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  ABSTRACT 

  This study investigated the reliability of genomic 
estimated breeding values (GEBV) in the Danish 
Holstein population. The data in the analysis included 
3,330 bulls with both published conventional EBV and 
single nucleotide polymorphism (SNP) markers. After 
data editing, 38,134 SNP markers were available. In 
the analysis, all SNP were fitted simultaneously as 
random effects in a Bayesian variable selection model, 
which allows heterogeneous variances for different SNP 
markers. The response variables were the official EBV. 
Direct GEBV were calculated as the sum of individual 
SNP effects. Initial analyses of 4 index traits were car-
ried out to compare models with different intensities of 
shrinkage for SNP effects; that is, mixture prior distri-
butions of scaling factors (standard deviation of SNP 
effects) assuming 5, 10, 20, or 50% of SNP having large 
effects and the others having very small or no effects, 
and a single prior distribution common for all SNP. It 
was found that, in general, the model with a common 
prior distribution of scaling factors had better predic-
tive ability than any mixture prior models. Therefore, 
a common prior model was used to estimate SNP ef-
fects and breeding values for all 18 index traits. Reli-
ability of GEBV was assessed by squared correlation 
between GEBV and conventional EBV (r2

GEBV, EBV), 
and expected reliability was obtained from prediction 
error variance using a 5-fold cross validation. Squared 
correlations between GEBV and published EBV (with-
out any adjustment) ranged from 0.252 to 0.700, with 
an average of 0.418. Expected reliabilities ranged from 
0.494 to 0.733, with an average of 0.546. Averaged over 
18 traits, r2

GEBV, EBV was 0.13 higher and expected reli-
ability was 0.26 higher than reliability of conventional 
parent average. The results indicate that genomic selec-
tion can greatly improve the accuracy of preselection 
for young bulls compared with traditional selection 
based on parent average information. 

  Key words:    cross validation ,  genomic estimated 
breeding value ,  genomic selection ,  reliability 

  INTRODUCTION 

  The application of molecular genetic information 
has become an important issue in animal breeding. In 
cattle, an assay for simultaneous genotyping of more 
than 50,000 SNP markers is commercially available. 
This opens an opportunity for effective selection using 
dense markers through the whole genome (i.e., genomic 
selection). Genomic selection is based on breeding 
values that are directly estimated from genome-wide 
dense marker panels. Therefore, genetic evaluation can 
be performed as soon as DNA is obtained, which al-
lows accurate selection in both genders early in life. 
Genomic selection is expected to lead to considerably 
higher genetic gains than conventional quantitative ge-
netic selection (Meuwissen et al., 2001; Schaeffer, 2006). 
It is expected that by using genomic selection in dairy 
cattle breeding, the genetic progress would be doubled 
whereas the cost for proving bulls would be reduced by 
92% (Schaeffer, 2006). 

  Several statistical models and algorithms have been 
proposed to predict breeding values based on dense 
markers (Meuwissen et al., 2001; Xu, 2003; Meuwissen 
and Goddard, 2004; Gianola et al., 2006). Among the 
proposed methods, BLUP, BayesA, and BayesB have 
been widely used to analyze simulated data and real 
data. A linear BLUP approach (Meuwissen et al., 2001; 
VanRaden, 2008) assumes that effects of all SNP are 
normally distributed with same variance. BayesA and 
BayesB (Meuwissen et al., 2001) allow each marker to 
have its own variance of allele effects, and each variance 
is a sample of a scaled inverse chi-squared distribution. 
BayesB also models most SNP having zero effect, but 
a few having moderate to large effects. To simplify the 
computing algorithm in BayesA and BayesB (especially 
the Metropolis-Hastings step in BayesB), alternative 
Bayesian approaches similar to BayesA and BayesB 
have been proposed for genomic prediction (Meuwis-
sen and Goddard, 2004; Villumsen et al., 2009). These 
approaches model SNP effects as a product of a scaled 
effect and a scaling factor (which can be understood 
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as standard deviation of allele effects in a marker). It 
assumes that the prior distribution of scaling factors is 
either a normal distribution or a mixture of 2 normal 
distributions. Some simulation studies showed that the 
prediction ability of BayesA and BayesB was greater 
than BLUP approach, based on the simulated scenarios 
assuming that few QTL had a large effect and most 
QTL had a small effect (Meuwissen et al., 2001; Lund 
et al., 2009). Based on real data from dairy cattle, 
the Bayesian approaches or the analogous approaches 
[e.g., nonlinear BLUP in VanRaden (2008)] gave higher 
reliabilities than linear BLUP approach for the traits 
having known major genes, but the differences between 
these approaches were very small for the traits without 
major genes (Cole et al., 2009; Hayes et al., 2009; Van-
Raden et al., 2009).

So far, most reports on genomic selection in the lit-
erature were based on simulated data. Recently, many 
results based on the data from real livestock populations 
have been published (e.g., Harris et al., 2008; González-
Recio et al., 2009; Hayes et al., 2009; VanRaden et 
al., 2009). However, to apply this new technology in 
practical breeding programs, it is necessary to evalu-
ate the accuracy of genomic prediction in the target 
population. Therefore, the objectives of this study were 
to assess the predictive ability of models with differ-
ent prior densities of marker effects and to investigate 
the reliability of genomic estimated breeding values for 
18 traits based on the data from the Danish Holstein 
population.

MATERIALS AND METHODS

Data

Holstein bulls from 258 half-sib families (1–41 bulls 
each), born between 1986 and 2004, were genotyped 
using Illumina Bovine SNP50 BeadChip (Illumina, San 
Diego, CA). The marker data were edited using the 
following procedures: 1) deleted the locus with minor 
allele frequency less than 5%; 2) deleted the locus with 
average GenCall score less than 0.65; 3) deleted the 
individual with call rate score less than 0.85; and 4) 
for a marker with GenCall score less than 0.6 in an 
individual, set the marker as unknown in this indi-
vidual. After the editing, there were 3,330 bulls and 
38,134 SNP markers available. In the analysis of SNP 
effects and genomic prediction, any missing SNP at a 
particular marker in some animals was treated as an 
extra allele. This corresponded to replacing the effect 
of missing SNP at a marker with population mean of 
this marker.

Published conventional EBV were used as response 
variables to estimate SNP effects. The EBV and their 

reliability for the genotyped bulls were obtained from of-
ficial evaluations in April 2009. In total, 18 index traits 
were analyzed in this study. Except for fat percentage 
and protein percentage, the traits are the subtraits in 
the new Nordic Total Merit index. Detailed descrip-
tions of these index traits and their EBV are given in 
Danish Cattle Federation (2006).

Statistical Model

In this study, all individual SNP markers were used as 
predictors and conventional EBV were used as response 
variables weighted by a function of reliability of EBV 
(see detail later). A Bayesian method, which captures 
the features of BayesA and BayesB but simplifies the 
computing algorithm, was used to estimate marker ef-
fects for genomic prediction. The method applies the 
methodology of variable selection presented by George 
and McCulloch (1993). A detailed description of the 
method was presented by Villumsen et al. (2009) and 
Meuwissen and Goddard (2004). The following model 
was used to fit EBV data:

 y X q e= + +
=
∑1μ νi i
i 1

m

i , 

where y is the vector of published conventional EBV, μ 
is the intercept, m is the number of SNP markers, Xi is 
the design matrix of allele types in marker i, qi is the 
vector of scaled SNP effects (scaled by SD) of marker i 
with q 0 Ii N~ ( , ), vi (vi > 0) is a scaling factor (SD) for 
SNP effects of marker i, and e is the vector of residual 
with e 0 I~ ( , ),N eσ

2  where I is a identity matrix. The ef-
fects of SNP alleles of marker i are the products of vi 
and qi.

Scaling factors vi were assumed to have either a com-
mon prior distribution or a mixture prior distribution. 
A common prior distribution across the variances of 
chromosome segment effects, which leads to a slight or 
moderate differentiation between small and large effects 
of markers, was assumed to be a positive half-normal 
distribution (TN),

 v TNi v~ ( , ),0 2σ  

where vi > 0. Mixture prior distributions, which lead to 
strong differentiation between small and large effects of 
markers, assume that a proportion (π0, typically large) 
of markers have very small effects, and another propor-
tion (π1 = 1 − π0, typically small) of markers have 
moderate or large effects. This was achieved by assum-
ing that the prior distribution of vi was sampled from 
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either a positive half-normal distribution with a small 
variance (σv0

2 ) or a positive half-normal distribution 
with large variance (σv1

2 ):

 νi v vTN TN~ ( , ) ( ).π σ π σ0 0
2

1 1
20 +  

It is known that the probability density function for 
the product (z) of 2 independent normal random vari-
ables, x ~N(0, σx

2) and y ~N(0, σy
2), is

 p z K
z

x y x y

( )
| |

=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

1
0πσ σ σ σ

 

(Jagdish and Campbell, 1996), where K0 is a modified 
Bessel function of the second kind. According to the 
features of normal distribution, the probability density 
function holds also for the product of a normal variable 
and a half normal variable. As shown in Figure 1, the 
prior distribution of q × v has a shape of a mass around 
zero and thicker tails, which allows for more extreme 
values of SNP effects.

The prior distributions of μ, σv
2, and σv1

2  were assumed 
to be improper uniform distributions, whereas σv0

2  was 
fixed at a small value. In this study, σv0

2  was set to 
0.0001 for all traits.

The genomic estimated breeding value (GEBV) for 
individual k was defined as the sum of predicted effects 
of SNP over all markers:

 GEBVk i(k) i
i 1

m

= +
=
∑ˆ ˆ ˆ .μ x q vi  

The effect of prior density on accuracy of GEBV was in-
vestigated using 5 scenarios: 1) mixture prior to scaling 
factors with π1 = 5%, 2) π1 = 10%, 3) π1 = 20%, and 
4) π1 = 50%, and 5) common prior to scaling factors for 
all markers (i.e., π1 = 100%). A low proportion (π1) of 
markers with large effect indicated a high intensity of 
shrinkage for SNP effects.

A pilot study on fertility and udder health using a 
common prior model was carried out to investigate the 
effect of weighting factor of response variable (EBV) 
on accuracy of genomic prediction. A cross validation 
(see detail below) showed that squared correlations 
between GEBV and EBV were 0.412, 0.402, and 0.394 
for fertility and 0.435, 0.423 and 0.418 for udder health 
using weighting factor of 1/(1 − reliability of EBV), 
reliability of EBV, and a constant weight of 1 for all 
response variables, respectively. Therefore, weighting 
factor of 1/(1 − reliability of EBV), which is inversely 
proportional to prediction error variance of EBV, was 
used in the current analysis. To avoid possible problems 
caused by extremely high weights, reliabilities of EBV 
larger than 0.98 were replaced with 0.98 in the calcula-
tion of weight.

Model Validation and Evaluation  
of Reliability of GEBV

The models with different priors for scaling fac-
tors and the accuracy of GEBV were evaluated using 
a 5-fold cross validation. In the cross validation, 134 
half-sib families that have at least 1 bull born after 
1993 were divided into 5 test datasets by the follow-
ing procedures. First, the 134 half-sib families were 
assigned into 10 year classes (1994–2003) according to 
birth year for the most of half-sibs. Then, each 2 year 
classes formed a test dataset (i.e., 1994–1995 formed 
test set 1, 1996–1997 formed test set 2, and so on). 
The 5 test datasets comprised a total of 2,393 bulls. In 
each fold cross validation, the whole data excluded 1 
test dataset to form a training dataset that was used to 
estimate marker effects and predict genomic breeding 
values of the left-out animals (the animals in the test 
data). Then, GEBV of the animals in test data were 
compared with their conventional EBV. The detailed 
information on the whole data and 5 test datasets is 
shown in Table 1.

Two criteria were used to assess accuracy of genomic 
prediction. The first criterion was the squared correla-
tion between GEBV and published conventional EBV 
(r2

GEBV, EBV) in test datasets. In the present study, 
the total test dataset covered a period of more than 
10 yr. Because of selection, mean breeding values 
changed among years, which would have an influence 
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Figure 1. Prior distribution of q × v, where q ~N(0, 1) and v 
~N(0, 0.01), and q is a variable of scaled SNP effect and v is a vari-
able of scaling factor.



on r2
GEBV, EBV. For the purpose of evaluating reliability 

of GEBV, both GEBV and EBV were adjusted for the 
year mean (subtracted by the mean of the year when 
the bull was born); that is, within-year squared correla-
tion. The annual averages of GEBV and EBV were cal-
culated from the animals in the total test dataset. The 
second criterion was the expected genomic reliability, 
obtained from prediction error variance (PEV). The 
PEV for a GEBV was measured as the variance of the 
posterior samples of this GEBV. To avoid strong influ-
ence of the dependency between test data and training 
data on the evaluation, the sires in test data having 
sons or grandsons in the training data were excluded 
from the validation.

Five scenarios of prior distribution for scaling factors 
(SD, vi) of SNP effects were evaluated by analyzing 4 
index traits (protein, fat percentage, udder health, and 
female fertility). Model predictive ability was assessed 
by r2

GEBV,EBV in the 5-fold cross validation. The best 
model (which was a common prior distribution in this 
study) was used to analyze all the 18 index traits.

The analyses were carried out using the IBAY pack-
age (Janss Luc, Faculty of Agricultural Sciences, Aarhus 
University, Tjele, Denmark). The Gibbs sampler was 
run as a single chain with a length of 50,000 samples. 
Convergence was monitored by graphical inspection of 
the variance of scaling factors and the correlation be-
tween GEBV from 2 separate rounds. The first 20,000 
samples were discarded as burn-in. Every tenth sample 
of the remaining 30,000 was saved to estimate the fea-
tures of the realized posterior distributions.

RESULTS

Table 2 shows the mean, across-year standard devia-
tion, and within-year standard deviation of the published 
EBV and their reliabilities for the genotyped bulls, and 
the range of heritabilities for the component traits of 
each complex trait. The heritabilities were provided by 
Nordic Genetic Evaluation (Danish Agricultural Advi-
sory Service, Aarhus, Denmark). The published EBV 
were standardized to a mean of 100 for the cows born 3 
to 5 yr (for production and conformation traits, animal 
model) or for the bulls born 7 to 9 yr (for the remaining 
traits, sire model) before publication, and standardized 
to a standard deviation of 10 for bulls born in 1997 
and 1998. The across-year standard deviations for yield 
index, protein, milk, fertility, and other–disease were 
higher than 10, reflecting a genetic change over the 
years for these traits. Within-year standard deviations 
were close to 10 for all traits except for longevity (8.6) 
and growth (11.5), indicating that the genotyped bulls 
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Table 1. Structures of the whole dataset and 5 test datasets 

Dataset
No. of  
bulls

No. of  
half-sib families

Interval of  
birth years

Whole 3,330 258 1986–2004
Test1 538 21 1989–1997
Test2 469 20 1994–2000
Test3 472 22 1997–2003
Test4 458 29 1999–2004
Test5 456 42 2001–2004

Table 2. Mean, cross-year standard deviation σt
2( ), and within-year standard deviation σw

2( ) of EBV, reliability 
of EBV (RELEBV) for the genotyped bulls, and the range of heritabilities (h2) for the component traits of each 
complex trait 

Trait

EBV

RELEBV h2Mean σt
2 σw

2

Birth index 100.9 10.4 10.2 75.7 0.01–0.20
Body conformation 97.3 10.9 10.2 81.1 0.10–0.61
Calving index 99.5 10.1 9.9 70.5 0.01–0.07
Fat 98.8 11.2 9.4 93.4 0.29–0.36
Fat percentage 100.0 10.4 10.4 93.5 0.50
Fertility 104.6 10.9 9.9 69.1 0.01–0.04
Other–disease 102.0 10.6 9.9 61.2 0.01–0.04
Feet–legs 98.8 10.0 9.9 62.5 0.10–0.28
Longevity 100.4 8.5 8.4 61.7 0.12
Milk 98.9 12.6 10.6 93.4 0.27–0.43
Udder conformation 97.2 10.1 9.5 77.9 0.12–0.41
Milking ability 99.5 10.9 10.7 72.8 0.10–0.25
Protein 97.1 14.0 10.4 93.4 0.25–0.35
Protein percentage 98.2 10.3 10.2 93.5 0.50
Temperament 100.3 9.8 9.4 63.5 0.15
Udder health 101.4 10.3 10.1 75.9 0.04–0.05
Yield index 97.1 13.5 10.0 93.4 0.25–0.43
Growth 100.5 11.6 11.5 87.9 0.16–0.29
Average 99.6 10.9 10.0 78.9  



represented the genetic variation of bulls in the popula-
tion. Reliabilities of EBV differed among 18 traits and 
were consistent with heritabilities of the traits.

Influence of Prior Distribution  
on Genomic Prediction

The effect of changing the prior distribution of scal-
ing factors on the predictive ability was investigated on 
fertility, protein, udder health, and fat percentage. The 
predictive abilities of the models with different priors 
for scaling factors were evaluated by r2

GEBV, EBV based 
on a 5-fold cross validation. Table 3 shows that there 
was a clear trend that r2

GEBV,EBV increased with increas-
ing prior proportion (π1) of SNP, with large effects 
within each subsets. Pooled over 5 subsets, r2

GEBV,EBV 
increased from 0.347 (π1 = 0.05) to 0.412 (common 
prior; π1 = 1.0) for fertility, from 0.279 to 0.412 for 
protein, from 0.338 to 0.435 for udder health, and from 
0.670 to 0.700 for fat percentage. The r2

GEBV,EBV for 
fertility were similar when using models with π1 = 
0.50 and common prior; for fat percentage, the values 
were similar when using models with π1 = 0.20, π1 = 

0.50, and common prior. It was found that variation of 
r2

GEBV, EBV among the 5 subsets was larger in fertility 
and udder health (the traits having low heritability) 
than protein and fat percentage (high heritability). As 
shown in Table 3, average reliability of EBV for bulls 
in the test dataset 5 was lower than those in the other 
test datasets. However, no clear association between 
r2

GEBV, EBV and average reliability of EBV was observed, 
probably because of small variation in average reliabil-
ity of EBV between these datasets.

It was found that the prior distribution of scaling 
factors had a considerable influence on the estimates 
of marker effects. Taking fertility as an example, the 
marker effects (expressed as absolute value of the dif-
ference between 2 allele effects) followed a Gamma dis-
tribution for all scenarios (Figure 2). With a prior that 
assumes a lower proportion (π1) of markers with large 
effect, the distribution becomes more L-shaped. The 
posterior percentages of the markers with an estimated 
effect less than 0.005 were 91, 84, 70, 41, and 33%, 
and the maximal values of estimated effects were 1.646, 
1.390, 0.581, 0.181, and 0.120 for π1 = 0.05, 0.10, 0.20, 
and 0.50 and a common prior, respectively.
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Table 3. Reliability of EBV (RELEBV) and squared correlation between genomic EBV and EBV (r2
GEBV, EBV) 

for bulls in each test dataset of a cross validation1 

Trait Dataset RELEBV

r2
GEBV,EBV

Mixture2 
π1 = 5%

Mixture  
π1 = 10%

Mixture  
π1 = 20%

Mixture  
π1 = 50% Common3

Fertility Test1 70.0 0.275 0.304 0.314 0.342 0.362
 Test2 68.2 0.348 0.378 0.389 0.388 0.399
 Test3 68.9 0.300 0.340 0.359 0.374 0.376
 Test4 67.4 0.416 0.405 0.434 0.441 0.444
 Test5 63.0 0.419 0.444 0.438 0.495 0.493
 Pooled 67.6 0.347 0.370 0.384 0.407 0.412
Protein Test1 93.8 0.284 0.315 0.357 0.393 0.401
 Test2 93.2 0.304 0.363 0.405 0.371 0.413
 Test3 93.6 0.283 0.331 0.354 0.374 0.375
 Test4 93.1 0.283 0.352 0.392 0.407 0.438
 Test5 92.0 0.233 0.309 0.368 0.410 0.420
 Pooled 93.1 0.279 0.337 0.378 0.394 0.412
Udder health Test1 76.1 0.279 0.301 0.330 0.332 0.351
 Test2 75.7 0.275 0.317 0.369 0.377 0.410
 Test3 76.5 0.415 0.448 0.481 0.498 0.505
 Test4 75.3 0.372 0.395 0.395 0.421 0.431
 Test5 71.4 0.322 0.381 0.433 0.464 0.466
 Pooled 75.0 0.338 0.373 0.404 0.417 0.435
Fat percentage Test1 93.9 0.681 0.709 0.725 0.711 0.716
 Test2 93.2 0.662 0.678 0.694 0.694 0.685
 Test3 93.5 0.709 0.729 0.748 0.741 0.751
 Test4 92.8 0.695 0.705 0.714 0.708 0.703
 Test5 92.0 0.591 0.611 0.622 0.632 0.640
 Pooled 93.1 0.670 0.688 0.702 0.698 0.700

1GEBV were predicted using models with different prior distributions of scaling factors.
2Mixture: prior distribution of scaling factors was a mixture of two positive half-normal distributions with 
probability π1 and (1 − π1), respectively.  
3Common: prior distribution of scaling factors was a positive half-normal distribution common to all markers. 



Reliabilities of GEBV

Because models with a common prior distribution 
of scaling factors generally provided better predictive 
abilities than mixture prior models, this model was cho-
sen to estimate SNP effects and predict breeding values 
for 18 traits in the Danish Holstein population. Table 
4 presents r2

GEBV, EBV and expected reliability of GEBV 
calculated from PEV for bulls in the test data as well 
as reliability of conventional parent average (PA) at 
the time of birth of the bull calves in this population. 
The reliabilities of parent average were provided by 
Nordic Genetic Evaluation (Danish Agricultural Advi-
sory Service, Aarhus, Denmark). The r2

GEBV, EBV ranged 
from 0.25 to 0.70, which were 0.01 to 0.25 greater than 
reliabilities of PA, except for body conformation, for 
which r2

GEBV, EBV was 0.05 lower than reliability of PA. 
Expected reliabilities ranged from 0.49 to 0.73, corre-

sponding 0.13 to 0.41 higher than reliabilities of PA. 
Averaged over 18 traits, r2

GEBV, EBV was 0.13 higher 
(0.42 vs. 0.29) and expected reliability of GEBV was 
0.26 higher (0.55 vs. 0.29) than reliability of PA.

It was observed that the variation in r2
GEBV, EBV 

among the 18 traits was larger than the variation in 
expected reliabilities, but the patterns of ranks were 
similar. Product moment correlation and rank correla-
tion between the 2 parameters were 0.883 and 0.813, 
respectively. Although the heritabilities for these traits 
differed considerably, the difference in r2

GEBV, EBV or 
expected reliability between low-heritability traits and 
high-heritability traits were relatively small, indicating 
that the reliability of GEBV was not very strongly in-
fluenced by heritability. For example, fertility, feet–legs, 
udder health, and other–diseases had an expected reli-
ability of GEBV and an r2

GEBV,EBV as high as or close to 
those for production traits.
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Figure 2. Distributions of SNP effects for fertility estimated from models with different priors for SNP variance. Y-axis: frequency; x-axis: 
absolute SNP effect (×10).



DISCUSSION

Reliability of GEBV is a critical criterion in decid-
ing whether GEBV should be used for routine genetic 
evaluation. In this study, 5 scenarios of prior distri-
bution for variance of SNP effects were assessed. The 
common prior model performed generally better than 
the mixture prior models; therefore, this model was 
used to investigate reliability of GEBV for 18 traits in 
the Danish Holstein population. In general, accuracy of 
GEBV was considerably higher than conventional PA.

In this study, reliability of GEBV was evaluated 
by r2

GEBV, EBV using a cross validation and expected 
reliability (calculated from PEV). It was found that 
r2

GEBV,EBV were lower than the expected reliabilities. 
The lower r2

GEBV,EBV could be caused by the facts that 
EBV contained error and the animals in the valida-
tion were selected from elite parents instead of ran-
dom samples (VanRaden et al., 2009). On the other 
hand, it is also possible that the expected reliability 
may overestimate the reliability of GEBV. An alter-
native is to measure reliability of GEBV as r2

GEBV,EBV 
divided by reliability of EBV. This is to assume the 
correlation between GEBV and EBV was through their 
correlation with true breeding value (i.e., no correla-
tion between prediction errors of GEBV and EBV). 
Thus, rGEBV,EBV = rGEBV,TBV × EBV,TBV and r2

GEBV,TBV 
= r2

GEBV,EBV/r2
EBV,TBV, where TBV is true breeding 

value. However, based on the present data, reliability 
estimated using this approach seemed too high to be 
acceptable for some low-heritability traits (results not 

shown), implying prediction errors of GEBV and EBV 
were not completely independent. We suggest that the 
true reliability of GEBV (r2

GEBV,TBV) in the present data 
could be between r2

GEBV,EBV and the expected reliabil-
ity. Thus, averaged over 18 traits, reliability of GEBV 
could be in the interval between 42 and 55%. The fig-
ures are considerably greater than the reliability of the 
conventional PA. It indicates that genomic prediction 
can effectively improve the accuracy of preselection for 
young bulls compared with traditional selection based 
on PA.

Few reports exist on the reliability of GEBV based 
on data from real livestock. Hayes et al. (2009) reported 
that reliabilities of GEBV ranged from 18 to 53% for 
5 traits in Australian Holstein population, which were 
2 to 18% higher than reliabilities of PA. VanRaden et 
al. (2009) investigated reliability of GEBV for 27 traits 
in North American Holstein population and reported 
that reliabilities of the index combining GEBV and PA 
ranged from 35 to 78%, which, averaged over the traits, 
was 23% higher than reliability of PA (50 vs. 27%). 
Harris et al. (2008) reported that reliabilities of GEBV 
combining PA for 12 traits ranged from 45 to 60%, with 
an average of 53%, in New Zealand Holstein population. 
In the Netherlands, de Roos et al. (2009) reported that 
reliabilities of the index combining GEBV and national 
EBV for 12 traits of Holstein bulls were in the range of 
27 to 68%, with an average of 51%. In Ireland, Berry et 
al. (2009) reported that reliability of the genetic evalu-
ation blending GEBV and national EBV for 21 traits of 
Holstein bulls increased by 1% to 18% compared with 
reliabilities of PA. It is difficult to compare the reli-
abilities from different reports because sizes of reference 
data and methods to calculate reliability are different 
in different studies.

The difference in reliability of GEBV between low-
heritability traits and high-heritability traits was rela-
tively small. In the present study, marker effects were 
estimated from published EBV. The influence of herita-
bility on GEBV was through its influence on reliability 
of EBV. However, the published EBV were predicted 
from a very large dataset, resulting in a relatively high 
accuracy even for the traits with low heritability. More-
over, in genomic prediction, each individual in refer-
ence data has a contribution to marker effects. In other 
word, the GEBV of a candidate is actually obtained 
from the information of all individuals in the reference 
data. The benefit from information of other animals 
for the traits with low heritability is relatively greater 
than that for the traits with high heritability. The weak 
dependency on heritability indicates that genetic evalu-
ation based on GEBV would be relatively more benefi-
cial for the traits with low heritability. Previous studies 
on marker-assisted selection have shown that gain in 
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Table 4. Reliability of parent average (RELPA) at the time of birth 
of the bull calves in Danish Holstein population, squared correlation 
between EBV and genomic EBV (GEBV; r2

GEBV,EBV), and expected 
reliability of GEBV (calculated from prediction error variance) for 
bulls in the test data1 

Trait RELPA r2
GEBV,EBV Expected reliability

Birth index 0.26 0.395 0.502
Body conformation 0.30 0.252 0.499
Calving index 0.22 0.369 0.525
Fat 0.38 0.487 0.569
Fat percentage 0.38 0.700 0.733
Fertility 0.22 0.412 0.566
Other–disease 0.18 0.426 0.593
Feet–legs 0.26 0.404 0.571
Longevity 0.21 0.317 0.494
Milk 0.29 0.481 0.562
Udder conformation 0.33 0.395 0.511
Milking ability 0.25 0.383 0.506
Protein 0.38 0.412 0.528
Protein percentage 0.38 0.518 0.559
Temperament 0.25 0.340 0.514
Udder health 0.25 0.435 0.557
Yield index 0.38 0.390 0.514
Growth 0.28 0.415 0.533
Average 0.29 0.418 0.546

1GEBV were predicted using a common prior model.



response rate is larger for traits with lower heritability 
(Lande and Thompson, 1990; Meuwissen and Goddard, 
1996). However, these calculations were conditional on 
the fact that QTL had been identified, which is much 
more difficult for low-heritability traits because of low 
statistical power of detection. Using genomic selection, 
the step of testing for QTL is circumvented. This is a 
reason that accurate GEBV can be obtained even for 
low-heritability traits. As a consequence of a relatively 
weak dependency of GEBV on heritability, it becomes 
relatively easier to improve functional traits and to 
obtain a balanced genetic progress between functional 
traits and production traits, compared with selection 
on conventional EBV.

Five scenarios of prior distributions of the variance 
of SNP effects were investigated in this study. It was 
found that, using single markers as explanatory vari-
ables, the model with a common distribution of scaling 
factors (SD) generally had better predictive ability than 
models assuming a mixture distribution. Similarly, Cole 
et al. (2009) reported that a heavy-tailed prior model 
(analogous to the common prior model in the present 
study) gave slightly higher reliability of GEBV than a 
finite locus model with heavy tails (analogous to the 
mixture prior model). VanRaden et al. (2009) reported 
that predictive ability of a nonlinear BLUP model (a 
heavy-tailed prior model) was considerably better than 
a linear BLUP model for fat percentage and protein 
percentage, whereas the predictive abilities were similar 
for 25 other traits. In simulation studies, Meuwissen et 
al. (2001) reported that the accuracy of GEBV using 
BayesB (similar to the mixture prior model in the pres-
ent study) was higher than that using BayesA (com-
mon prior distribution), and Lund et al. (2009) found 
that mixture models predicted breeding value better 
than the models with a common prior distribution of 
variances or the models with equal variance for all SNP. 
Both studies were based on the data in which QTL 
effects were simulated from a Gamma distribution with 
shape parameter 0.4 (L shape).

There are many possible reasons why the models 
with a mixture prior distribution of scaling factors 
did not perform better than the model with a com-
mon prior distribution in the present data. First, the 
mixture prior distribution of scaling factors is based on 
the hypothesis that few genes have a large effect and 
a large number of genes have a small effect, and the 
distribution of QTL effects follows a Gamma distribu-
tion of L shape. The hypothesis is supported by the 
derived distribution of QTL effects reported by Hayes 
and Goddard (2001). However, the distribution of SNP 
effects is not necessary to be consistent with the distri-
bution of QTL effects. Many SNP could be located in a 
chromosome segment with large effect; thus, the effect 

of the chromosome segment could be divided over many 
SNP (Hayes et al., 2009). On the other hand, effect of 
a QTL might not be fully accounted for by a single 
marker because of incomplete linkage between marker 
and QTL. A mixture prior model may lead to too many 
SNP with an effect regressed to zero.

Second, the data available for this study (about 2,850 
individuals in the training data) may not be sufficient 
for satisfactory prediction using the mixture model. In 
the present study, the models with a mixture of 2 prior 
distributions distinguish the markers with small effect 
and the markers with large effect intensively by setting 
different variances for scaling factors. The variance of 
scaling factors for the marker with large effects was 
sampled from the conditional posterior distribution, 
whereas the variance of scaling factors for the markers 
with small effects was given a value of 0.0001. Both the 
given variance and the proportions may not be optimal. 
With insufficient data, the priors have strong influence 
on the estimates. This was observed in this study, where 
the distributions of SNP effects were greatly dependent 
on the given proportions of markers with large effects 
(Figure 2). Inappropriate priors could reduce the ac-
curacy of the estimates of marker effects. However, it is 
difficult to find an optimal proportion and variance of 
scaling factors for the markers with small effect.

The accuracy of GEBV was evaluated using a 5-fold 
cross validation. The advantage of multiple-fold cross 
validation is that it can retain training data as large 
as possible while keeping the test data as large as 
required. In the cross validation, each set of training 
data left many half-sib families out instead of leaving 
a random sample out. This strategy greatly reduces 
the dependency between the training data and the test 
data because the individuals in the test data did not 
have their sibs in the training data.

In this study, marker effects were estimated by fitting 
a model to published EBV. The advantage of using 
EBV is that they can be obtained directly from routine 
genetic evaluations. In addition, they contain little ran-
dom error, which greatly reduces the prediction error 
variance. This could be important in situations where 
the number of genotyped animals in the reference data 
is small. An alternative type of response variable is 
daughter yield deviation. Further studies should be car-
ried out to investigate the effect of different response 
variables on reliability of GEBV in different situations 
(e.g., different heritabilities and sizes of reference 
data).

The reliabilities of GEBV in this study indicate that 
genomic selection is promising. Moreover, genomic 
prediction can be further improved by several ap-
proaches. First, reliability of GEBV can increase with 
increasing data size (the number of individuals with 
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both genotypes and phenotypes) to estimate marker 
effects. Second, the reliability could be improved by 
using more sophisticated models. Third, the reliability 
of GEBV for an index trait is expected to be improved 
by predicting genomic breeding value for each single 
trait and then calculating the GEBV of the index trait 
instead of predicting the index trait directly. Finally, 
higher accuracy of genomic selection can be obtained 
by a genomic selection index that combines GEBV and 
other sources of information, such as parent EBV from 
conventional national genetic evaluation (VanRaden et 
al., 2009).

CONCLUSIONS

Averaged over all 18 index traits, r2
GEBV, EBV from 

a cross validation was 42% and expected reliability of 
GEBV was 55%, considerably greater than the reliabil-
ity of conventional PA (29%). It indicates that genomic 
selection can greatly improve the accuracy of preselec-
tion for young bulls compared with traditional selection 
based on PA. Therefore, genomic prediction has been 
used in Nordic genetic evaluation of young candidates. 
Based on the data in this study, it was found that the 
model with a common prior distribution of scaling fac-
tors had generally better predictive ability than those 
models with a mixture prior distribution.
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