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  ABSTRACT 

  Mitigation of enteric methane (CH4) emission in ru-
minants has become an important area of research be-
cause accumulation of CH4 is linked to global warming. 
Nutritional and microbial opportunities to reduce CH4
emissions have been extensively researched, but little is 
known about using natural variation to breed animals 
with lower CH4 yield. Measuring CH4 emission rates di-
rectly from animals is difficult and hinders direct selec-
tion on reduced CH4 emission. However, improvements 
can be made through selection on associated traits 
(e.g., residual feed intake, RFI) or through selection on 
CH4 predicted from feed intake and diet composition. 
The objective was to establish phenotypic and genetic 
variation in predicted CH4 output, and to determine 
the potential of genetics to reduce methane emissions in 
dairy cattle. Experimental data were used and records 
on daily feed intake, weekly body weights, and weekly 
milk production were available from 548 heifers. Re-
sidual feed intake (MJ/d) is the difference between net 
energy intake and calculated net energy requirements 
for maintenance as a function of body weight and for 
fat- and protein-corrected milk production. Predicted 
methane emission (PME; g/d) is 6% of gross energy 
intake (Intergovernmental Panel on Climate Change 
methodology) corrected for energy content of methane 
(55.65 kJ/g). The estimated heritabilities for PME 
and RFI were 0.35 and 0.40, respectively. The positive 
genetic correlation between RFI and PME indicated 
that cows with lower RFI have lower PME (estimates 
ranging from 0.18 to 0.84). Hence, it is possible to de-
crease the methane production of a cow by selecting 
more-efficient cows, and the genetic variation suggests 
that reductions in the order of 11 to 26% in 10 yr are 
theoretically possible, and could be even higher in a 

genomic selection program. However, several uncertain-
ties are discussed; for example, the lack of true methane 
measurements (and the key assumption that methane 
produced per unit feed is not affected by RFI level), as 
well as the limitations of predicting the biological con-
sequences of selection. To overcome these limitations, 
an international effort is required to bring together data 
on feed intake and methane emissions of dairy cows. 
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  INTRODUCTION 

  Mitigation of enteric methane (CH4) emission in 
ruminants has become an important area of research 
because enrichment of the atmosphere with CH4, as 
one of the most important non-CO2 greenhouse gases, 
is strongly linked to global warming. In cattle, enteric 
CH4, a colorless, odorless gas, is produced predomi-
nantly in the rumen (87%) and to a small extent (13%) 
in the large intestines (Murray et al., 1976). Rumen 
CH4 is primarily emitted from the animal by eructation. 
The conversion of feed material to CH4 in the rumen 
involves the integrated activities of various microbial 
species, with the final step carried out by methanogenic 
archaea (McAllister et al., 1996; Moss et al., 2000). 

  Opportunities for nutritional and microbial manipu-
lation to reduce enteric CH4 emissions from livestock 
have been extensively researched and reviewed by 
several groups (e.g., Beauchemin et al., 2008; McAl-
lister and Newbold, 2008). An additional mitigation 
measure that is inexpensive and provides a long-term 
effect would be the use of natural variation to breed 
for animals with lower CH4 yield (g of CH4/kg of DMI; 
Cavanagh et al., 2008; Vlaming et al., 2008). Recent 
forums have begun to address the potential effect of 
animal genetics on emission intensity at the individual 
animal and whole-farm levels (Chagunda et al., 2009a; 
Wall et al., 2010). Genetic improvement of livestock 
is a particularly cost-effective technology, producing 
permanent and cumulative changes in performance. 
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However, little information is available on opportunities 
to mitigate enteric CH4 via animal genetics.

Variation in enteric CH4 emission has been reported 
between animals, between breeds, and across time 
(Herd et al., 2002), providing potential for improve-
ment through genetic selection. Unfortunately, measur-
ing CH4 production directly from animals under practi-
cal conditions is currently difficult and hampers direct 
selection on reduced enteric CH4 in practice. Develop-
ment of new direct or indirect measurement techniques 
will help enhance the capability for reducing emissions 
through genetic selection (for a review, see Wall et al., 
2010). In the meantime, improvements can be made 
through selection on traits that are proxies for CH4 
emissions. Such proxies include, for example, residual 
feed intake (RFI) (Hegarty et al., 2007) or predicted 
methane output using the Intergovernmental Panel on 
Climate Change (IPCC) Tier 2 methodology (IPCC, 
2000). Use of IPCC Tier 2 methodology requires infor-
mation such as feed intake measurements, diet compo-
sition, and animal weights to predict methane output. 
These data are expensive to record on a large number 
of animals, but substantially cheaper than measuring 
methane output in respiration chambers. The costs 
of recording make selection for this trait in a progeny 
testing program too difficult. However, with genomic 
selection (Meuwissen et al., 2001), this might become 
feasible, for example, by recording feed intake on 5,000 
cows in a reference population to develop the genomic 
key for selection (Verbyla et al., 2010).

To evaluate the options for a breeding program to 
reduce methane emissions, insight into the genetic and 
phenotypic (co)variation across a lactation is required. 
In addition, the accuracy of genomic prediction in a 
small data set is important. Therefore, in this study, 
the objective is to establish whether first-lactation cows 
differed phenotypically, genetically, and genotypically 
in their individual predicted enteric CH4 emissions, 
and to determine the potential for genetic selection to 
reduce methane emissions in dairy cattle.

MATERIALS AND METHODS

Data

Data were collected on 665 Holstein-Friesian heifers 
born between 1990 and 1997 on an experimental farm 
(‘t Gen, the Netherlands), of which 488 cows partici-
pated in the breeding program of CRV (Arnhem, the 
Netherlands). Comprehensive details on the data used 
can be found in Veerkamp et al. (2000) and Verbyla 
et al. (2010). All animals were housed together on a 
single farm under the same environmental and manage-
ment conditions; all cows were fed ad libitum. Nutritive 

values were based on the Dutch feed evaluation system 
(Van Es, 1978) and on analyses of twice-weekly samples 
of the components of the ration. On average, the TMR 
(64% DM) contained 6.87 MJ of net energy and 98 g 
of digestible CP/kg of DM. The diet TMR consisted of 
dried grass, corn silage, and concentrates, in a ratio of 
20:48:32 on average.

Body weight, feed intake, and milk yield were mea-
sured over 27 wk of the lactation, on average, with the 
bulk of data collected between wk 2 and 29 of lactation. 
Milk samples were taken on a fixed day of the week 
for measurement of fat, protein, and lactose yields. 
Feed intake was recorded daily using automated feed 
intake units. Body weight was recorded once a week. 
Recordings for milk, fat, and protein yields and feed 
intake deviating more than 3 standard deviations from 
the average in that lactation week were removed. Total 
number of complete weekly cow-records after editing 
was 17,759.

Milk production was corrected for fat and protein 
content (FPCM, kg/d) and was calculated as (0.337 
+ 0.116 × fat % + 0.06 × protein %) × kilograms of 
milk. Residual feed intake (MJ/d) was calculated as the 
difference between net energy intake and the calculated 
net energy requirements for milk and maintenance costs 
as a function of BW, corresponding to previous calcu-
lations of energy balance by Veerkamp et al. (2000). 
Net energy in the milk (MJ) was calculated as 38.5 
× kilograms of milk fat + 24.5 × kilograms of milk 
protein + 16.5 × kilograms of milk lactose (Veerkamp 
et al., 2000). Residual feed intake was calculated for 
each week separately, and therefore, loss or gain in BW 
was indirectly taken into account, because the weekly 
BW were included in the weekly calculations.

Predicted Methane Emission

Predicted methane emission (PME) was calculated 
for each animal as follows: PME (g/d) = feed intake 
(kg of DM/d) × 18.4 (MJ/kg of DM)/0.05565 (MJ/g) 
× 0.06 × {1 + [2.38 – level of intake (multiples of main-
tenance level)] × 0.04} [Equation 1].

The standard value of energy released by each unit of 
feed DM was taken as 18.4 MJ/kg (Van Es, 1978), and 
the energy generated by methane was 0.05565 MJ/g 
(IPCC, 2006). A methane production level (in MJ/d) 
of 0.06 × gross energy (GE) intake (MJ/d) is recom-
mended by IPCC (2000) for dairy cattle in Western 
Europe. According to Van Es (1978), and as applied 
in the Dutch feed evaluation system, each additional 
level of feed intake (in multiples of maintenance intake 
level) is associated with a 3% reduction in feed digest-
ibility, which is also expected to reduce CH4 production 
per unit of feed. In the Dutch feed evaluation system,  
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energy requirements are scaled to an average cow at 
feed intake level of 2.38 × maintenance feed intake 
level. Higher feed intake levels generally decrease ru-
men pH, and VFA production is then shifted toward 
propionic acid production at the expense of acetic acid 
and butyric acid production (Bannink et al., 2008), 
resulting in lower enteric methane production per kilo-
gram of feed. Thus, a correction factor of 0.04 per unit 
feed intake level was assumed. This feed intake level 
correction factor results in reduced methane produc-
tion estimates due to increased feed intake, in line with 
those estimated using a mechanistic model of rumen 
and hindgut fermentation (Bannink et al., 2011).

Initially, the weekly feed intake records were linked to 
the actual recorded diet composition (dried grass, corn 
silage, and concentrate) and an alternative prediction 
equation was used: PME (g/d) = [grass or grass silage 
(kg of DM/d) × 21.0 (g/kg of DM) + concentrates (kg 
of DM/d) × 21.0 (g/kg of DM) + corn silage (kg of 
DM/d) × 16.8 (g/kg of DM)] × {1 + [2.38 − level of 
intake (multiples of maintenance level) × 0.04]} [Equa-
tion 2].

Equation [2] was based on results of Bannink et al. 
(2011), which used a mechanistic model of rumen and 
hindgut fermentation, in which an average Dutch dairy 
cow diet had a CH4 production of 20 g/kg of DM, and, 
on average, corn silage has a 20% lower CH4 production 
per kilogram of feed DM than grass herbage or grass 
silage. However, diet composition remained constant 
across the years of the experiment and the correlation 
between the 2 measures was 0.99. Both measures of 
PME had a close to unity correlation with DMI as well. 
Therefore, only the PME using equation [1] was used 
in further analysis.

Genotyping

In total, blood was stored for 588 out of the 665 
heifers, and heifers were genotyped using the Illumina 
50K SNP panel (54,001 SNP in total; Illumina, San 
Diego, CA). The quality control criteria for selecting 
the final set of SNP were a call rate of >90%, a Gen-
Call score >0.2, and a GenTrain score >0.55 (Illumina 
descriptive statistics relating to genotype quality), a 
minor allele frequency of >2.5%, and a lack of devia-
tion from Hardy-Weinberg equilibrium, χ2 <600 (Wig-
gans et al., 2009). Animals with more than 5% missing 
SNP genotypes were removed. Additionally, checks for 
Mendelian inconsistencies were performed and animals 
causing inconsistencies were removed (for more details, 
see Verbyla et al., 2010). After all editing steps, 43,011 
SNP and 548 animals were retained.

Statistical Analyses

Lactation curves were determined for all traits by 
plotting the average by week of lactation. Phenotypic 
correlations between traits were estimated using all 
observations and using observations grouped in periods 
of 5 wk (12 wk for 31–42 wk after lactation).

To determine whether the heritability of the traits 
changes over the lactation period and to what extent 
traits were genetically the same in different periods of 
the lactation, genetic parameters were determined us-
ing a random regression sire-maternal grandsire model:
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where Yklmn is the performance of animal n, with sire k 
and maternal grand sire m, in week l; μ is the average 
performance over all animals; FIXED includes year-sea-
son subclasses and a ninth-order polynomial regressions 
on week of lactation; and sik and sim are the ith order 
coefficients for the random regression polynomial on the 
week of lactation wkl of sire k and maternal grandsire 
m. Here, a second-order polynomial was fitted so the 
coefficients included an intercept (i = 0), slope (i = 1), 
and quadratic term (i = 2). One variance component 
was fitted by overlaying the relationship matrix for sire 
and maternal grandsire, pein is the ith order coefficient 
for the polynomial for the permanent environmental 
effect of animal n on week of lactation wkl, and εklmn is 
the residual effect.

The random regressions were restricted to a second-
order polynomial because of convergence problems for 
higher order polynomials. This definition of the genetic 
model resulted in estimated sire variances of the poly-
nomial coefficients and covariances between these coef-
ficients.

Residual variances were estimated for periods of 
5 wk. Additive genetic variances, heritabilities, and 
genetic correlations were calculated from the covari-
ance functions for the average week (e.g., wk 2.5, 7.5) 
of each 5-wk period. Heritabilities were calculated as 
4 times the sire variance divided by the sum of 1.25 
× sire variance [1.25 because both the sire variance 
and the maternal grandsire variance (i.e., 0.25 × sire 
variance) were estimated in the model], the permanent 
environmental variance, and the residual variance of 
the corresponding 5-wk period.

The same random regression model was used in a 
bivariate analysis to obtain genetic correlations of PME 
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and of PME per kilogram of FPCM with other traits. 
Genetic correlations were calculated from the covari-
ance function for the midpoint of 5-wk periods. The 6 
× 6 matrix with estimated covariance components (V) 
for the intercept, slope and quadratic term for each 
trait was used to obtain genetic correlations between 
the 2 traits in 5-wk periods, the variance-covariance 
matrix was computed as MVM’, where
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where 0 is a 5 × 3 matrix of zeros, and Φ0(wkperiod#), 
Φ1(wkperiod#), and Φ2(wkperiod#) are the design values of 
the second-order orthogonal Legendre polynomial for 
the 5-wk periods of lactations.

Analysis of Genomic Selection

Effects of SNP were estimated using Bayesian sto-
chastic search variable selection (SSVS; George and 
McCulloch, 1993). This model samples an indicator 
variable Ij that determines whether SNPj has a large 
effect or whether the effect is small and therefore scaled 
back toward zero. The prior QTL probability p reflects 
the expected number of QTL that affect the trait of 
interest. Here, we assumed that 100 QTL affect PME, 
and therefore p was ~0.002. The applied SNP model 
was
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where y is the vector of n preadjusted CH4 phenotypes; 
μ is the mean; m is the number of SNP markers; Xj is 
the (n × k) design matrix containing the information 
on the possible k alleles at the jth marker for all indi-
viduals (where xjk = 0, 1, 2, having 0, 1, or 2 copies of 
the kth allele, respectively); qj is the vector (k × 1) 
containing the effects of all k possible alleles at locus j, 
where qjk are drawn from a standard normal distribu-
tion N(0,1); vj is the standard deviation of the allelic 
effects at locus j and is dependent on whether the locus 
effect is considered significant using the indicator vari-
able; u is the vector of random additive polygenic ef-

fects of length n (Z is the associated design matrix) and 
is assumed to be normally distributed, u A∼ N u0 2, ,( )  
where A is the pedigree-derived additive genetic rela-
tionship matrix; and e is the residual error also as-
sumed to be normally distributed, e I∼ N e0 2, ,( )  where 
I is the n × n identity matrix. For the full specification 
of the priors used and an alternative formulation of the 
model, see Meuwissen and Goddard (2004) and Calus 
et al. (2008).

Phenotypes for the SNP analysis were calculated as 
the total PME for wk 1 to 30. Individual PME curves 
were predicted using a slightly different model than 
used for the estimation of heritabilities across and 
genetic correlations between test days. This adjusted 
model was

 Y FIXED wkij
k

k j ijk= + + × +
=
∑μ ε

0

5

δ , [5]

where Yij is the performance of animal i in week j; μ 
is the average performance over all animals; FIXED 
includes year-season subclasses, subclasses for age at 
calving, and a ninth-order polynomial regression on 
week of lactation; δk are the coefficients for the fifth-
order random regression on the week of lactation of 
animal i; and εijk is the residual effect.

The PREDICT statement in ASReml (Gilmour et 
al., 2006) was used to predict weekly PME, preadjusted 
for year-season and age at calving. Phenotypes for the 
SNP model were obtained by summing the predictions 
across wk 1 to 30. Estimated SNP effects obtained from 
the above model were used for 2 purposes. First, SNP 
effects were analyzed to determine if any major QTL 
for PME could be mapped using the present data set. 
For this purpose, all available records were analyzed in 
4 different Gibbs chains of 100,000 cycles, discarding 
10,000 as burn-in. Following the advice of Gelman and 
Rubin (1992), 4 Gibbs chains with different starting 
points were run for each of the applied models to verify 
that posterior estimates were not dependent on the 
starting points of the Gibbs chain. Posterior means 
were calculated as averages across all cycles after the 
burn-in. Presented results are the average of the poste-
rior means across the 4 Gibbs chains. Second, estimated 
SNP effects were used to assess the accuracy of predic-
tion based on SNP information. For this purpose, a 
10-fold cross-validation was performed. Each animal 
had its phenotype omitted randomly once in 1 of the 10 
cross-validation steps. Predicted direct genomic values 
(DGV) for animals with omitted phenotypes were re-
lated to their phenotypes to obtain the accuracy of 
predicting the phenotypes ryĝ .( )  This was translated 
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into an accuracy of the DGV rgĝ( ) by dividing by the 
square root of the heritability. In each of the cross-val-
idation steps, 1 Gibbs chain of 50,000 cycles was run, 
discarding 10,000 as burn-in. Animals whose DGV were 
predicted might have had (close) relatives in the re-
maining reference population, leading to an increased 
value for the obtained accuracy. To evaluate the effect 
of relationships alone on the realized accuracies, we also 
performed the cross-validation for a model that used 
only pedigree information.

RESULTS

Descriptive Analysis

Yield of FPCM followed the standard lactation 
curve with a steep increase in the first week of lacta-
tion, reaching peak levels of about 30 kg/d in wk 9 
to 10 and subsequently decreasing gradually to about 
20 kg/d at the end of lactation (Figure 1a). Predicted 
methane emission increased more gradually, reached its 
maximum of around 400 g/d around mid lactation, and 
remained at that level until the end of lactation, show-
ing a similar shape as a standard feed intake curve. 
When PME was expressed as grams per kilograms of 
FPCM, it increased throughout the lactation from 10 
g/kg at the start to 15 g/kg at the end of the lactation 
(Figure 1b).

When taken across the test-day records of all animals, 
PME and FPCM were not strongly related (Table 1). 
Variation was found in PME per kilogram of FPCM, 
not only between weeks of lactation but also between 
animals. The overall phenotypic correlation between 
PME and FPCM was 0.26, and PME had a close to 
unity correlation with DMI, which was a direct con-
sequence of the use of equation [1] to calculate PME 
and the lack of variation in dietary composition. The 
phenotypic correlation between RFI and DMI or with 
PME was 0.72 (Table 1). Across the lactation, the 
correlation between PME and FPCM increased from 
0.19 at the start of the lactation to 0.58 at the end of 
the lactation (Table 2). This suggests that cows with a 
higher milk yield have a higher DMI and consequently 
higher PME, especially toward the end of the lactation. 
The correlation between PME and RFI remained be-
tween 0.51 and 0.66 throughout the lactation (Table 2).

Genetic Analysis

Over the whole period, some variation was observed 
in the heritabilities for PME, FPCM, RFI, and PME 
per kilogram of FPCM (Table 3), all being between 0.35 
and 0.58. Across the lactation, the lowest heritability 

(0.29) was found in the first lactation period for PME 
and in the second-to-last lactation period for RFI. The 
estimated heritabilities for FPCM and RFI stabilized 
about half way in the lactation (0.35 and 0.30).

The genetic correlation of enteric CH4 emission per 
day between the first and last lactation periods was low 
(0.36, Table 4), and for PME per kilogram of FPCM, 
this correlation was higher: 0.53, respectively (Table 
5). The genetic correlation between PME and FPCM 
changed from negative at the start of the lactation 
to positive in the last period (Table 6). The genetic 
correlation between PME and RFI and between PME 
per kilogram of FPCM and RFI remained positive 
throughout the whole lactation. The correlations be-
tween FPCM and RFI and between PME per kilogram 
of FPCM and FPCM remained negative (Table 6).

SNP Effects

The posterior QTL probabilities were small in general 
(<0.07; Figure 2), but 7 SNP on 5 chromosomes (13, 
18, 24, 26, and 27) had a Bayes factor >10.1 (Figure 2). 
The maximum posterior probability was 0.066 for SNP 
BTA-43186-no-rs located on BTA 18 (rs41581216); the 
next highest posterior probability was 0.036 for SNP 
ARS-BFGL-NGS-27628 (rs43088681) located on BTA 
13. The SNP with the next highest posterior probability 
were on BTA 27 (ARS-BFGL-NGS-14626, rs108950322; 
and Hapmap50424-BTA-63130, rs110518457) and 
BTA 24 (Hapmap48814-BTA-57491, rs41644372). On 
BTA 26, 2 closely linked SNP (BFGL-NGS-113660, 
rs109138979; and BFGL-NGS-115245, rs42084082) had 
a Bayes factor >10.1. In this area, the effect was spread 
across many surrounding, closely linked SNP, indicating 
a clear signal in this region. Despite the clear signal of 
some of the SNP and the consistency of results across 
multiple chains of the Gibbs sampler, the estimated 
variance explained by the SNP with the largest effect 
was only 0.2% of the total genetic variance.

The DGV of all animals were predicted once, when 
omitting their phenotypes, using cross-validation. Ac-
curacy of predicting the phenotype was almost twice as 
high using SNP information (DGV) compared with 
using pedigree information (EBV; ryĝ ; Table 7). This 
difference was somewhat smaller for the accuracies of 
the predicted breeding values (rgĝ ; Table 7). Differences 
on the reliability scale were almost 3 times as large for 
DGV compared with EBV, implying that 3 times as 
much variation was explained by the SNP compared 
with the pedigree, and therefore, that the accuracy of 
prediction using the estimated SNP effects was only 
partly driven by relationships between evaluated and 
reference animals.
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DISCUSSION

The objective of this study was to evaluate the pheno-
typic variance of PME in dairy heifers, to evaluate how 
it is associated with milk yield and RFI, and to deter-
mine its genetic basis. This information is essential for 

the incorporation of enteric CH4 emission in selection 
programs. Enteric CH4 emission of dairy cows is rarely 
recorded and consequently, no phenotypic records were 
available. For selection in practice, improvements could 
also be made through selection on traits that are prox-
ies for enteric CH4 emission. In short, Wall et al. (2010) 

Figure 1. The lactation curves for (a) fat- and protein-corrected milk production (FPCM; kg/d) and predicted enteric methane emission 
(PME) in grams per day and (b) PME in grams per kilogram of FPCM up to 42 wk in lactation.
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reviewed 3 routes through which genetic improvement 
can help to reduce emissions per kilogram of product: 
(1) improving productivity and efficiency, (2) reducing 
wastage in the farming system, and (3) directly select-
ing on emissions, if or when these are measurable. The 
current study focused on the first and third paths, and 
RFI (Hegarty et al., 2007; Bell et al., 2011), PME (ac-
cording to the IPCC methodology, IPCC, 2000), and 
FPCM were investigated as proxy traits for methane. 
Selection on proxies can be as effective as selection on 
the direct trait, especially when genetic correlations are 
relatively strong and more records for the proxy are 
available or recording of the proxy is more accurate 
with a higher heritability (see Wall et al., 2010). To 
establish the accuracy of predictions using proxies, we 
still need sufficient records of enteric CH4 emission on 
individual cows, which are not yet available, which 
was a handicap for the current study. In the present 
study, PME was used as a proxy trait; its variation 
is mainly determined by the variation in feed intake 
of cows, because PME is calculated directly from feed 
intake. A similar discussion applies to studies that use 
RFI to select for improved feed efficiency (Veerkamp 
and Emmans, 1995), with the same risk of selecting 
for spurious variation in, for example, behavior of ani-
mals or energy mobilization (Veerkamp, 2002). Still, it 
is important to establish the variation in traits such 
as RFI and PME, and to establish the importance of 
their genetic background, as this might be the first step 
toward more detailed recording in practice.

In the present study, methane emission was predicted 
based on the IPCC Tier 2 method. The IPCC Tier 2 
estimation may provide an accurate estimate of CH4 
emissions across diets when evaluated against actual 
CH4 observations, but the method is not suitable for 
predicting changes in CH4 emissions among diets used 
in mitigation studies (Ellis et al., 2010). However, diet 
composition was relatively constant in the present study. 
Furthermore, methane emission per unit feed GE was 
assumed constant and independent of variation between 
animals in feed fermentability in rumen and hindgut. 
It is intrinsically difficult to investigate differences in 
net efficiency (such as fermentation or digestion) at the 
genetic level, because detailed and expensive recording 

is required on a large scale (Veerkamp and Emmans, 
1995). However, more-efficient animals appear to have 
a higher rate of fermentation or digestion and have a 
different profile of VFA, which may affect CH4 pro-
duction. For example, Nkrumah et al. (2006) observed 
that steers with a low RFI had a higher digestibility 
(P < 0.10) than steers with a high RFI, which is likely 
associated with increased fermentability of nutrients 
and consequently increased methane production per 
unit feed. Hegarty et al. (2007) observed a numerically 
larger methane production per kilogram of DMI for 
low versus high RFI steers (16.3 and 14.7 g/kg of DM, 
respectively). Guan et al. (2008) reported an almost 
doubled (P = 0.059) total VFA concentration in rumen 
fluid of low compared with high RFI steers, indicat-
ing more active microbial fermentation and relatively 
higher methane production in low RFI steers. Thus, the 
limited evidence available suggests that improved feed 
efficiency is partly or fully related to a greater extent of 
fermentation and digestion of ingested feed, and conse-
quently to a higher amount of methane per unit feed. In 
other words, compared with CH4 production being 6% 
of GE intake on average, efficient animals may have a 
higher fraction, and inefficient animals a lower fraction, 
of GE directed toward methane.

Variation in PME Within Lactation Among Cows 

The estimated phenotypic variances showed that 
large variation in PME exists among cows. Predicted 
enteric CH4 emission varied between 200 and 400 
g/d, both among low-producing cows (e.g., 15 kg of 
FPCM/d) and among high-producing cows (e.g., 45 kg 
of FPCM/d). For a whole lactation, this equates to 
some cows producing around 60 kg more CH4 than oth-
er cows at the same FPCM production level. The low 
phenotypic correlation between PME and FPCM also 
indicates that high-producing cows are not producing 
less methane per se. The phenotypic correlations also 
show that the high-producing cows have higher DMI 

Table 1. Phenotypic correlations between predicted enteric methane 
emission (PME), fat- and protein-corrected milk production (FPCM), 
DMI, and residual feed intake (RFI) in full lactations 

Item
PME  
(g/d)

FPCM  
(kg/d)

DMI  
(kg/d)

FPCM (kg/d) 0.26   
DMI (kg/d) 0.99 0.31  
RFI (MJ/d) 0.72 −0.45 0.72

Table 2. The number of weekly observations (N) per period and the 
phenotypic correlations between predicted methane emission (PME; 
g/d) and fat- and protein-corrected milk production (FPCM; kg/d), 
and between PME and residual feed intake (RFI; MJ/d) within 
periods of the lactation 

Period  
(wk) N PME – FPCM PME – RFI

1–5 3,009 0.19 0.66
6–10 3,155 0.31 0.56
11–15 3,108 0.49 0.52
16–20 2,933 0.56 0.51
21–25 2,720 0.60 0.49
26–30 1,918 0.57 0.62
31–42 2,036 0.58 0.56
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and lower RFI (i.e., are more efficient). This is also 
shown by the positive phenotypic correlation between 
PME and RFI, indicating that cows with a low RFI 
(i.e., an apparently efficient cow) also have a low PME.

In the present analyses, diet composition remained 
constant across the years of the experiment. In prac-
tice, however, diet composition of dairy cattle can vary 
widely, related to (1) genetic potential for milk produc-
tion, (2) days in milk, and (3) availability of local feed 
resources. Consistent ranking of lowly versus highly ef-
ficient animals in various dietary situations that occur 
in practice would be desirable. Little is known about 
the effect of diet composition on consistency of feed 
efficiency of individual animals. In an extensive study 
with steers fed grower and finisher diets, Durunna et al. 
(2011) observed that switching diets affected the feed 
efficiency ranking of steers. The correlation between 
RFI of the grower and the finisher diet was 0.33. Thus, 
further evaluation in different dietary or other manage-
ment situations on the RFI estimates is required.

Genetic Variation and Theoretical Gain in PME

The genetic parameters show that a genetic basis ex-
ists for PME. With an estimated heritability of 0.35 

for PME and 0.58 for PME per FPCM over the whole 
lactation, one-third of the natural variation among 
cows in PME and almost 60% of the natural varia-
tion among cows in PME per FPCM was explained by 
its genetic background, which gave a genetic standard 
deviation of about 6 kg of CH4 per lactation and 1.5 g 
of CH4 per kg of FPCM produced. The results in this 
study showed that several SNP proved to be associated 
with PME in this data set. However, the amount of 
variation explained in PME by those SNP was so low 
that it is unlikely that a few single genes could be used 
to select accurately for reduced PME. Whole-genome 
selection (Meuwissen et al., 2001), in which a SNP key 
is developed and continuously updated every year, ap-
pears a better avenue to follow for a breeding program. 
Reliabilities in this study were still too low for effective 
selection and lower than those found for energy balance 
(Verbyla et al., 2010).

Using the genetic standard deviations in PME, theo-
retical predictions could be made about the expected 
effect of genetic selection. When assuming a genetic 
progress of 0.22 genetic SD per year (e.g., as in a clas-
sical dairy cattle breeding program; Rendel and Rob-
ertson, 1950), it follows that the average PME can be 
reduced in 10 yr with about 13 kg/cow per lactation; 

Table 3. Estimated heritabilities1 for predicted methane emission (PME; g/d), fat- and protein-corrected milk 
production (FPCM; kg/d), residual feed intake (RFI; MJ/d), and PME per FPCM for the whole lactation 
period monitored within 5-wk lactation periods 

Lactation  
period (wk) PME FPCM RFI PME/FPCM

0–42 0.35 0.38 0.40 0.58
1–5 0.29 0.48 0.84 0.66
6–10 0.30 0.43 0.70 0.65
11–15 0.36 0.38 0.46 0.46
16–20 0.40 0.35 0.31 0.39
21–25 0.42 0.36 0.29 0.44
26–30 0.35 0.36 0.30 0.55
1The standard error of the estimated heritability was 0.12 for PME, 0.14 for FPCM, 0.11 for RFI, and 0.15 
for PME/FPCM for the full lactation (0–42 wk). The standard errors ranged between 0.10 and 0.12 for PME, 
between 0.12 and 0.14 for FPCM, between 0.10 and 0.13 for RFI, and between 0.12 and 0.15 for PME/FPCM 
for the heritabilities estimated in the different lactation periods.

Table 4. Estimated genetic correlations (below diagonal) and permanent environmental correlations (above 
diagonal) for predicted methane emission (PME; g/d) between different 5-wk periods of the lactation1 

Period  
(wk) 1–5 6–10 11–15 16–20 21–25 26–30

1–5  0.89 0.66 0.47 0.36 0.31
6–10 0.82  0.92 0.80 0.69 0.57
11–15 0.51 0.91  0.96 0.89 0.74
16–20 0.34 0.80 0.98  0.97 0.86
21–25 0.31 0.75 0.93 0.98  0.95
26–30 0.36 0.70 0.84 0.89 0.96  
1The standard errors ranged between 0.02 and 0.23 for the estimated genetic correlations and between 0.01 
and 0.08 for the permanent environmental correlations, where the lactation periods close to each other had the 
strongest correlation and the lowest standard errors.
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that is, from an average in the population of 120 to 107 
kg/cow per lactation, or from 13 to 9 g/kg of FPCM. 
Thus, clear potential exists for genetic improvement 
of these 2 traits, with potential reductions of 11 and 
26% in 10 yr for PME and PME/FPCM, respectively. 
At first sight, this might seem an excessively large 
improvement. However, when ranking the cows in the 
current database on PME/FPCM, the 50 best cows 
produced 11.31 g of PME per kg of FPCM, and the 50 
worst cows produced 16.20 g of PME per kg of FPCM. 
In other words, the worst cows produced 42% more 
PME per kilogram of FPCM than the best cows. An 
improvement up to 25% is therefore realistic.

Achievability of Genetic Gains in Methane Reduction

The small data set available gives limited accuracy 
of the genetic parameters, but other uncertainties and 
assumptions might also affect the true genetic gain that 
can be achieved. The most important factors will be 
discussed here: (1) the association with true enteric 
CH4 emissions, (2) correlated responses at the system 
level, (3) the effect of individual cow variation at sys-
tem level, and (4) realistic breeding program.

True Methane Reduction. The predictions in 
this study were based on indicator traits (e.g., RFI or 
PME). However, the association between these indica-

tor traits and true CH4 output is not yet known very 
accurately, which makes it intrinsically impossible to 
predict the effects of predictors on true CH4 output. 
Only a few studies had real methane records available 
(Nkrumah et al., 2006; Hegarty et al., 2007) and linked 
to RFI. A moderate favorable genetic correlation of 
0.44 was estimated between RFI and true CH4 output 
(Nkrumah et al., 2006), indicating that cows that are 
genetically predisposed to have a lower RFI also have 
a lower true enteric CH4 output. That the estimated 
genetic correlation between RFI and true CH4 output 
was below unity was not surprising, because RFI con-
tains only the feed intake after adjusting for production 
and not the full DMI, which is important for the true 
CH4 output. Selecting on a predictor trait will have a 
direct effect on the trait of interest as well. Predicting 
methane emission based on DMI and diet composition 
gives adequate results. Ellis et al. (2007) developed 
prediction equations of CH4 production on beef and 
dairy data using commonly measured dietary variables 
and validated the models with real CH4 output. They 
reported R2 up to 65% for equations based on energy 
content of the diet and DMI, indicating a reasonable 
association between the predicted and real CH4 output. 
By selecting on a reduced PME, the true enteric CH4 
emission will be reduced as well. Therefore, until real 
enteric CH4 emission data are available on a large scale, 

Table 5. Estimated genetic correlations (below diagonal) and permanent environmental correlations (above 
diagonal) for predicted methane emission (PME; g/d per kg of fat- and protein-corrected milk yield) between 
different 5-wk periods of the lactation1 

Period  
(wk) 1–5 6–10 11–15 16–20 21–25 26–30

1–5  0.96 0.84 0.71 0.62 0.57
6–10 0.98  0.96 0.87 0.78 0.69
11–15 0.91 0.97  0.97 0.90 0.80
16–20 0.75 0.85 0.95  0.97 0.90
21–25 0.60 0.70 0.85 0.97  0.97
26–30 0.53 0.62 0.76 0.90 0.98  
1The standard errors ranged between 0.01 and 0.15 for the estimated genetic correlations and between 0.01 
and 0.05 for the permanent environmental correlations, where the lactation periods close to each other had the 
strongest correlation and the lowest standard errors.

Table 6. Estimated genetic correlations between predicted methane emission (PME; g/d) and fat- and protein-
corrected milk production (FPCM; kg/d), between PME and residual feed intake (RFI; MJ/d), between 
FPCM and RFI, between PME per FPCM (g/d per kg) and FPCM, and between PME per FPCM and RFI 
within the whole lactation (0–42 wk) and in different periods of the lactation 

Period  
(wk) PME – FPCM PME – RFI FPCM – RFI PME/FPCM – FPCM PME/FPCM – RFI

0–42 0.31 0.32 −0.84 −0.87 0.98
1–5 −0.66 0.84 −0.98 −0.95 1.00
6–10 −0.18 0.50 −0.94 −0.91 0.99
11–15 0.42 0.18 −0.78 −0.86 0.94
16–20 0.67 0.21 −0.55 −0.84 0.83
21–25 0.70 0.34 −0.43 −0.85 0.76
26–30 0.60 0.43 −0.49 −0.85 0.82
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selection on indicator traits can be of great help to 
reduce the environmental impact of dairy cattle.

Correlated Responses at the System Level. It 
is likely that simultaneous selection for higher yield 

and lower feed intake will increase the reliance on body 
energy reserves to support lactation (Veerkamp, 1998). 
The genetic correlations in this study suggest that selec-
tion for lower methane emission increases milk produc-
tion in the beginning of the lactation and will decrease 
it toward the end of the lactation. The increased milk 
production in early lactation might further increase the 
negative energy balance cows usually experience and 
will increase health and fertility problems (de Vries 
and Veerkamp, 2000; Friggens and Newbold, 2007; 
van Knegsel et al., 2007). This will need more careful 
investigation to separate the genetic and nutritional ef-
fects of negative energy balance (Veerkamp et al., 2003; 
Friggens et al., 2007), because poorer health and fitness 
in the dairy herd might put a limit to the selection 
pressure on CH4 emission and may reduce the net effect 

Figure 2. Posterior QTL probabilities for cumulated predicted enteric methane emission from wk 1 to 30. The dashed horizontal line is the 
threshold associated with a Bayes factor of 10.1.

Table 7. Accuracies and reliabilities1 of direct genomic values (DGV) 
and EBV for predicted enteric methane emission 

Model ryĝ rgĝ ryĝ
2 rgĝ

2

DGV 0.219 0.369 0.048 0.136
EBV 0.122 0.207 0.015 0.043
1 ryĝ = Pearson correlation between the predicted breeding values  ĝ( ) 
and the phenotypes (y); rgĝ = accuracy of the predicted breeding val-
ues ĝ( ) (correlation with the true breeding values, g); ryĝ

2  = reliability 
of the predicted phenotypes; and rgĝ

2   = reliability of the predicted 
breeding values.
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of selection, as more young stock will be required to 
maintain the herd size, because more dairy cows may 
be culled involuntarily and need to be replaced with 
young stock that are also producing methane.

In addition, in a practical breeding program, more 
traits will be considered in the breeding goal; for ex-
ample, milk production, fertility, or longevity. Although 
simultaneous selection for other traits will reduce the 
selection pressure on methane emission per se, these 
traits might help to achieve even more progress than 
is achieved by selecting for methane alone (Jones et 
al., 2008; Bell et al., 2011). For example, Bell et al. 
(2010) already demonstrated savings of 19 and 23% in 
enteric methane per kilogram of milk when cows were 
selected for milk fat plus protein solely, or selected to 
remain close to the average genetic merit for milk fat 
plus protein production, respectively. Yan et al. (2010) 
concluded that selection of dairy cows capable of high 
levels of milk production and energy utilization ef-
ficiency offers an effective approach to reducing CH4 
emissions from lactating dairy cows. More extensive life 
cycle assessment of methane mitigation might help to 
translate the effects of selection at individual animal 
level to effects at farm or higher system level (de Vries 
and De Boer, 2010; Del Prado et al., 2010).

Recording Methane. The greatest limitation to 
achieving these theoretical targets is the recording of 
methane emissions at the individual cow level or, as 
in this study, recording feed intake to calculate PME. 
Currently, this is too complicated and too expensive in a 
progeny-testing scheme, and therefore alternatives need 
to be developed. Selection on milk production gave a 
good response (Bell et al., 2010) but ignored genetic 
variation between animals in feed efficiency, other than 
dividing the energy needed for maintenance over more 
kilograms of milk. Alternative phenotype measures 
under development use sulfur hexafluoride (SF6) meth-
odology (Clark et al., 2011), mid-infrared spectral data 
(Mc Parland et al., 2010), or the “lasergun” methodol-
ogy (Chagunda et al., 2009b). Still, these methods are 
in early development or have inherent drawbacks (Clark 
et al., 2011) in which within-animal variability is of 
particular concern. For example, the high within-animal 
variability in CH4 emissions measured using the SF6 
technique may result in absence of consistent rankings 
of individual animals for CH4 yield when measured on 
multiple occasions and may exaggerate apparent animal 
differences in methane emissions (Vlaming et al., 2008).

Realistic Breeding Program. The gain in a breed-
ing program is affected by the accuracy of selection 
(which, in turn, is affected by the number of records), 
the intensity of selection, and the generation interval, 
and these might differ for different selection paths (sires 
to breed sires, sires to breed cows, dams to breed sires, 

and dams to breed dams). In addition, optimizing the 
design of a reference population in terms of the ge-
netic relationships between the animals (Pszczola et al., 
2011) might help to maximize the benefit of invested 
costs for measuring direct CH4 or related traits. The 
predictions discussed are based on a genetic progress of 
0.22 genetic SD per year in a typical classic breeding 
program for dairy cattle. Given the recording limita-
tions that currently exist, it is unlikely that breeding 
values will have as high accuracy as those achieved for 
milk yield. However, higher gains might be expected 
with the use of genomic selection, because the genera-
tion interval to breed sires can be reduced considerably. 
Assuming a generation interval for this selection path 
of 2 yr, and considering an accuracy of 0.37 for breed-
ing values obtained with the SNP key (Table 7), then 
genetic gain of 0.25 genetic SD per year is expected, 
which is still higher than the 0.22 assumed for a clas-
sical breeding program. For a reference population of 
3,000 to 4,000 animals (instead of the 600 used here), 
the accuracy of the SNP key is predicted to be 0.7, and 
genetic gain is expected to be 0.47 genetic SD per year 
(M. P. L. Calus, unpublished data). This would double 
the genetic gain calculated above, which is in line with 
theoretical predictions for a genomic selection breeding 
program (Pryce et al., 2010).

These genetic gains might appear excessive, but Bell 
et al. (2010) demonstrated reductions in the order of 
20% in enteric methane per kilogram of milk in about 
10 yr of selection for milk fat plus protein yield. With-
out accounting for PME explicitly, Alford et al. (2006) 
predicted, for a beef cattle program, that selection us-
ing RFI would reduce methane production by 16% in 
25 yr. This is considerably lower than predicted here. 
However, their lower response can be explained by the 
fact that they assumed a beef breeding program with 
selection on RFI in the males only, whereas we assumed 
a dairy breeding program, with all 4 selection paths 
included (i.e., for sires for sires, sires for dams, dams 
for sires, and dams for dams). Besides, Alford et al. 
(2006) assumed that half of the selection pressure was 
on traits other than RFI compared with full selection 
on PME in the current study.

Obtaining data sets with thousands of animals might 
be achievable in an international effort bringing data 
together, as has been done in the RobustMilk project 
(www.RobustMilk.eu) using data from research herds 
in different countries. However, these data need to be 
updated regularly to maintain a close relation between 
the SNP key and PME in the population.

CONCLUSIONS
Large variation exists in DMI and predicted enteric 

CH4 emission among first-lactation cows, expressed 
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both as PME per day and as PME per kilogram of 
FPCM, despite the fact that the animals received a 
similar diet. A large part of the variation was genetic 
(heritability of 0.35 for PME and of 0.58 for PME per 
FPCM) and significant effects of individual SNP were 
identified. Classic selection programs could reduce 
predicted methane emission by 11 and 26% in 10 yr 
when expressed as kilograms per lactation and grams 
per kilograms of FPCM, respectively, but it is unknown 
if this selection would also result in actual (measured) 
methane emissions. The greatest limitation for a breed-
ing scheme is in measuring feed intake (or methane 
emission) on progeny of sires. Genomic selection based 
on a reference population established through an inter-
national effort combining data might provide a solution.
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