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ABSTRACT

A new technology called genomic selection is revolu-
tionizing dairy cattle breeding. Genomic selection refers 
to selection decisions based on genomic breeding values 
(GEBV). The GEBV are calculated as the sum of the 
effects of dense genetic markers, or haplotypes of these 
markers, across the entire genome, thereby potentially 
capturing all the quantitative trait loci (QTL) that con-
tribute to variation in a trait. The QTL effects, inferred 
from either haplotypes or individual single nucleotide 
polymorphism markers, are first estimated in a large 
reference population with phenotypic information. In 
subsequent generations, only marker information is 
required to calculate GEBV. The reliability of GEBV 
predicted in this way has already been evaluated in ex-
periments in the United States, New Zealand, Australia, 
and the Netherlands. These experiments used reference 
populations of between 650 and 4,500 progeny-tested 
Holstein-Friesian bulls, genotyped for approximately 
50,000 genome-wide markers. Reliabilities of GEBV 
for young bulls without progeny test results in the 
reference population were between 20 and 67%. The 
reliability achieved depended on the heritability of the 
trait evaluated, the number of bulls in the reference 
population, the statistical method used to estimate the 
single nucleotide polymorphism effects in the reference 
population, and the method used to calculate the reli-
ability. A common finding in 3 countries (United States, 
New Zealand, and Australia) was that a straightforward 
BLUP method for estimating the marker effects gave 
reliabilities of GEBV almost as high as more complex 
methods. The BLUP method is attractive because the 
only prior information required is the additive genetic 
variance of the trait. All countries included a polygenic 
effect (parent average breeding value) in their GEBV 
calculation. This inclusion is recommended to capture 
any genetic variance not associated with the markers, 
and to put some selection pressure on low-frequency 
QTL that may not be captured by the markers. The re-

liabilities of GEBV achieved were significantly greater 
than the reliability of parental average breeding values, 
the current criteria for selection of bull calves to enter 
progeny test teams. The increase in reliability is suf-
ficiently high that at least 2 dairy breeding companies 
are already marketing bull teams for commercial use 
based on their GEBV only, at 2 yr of age. This strategy 
should at least double the rate of genetic gain in the 
dairy industry. Many challenges with genomic selection 
and its implementation remain, including increasing 
the accuracy of GEBV, integrating genomic informa-
tion into national and international genetic evaluations, 
and managing long-term genetic gain.
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INTRODUCTION

A new technology called genomic selection is revo-
lutionizing dairy cattle breeding. Although the idea of 
using DNA markers to improve the rate of genetic gain 
in dairy cattle has been around for decades (e.g., Smith, 
1967; Soller and Beckman, 1983), adoption of marker-
assisted selection by the dairy industry has been limited 
until very recently (with a few notable exceptions, e.g., 
Boichard et al., 2002). There were several reasons for 
this. For many quantitative traits, such as production 
and health traits in dairy cattle, a large number of loci 
are affecting the trait, with any one locus capturing 
only a limited proportion of the total genetic variance 
(e.g., Shrimpton and Robertson, 1988; Hayes and God-
dard, 2001; Sanna et al., 2008, VanRaden et al., 2009). 
Consequently, relatively small gains were possible with 
the limited number of markers available, and the cost of 
genotyping these markers was high. The complexity of 
calculating breeding values including marker informa-
tion was a further barrier to the application of marker-
assisted selection.

The genomic selection revolution began with 2 de-
velopments. The first was the recent sequencing of the 
bovine genome, which led to the discovery of many 
thousands of DNA markers, in the form of SNP. Con-
current with the discovery of numerous SNP markers 
throughout the livestock genomes has been a dramatic 
reduction in the cost of genotyping.
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The second development was the demonstration that 
it was possible to make very accurate selection decisions 
when breeding values were predicted from dense marker 
data alone, using a method termed genomic selection 
(Meuwissen et al., 2001). Genomic selection refers to 
selection decisions based on genomic breeding values 
(GEBV). To calculate GEBV, a prediction equation 
based on the SNP is first derived. The entire genome 
is divided into small segments, the effects of which are 
estimated in a reference population in which animals 
are both phenotyped and genotyped. In this way, the 
effects of all loci that contribute to genetic variation are 
captured, even if the effects of the individual loci are 
very small. In subsequent generations, animals can be 
genotyped for the markers to determine which chromo-
some segments they carry, and the estimated effects of 
the segments the animal carries can then be summed 
across the whole genome to predict the GEBV. This 
breeding value is termed a GEBV. Meuwissen et al. 
(2001) demonstrated in simulations that it was possible 
to achieve accuracies of predicted breeding values from 
markers alone of 0.85 (where accuracy is the correlation 
between true breeding value and EBV, and reliability is 
the square of this result).

The implications of achieving such accuracies for 
animals at birth are profound. The simulation results 
suggest that the accuracy of the GEBV for a bull calf 
can be as high as the accuracy of an EBV after a prog-
eny test. Potentially, genomic selection could lead to a 
doubling of the rate of genetic gain through selection 
and breeding from bulls at 2 yr of age rather than 5 
yr of age or later (Schaeffer, 2006). By avoiding prog-
eny testing, bull breeding companies could save up to 
92% of their costs (Schaeffer, 2006). However, some of 
these savings may be offset by the need to invest more 
money in genotyping to increase selection intensities 
and thereby increase the rates of genetic gain.

In this paper, we first review the progress of genomic 
selection, including results from dairy cattle breeding 
programs around the world. We then discuss how the 
accuracy of GEBV could be improved above what is 
currently being achieved. Finally, we investigate the ef-
fect of genomic selection on long-term genetic gain and 
other challenges.

ACCURACY OF GEBV FROM DAIRY CATTLE
BREEDING PROGRAMS AROUND THE WORLD

Results from genomic selection in dairy cattle breed-
ing programs from Australia, New Zealand, and the 
United States are described, including the reference 
populations assembled, the methods used to derive the 
prediction equations, and the results, where available.

Results from Australia

The calculation of GEBV is described in some detail 
here, because similar methodologies were used in New 
Zealand and the United States. A total of 798 Aus-
tralian Holstein-Friesian bulls born between 1998 and 
2003 and progeny tested by Genetics Australia were 
genotyped for 56,947 SNP by using the Illumina Bovine 
SNP50TM chip. Samples were screened for the propor-
tion of missing genotypes, and animals with greater 
than 10% missing genotypes were removed. The SNP 
were included only if they met the following criteria: 
percentage of missing genotypes across samples <10%, 
minimum allele frequency >2.5%, deviation of ob-
served genotype frequencies from expected frequencies 
calculated from allele frequencies (Hardy Weinberg χ2 
values) <600. These criteria were chosen in an attempt 
to exclude SNP with a high rate of genotyping error, 
and to exclude very low frequency SNP from the data 
set, because the effects of such SNP will be very poorly 
estimated. Parentage checking was performed, and any 
genotypes incompatible with pedigree were removed. A 
total of 730 of the 798 sires had greater than 90% of 
SNP genotyped. A total of 38,259 SNP satisfied all the 
SNP selection criteria.

The implementation of genomic selection method-
ologies is more difficult if some animals are missing 
genotypes for some markers. We used the following ap-
proach to impute missing genotypes. Single nucleotide 
polymorphisms were ordered by chromosome position 
by using Bovine Genome Build 4.0 (http://www.ncbi.
nlm.nih.gov/projects/genome/guide/cow/). Genotypes 
were then submitted to fastPHASE analysis (Scheet 
and Stephens, 2006) chromosome by chromosome. 
The missing genotypes were taken as those filled in by 
fastPHASE. We assessed the accuracy with which the 
missing genotypes were filled in by removing known 
genotypes at every 50th position for 10% of animals 
on chromosome 26. The imputed genotypes were then 
compared with the known genotypes to evaluate the ac-
curacy of the approach. A total of 3,571 missing geno-
types were filled in by the fastPHASE program, 3,525 
of which were correct, giving an accuracy of 98.7%. For 
comparison, an approach that filled in missing geno-
types by sampling from a binomial distribution with 
mean as the allele frequency gave an accuracy of only 
51.1%.

The phenotypes used were deregressed Australian 
breeding values (ABV) for protein yield, protein 
percentage, Australian Profit Ranking (APR), and 
Australian Selection Index (ASI) extracted from the 
Australian DHI Scheme (ADHIS database). The ASI 
is given by (3.8 × ABV_protein) + (0.9 × ABV_fat) 
− (0.048 × ABV_milk), whereas APR is given by 
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(3.8 × ABV_protein) + (0.9 × ABV_fat) − (0.048 × 
ABV_milk) + (1.2 × ABV_milkingSpeed) + (2.0 × 
ABV_temperament) + 3.9 ABV_survival + (0.34 × 
ABV_cellCount) − (0.26 × ABV_liveweight) + (3.0 
× ABV_daughter fertility). The breeding values were 
deregressed to remove the contribution from relatives 
other than daughters.

To reduce the number of SNP to be considered in the 
prediction equations for computational tractability, we 
first tested the effect of each SNP in turn on each trait. 
To do this, we fitted the model

 y 1 ' W Zu en= + + +μ g ,  

where y is a vector of deregressed breeding values for 
each trait in the reference population; 1n is a vector of 
1s (e.g., [1 1 1 ]); W is a vector allocating records to the 
SNP effect, with element Wij = 0, 1, or 2 if the genotype 
of animal i is 11, 12, or 22, respectively; g is the (fixed) 
effect of the SNP; e is a vector of random deviates  
e Ni e~ ( ,0 2σ ), where σe

2  is the error variance; and  ui is 
the polygenic breeding value of the ith animal, assumed 
to be normally distributed, u Ni a~ ( , )0 2Aσ , where A is 
the average relationship matrix. The variance compo-
nents were estimated in ASREML (Gilmour et al., 
2002). For each trait, the SNP that were significant at 
P < 0.05 were taken to the next stage.

On the basis of the above one-SNP-at-a-time model, 
the m significant SNP were chosen to be fitted simulta-
neously in the following model:

 y 1 ' Xg Zu en= + + +μ ,  

where y is a vector of n daughter yield deviations cor-
rected for herd-year-season effects for each trait; 1n is a 
vector of 1s; X is (n × m) a design matrix allocating 
records to the marker effects, with element Xij = 0, 1, 
or 2 if the genotype of animal i at SNP j is 11, 12, or 
22, respectively; g is a (m × 1) vector of SNP effects 
assumed to be normally distributed, g Ni gi~ ( , )0 2σ ; e is 

a vector of random deviates, where σe
2  is the error vari-

ance; and ui is the polygenic breeding value of the ith 
animal, with variance Aσa

2 , where A is the average re-
lationship matrix. For some traits, all the SNP were 
fitted in the models for comparison.

Two methods were used to derive the prediction 
equations. The first method used was a simple BLUP 
approach, as described by Meuwissen et al. (2001). This 
method treats all SNP as having an effect that is sam-
pled from the same normal distribution; in other words, 

the effects of all SNP are assumed to be very small and 
the σgi

2  are the same across all  i. In this case, the σgi
2  

was calculated as σa i i
i

m

p p2 2 1/ ( ),−∑  where  pi is the 

rare allele frequency for SNP i. We also tried a Bayes-
ian approach (BayesA), which uses the prior knowl-
edge that many SNP are likely to have small individual 
effects on the trait and only a few will have a moderate 
to large effect (e.g., the σgi

2  can be different across the  

i). In this case, samples of the σgi
2  from their posterior 

distributions are taken by using Gibbs sampling [see  
Meuwissen et al. (2001) for details]. This method was 
similar to BayesA in Meuwissen et al. (2001), but was 
modified to include the polygenic effect and used only 
the subsets of SNP significant at P < 0.05. For some 
traits, all SNP were included in BayesA for compari-
son.

To assess the accuracy of genomic selection, the ef-
fects of the SNP were first estimated in bulls born from 
1998 to 2002. Using these predicted SNP effects, we 
predicted the GEBV of the bulls born in 2003, as 
GEBV u +Xg= ˆ .̂  These GEBV were then correlated 
with the current breeding values of these bulls, which 
were largely derived from a progeny test. This gave 
r(GEBV,EBV), whereas we wished to know 
r(GEBV,TBV), where TBV is the true breeding value. 
This can be obtained as r(GEBV,EBV)/r(EBV,TBV), 
for example, the correlation between the GEBV and 
the current breeding value divided by the square root of 
the reliability of the current breeding value. The square 
of this result is the reliability of the breeding value 
presented in  Table 1, along with the reliability of the 
sire pathway EBV at the time of birth of the bull calves. 
The accuracies of GEBV were considerably greater 
than the sire pathway EBV that were currently used to 
select bull calves for progeny testing (Table 1).

The reliability of the fertility GEBV was substan-
tially lower than the reliability of other traits. This is 
likely because of the lower heritability of fertility, so 
more records are required to predict accurate GEBV. 
In this study, fewer bulls in the data set had records for 
fertility (332) compared with the other traits analyzed, 
reducing the power of the analysis.

The Bayesian method gave small increases in reli-
ability for all traits except fertility, in the order of 2 
to 7%. Interestingly, fitting all SNP in the Bayesian 
analysis, rather than preselected subsets, did not result 
in increased accuracy for the traits for which this was 
tried, and in some cases led to slightly decreased ac-
curacy.
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Results from New Zealand 

Harris et al. (2008) reported reliabilities of GEBV 
in New Zealand dairy cattle from an experiment per-
formed by the Livestock Improvement Corporation. 
Their reference population consisted of approximately 
4,500 bulls progeny tested by the Livestock Improve-
ment Corporation, a much larger reference than the 
Australian data to date. The bulls were genotyped for 
the same SNP set as described above. After quality 
checking, 44,146 SNP were retained for analysis. To de-
rive the prediction equations, a wide range of methods 
were tried, including BLUP, BayesA, BayesB (where 
some SNP can have a zero effect; Meuwissen et al., 
2001), least angle regression (Efron et al., 2004), and 
Bayesian regression (Xu, 2003). A polygenic compo-
nent (additive breeding value) based on pedigree was 
included in the GEBV.

The reliabilities of GEBV were estimated by direct 
inversion of a set of mixed model equations, with the 
average relationship matrix replaced by the genetic 
relationship matrix based on the SNP data (for details, 
see Harris et al., 2008). Reliabilities of GEBV for young 
bulls with no daughter information calculated in this 
way were in the range of 50 to 67% for milk production 
traits, live BW, fertility, SCC, and longevity, compared 
with an average 34% for parental average breeding val-
ues. These reliabilities are generally greater than those 
achieved in the Australian data, which probably reflects 
the much larger number of bulls in the New Zealand 
reference population, as well as the fact that the New 
Zealand reliabilities were predicted rather than realized. 
Again, the Bayesian methods gave slightly greater (2 to 
3%) reliabilities than the BLUP approach, whereas the 
regression methods performed poorly.

Results from the United States

VanRaden et al. (2009) reported reliabilities of GEBV 
for US and Canadian young bulls. The reference popu-
lation from which the prediction equations were derived 
consisted of 3,576 Holstein bulls genotyped for 38,416 
SNP with the Illumina Bovine SNP50TM chip, as for 

the Australian and New Zealand experiments. Predic-
tion methods included a method similar to BLUP [as 
described by Meuwissen et al. (2001)], which assumed a 
normal distribution for the marker effects, and a Bayes-
ian method with a heavier tail before allowing for genes 
of the major effect (similar to BayesA described above). 
As in the Australian and New Zealand calculations of 
GEBV, the parent average or polygenic effect from 
pedigree was combined with the genomic predictions 
by selection index to obtain the final GEBV.

Averaged across traits, the GEBV had a reliability 
of 50%, compared with 27% from the parent average 
alone. Using BLUP rather than the Bayesian approach 
gave only a slightly (1%) reduced reliability, as was 
observed in the Australian and New Zealand results.

Results from the Netherlands

De Roos (CRV, Arnhem, the Netherlands; personal 
communication) reported results from a genomic selec-
tion experiment conducted by CRV, a dairy breeding 
company based in the Netherlands. Their reference 
population consisted of 1,583 bulls genotyped with a 
custom-made SNP chip containing 57,660 SNP, of which 
46,529 SNP were used in subsequent analysis. They cal-
culated the accuracy of GEBV by randomly dropping 
out 5% of the 429 bulls born between 1999 and 2003 
from the reference population, calculating GEBV for 
these bulls, and then correlating them with the actual 
EBV of the bulls, which included progeny test informa-
tion. This was repeated 20 times so that each bull was 
dropped out once and used as a reference bull in the 
other 19 runs. Their methodology for calculating SNP 
effects followed the Gibbs sampling scheme proposed 
by Meuwissen and Goddard (2004), implemented for 
single SNP rather than haplotypes (Calus et al., 2008). 
The increase in reliability of GEBV over parent average 
EBV at the time of birth was 33% (fat percentage), 
19% (kilograms of protein), 15% (feet and legs), 13% 
(udder depth, SCS), and 9% (fertility). They concluded 
that having a larger number of bulls in their reference 
population would increase the reliability of GEBV in 
their selection candidates substantially.
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Table 1. Reliability of genomic breeding values calculated at time of birth for Genetic Australia’s 2003 
progeny test team with 2 genomic selection methods, BLUP and a Bayesian method (BayesA) 

Trait1
Records in  

reference population
Number of  
SNP used

Sire pathway  
EBV BLUP BayesA

ASI 637 3,889 0.38 0.44 0.48
APR 635 3,414 0.35 0.53 0.55
Protein yield 637 4,055 0.28 0.45 0.48
Protein % 637 4,369 0.20 0.29 0.36
Fertility 332 3,090 0.16 0.18 0.14

1ASI = Australian Selection Index; APR = Australian Profit Ranking.



Comparison of Results

In all 4 countries, the reliabilities of GEBV were sub-
stantially greater than breeding values from parental 
averages. In all countries, the dairy cattle breeding 
companies are likely to take advantage of the GEBV 
both to improve rates of genetic gain and to reduce the 
cost of their breeding programs.

The increase in reliability of breeding value as a result 
of including the genomic information was greater in the 
data from the United States and New Zealand than 
in the Australian data, most likely reflecting the large 
number of bulls those countries used in their reference 
populations. However, the method of calculating reli-
ability of the GEBV differed between countries, making 
a direct comparison difficult.

A common finding was that the BLUP method, 
which assumes a normal distribution of marker effects, 
performed only slightly worse than the Bayesian meth-
ods, which use a prior allowing for genes of moderate 
to large effect. A conclusion from this common result 
would be that for most dairy traits, the assumption of 
the BLUP method, that there are many genes of small 
effect and few or none of moderate to large effect, may 
be close to reality. An alternative explanation might 
be that the SNP track large chromosome segments and 
that the effect of the chromosome segment is divided 
over many SNP. There were some individual SNP with 
large effects, however; for example, there is a polymor-
phism in the DGAT1 gene that has a large effect on fat 
percentage (Grisart et al. 2004), and this was detected 
by the surrounding SNP [Australian data, Van Raden 
et al. (2008)].

In all countries, the final GEBV was calculated by 
combining the parental average breeding value from 
pedigree information with the breeding value from 
genomic information by using selection index theory. 
For example, the components could be weighted by 
their reliability. The advantage of using both sources 
of information is that any QTL not captured by the 
SNP effects may be captured by the parental average 
or polygenic breeding value. This may be particularly 
important to capture QTL at low frequency in the 
population, as discussed below.

INCREASING THE ACCURACY  
OF GENOMIC SELECTION

The accuracies of GEBV reported above are impres-
sive. However, it may be possible to increase the accu-
racy of GEBV further. The accuracy of GEBV depends 
on 4 parameters [e.g., Goddard (2008); Hayes et al. 
(2008)]. The first 2 of these are under the control of the 
experimenters; the second 2 are not:

 1.  the level of linkage disequilibrium (LD) between 
the markers and the QTL,

 2.  the number of animals with phenotypes and gen-
otypes in the reference population from which 
the SNP effects are estimated,

 3.  the heritability of the trait in question, or, if der-
egressed breeding values are used, the reliability 
of these breeding values, and

 4.  the distribution of QTL effects.

For genomic selection to work, the single markers 
must be in sufficient LD with the QTL such that the 
markers will predict the effects of the QTL across the 
population and across generations. The level of LD 
between markers and QTL, or between markers, can 
be quantified with the parameter r2 (Hill, 1981). If we 
consider the r2 between a marker and an (unobserved) 
QTL, r2 is the proportion of variation caused by the 
alleles at a QTL that is explained by the markers. For 
genomic selection to be as successful as in the simula-
tions of Meuwissen et al. (2001), where accuracies of 
GEBV of 0.85 were achieved, the level of LD between 
adjacent markers should be r2 ≥ 0.2, because this was 
the level of LD their simulations generated. It must 
be noted that Meuwissen et al. (2001) used haplotypes 
rather than single markers in their simulations, so the 
level of LD they generated may be greater than can 
be achieved with single markers at the same marker 
spacing (e.g., Goddard, 1991). Calus et al. (2008) used 
simulation to assess the effect of the average r2 between 
adjacent marker pairs on the accuracy of genomic selec-
tion (where the accuracy was the correlation of true 
breeding values and GEBV for a group of unphenotyped 
animals) by using single SNP rather than haplotypes. 
They found that the accuracy of GEBV increased 
dramatically as the average r2 between adjacent mark-
ers increased, from 0.68 when the average r2 between 
adjacent markers was 0.1, to 0.82 when the average r2 
between adjacent markers was 0.2. In the Australian 
Holstein data, with 38,259 SNP across the genome, the 
average LD between adjacent markers, measured by r2, 
was 0.271. However, a considerable number of pairs had 
zero r2 values (Figure 1).

Nevertheless, the results of Calus et al. (2008) and 
Meuwissen et al. (2001) suggest this level of LD is suf-
ficient to achieve accuracies of GEBV approaching 0.8. 
To achieve accuracies greater than this, denser markers 
will be required.

The accuracy of genomic selection will also be deter-
mined by the number of phenotypic records that are 
used to estimate the SNP effects. The more phenotypic 
records available, the more observations there will be 
per SNP allele and the greater the accuracy of genomic 
selection. The heritability of the trait is also crucial 
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here; with greater heritabilities, fewer records are re-
quired. The distribution of QTL effects is also impor-
tant. If there are very many QTL of very small effects 
contributing to variation in the trait, as the results 
above suggest, a large number of phenotypic records 
will be required to estimate these effects accurately. 
Goddard (2008) presented a deterministic method for 
calculating the accuracy of GEBV when the prediction 
equation is estimated in a reference population of given 
size and for a given level of heritability (Figure 2). A 
normal distribution of QTL effects was assumed [for 
results with nonnormal distributions of QTL effects, 
see Goddard (2008)].

Figure 2 illustrates 2 key points. For low-heritability 
traits, a very large number of records will be required in 
the reference population to subsequently achieve high 
accuracies of GEBV in unphenotyped animals. Second, 
Figure 2 demonstrates the fortunate position the dairy 
industries are in if the reference population is made up 
of progeny-tested bulls—in this case, the “phenotypes” 
are daughter averages that have a high heritability ap-
proximately equal to their reliability. For traits such 
as fertility, the reliability of these daughter averages is 
lower than for production traits, so larger numbers of 
bulls are required in the reference population to achieve 
the same level of accuracy.

The importance of having a large reference popula-
tion is also demonstrated by the accuracies of GEBV 
achieved in different countries. The increase in reliability 
of breeding value as a result of including the genomic 

information was greater in data from the United States 
and New Zealand than in the Australian data, reflect-
ing the larger number of bulls used in the US and New 
Zealand reference populations.

OPTIMIZING BREEDING PROGRAM DESIGN  
WITH GENOMIC SELECTION

Genomic selection allows prediction of very accurate 
breeding values for young animals. The effect of such 
information on optimal breeding program design will 
be profound.

In dairy cattle breeding, progeny testing is currently 
used to identify bulls of high genetic merit. A good 
description of the progeny test scheme was given by 
Schaeffer (2006): “In the progeny test scheme, a num-
ber of elite cows are identified each year as the dams 
of young bulls, and these cows are mated to specific 
sires. At one year of age, the young bulls are test mated 
to a large number of cows in the population, in order 
that they will have about 100 daughters with their first 
EBV for production and other traits. Approximately 
43 months later, the daughters from these matings 
complete their first lactations and the young bull EBV 
for production are produced with an accuracy of ap-
proximately 75% (reliability of 56%). At this point, the 
young bull is proven or returned to service.” The results 
from the New Zealand, US, and Australian experiments 
demonstrate that GEBV with this accuracy can already 
be calculated for bull calves, at least for some traits. If 

Journal of Dairy Science Vol. 92 No. 2, 2009

HAYES ET AL.438

Figure 1. Distribution of linkage disequilibrium, measured with r2, among adjacent marker pairs in Australian Holsteins genotyped for 38,259 
genome-wide SNP.



such accuracies were achieved for the selection indices 
in each country, bull calves could be be selected at this 
stage and used as soon as they are reproductively able, 
rather than after progeny testing. This reduces the gen-
eration interval by at least half. Further genetic gains 
can be made both by genotyping the elite bull dams and 
selecting a smaller number for mating to specific sires, 
and by screening very large numbers of bull calves with 
the markers to increase the selection intensity greatly. 
Physiologically, bulls are able to breed from 1 yr of age, 
so the potential exists to reduce the generation interval 
further still. However, mating 1-yr-old bulls to a small 
number of cows to check for congenital defects before 
widespread use when the bulls reach 2 yr of age is one 
way in which the technology is being implemented in 
practice (Harris et al., 2008).

The above description considers the selection of young 
bulls only and ignores the benefits that can be made 
from implementing genomic selection on the maternal 
side. Schaeffer (2006) demonstrated that large genetic 
gains could be made by genotyping potential dams of 
young bulls and selecting these dams on their GEBV, 
as a result of the large increase in accuracy of select-
ing the dams. In fact, Schaeffer (2006) concluded that 
the genetic gain made from selecting dams of bulls on 
GEBV could be greater than the gains made by select-
ing the sires of bulls on GEBV.

Schaeffer (2006) further suggested that the effect of 
genomic selection may be to shift the structure of the 

dairy cattle breeding industry to a model similar to 
that used by the poultry and swine industries, in which 
companies maintain a nucleus of elite animals “within 
house.” A dispersed nucleus or preferential matings of 
cows identified as being elite are other alternatives.

Another effect of genomic selection may be a more 
appropriate balance in the direction of genetic gain. 
Currently in the dairy industry, large gains are made 
for production traits, whereas the gains in fertility are 
relatively small, in part because of the lower accuracy 
of fertility EBV (and also because production and fer-
tility are unfavorably correlated). Genomic selection 
could increase the accuracy of fertility EBV if sufficient 
records were taken in the initial experiment to estimate 
SNP effects, allowing a greater contribution of this trait 
to the total breeding objective. However, if small refer-
ence populations are used, the accuracy of selection on 
fertility will remain low.

The impact of genomic selection on inbreeding should 
be carefully considered. If the generation interval in the 
breeding program stays the same, genomic selection 
actually results in a lower rate of inbreeding than non-
marker BLUP selection using pedigree and phenotypic 
information, particularly for traits of low heritability 
(Daetwyler et al., 2007). Consider the selection of young 
bull calves to become part of a progeny test team. In the 
absence of genomic information, and because the young 
calves do not have any daughters, their breeding value 
is predicted as the average of the breeding value of their 
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Figure 2. Number of phenotypic records required to achieve a desired accuracy of genomic breeding value (GEBV), 0.5 or 0.7, given the 
heritability of the trait. Effective population size (Ne) = 1,000 and a normal distribution of QTL effects is assumed. Derived from the formula 
of Goddard (2008).



sire and dam. Two full sibs therefore receive the same 
breeding value, and if this is high enough, they will 
both be selected to form part of the progeny test team. 
If genomic information is available, the Mendelian sam-
pling term (the result of the sampling of the sire and 
dam alleles during gamete formation) is captured and 2 
full sibs receive different breeding values, and may not 
both be selected to form part of the team, which leads 
to a decrease in the rate of inbreeding.

However, if the generation interval of the breeding 
program is halved to take advantage of the accurate 
GEBV available at birth, the resulting increase in in-
breeding per year may be greater than the decrease 
from capturing the Mendelian sampling term. Given 
the low cost of genotyping, inbreeding could potentially 
be managed by screening a much larger number of se-
lection candidates for bull teams than has been done 
in the past. An effort could then be made to restrict 
the contribution of any one sire family to the selected 
bulls, such that inbreeding could be maintained at 
an acceptable level (e.g., Wray and Goddard, 1994). 
Potential bull dams could also be screened, and their 
relatedness with the potential sires could be assessed 
either through pedigree or through genomic relation-
ships from the markers.

Although it is outside the scope of this review, it is 
interesting to consider the impact of genomic selection 
in other species. In the pig, sheep (meat and wool), and 
poultry industries, a major impact of genomic selection 
is likely to be increased genetic gain for hard-to-select-
for traits. This would include traits such as disease re-
sistance in poultry and meat quality in pigs. Genomic 
selection can also be used to increase the efficiency of 
development of composite lines, which are often used in 
the pig and sheep industries (Piyasatian et al., 2006). 
Crosses between breeds will exhibit much greater levels 
of LD than within-breed populations. Piyasatian et al. 
(2006) demonstrated that the genetic merit of compos-
ite lines can be improved by using genomic selection 
to capture chromosome segments, with the largest ef-
fects from the contributing breeds, even with a sparse 
marker map.

CHALLENGES

Integration into National Evaluations

The increase in accuracy of breeding values from us-
ing genomic information is so large that, if genomic 
information is not incorporated in national evaluations 
of breeding value relatively quickly, these national 
evaluations may no longer be the primary source of 
EBV for selection in the future (Harris et al., 2008). 
This would be undesirable from an industry perspec-

tive, because rates of genetic gain across the industry 
could be compromised. Whether this occurs depends in 
on how rapidly the national evaluation services adapt 
their systems to include genomic information.

Combining pedigree, phenotype, and genomic infor-
mation to calculate GEBV on an industry-wide scale is 
a considerable challenge. One major difficulty is that 
the number of animals genotyped is likely to be small 
compared with the total number of animals in the da-
tabase. As described in Goddard and Hayes (2007), the 
most practical method for overcoming this problem may 
be to first calculate traditional EBV from phenotypes 
and pedigrees and GEBV from markers separately and 
then use a selection index to combine the 2 EBV on 
each animal into one final GEBV for use. This method 
is approximate but can be readily implemented.

A second possibility is to infer all marker genotypes 
for all animals and use these to calculate GEBV (God-
dard and Hayes, 2007). Although this strategy poses 
some computational challenges, the option is attractive 
because it circumvents problems arising from having 
different animals genotyped for different marker pan-
els, or from not having some animals genotyped at all. 
Provided the number of QTL is large, even if animals 
had no actual genotypes and all had inferred genotypes, 
based on pedigree, the inferred genotypes would sim-
ply replace the pedigree-derived relationship matrix in 
the calculation of EBV (Goddard and Hayes, 2007). A 
method that efficiently infers genotypes on large num-
bers of animals is required to implement this strategy.

As Harris et al. (2008) pointed out, incorporating 
genomic information into the international comparisons 
among proven sires, as currently calculated by Interbull, 
will be a very challenging task owing to different sets 
of SNP being used between and within countries, dif-
ferent prediction equations, and the presence of marker 
× environment interactions (e.g., Lillehammer et al., 
2008).

Long-Term Genetic Gain with Genomic Selection

Both Muir (2007) and Goddard (2008) concluded that 
the long-term gain from genomic selection could be less 
than from phenotypic selection or based on pedigree 
and phenotypes because of simulations or deterministic 
predictions, respectively. Two explanations were given:

 1.  The GEBV are based on predictions of SNP ef-
fects that are in LD with QTL, and selection 
changes the pattern of LD between the SNP and 
the QTL (Muir, 2007). If the LD is incomplete, 
fixing the marker will not fix the QTL, so after 
marker fixation, some of the QTL variance will 
not be captured by genomic selection. Pheno-
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typic- or BLUP-based selection does not suffer 
from this problem.

 2.  Phenotypic selection uses all QTL automatically, 
whereas genomic selection uses only markers 
that have been “discovered” or estimated to have 
an effect on the target trait (Goddard, 2008). In 
particular, QTL at low frequency may not be 
detected in the reference population.

Both Muir (2007) and Goddard (2008) proposed 
solutions to this problem. Muir (2007) suggested that 
a polygenic component be included in the GEBV to 
utilize some of the variance at QTL not captured by 
the SNP. This strategy has already been adopted by 
the Australian, US, and New Zealand efforts to apply 
genomic selection.

Goddard (2008) suggested a method to find the opti-
mal index to maximize the long-term selection response, 
an approach related to that suggested by Gibson (1994) 
for single QTL and a polygenic component. The re-
sulting index would vary the weight given to a marker 
according to its frequency so that markers for which 
the favorable allele has a low frequency receive more 
weight in the index. Another approach to capturing 
low-frequency QTL is to use marker haplotypes rather 
than single markers. Because of both SNP discovery 
methods and bias in SNP selection for SNP arrays, 
SNP with low minimum allele frequencies on SNP ar-
rays are uncommon. This creates a mismatch between 
the distribution of SNP allele frequencies and QTL 
allele frequencies. The mismatch results in low power 
to detect rare QTL alleles. The distribution of marker 
haplotype frequencies is more likely to match that of 
the QTL, so marker haplotypes may have greater power 
to detect QTL with low allele frequencies (Goddard, 
2008).

Both authors advocated continual reestimation of the 
prediction equations, implying continual collection of 
phenotypes and genotypes. This strategy would maxi-
mize the long-term response from genomic selection. 
The strategy has other advantages, such as capturing 
low-frequency QTL alleles and allowing prediction of 
pleiotropic effects of SNP between the traits currently 
recorded and new traits as they are measured.

Disentangling SNP in LD with QTL  
and SNP Tracking Relationship

Although dense SNP markers are a valuable tool for 
detecting and accurately positioning QTL, they also 
do very well in capturing and describing genetic re-
lationships (Habier et al., 2007). These relationships 
can be at the level of breed, sire, or complex pedigree 
(Pritchard et al., 2000; Hayes and Goddard, 2008). Un-

less these relationships are specifically accounted for in 
the model used to predict SNP effects in the reference 
population, some of the SNP will be attributed effects 
not because they are in LD with QTL, but because 
they explain part of the genetic relationships in the 
reference population. This is undesirable, because it is 
only the effect of SNP in LD with QTL that will persist 
across the population and across generations.

Habier et al. (2007) demonstrated that there are sub-
stantial differences in the persistence of accuracy across 
generations of GEBV according to which methodology 
is used to derive the prediction equations. For example, 
they found that the accuracy of GEBV when the 
SNP effects were predicted by BLUP decayed rapidly 
across generations if the SNP effects were not periodi-
cally reestimated, whereas the accuracy of GEBV when 
Bayesian methods were used to derive the prediction 
equations decayed more slowly. The BLUP method 
turns out to be particularly susceptible to allocating 
effects to SNP attributable to the relationship rather 
than because they are in LD with QTL. This is easy to 
understand when it is realized that genomic selection 
with BLUP, where a normal distribution of QTL effects 
is assumed, is exactly equivalent to estimating breed-
ing values with the normal BLUP equations, where 
the pedigree relationship matrix is replaced with the 
genomic relationship matrix derived from the SNP data 
(Goddard, 2008).

The obvious solution to this problem is to remove the 
effect of relationships by fitting a polygenic effect in 
the model where the SNP effects are estimated, where 
the polygenic effect has a variance-covariance structure 
given by the average relationship matrix. Another pos-
sibility is to use multiple breeds in the reference popu-
lation, because in this case, the SNP must be very close 
to QTL for the SNP to have an effect across multiple 
breeds, and so are less likely to be picking up relation-
ships (De Roos et al., 2008; provided the breed effect 
is fitted in the model). Finally, the accuracy of GEBV 
persists for more generations if the reference population 
consists of multiple generations of animals rather than 
a single generation, as demonstrated by Muir (2007).

Genomic Selection Across Breeds

Harris et al. (2008) reported that SNP estimates cal-
culated from a Holstein-Friesian reference population 
did not produce accurate GEBV in Jersey bulls, and 
vice versa. The correlations ranged from −0.1 to 0.3 
when the SNP effects from one breed were used to cal-
culate GEBV in another breed. Genomic selection relies 
on the phase of LD between markers and QTL being 
the same in the selection candidates as in the reference 
population. However, as the 2 populations diverge, this 
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is less and less likely to be the case, especially if the 
distance between markers and QTL is relatively large. 
An explanation for the across-breed results of Harris et 
al. (2008) is that the SNP are in LD with QTL within 
a breed, but the relationship does not hold across a 
breed. De Roos et al. (2008) analyzed the extent of LD 
within and between several beef and dairy breeds, and 
concluded that for breeds as divergent as the Holstein 
and Jersey, at least 300,000 SNP would be required 
so that markers could be discovered that would work 
across breeds. The optimal composition of reference 
populations when the prediction equations are going 
to be used across multiple breeds is an area requiring 
further research, but early indications are that if the 
reference population includes at least some individuals 
from all target breeds, the accuracy of GEBV in these 
breeds is greatly improved (De Roos et al., 2008; Harris 
et al., 2008).

The above discussion does assume that the effect of 
QTL alleles is similar in different breeds and popula-
tions. For some QTL that have been traced to known 
mutations, the alleles do act reasonably similarly in dif-
ferent breeds and populations. For example, the A allele 
of the DGAT1 gene results in increased fat yield and 
reduced protein yield and milk volume in New Zealand 
Holstein-Friesians, Jerseys, and Ayshires (Spelman et 
al., 2002). Although the size of the effects is consistent 
for protein and milk volume in the Holstein-Friesian and 
Jersey breeds, the size of the fat response in Holstein-
Friesians is nearly double that for Jerseys (Spelman et 
al., 2002). Another problem is that we have assumed 
that the same mutations affecting production traits are 
polymorphic in different breeds. This is true for some 
well-characterized mutations, such as the K232A mu-
tation in DGAT1, which is polymorphic in Holsteins, 
Jerseys, and Aryshires (Spelman et al., 2002). Other 
mutations, such as some of the functional mutations in 
the myostatin gene, appear to be breed specific (Dunner 
et al., 2003). One solution would be to use a multibreed 
reference population, so that all the genetic variants 
are captured. The genotype × environment interaction 
may also reduce the accuracy of predicted GEBV when 
the chromosome segment effects are estimated from 
animals in another population.

Nonadditive Effects

Although GEBV as selection criteria by definition 
should include only additive effects (genetic merit that 
is passed from one generation to the next), in some 
cases it may be desirable to predict phenotypes, for ex-
ample, for allocation of cows to different management 
regimens. In this case, the accuracy of predicting the 
phenotype could potentially be improved by including 

dominance and epistatic effects, depending on the pro-
portion of total genetic variance these effects explain. 
Xu and Jia (2007) extended a single-marker Bayesian 
approach similar to the one described above to account 
for dominance and epistatic effects, and demonstrated 
that these effects could be estimated with reasonable 
precision in simulated data. Gianola et al. (2006) pre-
sented semiparametric procedures for genomic selection, 
which allowed them to estimate interactions between 
potentially hundreds of thousands of markers.

CONCLUSIONS AND IMPLICATIONS

Genomic selection looks set to be the technology that 
has delivered the largest increase in the rate of genetic 
gain for the dairy industry in the past 20 yr. Genomic 
selection is underway in at least 4 dairy breeding pro-
grams around the world. The increase in reliabilities 
of GEBV over EBV for bull calves with no daughter 
records is impressive, ranging from 2 to 20%. The in-
crease in reliability of GEBV is being used in 2 ways by 
bull-breeding companies. In some cases, larger numbers 
of bull calves are being screened to select a smaller 
number of calves to go onto progeny testing, which 
reduces the cost of the breeding program and results in 
some extra genetic gain. Other companies are market-
ing teams of young bulls based on their GEBV alone 
as soon as they are reproductively able, which should 
result in large increases in genetic gain as a result of 
reducing the generation interval.

Considerable challenges and opportunities remain in 
implementing genomic selection, including adaptation 
of national genetic evaluations to include genomic in-
formation, genomic selection across breeds, managing 
long-term gain and inbreeding with genomic selection, 
and computational challenges (e.g., Legarra and Misz-
tal, 2008; Tsuruta and Misztal, 2008). These are excit-
ing topics for further research.

ACKNOWLEDGMENTS

The authors are grateful to Curt van Tassell and Tad 
Sonstegard from the USDA for providing genotypes of 
Australian bulls, under a collaborative agreement be-
tween USDA and Department of Primary Industries 
Victoria. The authors also thank Jennie Pryce and 
Sander De Roos for comments on the manuscript.

REFERENCES

Boichard, D., S. Fritz, M. N. Rossignol, M. Y. Boscher, A. Malafosse, 
and J. J. Colleau. 2002. Implementation of marker-assisted selection 
in French dairy cattle. Electronic commun. 22-03 in Proc. 7th 
World Congr. Genet. Appl. Livest. Prod., Montpellier, France.

Journal of Dairy Science Vol. 92 No. 2, 2009

HAYES ET AL.442



Calus, M. P., T. H. Meuwissen, A. P. de Roos, and R. F. Veerkamp. 
2008. Accuracy of genomic selection using different methods to 
define haplotypes.  Genetics  178:553–561.

Daetwyler, H. D., B. Villanueva, P. Bijma, and J. A. Woolliams. 2007. 
Inbreeding in genome-wide selection.  J. Anim. Breed. Genet.  
124:369–376.

De Roos, A. P. W., B. J. Hayes, R. Spelman, and M. E. Goddard. 
2008. Linkage disequilibrium and persistence of phase in Holstein 
Friesian, Jersey and Angus cattle.  Genetics  179:1503–1512.

Dunner, S., M. E. Miranda, Y. Amigues, J. Cañón, M. Georges, R. 
Hanset, J. Williams, and F. Ménissier. 2003. Haplotype diversity 
of the myostatin gene among beef cattle breeds.  Genet. Sel. Evol.  
35:103–118.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani. 2004. Least 
angle regression.  Ann. Statist.  32:407–499.

Gianola, D., R. L. Fernando, and A. Stella. 2006. Genomic-assisted 
prediction of genetic value with semiparametric procedures.  
Genetics  173:1761–1776.

Gibson, J. P. 1994. Short-term gain at the expense of long-term 
response with selection of identified loci. Proc. 5th World Congr. 
Genet. Appl. Livest. Prod. 21:202–204.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, S. J. Welham, and R. 
Thompson. 2002. ASReml User Guide Release 1.0. VSN 
International Ltd., Hemel Hempstead, UK.

Goddard, M. E. 1991. Mapping genes for quantitative traits using 
linkage disequilibrium.  Genet. Sel. Evol.  23(Suppl.):131s–134s.

Goddard, M. E. 2008. Genomic selection: Prediction of accuracy 
and maximisation of long term response.  Genetica  doi:10.1007/
s10709-008-9308-0.

Goddard, M. E., and B. J. Hayes. 2007. Genomic selection.  J. Anim. 
Breed. Genet.  124:323–330.

Grisart, B., F. Farnir, L. Karim, N. Cambisano, J.-J. Kim, A. Kvasz, 
M. Mni, P. Simon, J.-M. Frère, W. Coppieters, and M. Georges. 
2004. Genetic and functional confirmation of the causality of the 
DGAT1 K232A quantitative trait nucleotide in affecting milk yield 
and composition.  Proc. Natl. Acad. Sci. USA  24:2398–2403.

Habier, D., R. L. Fernando, and J. C. Dekkers. 2007. The impact 
of genetic relationship information on genome-assisted breeding 
values.  Genetics  177:2389–2397.

Harris, B. L., D. L. Johnson, and R. J. Spelman. 2008. Genomic 
selection in New Zealand and the implications for national genetic 
evaluation. Proc. Interbull Meeting, Niagara Falls, Canada.

Hayes, B. J., and M. E. Goddard. 2001. The distribution of the effects 
of genes affecting quantitative traits in livestock.  Genet. Sel. Evol.  
33:209–229.

Hayes, B. J., and M. E. Goddard. 2008. Technical note: Prediction 
of breeding values using marker derived relationship matrices. J. 
Anim. Sci. 86:2089–2092.

Hill, W. G. 1981. Estimation of effective population size from data on 
linkage disequilibrium.  Genet. Res.  38:209–216.

Legarra, A., and I. Misztal. 2008. Technical note: Computing strategies 
in genome-wide selection.  J. Dairy Sci.  91:360–366.

Lillehammer, M., M. E. Goddard, H. Nilsen, E. Sehested, H. G. Olsen, 
S. Lien, and T. H. E. Meuwissen. 2008. Quantitative trait locus-
by-environment interaction for milk yield traits on Bos taurus 
autosome 6.  Genetics  179:1539–1546.

Meuwissen, T. H., and M. E. Goddard. 2004. Mapping multiple QTL 
using linkage disequilibrium and linkage analysis information and 
multitrait data.  Genet. Sel. Evol.  36:261–279.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction 
of total genetic value using genome-wide dense marker maps.  
Genetics  157:1819–1829.

Muir, W. M. 2007. Comparison of genomic and traditional BLUP-
estimated breeding value accuracy and selection response under 
alternative trait and genomic parameters.  J. Anim. Breed. Genet.  
124:342–355.

Piyasatian, N., R. L. Fernando, and J. C. M. Dekkers. 2006. Genomic 
selection for composite line development using low density marker 
maps. Proc. 8th World. Congr. Genet. Appl. Livest Prod., Belo 
Horizonte, Brazil.

Pritchard, J. K., M. Stephens, N. A. Rosenberg, and P. Donnelly. 
2000. Association mapping in structured populations.  Am. J. 
Hum. Genet.  67:170–181.

Sanna, S., A. U. Jackson, R. Nagaraja, C. J. Willer, W. M. Chen, L. 
L. Bonnycastle, H. Shen, N. Timpson, G. Lettre, G. Usala, P. S. 
Chines, H. M. Stringham, L. J. Scott, M. Dei, S. Lai, G. Albai, L. 
Crisponi, S. Naitza, K. F. Doheny, E. W. Pugh, Y. Ben-Shlomo, 
S. Ebrahim, D. A. Lawlor, R. N. Bergman, R. M. Watanabe, M. 
Uda, J. Tuomilehto, J. Coresh, J. N. Hirschhorn, A. R. Shuldiner, 
D. Schlessinger, F. S. Collins, G. Davey Smith, E. Boerwinkle, 
A. Cao, M. Boehnke, G. R. Abecasis, and K. L. Mohlke. 2008. 
Common variants in the GDF5-UQCC region are associated with 
variation in human height.  Nat. Genet.  40:198–203.

Schaeffer, L. R. 2006. Strategy for applying genome-wide selection in 
dairy cattle.  J. Anim. Breed. Genet.  123:218–223.

Scheet, P., and M. A. Stephens. 2006. A fast and flexible statistical 
model for large-scale population genotype data: Applications to 
inferring missing genotypes and haplotypic phase.  Am. J. Hum. 
Genet.  78:629–644.

Shrimpton, A. E., and A. Robertson. 1988. The isolation of polygenic 
factors controlling bristle score in Drosophila melanogaster. II. 
Distribution of third chromosome bristle effects within chromosome 
sections.  Genetics  118:445–459.

Smith, C. 1967. Improvement of metric traits through specific genetic 
loci.  Anim. Prod.  9:349–358.

Soller, M., and J. S. Beckmann. 1983. Genetic polymorphism in 
variety identification and genetic improvement.  Theor. Appl. 
Genet.  67:25–33.

Spelman, R. J., C. A. Ford, P. McElhinney, G. C. Gregory, and R. 
G. Snell. 2002. Characterization of the DGAT1 gene in the New 
Zealand dairy population.  J. Dairy Sci.  85:3514–3517.

Tsuruta, S., and I. Misztal. 2008. Technical note: Computing options 
for genetic evaluation with a large number of genetic markers.  J. 
Anim. Sci.  86:1514–1518.

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, 
R. D. Schnabel, J. F. Taylor, and F. Schenkel. 2009. Invited review: 
Reliability of genomic predictions for North American Holstein 
bulls.  J. Dairy Sci.  92:16–24.

Wray, N. R., and M. E. Goddard. 1994. Increasing long term response 
to selection . Genet. Sel. Evol.  26:431–451.

Xu, S. 2003. Estimating polygenic effects using markers of the entire 
genome.  Genetics  163:789–801.

Xu, S., and Z. Jia. 2007. Genome-wide analysis of epistatic effects for 
quantitative traits in barley.  Genetics  175:1955–1963.

443INVITED REVIEW: GENOMIC SELECTION IN DAIRY CATTLE

Journal of Dairy Science Vol. 92 No. 2, 2009


	Invited review: Genomic selection in dairy cattle: Progress and challenges
	Introduction
	Accuracy of GEBV from Dairy Cattle Breeding Programs Around the World
	Results from Australia
	Results from New Zealand
	Results from the United States
	Results from the Netherlands
	Comparison of Results

	Increasing the Accuracy of Genomic Selection
	Optimizing Breeding Program Design with Genomic Selection
	Challenges
	Integration into National Evaluations
	Long-Term Genetic Gain with Genomic Selection
	Disentangling SNP in LD with QTL and SNP Tracking Relationship
	Genomic Selection Across Breeds
	Nonadditive Effects

	Conclusions and Implications
	Acknowledgments
	References


