak Natural E1 0.06
 Ruminant TM Pak2 0.10
 Selenium, 1,000 mg/kg 0.07
 Custom TM complex premix3 0.06
 Dicalcium phosphate 21% 1.25
 Corn distillers grain 10.0
 Corn, ground 25.0
 Corn, rolled 30.11
 Vitamin D, 10,000 KIU/kg 0.02
 Diamond V XPC4 0.14
 Megalac5 1.00
 Fermenten6 2.00
 Limestone 1.50
 Mag Ox 56%7 0.37
 Canola meal 15.5
 Hi bypass soy (Amino plus)8 2.75
 Soybean meal, 47.5% 6.50
 Sodium bicarbonate 1.00
 Salt 0.11
 Pork tallow 2.45
 Biotin 2%, Rovimix H-29 0.01
 ADM Vit E 405 Vegetable source10 0.02
1ADE-Pak Natural E: a premix containing vitamins A, D3, and E.
2Ruminant TM Pak: a premix containing cobalt, copper, iodine, manganese, and zinc.
3Custom TM complex: a custom product supplying organic sources of cobalt, copper, manganese, and zinc.
4Diamond V XPC: concentrated yeast (Diamond V Mills, Cedar Rapids, IA).
5Megalac: calcium soaps (Church & Dwight, Princeton, NJ).
6Fermenten: fermentation by-product (Arm and Hammer Animal Nutrition/Church & Dwight).
7Mag Ox 56%: 56% magnesium guarantee.
8Amino Plus: a high by-pass soy meal.
9DSM Nutritional Products (Parsippany, NJ).
10ADM Vit E 405 Vegetable source: natural source of vitamin E (Archer Daniels Midland).
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(2,000 times) PLS-DA calculations using different ran-
dom labeling of the samples. The fraction of randomly 
labeled PLS-DA calculations that exceed the separa-
tion score seen with the correctly labeled data provides 
a measure of the statistical significance or P-value. A 
significant P-value (<0.05) indicates that the separa-
tion observed between the 2 groups is very unlikely 
to be due to chance. A VIP plot was used to rank the 
metabolites based on their importance in discriminat-
ing sick from control groups of cows. Metabolites with 
the highest VIP values are the most powerful group 
discriminators. Typically, VIP values greater than 2 are 
significant and VIP values greater than 4 are highly 
significant.

Biomarker profiles and the quality of the biomarker 
sets were determined using receiver-operator character-
istic curves as calculated by the ROCCET web server 
(Xia et al., 2013). A receiver-operator characteristic 
curve shows how the sensitivity and specificity of a test 
or biomarker profile change as the classification deci-
sion boundary is varied across the range of available 
biomarker scores. Because receiver-operator character-
istic curves depict the performance of a biomarker test 
over the complete range of possible decision boundar-
ies, it allows the optimal specificity and associated sen-
sitivity to be determined post hoc. Receiver-operator 
characteristic curves are often summarized into a single 
metric known as the area under the curve (AUC). 
The AUC can be interpreted as the probability that 
a diagnostic test or a classifier will rank a randomly 
chosen positive instance higher than a randomly chosen 
negative one. If all positive samples are ranked before 
negative ones (i.e., a perfect classifier), the AUC is 1.0. 
An AUC of 0.5 is equivalent to randomly classifying 
subjects as either positive or negative (i.e., the classifier 
is of no practical utility). A rough guide for assessing 
the utility of a biomarker based on its AUC is 0.9 to 1.0 
= excellent; 0.8 to 0.9 = good; 0.7 to 0.8 = fair; 0.6 to 
0.7 = poor; 0.5 to 0.6 = fail.

RESULTS AND DISCUSSION

Periparturient Diseases and Metabolomics Approach

Of the 12 animals studied, 6 developed postpartum 
diseases. Among the sick cows, a total of 4 different 
pathologies were detected, including mastitis, metritis, 
retained placenta, and laminitis. Of the 6 cows with 
disease state, 2 cows had retained placenta, metritis, 
and laminitis, 1 had retained placenta and laminitis, 
1 had metritis and laminitis, and 2 had mastitis only. 
Four of the 6 cows were affected by multiple conditions 
during the postpartum period. Diagnoses and treat-
ments were performed by an experienced veterinarian 

using standard symptomatology and clinical criteria. 
Bovine mastitis is an IMI that is caused by a wide 
range of microorganisms, including gram-negative and 
gram-positive bacteria (Zadoks et al., 2011). Metritis 
is a uterine pathology that involves inflammation of 
all the uterine layers and is associated with reduced 
reproductive efficiency (Sheldon et al., 2006), whereas 
retained placenta is described as a failure to pass all or 
parts of placenta from the uterus within 24 h of calving. 
Laminitis is a metabolic disorder of the corium that 
affects the lamellae of the claw with sole hemorrhage 
and white line defects caused by improper nutrition or 
related to bacterial diseases, such as metritis or mas-
titis, and are associated with lameness (Kloosterman, 
2007; Buch et al., 2011). Previous studies support the 
notion that periparturient diseases in dairy cows are 
interrelated and tend to occur as a complex especially 
during postpartum period (Curtis et al., 1983; Correa 
et al., 1993; Buch et al., 2011).

Metabolomic data were obtained for all 12 transition 
dairy cows at 4 different time points. An average of 
120 different plasma metabolites were identified and 
quantified for each sample from each of the 6 healthy 
and 6 diseased cows (Table 3). These metabolites can 
be grouped into 5 categories (with the average number 
of compounds identified in brackets): amino acids (14), 
acylcarnitines (10), glycerophospholipids (80), sphin-
golipids (15), and hexose (1). Principal component 
analysis was used to reduce this large set of variables 
(120 metabolites) into 2 principal components (PCA 
1 and 2) for each of the 4 different time intervals (−4, 
−1, 1, and 4 wk). Two different comparisons were per-
formed, a cross-sectional and a longitudinal evaluation. 
The cross-sectional evaluation compared healthy with 
diseased cows at the same time points whereas the 
longitudinal evaluation tracked the metabolic changes 
in the healthy cows over the 4 time points and the dis-
eased cows over the same time points. We will discuss 
the results of the cross-sectional study first and the 
longitudinal study second.

Univariate Statistical Analysis

A univariate analysis using a t-test was conducted for 
120 metabolites for the healthy controls and diseased 
cows. The results of significantly (P < 0.05) regulated 
metabolites in healthy versus diseased cows at 4 time 
points during the transition period are shown in Table 
4. The concentrations of 5 metabolites, carnitine (C0), 
propionyl carnitine (C3), lysophosphatidylcholine acyl 
C14:0 (lysoPCaC14:0), lysoPhosphatidylcholine acyl 
C18:2 (lysoPCaC18:2), and valerylcarnitine (C5), were 
elevated in diseased cows as compared with the healthy 
controls 4 wk before parturition. Similarly, the concen-
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trations of phosphatidylcholine acyl-alkyl C42:4 (PC ae 
C42:4), phosphatidylcholine diacyl C42:4 (PC aac42:6), 
carnitine (C0), lysophosphatidylcholine acyl C14:0 
(lyso PC 14:0), and lysophosphatidylcholine acyl C14:0 
acyl C28:0 (lyso PC a 28:0) were increased in diseased 
cows as compared with their healthy counterparts 1 wk 
before and 1 wk after parturition. However, at 4 wk 
after parturition, we observed lowered concentrations of 
metabolites carnitine (C0), phosphatidylcholine diacyl 
C42:6 (PC aa C42:6), phosphatidylcholine acyl-alkyl 
C42:4 (PC ae C42:4), and lysophosphatidylcholine acyl 
C28:0 (lyso PCa C28:0) in diseased cows as compared 
with the healthy ones.

Multivariate Analysis on Plasma Metabolites  
at  and   e ore Parturition

When healthy cows were compared with not-yet-dis-
eased cows (those that eventually developed mastitis, 
metritis, laminitis, and retained placenta) at −4 wk 
using PCA, 2 clear clusters could be seen (Figure 1a). 
Furthermore, 3 metabolites accounted for most of the 
observed separation, carnitine (C0), propionyl carnitine 
(C3), and lysophosphatidylcholine acyl C14:0 (lysoP-
CaC14; a lysophospholipid). These compounds were 
elevated in the diseased animals and had VIP scores 
of 4, 4, and 6, respectively, indicating a significant con-

tribution in separating healthy and diseased animals. 
The remaining blood plasma metabolites showed much 
lower VIP scores (<2) with minimal contribution to 
the variation that separated the healthy and diseased 
groups (Figure 1, b and c). A ROC plot showing the 
performance of the top 5 metabolites in predicting 
which cows will develop periparturient diseases at −4 
wk using a standard support vector machine model is 
shown in Figure 1d. The AUC for this curve is 0.950, 
which indicates that these 5 biomarkers have very good 
predictive ability. Interestingly, at −4 wk, none of the 
12 cows exhibited any outward signs of disease. This 
suggests that, metabolically, the disease processes must 
begin quite early. More interestingly, these results sug-
gest that the biomarker model developed here could 
be used to predict which cows will develop postpartum 
diseases 4 wk before they actually develop the condi-
tions.

When healthy cows were compared with not-yet-
diseased cows at −1 wk, the PCA plot once again 
showed a clear separation (Figure 2a). In this case, 2 
blood plasma metabolites [phosphatidylcholine acyl-
alkyl C42:4 (PCec42:4) and phosphatidylcholine diacyl 
C42:6 (PCaaC42:6)] with VIP scores of 4.5 and 3.4 con-
tributed most significantly to the separation between 
the 2 groups. Whereas the discrimination between the 
2 groups is almost as strong at −4 wk, it is notable 

Table 3. List of metabolites identified and quantified by direct flow injection MS/MS 

Item Metabolite

Amino acid Argenine, glutamine, glycine, histidine, methionine, ornithine, phenylalanine, proline, serine, threonine, tryptophan, 
tyrosine, valine

Acylcarnitinine Carnitine, tetradecanoylcarnitine, tetradecenoylcarnitine, hexadecanoylcarnitine, octadecanoylcarnitine, 
octadecenoylcarnitine, acetylcarnitine, propionylcarnitine, butyrylcarnitine

Glycerophospholipid Phosphatidylcholine diacyl C28:1, phosphatidylcholine diacyl C30:0, phosphatidylcholine diacyl C30:2, 
phosphatidylcholine diacyl C32:1, phosphatidylcholine diacyl C32:2, phosphatidylcholine diacyl C32:3, 
phosphatidylcholine diacyl C34:1, phosphatidylcholine diacyl C34:2, phosphatidylcholine diacyl C34:3, 
phosphatidylcholine diacyl C34:4, phosphatidylcholine diacyl C36:0, phosphatidylcholine diacyl C36:1, 
phosphatidylcholine diacyl C36:2, phosphatidylcholine diacyl C36:3, phosphatidylcholine diacyl C36:4, 
phosphatidylcholine diacyl C36:5, phosphatidylcholine diacyl C36:6, phosphatidylcholine diacyl C38:0, 
phosphatidylcholine diacyl C38:1, phosphatidylcholine diacyl C38:2, phosphatidylcholine diacyl C38:3, 
phosphatidylcholine diacyl C38:4, phosphatidylcholine diacyl C38:5, phosphatidylcholine diacyl C38:6, 
phosphatidylcholine diacyl C40:2, phosphatidylcholine diacyl C40:3, phosphatidylcholine diacyl C40:4, 
phosphatidylcholine diacyl C40:5, phosphatidylcholine diacyl C40:6, phosphatidylcholine acyl-alkyl C30:0, 
phosphatidylcholine acyl-alkyl C30:1, phosphatidylcholine acyl-alkyl C32:1, phosphatidylcholine acyl-alkyl C32:2, 
phosphatidylcholine acyl-alkyl C34:0, phosphatidylcholine acyl-alkyl C34:1, phosphatidylcholine acyl-alkyl C34:2, 
phosphatidylcholine acyl-alkyl C34:3, phosphatidylcholine acyl-alkyl C36:0, phosphatidylcholine acyl-alkyl C36:1, 
phosphatidylcholine acyl-alkyl C36:2, phosphatidylcholine acyl-alkyl C36:3, phosphatidylcholine acyl-alkyl C36:4, 
phosphatidylcholine acyl-alkyl C36:5, phosphatidylcholine acyl-alkyl C38:0, phosphatidylcholine acyl-alkyl C38:1, 
phosphatidylcholine acyl-alkyl C38:2, lysophosphatidylcholine acyl C16:0, lysophosphatidylcholine acyl C16:1, 
lysophosphatidylcholine acyl C17:0, lysophosphatidylcholine acyl C18:0, lysophosphatidylcholine acyl C18:1, 
lysophosphatidylcholine acyl C18:2, lysophosphatidylcholine acyl C20:3, lysophosphatidylcholine acyl C20:4, 
lysophosphatidylcholine acyl C28:0, lysophosphatidylcholine acyl C28:1

Hexose Hexose
Sphingolipid Hydroxysphingomyeline C14:1, hydroxysphingomyeline C16:1, 

hydroxysphingomyeline C22:1, hydroxysphingomyeline C22:2, 
hydroxysphingomyeline C24:1, sphingomyeline C16:0, sphingomyeline C16:1, sphingomyeline C18:0, sphingomyeline 
C18:1, sphingomyeline C20:2, sphingomyeline C24:0, sphingomyeline C24:1, sphingomyeline C26:0, sphingomyeline 
C26:1
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that the metabolites most responsible for the separa-
tion are different (Figure 2, b and c). Only 1 metabo-
lite (lysoPCaC14) identified from the −4 wk cohort 
retained a significant VIP score (1.8) at 1 wk before 
calving. A ROC plot showing the performance of the 
top 2 metabolites in predicting which cows will develop 
periparturient diseases at −1 wk using a support vector 
machine model is shown in Figure 2d. The AUC for this 
curve is 0.845, which indicates that these 2 biomark-
ers have very good predictive ability. As before, at 1 
wk before calving none of the 12 cows exhibited any 
outward signs of disease.

Multivariate Analyses at  and   A ter Parturition

When healthy cows were compared with diseased 
cows just 1 wk after calving, our multivariate statisti-
cal analysis (PCA and PLS-DA) revealed a strikingly 
consistent separation between the healthy and diseased 
cows (Figure 3, a and b). Moreover, 3 metabolites 
(C0, lysoPCaC14, and lysoPCa28) with correspond-
ing VIP scores of 2.7, 4.9, and 6.8 contributed most 
significantly to the observed separation (Figure 3c). 
Interestingly, carnitine (C0) and lysoPCaC14 are the 
same plasma metabolites responsible for separating 
the 2 groups at 4 wk before parturition. As with the 
other high-importance metabolites identified in the 
earlier time points, these metabolites showed elevated 
concentrations in diseased cows as compared with the 
healthy ones.

When healthy cows were compared with diseased 
cows at 4 wk after parturition, PCA and PLS-DA once 
again revealed a clear separation between healthy and 
diseased animals (Figure 4, a and b). At this point, 
all 6 diseased cows were exhibiting or had shown 

clear symptoms of one or more of the 4 periparturient 
diseases. Four metabolites (C0, PC aa C42:6, PC ae 
C42:4, and lysoPCaC28) with strong VIP scores of 4.5, 
3.8, 2.7, and 1.8, respectively, discriminated strongly 
between the healthy and diseased cows. It is interesting 
to note that throughout the 8-wk study, 2 blood plasma 
metabolites (C0 and lysoPCaC14) appeared to play a 
consistent role in distinguishing between healthy and 
diseased cows (Figure 4c).

Time Course Disease Trajectory  
During the Transition Period

The principal component score plot for the interac-
tion of healthy and diseased groups with respect to the 
significantly altered metabolites at 4 time points during 
the transition period is shown in Figure 5. It is evident 
from this plot that the trajectories are very different 
with the 2 groups of animals (in metabolic PCA space). 
In particular, the direction of change in PCA space 
for PC1 (56.1%) is perhaps distinct, with the diseased 
cows having higher concentrations of metabolites at 
−4 and 1 wk than their healthy counterparts; whereas 
this trend abruptly switched at 4 wk, when the con-
centrations of metabolites for diseased cows declined 
as opposed to a rising trend in healthy cows. For the 
PC2 (24.3%), the diseased and healthy groups showed 
different metabolites concentration patterns over the 
4 time points around calving (−4, −1, 1, and 4 wk). 
It is also worth noting that the trend of metabolite 
concentrations in diseased cows declined after calving 
as opposed to increasing trends for the healthy cows. 
This indicates the deviation of metabolism of sick cows 
from the healthy status both before and after the clini-
cal manifestation of the disease.

Table 4. Concentrations of plasma metabolites in healthy control and diseased cows at 4 time points (−4, −1, 1, and 4 wk) during the transition 
period as determined by direct-flow injection-MS/MS (mean ± SD; n = 6) 

Metabolite, μM Healthy control Sick cow P-value

4 wk before parturition
 Carnitine (C0) 3.14 ± 0.66 6.34 ± 1.87 0.003
 Propionylcarnitine (C3) 0.06 ± 0.03 0.3 ± 0.08 0.004
 lysoPhosphatidylcholine acyl C14: 0 (lysoPC a C14:0) 3.51 ± 2.72 5.62 ± 0.39 0.006
 lysoPhosphatidylcholine acyl C18:2 (lysoPC a C18:2) 4.31 ± 2.3 13.2 ± 2.46 0.05
 Valerylcarnitine (C5) 0.04 ± 0.03 0.09 ± 0.04 0.05
1 wk before parturition
 Phosphatidylcholine acyl-alkyl C42:4 (PC ae C42:4) 0.14 ± 0.06 0.48 ± 0.19 0.014
 Phosphatidylcholine diacyl C42:6 (PC aac42:6) 0.00 ± 0 0.31 ± 0.28 0.04
1 wk after parturition
 Carnitine (C0) 1.29 ± 0.2 6.67 ± 2.45 0.002
 lysoPhosphatidylcholine acyl C14:0 (lyso PC a C14:0) 2.80 ± 0.43 5.59 ± 0.52 0.03
 lysoPhosphatiylcholine acyl C28:0 (lyso PC a C28:0) 0.12 ± 0.04 0.31 ± 0.16 0.04
4 wk after parturition
 Carnitine (C0) 2.54 ± 0.51 0.00 ± 0 0.001
 Phosphatidylcholine diacyl C42:6 (PC aa C42:6) 0.06 ± 0.01 0.11 ± 0.17 0.005
 Phosphatidylcholine acyl-alkyl C42:4 (PC ae C42:4) 0.33 ± 0.30 0.13 ± 0.02 0.008
 lysoPhosphatidylcholine acyl C28:0 (lyso PC a C28:0) 0.52 ± 0.08 0.30 ± 0.15 0.012
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Plasma Metabolites as Predictive  
iomar ers o  Disease State

As noted earlier, all the periparturient pathologies 
(mastitis, metritis, laminitis, and retained placenta) 
observed were grouped into one category (diseased). 

Whereas these pathologies affect different organs or 
tissues, they are interrelated, which suggested that 
some early stage metabolic commonalities for those 
conditions may exist. Using quantitative MS-based 
metabolomics of bovine blood plasma we found that 
healthy animals could indeed be clearly and consis-

Figure 1. (a) Principal component (PC) analysis of 6 control and 6 diseased cows at 4 wk before parturition. (b) Partial least squares-dis-
criminant analysis showing 2 clusters for 2 groups and (c) metabolites ranked by variable importance in projection (VIP). (d) Receiver-operator 
characteristic curve of 6 control and 6 diseased cows at −4 wk before parturition for the top 3 plasma metabolites. Color version available in 
the online PDF.
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tently distinguished from the diseased ones or soon-
to-be diseased animals. More interestingly, we found 
that these differences were evident up to 4 wk be-
fore the animals exhibiting any outward signs of the 
disease(s). These results suggest that some surprising 
metabolic commonalities exist between these very 

diverse postpartum conditions. Using a longitudinal 
or time-course PCA approach, we also observed that 
healthy animals exhibited a much different or more 
restrained metabolic change through the transition 
period compared with animals that would later go on 
to develop postpartum diseases.

Figure 2. (a) Principal component (PC) analysis of 6 control and 6 diseased cows at −1 wk before parturition. (b) Partial least squares-dis-
criminant analysis showing 2 clusters for 2 groups (c) and metabolites ranked by variable importance in projection (VIP). (d) Receiver-operator 
characteristic curve of 6 control and 6 diseased cows at 1 wk before parturition for the top 2 plasma metabolites. Color version available in the 
online PDF.
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Multivariate analysis and modeling (PCA, PLS-DA, 
VIP, and ROC curve analysis) showed that 5 plasma 
metabolites, such as carnitine (C0), propionyl carni-

tine (C3), lysophosphatidylcholine acyl C14:0 (lysoP-
CaC14), PCec42:4, and PCaaC42:6, could be used to 
generate at least 2 highly reliable (AUC = 0.95, 0.845) 

Figure 3. (a) Principal component (PC) analysis of 6 control and 6 diseased cows at 1 wk after parturition. (b) Partial least squares-discrim-
inant analysis showing 2 clusters for 2 groups and (c) metabolites ranked by variable importance in projection (VIP). Color version available 
in the online PDF.
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Figure 4. (a) Principal component (PC) analysis of 6 control and 6 diseased cows at 4 wk after parturition. (b) Partial least squares-discrim-
inant analysis showing 2 clusters for 2 groups and (c) metabolites ranked by variable importance in projection (VIP). Color version available 
in the online PDF.



Journal of Dairy Science Vol. 97 No. 5, 2014

BIOMARKERS OF DISEASE IN TRANSITION DAIRY COWS 2691

biomarker models for predicting which cows would de-
velop one or more periparturient disorders. These bio-
markers could be used at −4 and −1 wk before calving 
and up to 4 wk before the clinical onset of the patholo-
gies. That these changes were so visible, even at −4 wk 
before calving, suggests that the detection or prediction 
envelope could be pushed back even further—perhaps 
to 6 to 8 wk or more.

The fact that these 4 very different disease states 
clustered together metabolically is somewhat surpris-
ing. Certainly if more samples could have been acquired 
it might have been possible to use metabolic profiling 
to distinguish between these conditions or to develop a 
disease-specific metabolic signature. Our data suggest 
that mastitis, metritis, laminitis, and retained placenta 
seem to share some common metabolic underpinnings. 
This is a very interesting result and could help shed 
some light on understanding how and why these con-
ditions develop. In this regard it is perhaps useful 
to discuss what role some of these 5 key metabolites 
may have in metabolism, signaling, or immunological 
responses.

Plasma Metabolites Dysregulation  
and Pathophysiology o  Periparturient Disorders

Carnitine and propionylcarnitine are acylcarnitines. 
Carnitine and related acylcarnitines help shuttle FA 

from the cytoplasm across the inner mitochondrial 
membrane into the mitochondrial matrix (Stanley et 
al., 1992). Longer chain acylcarnitines play an impor-
tant role in the lipid β-oxidation process. Conversely, 
short-chain acylcarnitines tend to be involved in AA 
metabolism, particularly in branched-chain AA degra-
dation (Roe et al., 2000). Carnitines and acylcarnitines 
are often the by-products of cells that have nuclei and 
mitochondria (such as muscles and white blood cells). 
Mammalian red blood cells or erythrocytes, which con-
stitute 99% of the cells in blood, have no nucleus and 
no mitochondria. Therefore elevated levels of carnitines 
and other short-chain acylcarnitines in plasma can only 
arise from the activity or lysis of white blood cells or 
through the lysis or death of other nucleated, metaboli-
cally active cells (found in muscle, liver, kidney, or oth-
er large organs, including the uterus). In other words, 
acylcarntitines are markers of either immune activation 
or organ dysfunction. Several recent metabolomic stud-
ies have identified carnitine and acylcarnitines as use-
ful biomarkers for many inflammatory or autoimmune 
human diseases (Guo et al., 2012; Sampey et al., 2012; 
van der Kloet et al., 2012; Frye et al., 2013). These data 
suggest that carnitine or acylcarnitines are more likely 
general, rather than specific markers, of general inflam-
matory processes. Given that mastitis and metritis 
typically arise from bacterial infections or bacterially 
induced inflammation, and laminitis and retained pla-

Figure 5. Time-course principal component analysis (PCA) plots comparing the disease trajectory for component 1 (a) and component 2 (b). 
The PCA plot has been constructed for significantly different metabolites between healthy and diseased cows over the 4 different time points. 
Color version available in the online PDF.
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centa are associated with inflammation and the latter 
potentially with infection, the appearances of increased 
serum carnitine and acylcarnitine levels seems entirely 
reasonable.

Lysophosphatidcholines are produced from cell 
membrane-derived phosphatidylcholine following the 
hydrolysis of phosphatidylcholine by phospholipase A2. 
Different lysophospholipids are distinguished by the 
lengths and saturation of their acyl chains (McKean et 
al., 1981). Lysophospholipids are often used as signaling 
molecules by eukaryotic cells. In particular, lysophos-
phatidcholine’s regulatory role in immune functions 
and its association with inflammatory processes has 
been well documented by many authors (Iuliano et al., 
1997; Koh et al., 2000; Romero et al., 2000; Kabarowski 
et al., 2002). Specifically, lysophosphatidcholine pro-
motes increased monocyte chemotaxis (Jing et al., 
2000) and enhances macrophage activation (Yamamoto 
et al., 1991). The increased plasma concentrations of 
lysophosphatidcholines we observed in diseased cows 
up to 4 wk before the onset of any clinical signs of the 
pathologic condition might correlate with an increased 
demand for an immunoregulatory ligand at the earliest 
stages of the disease. Given that many of these post-
partum diseases are associated with bacterial infections 
or bacterially induced inflammation (mastitis, metritis, 
and retained placenta), an elevated immune response 
would certainly be expected.

Phosphatidylcholine acyl-alkylC42:4 and phosphati-
dylcholine diacyl C42:6 are 2 phospholipids that were 
found to be most responsible for separating diseased 
cows from healthy cows 1 wk before parturition. It is 
not clear whether these phospholipids are of bacterial 
or bovine origin, although the high levels of acyl de-
saturation suggest they are more likely of bovine origin. 
It is known that phospholipid turnover in mammals 
can be reduced by certain kinds of pathogenic bacteria 
through the inhibition of phospholipase A2 (Duan et 
al., 2001). Furthermore, these same bacteria can also 
increase production of phospholipids. Interestingly, an 
increase in phospholipids was observed among dairy 
cows 1 wk before parturition. Therefore, one might 
expect that the infection of dairy cows (i.e., during 
metritis, mastitis, and retained placenta) with multiple 
bacterial species during parturition could lead to some 
plasma lipid dysregulation.

Despite the specificity, reproducibility, and noninva-
siveness of metabolomics to identify potential predic-
tive biomarkers for the periparturient pathologies in 
dairy cows, the cost and ease of sample analysis may 
limit its universal use by dairy farmers. Therefore, after 
validating these potential biomarkers in large cohorts 
of animals, it appears important to develop a more con-

venient or accessible dip-stick assay so that these tests 
could be easily used by dairy farmers.

CONCLUSIONS

In summary, we have identified 3 compounds, car-
nitine (C0), propionyl carnitine (C3), and lysophos-
phatidylcholine acyl C14:0 (lysoPC a C14:0), that may 
predict disease state up to 4 wk before the apparent 
or clinical onset of the disease. Conversely, 2 plasma 
metabolites phosphatidylcholine acyl-alkylC42:4 (PC 
ae C42:4) and phosphatidylcholine diacyl C42:6 (PC 
aa C42:6), may indicate disease a week before disease 
onset. In the current study, we showed the potential 
for a multimetabolite panel to predict periparturient 
diseases. However, similar to any set of candidate 
biomarkers, these biomarker profiles will need to be 
further validated using a much larger cohort of ani-
mals. This validation process is now being completed 
and preliminary data support that these markers are 
robust. If these markers are successfully validated it 
will also be necessary to develop a more convenient or 
accessible dip-stick assay so that these tests could be 
easily used by dairy farmers.
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