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Starting from the moving average (MA) integral representation of fractional Brownian motion (FBM),

the class of fractional Lévy processes (FLPs) is introduced by replacing the Brownian motion by a

general Lévy process with zero mean, finite variance and no Brownian component. We present

different methods of constructing FLPs and study second-order and sample path properties. FLPs have

the same second-order structure as FBM and, depending on the Lévy measure, they are not always

semimartingales. We consider integrals with respect to FLPs and MA processes with the long memory

property. In particular, we show that the Lévy-driven MA process with fractionally integrated kernel

coincides with the MA process with the corresponding (not fractionally integrated) kernel and driven

by the corresponding FLP.
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1. Introduction

In this paper we consider fractional Lévy processes. The term ‘fractional Lévy process’

itself suggests that it can be regarded as a generalization of fractional Brownian motion

(FBM). Let us recall that FBM is the Gaussian stochastic process fBH (t)g t>0 satisfying

BH (0) ¼ 0, E[BH (t)] ¼ 0 for all t > 0, and

E[BH (t)BH (s)] ¼ 1
2
(jtj2 H � jt � sj2 H þ jsj2 H ) (1:1)

for all s, t > 0, where 0 , H , 1. The parameter H is also referred to as the Hurst

coefficient. FBM is the only self-similar Gaussian process with stationary increments. We can

define a parametric family of FBMs in terms of the stochastic Weyl integral (see Doukhan et

al. 2003: Part A; Samorodnitsky and Taqqu 1994: Section 7.2). For any a, b 2 R,

fBH (t)g t2R ¼d
ð
R

a [(t � s)
H�1=2
þ � (�s)

H�1=2
þ ]þ b[(t � s) H�1=2

� � (�s) H�1=2
� ]

n o
dB(s)

� �
t2R

,

(1:2)

where uþ ¼ max(u, 0), u� ¼ max(�u, 0) and fB(t)g t2R is a standard Brownian motion. If

H ¼ 1
2
, it is clear that fB1=2(t)g t2R ¼ fB(t)g t2R.
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If we choose a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ˆ(2H þ 1)sin(�H)
p

=ˆ(H þ 1
2
) and b ¼ 0 in (1.2) then fBH (t)g t2R is

an FBM satisfying (1.1).

In this paper we are interested in fractionally integrated processes. Therefore, we will

work with the fractional integration parameter d :¼ H � 1
2
2 (�0:5, 0:5) rather than the

Hurst parameter. Moreover, we restrict ourselves to 0 , d , 0:5 as we are interested in the

long memory case.

The integral representation of FBM was generalized to a fractional Lévy motion by

Benassi et al. (2004), who started with the so-called ‘well-balanced’ FBM with a ¼ b ¼ 1

in (1.2). Their approach is the basis of our definition of an FLP since, like them, we replace

the Brownian motion B in the moving average (MA) representation (1.2) by a two-sided

Lévy process. However, we will go into further detail and also consider integrals with

respect to FLPs. Furthermore, like Mandelbrot and Van Ness (1968) for FBM, we choose

a ¼ 1=ˆ(H þ 1
2
) ¼ 1=ˆ(d þ 1) and b ¼ 0 in (1.2). This choice will simplify calculations

when we apply our results to long memory MA processes. Long memory processes are

models in which the decay of the autocorrelations follows a power law:

Definition 1.1. Long memory process. Let X ¼ fX tg t2R be a stationary stochastic process

and ªX (h) ¼ cov(X tþh, X t), h 2 R, be its autocovariance function. If there exist

0 , d , 0:5 and a constant cª . 0 such that

lim
h!1

ªX (h)

h2d�1
¼ cª, (1:3)

then X is a stationary process with long memory.

The subject of long memory has sparked considerable research interest over the last few

years. A good survey of the present state of the art is Doukhan et al. (2003).

The rest of this paper is organized as follows. Section 2 contains the preliminaries. We

review elementary properties of Lévy processes in Section 2.1 and consider Lévy-driven

stochastic integrals in Section 2.2. In Section 3 we present different methods of constructing

an FLP. We introduce an L2 approach in Section 3.1, where an FLP is defined as an integral

with respect to a Poisson random measure. In Section 3.2 we obtain a continuous

modification of an FLP by showing that the integral is almost surely equal to an improper

Riemann integral. Furthermore, in Section 3.3 we construct FLPs using series representa-

tions for Lévy processes. Section 4 is devoted to the second-order and sample path

properties of FLPs. They have almost the same second-order structure as FBMs and have

stationary increments which exhibit long memory. Moreover, FLPs are Hölder continuous of

every order � , d and, for a broad class of Lévy processes, cannot be semimartingales.

Since any FLP has stationary increments and the long memory property, it is, like FBM, a

suitable model for driving noise in various applications. Therefore one needs to define

a stochastic calculus with respect to FLPs. However, since in general a FLP is not a

semimartingale, we cannot use the Itô calculus. In Section 5 we define integrals with

respect to FLPs and focus in Section 6 on MA processes with the long memory property.

Our main result of Section 6 states that the Lévy-driven long memory MA process with
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fractionally integrated kernel has a moving average integral representation where the

integrand is not fractionally integrated and the driving process is a FLP.

The following notation will be used throughout this paper. We denote the distribution

of the random variable X by L(X ). ¼d denotes equality in (all finite-dimensional)

distribution(s) and !L
2

denotes L2 convergence. Moreover, p-lim stands for the limit in

probability and d-lim is the limit in distribution for all finite-dimensional margins.

Furthermore, we set R0 :¼ Rnf0g and write a.s. if something holds almost surely. Finally,

we assume as given an underlying complete, filtered probability space (�, F , (F t) t>0, P)

with right continuous filtration (F t) t>0.

2. Preliminaries

2.1. Lévy processes

We state some elementary properties of Lévy processes that will be needed below. For a

more general treatment and proofs, we refer to Protter (2004) and Sato (1999).

Throughout this paper we consider a Lévy process L ¼ fL(t)g t>0 in R without Brownian

component. Like every Lévy process, L is determined by its characteristic function in the

Lévy–Khintchine form E[expfiuL(t)g] ¼ expftł(u)g, t > 0, where

ł(u) ¼ iªuþ
ð
R

(eiux � 1� iux1jxj<1)�(dx), u 2 R, (2:4)

where ª 2 R and � is a measure on R that satisfies

�(f0g) ¼ 0 and

ð
R

(jxj2 ^ 1)�(dx) ,1: (2:5)

The measure � is referred to as the Lévy measure of L. We always assume that �
additionally satisfies ð

jxj.1

jxj2�(dx) ,1: (2:6)

This is a necessary and sufficient condition (Sato 1999: Example 25.12) for L to have finite

mean and variance given by

var(L(t)) ¼ t var(L(1)) ¼ t

ð
R

x2�(dx), t > 0:

Furthermore, we restrict ourselves to the case where E[L(1)] ¼ 0. Then ª ¼ �
Ð
jxj.1

x�(dx)

and (2.4) reduces to

ł(u) ¼
ð
R

(eiux � 1� iux)�(dx), u 2 R: (2:7)

It is a well-known fact that with every cadlag Lévy process L on R one can associate a
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random measure J on R0 3 R describing the jumps of L. For any measurable set

B � R0 3 R, J (B) ¼ ]fs 2 R : (L(s)� L(s�), s) 2 Bg.
The jump measure J is a Poisson random measure on R0 3 R (see Cont and Tankov

2004: Definition 2.18) with intensity measure n(dx, ds) ¼ �(dx)ds. Then by the Lévy–Itô

decomposition we can rewrite L a.s. as

L(t) ¼
ð t

0

ð
R0

x ~JJ (dx, ds), t > 0: (2:8)

Here ~JJ (dx, ds) ¼ J (dx, ds)� �(dx)ds is the compensated jump measure of L. Moreover, L is

a martingale.

Throughout this paper we will work with a two-sided Lévy process L ¼ fL(t)g t2R
constructed by taking two independent copies fL1(t)g t>0, fL2(t)g t>0 of a one-sided Lévy

process and setting

L(t) ¼ L1(t), if t > 0,

�L2(�t�), if t , 0:

�
(2:9)

2.2. Stochastic integrals with respect to Lévy processes

In this section we consider the stochastic process X ¼ fX (t)g t2R in R given by

X (t) ¼
ð
R

f (t, s)L(ds), t 2 R, (2:10)

where f : R3 R! R is a measurable function and L ¼ fL(t)g t2R is a Lévy process without

Brownian component. We again stress that throughout this work we assume a two-sided Lévy

process L with zero mean and finite variance, that is, L can be represented as in (2.8)

together with (2.9).

It has been shown by Rajput and Rosinski (1989) that (2.10) is well defined as a limit in

probability of integrals of step functions approximating f under specified conditions. These

conditions are formulated in terms of the kernel function f and the generating triplet

(ª, � 2, �) of the driving Lévy process. In particular, if L can be represented by (2.8), the

process X can be rewritten as

X (t) ¼
ð
R3R0

f (t, s)x ~JJ (dx, ds), t 2 R, (2:11)

where ~JJ (dx, ds) ¼ J (dx, ds)� �(dx) ds is the compensated jump measure of L. Then a

necessary and sufficient condition for the existence of the stochastic integral (2.11) is thatð
R

ð
R0

(j f (t, s)xj2 ^ j f (t, s)xj) �(dx) ds ,1, for all t 2 R: (2:12)

If (2.12) holds, the integral (2.11) may be defined as a limit in probability of elementary

integrals
Ð
R

Ð
R0

f n(t, s)x ~JJ (dx, ds), where the f n are bounded with compact support such that

j f nj < j f j and f n ! f . Observe that the integral is independent of the choice of

approximating functions f n (Kallenberg 1997: Theorem 10.5).
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Moreover, the law of X (t) is for all t 2 R infinitely divisible with characteristic function

(Rajput and Rosinski 1989)

E[expfiuX (t)g] ¼ exp

ð
R

ð
R

(eiuf ( t,s)x � 1� iuf (t, s)x)�(dx)ds

� �
, u 2 R: (2:13)

The following proposition shows that the integral (2.10) or (2.11) may be well defined in

an L2 sense.

Proposition 2.1. If f (t, �) 2 L2(R), the stochastic integral (2.11), and hence (2.10), exists as

an L2(�, P) limit of approximating step functions and does not depend on the choice of the

approximating sequence. Moreover,

E[X (t)2] ¼ E[L(1)2]k f (t, �)k2
L2(R), t 2 R: (2:14)

Proof. Applying Rajput and Rosinski (1989: Theorem 3.3), it follows that (2.10) is well

defined and Ej
Ð

f dLj2 ,1 if and only ifð
R

f (t, s)ªþ
ð
R

f (t, s)x[1fj f ( t,s)xj<1g � 1fjxj<1g]�(dx)þ
ð
R

( f (t, s)x)2�(dx)

� �
ds ,1: (2:15)

Since we have ª ¼ �
Ð
jxj.1

x �(dx), (2.15) is implied byð
R

ð
R

f (t, s)x1fj f ( t,s)xj.1g �(dx) dsþ
ð
R

ð
R

( f (t, s)x)2 �(dx) ds

< 2

ð
R

ð
R

f 2(t, s)x2 �(dx) ds ¼ 2E[L(1)2]k f (t, �)k2
L2(R) ,1:

It follows from Rajput and Rosinski (1989: Theorem 3.4) that the mapping f !
Ð
R

f dL is an

isomorphism from L2(R) to L2(�, P). To prove (2.14) we consider, for fixed t 2 R, step

functions

f n(t, s) ¼
Xn�1

k¼0

ak1(sk ,s kþ1](s),

where a0, . . . an�1 2 R, n 2 N and �1 , s0 , . . . , sn ,1. Then we defineð
R

f n(t, s) L(ds) ¼
Xn�1

k¼0

ak(L(skþ1)� L(sk)):

It is easy to check that

E

ð
R

f n(t, s) L(ds)

� �2

¼ E

ð
R

f 2
n(t, s)d[L, L]s

� �
¼
ð
R

ð
R

f 2
n(t, s)x2 �(dx)ds

¼ E[L(1)2]k f n(t, �)k2
L2(R):
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This isometry property is preserved when we approximate f (t, �) by a sequence of step

functions ( f n(t, �)) satisfying f n �!
L2

f (observe that the step functions are dense in L2(R)).

h

3. Construction of fractional Lévy processes

3.1. The L2 approach

We are now in a position to introduce a fractional Lévy process (FLP) as a natural

counterpart to FBM. Based on the MA representation (1.2) of FBM we define an FLP as

follows.

Definition 3.1 Fractional Lévy process. Let L ¼ fL(t)g t2R be a two-sided Lévy process on R

with E[L(1)] ¼ 0, E[L(1)2] ,1 and without Brownian component. For fractional integration

parameter 0 , d , 0:5, a stochastic process

M d(t) ¼ 1

ˆ(d þ 1)

ð1
�1

[(t � s)d
þ � (�s)d

þ]L(ds), t 2 R, (3:16)

is called a fractional Lévy process.

Remark 3.1. The general Lévy–Itô representation (Sato 1999: Theorem 19.2) guarantees that

every Lévy process can be decomposed into a linear term, a Brownian and a jump component

which is independent of the Brownian part. However, the Brownian part induces an FBM

which has already been extensively studied (Doukhan et al. 2003; Samorodnitsky and Taqqu

1994). Therefore we have assumed a Lévy process without Brownian component.

Before we take a closer look at the integral (3.16), we summarize the following two

important properties of the kernel function

f t(s) :¼ 1

ˆ(1þ d)
[(t � s)d

þ � (�s)d
þ], s 2 R, (3:17)

that can be shown by simple calculus.

Proposition 3.1. For 0 , d , 0:5 and for each t 2 R, the kernel function (3.17) is bounded.

Moreover, f t 2 L p(R) for p . (1� d)�1. In particular, f t 2 L2(R) but f t =2 L1(R) for t 6¼ 0.

Proposition 3.2. The function t 7! (t � s)d
þ � (�s)d

þ is locally Hölder continuous of every

order � < d, and for an order � . d it is not Hölder continuous on any interval containing s.

Furthermore, the total variation is finite on compacts.

The following theorem makes precise the meaning of (3.16).

Theorem 3.3 Fractional Lévy process in L2 sense. Let L ¼ fL(t)g t2R be a Lévy process
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without Brownian component satisfying E[L(1)] ¼ 0, E[L(1)2] ,1 and ~JJ (ds, du)

¼ J (ds, du)� ds�(du) be the compensated jump measure of L. For t 2 R, let the kernel

function f t be defined as in (3.17). Then for every t 2 R, M d(t) ¼
Ð
R

f t(s) L(ds) exists as an

L2(�, P) limit of approximating step functions in the sense that

M d(t) ¼
ð
R03R

f t(s)x ~JJ (dx, ds), t 2 R: (3:18)

Moreover, for all t 2 R, the distribution of M d(t) is infinitely divisible and

E[M d(t)]2 ¼ k f tk2
L2(R)E[L(1)2], t 2 R: (3:19)

Let u1, . . . , um 2 R, �1 , t1 , . . . , tm ,1 and m 2 N. Then the finite-dimensional

distributions of the process M d have the characteristic functions

E[expfiu1 M d(t1) þ . . . þ ium M d(tm)g] ¼ exp

ð
R

ł
Xm

j¼1

u j f t j
(s)

 !
ds

( )
, (3:20)

where ł is given as in (2.7).

Proof. The assertions are direct consequences of the results of Section 2.2, since f t 2 L2(R).

Equation (3.20) follows from (2.13) when we write

Xm

j¼1

u j M d(t j) ¼
Xm

j¼1

u j

ð
R

f t j
(s) L(ds) ¼

ð
R

Xm

j¼1

u j f t j
(s) L(ds):

h

Remark 3.2. As a consequence of (3.20) the generating triplet of M d(t) is (ª t
M , 0, � t

M ),

where

ª t
M ¼ �

ð
R

ð
R

f t(s)x1fj f t(s)xj.1g �(dx) ds

and

� t
M (B) ¼

ð
R

ð
R

1B( f t(s)x) �(dx) ds, B 2 B(R): (3:21)

We have seen that (3.16) can be understood as L2 limit and we can now apply the

Kolmogorov–Centsov theorem to obtain a continuous modification of fM d(t)g t2R (see

Theorem 4.3(i) below). However, we can also show that fM d(t)g t2R has a continuous

modification by proving in the following section that M d(t) is a.s. equal to an improper

Riemann integral for all t 2 R.

3.2. The improper Riemann integral

We give here a pathwise construction of an FLP as an improper Riemann integral.
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Theorem 3.4. Let L ¼ fL(t)g t2R be a Lévy process without Brownian component satisfying

E[L(1)] ¼ 0 and E[L(1)2] ,1. For t 2 R, define the kernel function f t as in (3.17). Then

for all t 2 R, M d(t) ¼
Ð
R

f t(s) L(ds) has a modification which is equal to the improper

Riemann integral

M d(t) ¼ 1

ˆ(d)

ð
R

[(t � s)d�1
þ � (�s)d�1

þ ] L(s) ds, t 2 R: (3:22)

Moreover, (3.22) is continuous in t.

Proof. We assume t . 0; for t < 0 the proof is analogous. For a Lévy process L on R that

satisfies E[L(1)] ¼ 0 and E[L(1)2] ,1 we have a generalization of the law of the iterated

logarithm of random walks (Sato 1999: Proposition 48.9), that is,

lim sup
t!1

jL(t)j
(2t log log t)1=2

¼ (E[L(1)2])1=2 a:s:

Moreover, (t � s)d � (�s)d � td(�s)d�1 as s! �1, and therefore

lim
s!�1

L(s)[(t � s)d � (�s)d] ¼ 0 a:s:

If g is a continuously differentiable function on [a, b] � R it is always possible to use

the integration by parts formula to define
Ð b

a
g(s) L(ds) as a Riemann integral byð

[a,b]

g(s) L(ds) ¼ g(b)L(b)� g(a)L(a)�
ð

[a,b]

L(s)dg(s) (3:23)

(see Eberlein and Raible 1999: Lemma 2.1). Since we have

M d(t) ¼ 1

ˆ(d þ 1)
lim

a!�1

ð
[a,0]

[(t � s)d � (�s)d] L(ds)þ 1

ˆ(d þ 1)

ð
[0, t]

(t � s)d L(ds),

it follows by (3.23) that

M d(t) ¼ 1

ˆ(d)

ð
[0, t]

(t � s)d�1 L(s) ds� 1

ˆ(d þ 1)
lim

a!�1
fL(a)[(t � a)d � (�a)d]g

þ 1

ˆ(d þ 1)
lim

a!�1
d

ð
[a,0]

[(t � s)d�1 � (�s)d�1] L(s) ds

� �

¼ 1

ˆ(d)

ð
R

[(t � s)d�1
þ � (�s)d�1

þ ] L(s) ds, t 2 R:

To show that (3.22) is continuous in t we define, for t . 0, gt(s) ¼ (t � s)d�1 L(s)1[0, t](s),

s 2 R. Then, for all T . 0, the family fgtg t2[0,T ] is uniformly integrable with respect to the

Lebesgue measure and the continuity of
Ð t

0
(t � s)d�1 L(s) ds follows from Theorem 5, Section

II.6 of Shiryaev (1996). Furthermore, by Lebesgue’s dominated convergence theorem,Ð 0

�1[(t � s)d�1 � (�s)d�1] L(s) ds is continuous in t. h
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3.3. Series representations of fractional Lévy processes

The results in this section are based on the series representation of Lévy processes

summarized in Rosinski (2001).

Theorem 3.5. Let L ¼ fL(t)g t2R be a Lévy process without Brownian component satisfying

E[L(1)] ¼ 0 and E[L(1)2] ,1, and, for t 2 R, define the kernel function f t as in (3.17).

Suppose the Lévy measure � of L is symmetric. Set � (s) ¼ inffx . 0 : �((x, 1)) < sg,
s . 0, the right continuous inverse of x 7! �((x, 1)). Let ¸ be an arbitrary probability

measure on R with nowhere vanishing density r. Moreover, let fTigi¼1,2,... and fUigi¼1,2,... be

independent sequences of random variables, such that fTigi¼1,2,... is a sequence of

independent indentically distributed (i.i.d.) standard exponential random variables and

fUigi¼1,2... is a sequence of i.i.d. random variables with distribution ¸. Put �0 ¼ 0 and

�i ¼
Pi

j¼1T j, i ¼ 1, 2, . . . . Furthermore, let f�igi¼1,2... be an i.i.d. sequence of random

variables with P(�i ¼ �1) ¼ P(�i ¼ 1) ¼ 1
2
. Then, for every t 2 R, the series

X (t) ¼
X1
i¼1

�i�
 (�ir(Ui)) f t(Ui) (3:24)

converges a.s. and

fM d(t)g t2R ¼
d fX (t)g t2R: (3:25)

Proof. As � is symmetric, we have

E[eiuM d ( t)] ¼ exp

ð
R

ð
R

eiuxf t(s) � 1� iuxf t(s)
� �

�(dx) ds

� �

¼ exp 2

ð
R

ð1
0

[cos(uxf t(s))� 1] �(dx) ds

� �
:

Therefore, the assertion is an immediate consequence of Rosinski (1989: Proposition 2). h

If � is not symmetric we obtain a similar result by taking into account the left continuous

inverse of �.

Theorem 3.6. Let L ¼ fL(t)g t2R be a Lévy process without Brownian component satisfying

E[L(1)] ¼ 0 and E[L(1)2] ,1. Set � (s) ¼ inffx . 0 : �((x, 1)) < sg, s . 0, and

�!(s) ¼ supfx , 0 : �((�1, x)) < sg, s . 0, the right and left continuous inverse of �,

respectively. Define ¸ and the sequences fTig, fUig and f�ig as in Theorem 3.5. Then for

every t 2 R the series

X (t) ¼
X1
i¼1

� (�ir(Ui))þ �!(�ir(Ui))½ � f t(Ui)� Ct(�i)f g (3:26)

converges a.s., where
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Ct(�i) ¼
ð
R

ð�i

�i�1

[� (�r(u))þ �!(�r(u))] f t(u)d� r(u) du:

Moreover, fM d(t)g t2R ¼
d fX (t)g t2R.

Proof. X (t) in (3.26) is a generalized shot noise series which converges a.s. if we show that,

for B 2 B(R),

Gt(B) :¼
ð
R

ð1
0

1fBnf0gg(H t(�, u))d�¸(du) ¼
ð
R

ð1
0

1fBnf0gg(H t(�, u)) d� r(u) du

defines a Lévy measure, where

H t(�, u) ¼ [� (�r(u))þ �!(�r(u))] f t(u), � . 0, t, u 2 R

(see Rosinski (1990: Theorem 2.4). Observe that, for every x > 0, u 2 R,

Leb(f� . 0 : � (�r(u)) . xg) ¼ Leb(f� . 0 : � (�) . xg)=r(u) ¼ �((x, 1))=r(u)

and thus ð
R

ð1
0

1fBnf0gg(�
 (�r(u)) f t(u)) d� r(u) du ¼

ð
R

ð1
0

1fBnf0gg(xf t(u)) �(dx) du:

Analogously, for every x < 0 and u 2 R,

Leb(f� . 0 : �!(�r(u)) , xg) ¼ �((�1, x))=r(u),

which yieldsð
R

ð1
0

1fBnf0gg(�
!(�r(u)) f t(u)) d� r(u) du ¼

ð
R

ð0

�1
1fBnf0gg(xf t(u)) �(dx) du:

Therefore,

Gt(B) ¼
ð
R

ð
R

1fBnf0gg(xf t(u)) �(dx) du:

From (3.21) it follows that Gt ¼ � t
M is the Lévy measure of an infinitely divisible

random variable. Furthermore, it follows from Theorem 3.1(iii) in Rosinski (1990) and its

proof that X (t) has characteristic function given by

E[eiuX ( t)] ¼ exp

ð
R

ð
R

[eiuf t(s)x � 1� iuf t(s)x] �(dx) ds

� �
,

that is, X (t) ¼d M d(t). Finally, repeating the same arguments for
Pm

j¼1w j H t j
(�, u), where

m 2 N, t1, . . . , tm 2 R and w1, . . . , wm 2 R, we obtain that the finite-dimensional

distributions of X are identical to those of M d . h

The series representation (3.25) can be used for simulations of FLPs. Of course, for

practical simulations the series must be truncated. However, simulation from it is not so

easy since the inverse of the tail mass of the Lévy measure is rarely known in closed form.

1108 T. Marquardt



An alternative generalized shot noise representation for fractional fields has recently been

developed by Cohen et al. (2005).

4. Second-order and sample path properties

As the isometry property (3.19) of an FLP is the same as that of an FBM, it is obvious that

up to a constant FLPs have the same second-order structure as for FBM. Therefore, we

omit the proofs of the following two theorems.

Theorem 4.1 Autocovariance function. For s, t 2 R, the autocovariance function of an FLP

M d ¼ fM d(t)g t2R is given by

cov(M d(t), M d(s)) ¼ E[L(1)2]

2ˆ(2d þ 2)sin(�[d þ 1
2
])
jtj2dþ1 � jt � sj2dþ1 þ jsj2dþ1
� �

: (4:27)

Theorem 4.2 Covariance between two increments. Let h . 0 and the FLP M d be given as

in (3.18). The covariance between two increments M d(t þ h)� M d(t) and M d(sþ h)

� M d(s), where sþ h < t and t � s ¼ nh, is

�d(n) ¼ E[L(1)2]

2ˆ(2d þ 2)sin(�[d þ 1
2
])

h2dþ1 (nþ 1)2dþ1 þ (n� 1)2dþ1 � 2n2dþ1
� �

¼ E[L(1)2]d(2d þ 1)

ˆ(2d þ 2)sin(�[d þ 1
2
])

h2dþ1 n2d�1 þ O(n2d�2), n!1: (4:28)

Remark 4.1. As a consequence of (4.28), the increments of an FLP exhibit long memory in

the sense of Definition 1.1. It is this long memory property that allows us in Section 5 to

construct long memory MA processes without a fractional integration of the kernel.

We also note that for a martingale X with zero expectation the covariance function must

be identically zero, since

cov(X (h)� X (h� 1), X (hþ n)� X (hþ n� 1))

¼ E[(X (h)� X (h� 1))E[X (hþ n)� X (hþ n� 1) j F hþn�1]] ¼ 0:

This shows that M d cannot be a martingale. We will prove later that, for a fairly large class

of Lévy processes, M d is not a semimartingale either.

We now consider sample path properties of FLPs.

Theorem 4.3 Sample path properties. Let M d ¼ fM d(t)g t2R be a FLP.

(i) Hölder continuity. For every � , d there exists a continuous modification of M d

and there exist an a.s. positive random variable HE and a constant � . 0 such

that
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P ø 2 � : sup
0,h,HE(ø)

M d(t þ h, ø)� M d(t, ø)

h�

� 	
< �

" #
¼ 1:

This means that the sample paths of FLPs are a.s. locally Hölder continuous of

any order � , d. Moreover, for every modificaton of M d and for every � . d,

P(fø 2 � : M d( � , ø) =2 C�[a, b]g) . 0, where C�[a, b] is the space of Hölder

continuous functions on [a, b]. Furthermore, if �(R) ¼ 1 then P(fø 2 � :

M d( � , ø) =2 C�[a, b]g) ¼ 1.

(ii) Stationary increments. M d is a process with stationary increments.

(iii) Symmetry. fM d(�t)g t2R ¼
d f�M d(t)g t2R.

Proof. (i) The first assertion follows directly from (4.27) and an application of the

Kolmogorov–Centsov theorem (Loève 1960: 519). Furthermore, from Proposition 3.2 we

know that t 7! (t � s)d
þ � (�s)d

þ =2 C�[a, b] for every � . d. Therefore, the proof of the

second part is analogous to the proof of Proposition 3.3 in Benassi et al. (2004).

(ii) For any s, t 2 R , s , t, we have

M d(t)� M d(s) ¼ 1

ˆ(d þ 1)

ð
R

[(t � u)d
þ � (s� u)d

þ] L(du)

¼d 1

ˆ(d þ 1)

ð
R

[(t � s� v)d
þ � (�v)d

þ] L(dv) ¼ M d(t � s),

where equality in distribution follows from the stationarity of the increments of L.

(iii) M d(�t) ¼ M d(�t)� M d(0) ¼d M d(0)� M d(t) ¼ �M d(t). h

Theorem 4.4 Self-similarity. An FLP M d cannot be self-similar.

Proof. Assume that M d is self-similar with index H 2 [0:5, 1). Then we have, for all c . 0,

fM d(ct)g t2R ¼
d

c HfM d(t)g t2R: (4:29)

The generating triplet of M d(t) is (ª t
M , 0, � t

M ) (see (3.21)). Define, for r . 0, the

transformation Tr of measures � on R by (T r�)(B) ¼ �(r�1 B), B 2 B(R). Then the Lévy

measure of c�H M d(ct) is given by c(Tb� t
M ) with b ¼ cd�H . Therefore, if M d is self-

similar, by the uniqueness of the generating triplet � t
M ¼ b�1=( H�d)(Tb� t

M ), for all b . 0.

Then by Sato (1999: Theorem 14.3(ii)) and its proof it follows that 1=(H � d) , 2 and that

� t
M is the Lévy measure of an Æ-stable process with Æ ¼ 1=(H � d). Hence,

E[M d(t)2] ¼ 1, contradicting (4.27). h

Remark 4.2. For a fractional stable process to be well defined one has to choose a different

kernel function. If L is Æ-stable a possible choice is f t(s) ¼ jt � sjH�1=Æ � jsjH�1=Æ, where

H is the Hurst parameter and Æ denotes the index of stability (see Samorodnitsky and Taqqu

1994: Section 7.4).
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Theorem 4.5. For 1 , Æ , 2 define the parameter ~HH by ~HH ¼ d þ 1=Æ such that 0 , ~HH , 1.

Assume that �(dx) ¼ g(x) dx, where g : R! Rþ is measurable and satisfies

g(x) � jxj�1�Æ, x! 0,

g(x) < Cjxj�1�Æ, for all x 2 R, (4:30)

with a constant C . 0. Then M d is locally self-similar with parameter ~HH, that is, for every

fixed t 2 R,

d-lim
E#0

M d(t þ Ex)� M d(t)

E ~HH

� �
x2R
¼d fY ~HH (x)gx2R: (4:31)

Here Y ~HH is a linear fractional stable motion with representation

Y ~HH (t) ¼ 1

ˆ(d)

ð
R

[(t � s)
~HH�1=Æ
þ � (�s)

~HH�1=Æ
þ ] LÆ(ds),

where LÆ is a symmetric Æ-stable Lévy process (Samorodnitsky and Taqqu 1994).

Proof. Since M d has stationary increments it is enough to show the convergence for t ¼ 0.

For u1, . . . , un 2 R, �1 , t1 , . . . , t n ,1 and n 2 N, we have by (3.20),

log E exp i
Xn

k¼1

uk

M d(Et k)

E ~HH

( )" #

¼
ð
R

ð
R

exp ix
Xn

k¼1

uk

f E t k
(s)

E ~HH

( )
� 1� ix

Xn

k¼1

uk

f E t k
(s)

E ~HH

" #
�(dx) ds

¼Ev¼s

ð
R

ð
R

exp ixEd� ~HH
Xn

k¼1

uk f t k
(v)

( )
� 1� ixEd� ~HH

Xn

k¼1

uk f t k
(v)

" #
E �(dx) dv

¼Ed� ~HH x¼ y
ð
R

ð
R

exp iy
Xn

k¼1

uk f t k
(v)

( )
� 1� iy

Xn

k¼1

uk f t k
(v)

" #
E �(E ~HH�ddy) dv:

For any y 6¼ 0, the asymptotic behaviour of g yields

E�(E ~HH�d dy) ¼ Eg(E ~HH�d y)E ~HH�d dy � E ~HH�dþ1jE ~HH�d yj�1�Æ dy ¼ jyj�1�Æ dy, E! 0,

which is the Lévy measure of a symmetric Æ-stable Lévy process. By (4.30) we have

jGEj < F for all E . 0, where

GE(y, v) ¼ exp iy
Xn

k¼1

uk f t k
(v)

( )
� 1� iy

Xn

k¼1

uk f t k
(v)

" #
Eg(E ~HH�d y)E ~HH�d

and
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F(y, v) ¼




exp iy

Xn

k¼1

uk f t k
(v)

( )
� 1� iy

Xn

k¼1

uk f t k
(v)





Cjyj�1�Æ:

It can be shown that F 2 L1(R2). Hence, it follows, by dominated convergence,

lim
E#0

log E exp i
Xn

k¼1

uk

M d(Et k)

E ~HH

( )" #

¼
ð
R

ð
R

exp iy
Xn

k¼1

uk f t k
(v)

( )
� 1� iy

Xn

k¼1

uk f t k
(v)

" #
jyj�1�Æ dy dv

¼
ð
R

ð1
0

2 cos y
Xn

k¼1

uk f t k
(v)

 !
� 2

" #
jyj�1�Æ dy dv

¼
ð
R

ð1
0

[2 cos(x)� 2]





Xn

k¼1

uk f t k
(v)






Æ

dx

x1þÆ dv ¼ C(Æ)

ð
R





Xn

k¼1

uk f t k
(v)






Æ

dv,

where

C(Æ) ¼ 2

ð1
0

[cos(x)� 1]
dx

x1þÆ :

Since

log E exp i
Xn

k¼1

uk Y ~HH (Et k)

( )" #
¼ C(Æ)

ð
R





Xn

k¼1

uk f t k
(v)






Æ

dv

(see Samorodnitsky and Taqqu 1994: 114), the proof is complete. h

In the following let Var[a,b](M d) denote the total variation of the sample paths of M d on

the interval [a, b] � R.

Theorem 4.6 Total variation. If � is given as in Theorem 4.5, the sample paths of M d are

a.s. of infinite total variation on compacts, that is Var[a,b](M d) ¼ 1 a.s. If �(R) ,1, they

are of finite total variation.

Proof. We know from (4.31) that

d-lim
h#0

M d(t � h)� M d(t)

h ~HH
¼d Y ~HH (�1):

Thus,

d-lim
h#0

jM d(t � h)� M d(t)j
jhj ~HH

¼d jY ~HH (�1)j . 0 a:s: (4:32)

As jY ~HH (�1)j . 0 a.s., it follows for all �9 � � with P(�9) . 0 that
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lim
h#0

E 1�9

jM d(t � h)� M d(t)j
jhj ~HH

� �
. 0: (4:33)

In fact, let �9 � � with P(�9) . 0. Then lim�#0 P(jY ~HH (�1)j < �)! 0. Choose � . 0 small

enough such that � is a continuity point of the distribution function of jY ~HH (�1)j and

P(jY ~HH (�1)j < �) < P(�9)=4, which implies by (4.32) that

lim
h#0

P
jM d(t � h)� M d(t)j

jhj ~HH
< �

� 	
¼ P(jY ~HH (�1)j < �) <

P(�9)

4
:

Hence, there exists E t . 0 such that

P
jM d(t þ h)� M d(t)j

jhj ~HH
< �

� 	
<

P(�9)

2
for all h 6¼ 0, jhj < E t:

This yields

P �9 \ jM d(t þ h)� M d(t)j
jhj ~HH

< �

� �� 	
<

P(�9)

2
for all h 6¼ 0, jhj < E t,

and hence

P �9 \ jM d(t þ h)� M d(t)j
jhj ~HH

. �

� �� 	
>

P(�9)

2
for all h 6¼ 0, jhj < E t:

Therefore,

E 1�9

jM d(t þ h)� M d(t)j
jhj ~HH

� �

¼ E 1�9\fjM d ( tþh)�M d ( t)j=jhj ~HH<�g
jM d(t þ h)� M d(t)j

jhj ~HH

� �

þ E 1�9\fjM d ( tþh)�M d ( t)j=jhj ~HH.�g
jM d(t þ h)� M d(t)j

jhj ~HH

� �

> 0þ E 1�9\fjM d ( tþh)�M d ( t)j=jhj ~HH.�g�
h i

¼ � P �9 \ jM d(t þ h)� M d(t)j
jhj ~HH

. �

� �� 	

>
P(�9)

2
�, for all h 6¼ 0, jhj < E t:

This shows (4.33).

Now assume that P(Var[a,b](M d) ,1) . 0. Then there exist �9 � �, P(�9) . 0 and

K . 0 such that Var[a,b](M d) , K on �9. Hence,

E 1�9 Var[a,b](M d)
� �

< K: (4:34)

We obtain a contradiction as follows. For any sequence a < t0 , t1 , . . . , b, we have
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E 1�9Var[a,b](M d)
� �

> E 1�9

X1
i¼0

jM d(tiþ1)� M d(ti)j
" #

¼
X1
i¼0

E 1�9jM d(tiþ1)� M d(ti)j½ �:

(4:35)

Fix [a, b9] � [a, b], a , b9 , b. We construct a sequence a < t0 , t1 , . . . , t n <

b9 , tnþ1 , b for some n with

E 1�9jM d(tiþ1)� M d(ti)j½ � > (tiþ1 � ti)
2K

b9� a9
, 0 < i < n: (4:36)

Since ~HH , 1, (4.33) yields

lim
h#0

E 1�9

jM d(t � h)� M d(t)j
h

� �
¼ lim

h#0
h

~HH�1 E 1�9

jM d(t � h)� M d(t)j
h ~HH

� �
¼ 1: (4:37)

Thus, for any t 2 [a, b9], we find 0 , E t , b� b9 with

E 1�9jM d(t þ h)� M d(t)j½ � > jhj 2K

b9� a9
, for all h, jhj < E t: (4:38)

Now (]t � E t, t þ E t[) is an open covering of [a, b9] and thus we find a finite covering

(]t2i � E t2i
, t2i þ E t2i

[), t0 , t2 , . . . , t2m, t2m þ E t2 m
¼ t2mþ1 . b9. We choose t2iþ1 2]t2i,

t2i þ E t2i
[\ ]t2iþ2 � E t2iþ2

, t2iþ2[. Then by (4.38) in fact (4.36) holds for all i,

0 < i < 2m ¼: n. Now summation of (4.36) gives, together with (4.35),

E[1�9 Var[a,b](M d)] >
Xn

i¼0

E[1�9 jM d(tiþ1)� M d(ti)j] >
Xn

i¼0

jtiþ1 � tij
2K

b9� a9

¼ (tnþ1 � t0)
2K

b9� a9
> 2K:

This contradicts (4.34). Consequently, Var[a,b](M d) ¼ 1 a.s.

It remains to show that Var[a,b](M d) ,1 if �(R) ,1. The proof is elementary and

based on the series representation of FLPs, and we skip the details. For simplicity, assume

that the Lévy measure � of the driving Lévy process L is symmetric. Now, consider the

series representation (3.24). Since �(R) ,1, there is only a finite number n 2 N of jumps

�i on every interval [a, b]. We divide the interval [a, b] into subintervals ]�i�1, �i[,

i ¼ 1, . . . , n� 1. Since the total variation of the function t 7! (t � s)d
þ � (�s)d

þ is finite on

every interval [�i�1, �i] and since there are only finitely many �i, we can conclude (by an

interchange of sumation) that the sample paths of M d have finite variation on compacts.

If � is not symmetric the proof uses the series representation (3.26) and the same

arguments. h

Remark 4.3. Observe that as a consequence of Theorem 4.6, the FLP M d is a semimartingale

if �(R) ,1.

Theorem 4.7 Semimartingale. If the Lévy measure � is given as in Theorem 4.5, then the

corresponding fractional Lévy process M d is not a semimartingale.
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Proof. Let 0 ¼ tn
0 , . . . , t n

n ¼ t, n 2 N, be a partition of [0, t] such that

max0<i<njtn
iþ1 � tn

i j ! 0 as n!1. Assume that M d is a semimartingale. Then its

quadratic variation

[M d , M d] t ¼ p- lim
n!1

Xn�1

i¼0

jM d(tn
iþ1)� M d(tn

i )j2

exists for all t 2 [0, T ], T . 0. Hence, there exists a refining subsequence ft
n k

i g such that

Xnk�1

i¼0

jM d(t
n k

iþ1)� M d(t
nk

i )j2 ! [M d , M d] t a:s: as k !1:

Therefore we can apply Fatou’s lemma and obtain, together with Theorem 4.1,

E[M d , M d] t ¼ E lim
k!1

Xn k�1

i¼0

[M d(t
n k

iþ1)� M d(t
nk

i )]2

" #
(4:39)

< lim inf
k!1

E
Xn k�1

i¼0

[M d(t
nk

iþ1)� M d(t
n k

i )]2

" #

¼ lim inf
k!1

Xn k�1

i¼0

E[M d(t
n k

iþ1)� M d(t
nk

i )]2

¼ var(L(1))

ˆ(2d þ 2) sin (�[d þ 1
2
])

lim inf
k!1

Xnk�1

i¼0

jtnk

iþ1 � t
n k

i j2dþ1 ¼ 0:

It follows from M d(0) ¼ 0 a.s., (4.39) and Protter (2004: Theorem II.22(ii)) that

[M d , M d] t ¼ 0 a.s. for all t 2 [0, T ], T . 0. If [M d , M d] t is identically zero, the

semimartingale M d with continuous sample paths is known to be of finite variation

(Protter 2004: Theorem II.27)). However, by Theorem 4.8, M d is not of finite variation if �
is of the form given in Theorem 4.5, leading to a contradiction. h

5. Integrals with respect to fractional Lévy processes

In this section we define integrals with respect to FLPs. As pointed out in Theorem 4, an

FLP is not always a semimartingale. Therefore, classical Itô integration theory cannot be

applied. Recently, integration with respect to FBMs has been studied extensively and

various approaches have been used to define a stochastic integral with respect to FBM (for

a survey, see Nualart 2003). For instance, Zähle (1998) introduced a pathwise stochastic

integral using fractional integrals and derivatives. If the integrand is �-Hölder continuous

with � . 1� H , then the integral with respect to FBM can be interpreted as a Riemann–

Stieltjes integral. Other approaches use the Gaussianity and define a Wiener integral, or

they apply Malliavin calculus to obtain Skorohod-like integrals with respect to FBM (see
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Decreusefond and Üstünel 1999, and the references therein). Malliavin calculus was also

used by Decreusefond and Savy (2004) to construct a stochastic calculus for filtered Poisson

processes. A new integral of Itô type with zero mean defined by means of the Wick product

was introduced in Duncan et al. (2000) who give some Itô formulae (see also Bender

2003).

In this section we consider the special case of a deterministic integrand which is

sufficient for our present purposes and turns out to be easy to handle. We give a general

definition of integrals with respect to FLPs which is closely related to the integral with

respect to FBM defined in Pipiras and Taqqu (2000). First we introduce the Riemann–

Liouville fractional integrals and derivatives. For details see Samko et al. (1993).

For 0 , Æ , 1, the Riemann–Liouville fractional integrals IÆ� are defined by

(IÆ� f )(x) ¼ 1

ˆ(Æ)

ð1
x

f (t)(t � x)Æ�1 dt, (5:40)

(IÆþ f )(x) ¼ 1

ˆ(Æ)

ðx

�1
f (t)(x� t)Æ�1 dt, (5:41)

if the integrals exist for almost all x 2 R. In fact, fractional integrals IÆ� are defined for

functions f 2 L p(R) if 0 , Æ , 1 and 1 < p , 1=Æ (Samko et al. 1993: 94). We refer to the

integrals IÆ� and IÆþ as right-sided and left-sided, respectively. Fractional differentiation was

introduced as the inverse operation. Let 0 , Æ , 1, 1 < p , 1=Æ and denote by IÆ�(L p) the

class of functions � 2 L p(R) which may be represented as an IÆ�-integral of some function

f 2 L p(R). If � 2 IÆ�(L p), there exists a unique function f 2 L p(R) such that � ¼ IÆ� f and

f agrees with the Riemann–Liouville derivative DÆ
� of � of order Æ defined by

(DÆ
��)(x) ¼ � 1

ˆ(1� Æ)

d

dx

ð1
x

�(t)(t � x)�Æ dt,

(DÆ
þ�)(x) ¼ 1

ˆ(1� Æ)

d

dx

ðx

�1
�(t)(x� t)�Æ dt,

where the convergence of the integrals at the singularity t ¼ x holds pointwise for almost all

x if p ¼ 1 and in the L p sense if p . 1.

Observe that we can rewrite

M d(t) ¼
ð
R

(I d
� I (0, t))(s) L(ds):

For g 2 L1(R) consider the right-sided Riemann–Liouville fractional integral I d
� g of

order d and denote by ~HH the set of functions g : R! R, g 2 L1(R) such thatð1
�1

(I d
� g)2(u)du ,1: (5:42)

Proposition 5.1. If g 2 L1(R) \ L2(R), then g 2 ~HH.

Proof. Starting from the fact that (I d
� g) 2 L2(R) if and only if

Ð
R
jh(u)(I d

� g)(u)j
du < CkhkL2 for all h 2 L2(R), it is sufficient to show that for all h 2 L2(R),
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ð
R

ð1
0

jh(u)sd�1 g(sþ u)j ds du < CkhkL2 : (5:43)

Now (5.43) holds if

I1 ¼
ð
R

ð1
1

jh(u)sd�1 g(sþ u)j ds du < CkhkL2

and

I2 ¼
ð
R

ð1

0

jh(u)sd�1 g(sþ u)j ds du < CkhkL2 :

Applying Fubini’s theorem and the Hölder inequality, we obtain that

I2 ¼
ð1

0

sd�1

ð
R

jh(u)g(sþ u)j du ds <

ð1

0

sd�1khkL2kgkL2 ds ¼ d�1kgkL2khkL2 :

Furthermore, setting t ¼ sþ u and using Fubini’s theorem and Hölder’s inequality,

I1 ¼
ð
R

jg(t)j
ð1

1

jh(t � s)jsd�1 ds dt <

ð
R

khkL2

ð1
1

s2(d�1) ds

� 	1=2

jg(t)j dt

¼
ð
R

khkL2

1p
1� 2d

jg(t)j dt < (1� 2d)�1=2kgkL1khkL2 :

h

We define the space H as the completion of L1(R) \ L2(R) with respect to the norm

kgkH :¼ E[L(1)2]

ð
R

(I d
� g)2(u) du

� 	1=2

:

If follows from Pipiras and Taqqu (2000: Theorem 3.2) that k � kH defines a norm. Then from

the proof of Proposition 5.1 we know that for g 2 L1(R) \ L2(R),

kgkH < C kgkL1 þ kgkL2½ �: (5:44)

To construct the integral I M d
(g) :¼

Ð
R

g(s) M d(ds) for g 2 H we proceed as follows. Let

� : R! R be a simple function,

�(s) ¼
Xn�1

i¼1

ai1(si,siþ1](s),

where ai 2 R, i ¼ 1, . . . , n and �1 , s1 , s2 , . . . , sn ,1. Notice that � 2 H . Define

I M d
(�) ¼

ð
R

�(s) M d(ds) ¼
Xn�1

i¼1

ai[M d(siþ1)� M d(si)]:

Obviously, I M d
is linear in the simple functions.
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Proposition 5.2. Let �: R! R be a simple function. Thenð
R

�(s) M d(ds) ¼
ð
R

(I d
��)(u) L(du) (5:45)

and � 7! I M d
(�) ¼

Ð
R
�(s) M d(ds) is an isometry between H and L2(�, P).

Proof. It is sufficient to show (5.45) for indicator functions �(s) ¼ 1[0, t](s), t . 0. In fact,ð
R

�(s) M d(ds) ¼
ð
R

1[0, t](s) M d(ds) ¼ M d(t)

and for the right-hand side of (5.45) we obtainð
R

(I d
��)(u) L(du) ¼ 1

ˆ(d)

ð
R

ð1
u

(s� u)d�11[0, t](s)ds L(du)

¼ 1

ˆ(d þ 1)

ð
R

(t � u)d
þ � (�u)d

þ
� �

L(du) ¼ M d(t):

Moreover, for all simple functions � it follows from (2.14) that

kI M d
(�)k2

L2(�,P) ¼ E

ð
R

(I d
��)(u) L(du)

� �2

¼ E[L(1)2]

ð
R

(I d
��)2(u) du ¼ k�k2

H : (5:46)

h

Theorem 5.3. Let M d ¼ fM d(t)g t2R be an FLP and let the function g 2 H. Then there are

simple functions �k : R! R, k 2 N, satisfying k�k � gkH ! 0 as k !1 such that

I M d
(�k) converges in L2(�, P) towards a limit denoted by I M d

(g) ¼
Ð
R

g(s) M d(ds) and

I M d
(g) is independent of the approximating sequence �k. Moreover,

kI M d
(g)k2

L2(�,P) ¼ kgk2
H : (5:47)

Proof. The simple functions are dense in H . This follows from the fact that the simple

functions are dense in L1(R) \ L2(R), and that L1(R) \ L2(R) is dense in H by construction

and (5.44). Hence, there exists a sequence (�k) of simple functions such that

k�k � gkH ! 0 as k !1. It follows from the isometry property (5.46) thatÐ
R
�k(s) M d(ds) converges in L2(�, P) towards a limit denoted by

Ð
R

g(s) M d(ds) and the

isometry property is preserved in this procedure. Last, but not least, (5.47) implies that the

integral
Ð
R

g(s) M d(ds) is the same for all sequences of simple functions converging to g.

h

Corollary 5.4. If M d is a semimartingale, then
Ð
R

g(s) M d(ds) is well defined as a limit in

probability of elementary integrals. Observe that, since the limit in probability is unique, this

limit is then equal to the limit I M d
(g) of Theorem 5.3.

Using (5.45) and Theorem 5.3 the next proposition is obvious.
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Proposition 5.5. Let g 2 H. Thenð
R

g(s) M d(ds) ¼
ð
R

(I d
� g)(u) L(du), (5:48)

where the equality holds in the L2 sense.

Remark 5.1. Notice that our conditions on the integrand g differ from those imposed by

Zähle (1998). In particular, we do not require the function g to be Hölder continuous of order

greater than 1� d. Furthermore, if the function g is Hölder continuous and g is defined on a

compact interval, then g 2 L1(R) \ L2(R): Hence, g 2 H .

The second-order properties of integrals which are driven by FLPs follow by direct

calculation. As E[L(1)] ¼ 0, first note that we have, for g 2 H,

E

ð
R

g(t) M d(dt)

� �
¼ E

1

ˆ(d)

ð
R

ð1
u

(s� u)d�1 g(s) ds L(du)

� �
¼ 0:

Proposition 5.6. Let j f j, jgj 2 H. Then

E

ð
R

f (t) M d(dt)

ð
R

g(u) M d(du)

� �
¼ ˆ(1� 2d)E[L(1)2]

ˆ(d)ˆ(1� d)

ð1
�1

ð1
�1

f (t)g(u)jt � uj2d�1 dt du:

(5:49)

Proof. It is a well-known fact that

ðmin(u, t)

�1
(t � s)d�1(u� s)d�1ds ¼ jt � uj2d�1 ˆ(d)ˆ(1� 2d)

ˆ(1� d)
, u, t 2 R:

(Gripenberg and Norros 1996: 405). Hence, by the isometry (5.47),

E

ð
R

f (t) M d(dt)

ð
R

g(u) M d(du)

� �

¼ E[L(1)2]

ˆ2(d)

ð1
�1

ð1
s

ð1
s

f (t)g(u)(t � s)d�1(u� s)d�1 dt du ds

¼ E[L(1)2]

ˆ2(d)

ð1
�1

ð1
�1

f (t)g(u)

ðmin(u, t)

�1
(t � s)d�1(u� s)d�1 ds dt du

¼ ˆ(1� 2d)E[L(1)2]

ˆ(d)ˆ(1� d)

ð1
�1

ð1
�1

f (t)g(u)jt � uj2d�1 dt du,

where we have used Fubini’s theorem. h
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6. Long memory moving average processes

In discrete time, MA processes are very popular in classical time series analysis and are

widely used in applications in engineering, physics and metrology.

We consider the continuous-time version of an MA process. Continuous-time MA

processes play an important role since they are very flexible models; for example, MA

processes can capture volatility jumps or exhibit long memory properties. Typical examples

are the stochastic volatility models of Barndorff-Nielsen and Shephard (2001) which are

based on Ornstein–Uhlenbeck processes, the CARMA processes (Brockwell 2001), the

FICARMA processes (Brockwell 2004) and the stable MA processes (Samorodnitsky and

Taqqu 1994). Extremes of Lévy-driven MA processes were recently studied by Fasen

(2004).

We construct a special class of MA processes, the long memory MA processes.

Throughout we assume as always that L is a Lévy process without Brownian component

satisfying E[L(1)] ¼ 0 and E[L(1)2] ,1.

6.1. Lévy-driven long memory moving average processes

Definition 6.1 Stationary MA process. A stationary continuous-time MA process is a process

of the form

Y (t) ¼
ð1
�1

g(t � u) L(du), t 2 R, (6:50)

where the kernel function g : R! R is measurable and the driving process L ¼ fL(t)g t2R is

a Lévy process on R.

Every MA process is well defined if the kernel g and the generating triplet (ªL, � 2
L, �L)

of the driving Lévy process L satisfy (2.12).

We first consider short memory causal MA processes. Therefore we assume that the

kernel g satisfies the following two conditions:

(M1) g(t) ¼ 0 for all t , 0 (causality).

(M2) jg(t)j < Ce�ct for some constants C . 0 and c . 0 (short memory).

From now on, if not stated otherwise, an MA process means a short memory causal MA

process, that is g satisfies (M1) and (M2), which imply g 2 L1(R).

Remark 6.1. Substituting (M2) in (2.12), we see that a short memory MA process is well

defined if ð
jxj.1

log jxj �L(dx) ,1: (6:51)

Now we can use a short memory MA process to construct a long memory MA process.

For this purpose we calculate the left-sided Riemann–Liouville fractional integral of the
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kernel g in (6.50), where we only consider functions g 2 H . Then we obtain for

0 , d , 0:5 the fractionally integrated kernel

gd(t) :¼ (I d
þ g)(t) ¼

ð t

0

g(t � s)
sd�1

ˆ(d)
ds, t 2 R: (6:52)

From (M1) it follows that gd(t) ¼ 0 for t < 0. Furthermore, gd 2 L2(R) as g 2 H . We

can now define a fractionally integrated MA process by replacing the kernel g by the kernel

gd .

Definition 6.2 FIMA process. Let 0 , d , 0:5. Then the fractionally integrated moving

average (FIMA) process Yd ¼ fYd(t)g t2R driven by the Lévy process L with E[L(1)] ¼ 0 and

E[L(1)2] ,1 is defined by

Yd(t) ¼
ð t

�1
gd(t � u) L(du), t 2 R, (6:53)

where the fractionally integrated kernel gd is given in (6.52).

Theorem 6.1 Stationarity, infinite divisibility. The FIMA process (6.53) is well defined

and stationary. For all t 2 R, the distribution of Yd(t) is infinitely divisible with characteristic

triplet (ª t
Y , 0, � t

Y ), where

ª t
Y ¼ �

ð t

�1

ð
R

xgd(t � s)1fj gd ( t�s)xj.1g �L(dx) ds (6:54)

and

� t
Y (B) ¼

ð t

�1

ð
R

1B(gd(t � s)x) �L(dx) ds, B 2 B(R): (6:55)

Here (ªL, 0, �L) denotes the characteristic triplet of L.

Proof. Since gd 2 L2(R) we can apply Proposition 2.1 to Yd(0) and obtain that Yd is well

defined. Now let u1, . . . , un 2 R and �1 , t1 , . . . , t n ,1, n 2 N: Then by the

stationarity of the increments of L,

u1Yd(t1 þ h) þ . . . þ unYd(tn þ h) ¼
Xn

k¼1

uk

ð t kþh

�1
gd(t k þ h� s) L(ds)

¼d
Xn

k¼1

uk

ð t k

�1
gd(t k � s) L(ds) ¼ u1Yd(t1) þ . . . þ unYd(tn):

(6:56)

The characteristic functions of the left- and the right-hand side of (6.56) coincide. Hence,

by the Cramér–Wold device, Yd is stationary. h
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So far we have constructed an FIMA process by fractional integration of the

corresponding short memory kernel g. The next theorem states that we can also construct

an FIMA process by replacing the driving Lévy process in the short memory MA process

(6.50) by the corresponding fractional Lévy process. The resulting process coincides in L2

with the process (6.53).

Theorem 6.2. Suppose Yd ¼ fYd(t)g t2R to be the FIMA process Yd(t) ¼
Ð t

�1 gd(t � s) L(ds),

t 2 R, with gd 2 L2(R) such that gd 2 I d
þ(L2). Then Yd can be represented as

Yd(t) ¼
ð t

�1
g(t � s) M d(ds), t 2 R, (6:57)

with

g(x) ¼ 1

ˆ(1� d)

d

dx

ðx

0

gd(s)(x� s)�dds, x 2 R,

that is, g is the Riemann–Liouville derivative Dd
þ gd of the kernel gd .

On the other hand, if Yd is given by (6.57) with g 2 H, then Yd can be rewritten as

Yd(t) ¼
Ð t

�1 gd(t � s) L(ds), t 2 R, where gd(x) ¼ (I d
þ g)(x).

Proof. For every t 2 R, we have that a.s.

Yd(t) ¼
ð t

�1
g(t � s) M d(ds) ¼ 1

ˆ(d)

ð t

�1

ð1
u

(s� u)d�1 g(t � s) ds

� 	
L(du)

¼ 1

ˆ(d)

ð t

�1

ð1
0

sd�1 g(t � u� s)ds

� 	
L(du) ¼

ð t

�1
gd(t � u) L(du):

h

Using representation (6.57) of an FIMA process it is easy to show that this class of

processes has long memory properties.

Theorem 6.3 Long memory. An FIMA process Yd ¼ fYd(t)g t2R is a long memory MA

process.

Proof. Since Yd can be expressed as (6.57), we have from Proposition 5.6, for h . 0, that

ªYd
(h) ¼ cov(Yd(t þ h), Yd(t))

¼ ˆ(1� 2d)

ˆ(d)ˆ(1� d)
E[L(1)2]

ð
R

ð
R

g(t þ h� u)g(t � v)ju� vj2d�1 du dv

¼ ˆ(1� 2d)

ˆ(d)ˆ(1� d)
E[L(1)2]

ð
R

ð
R

g(s)g(~ss )jh� sþ ~ssj2d�1 ds d~ss:

It follows that
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ªYd
(h) � ˆ(1� 2d)

ˆ(d)ˆ(1� d)
E[L(1)2]

ð
R

g(u) du

� 	2

jhj2d�1, as h!1:

Hence, ªYd
satisfies condition (1.3) and Yd is a long memory process. h

6.2. Second-order and sample path properties of FIMA processes

Theorem 6.4 Autocovariance function. Let 0 , d , 0:5. The autocovariance function ªd

of an FIMA process Yd is

ªd(h) ¼ E[L(1)2]

ð
R

gd(uþ jhj)gd(u) du, h 2 R, (6:58)

where gd is the fractionally integrated kernel given in (6.52).

Proof. Let h > 0. Then, from representation (6.53),

ªd(h) ¼ cov(Yd(t þ h), Yd(t)) ¼ var(L(1))

ð t

�1
gd(t þ h� s)gd(t � s) ds

¼ E[L(1)2]

ð1
0

gd(uþ h)gd(u) du ¼ E[L(1)2]

ð
R

gd(uþ h)gd(u) du,

since gd(t) ¼ 0 for t < 0. h

Theorem 6.5 Spectral density. The spectral density f d of an FIMA process Yd equals

f d(º) ¼ E[L(1)2]

2�





Gd(º)






2

, º 2 R, (6:59)

where Gd(º) ¼
Ð
R

e�iuº gd(u) du, º 2 R, is the Fourier transform of the kernel function gd

given in (6.52).

Proof. The assertion follows from (6.58), since the spectral density of a stationary process is

the inverse Fourier transform of the autocovariance function. h

To obtain some insight into the behaviour of the sample paths of an FIMA process we

exclude path properties that do not hold. In fact, Rosinski (1989) provides immediately

verifiable necessary conditions for interesting sample path properties.

Proposition 6.6 p-Variation. Let p > 0. If the kernel t 7! gd(t � s) is of unbounded p-

variation then P(fø 2 � : Yd(� , ø) =2 C p[a, b]g) . 0, where C p[a, b] is the space of

functions of bounded p-variation on [a, b].

Proof. The assertion follows by an application of Theorem 4 of Rosinski (1989), where we

use the symmetrization argument of Section 5 in Rosinski (1989), if �L is not already

symmetric. h
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We noted in Theorem 6.1 that an FIMA process Yd has infinitely divisible margins.

Moreover, since E[L(1)] ¼ 0, E[L(1)2] ,1 and the Lévy–Itô representation (2.8) of L is

given by L(t1)� L(t2) ¼
Ð
R03( t1, t2]

x ~JJ (dx, ds), we can write

Yd(t) ¼
ð t

�1

ð
R0

xgd(t � s) ~JJ (dx, ds):

Therefore we can apply the results of Marcus and Rosinski (2005) to determine the

continuity of Yd .

Proposition 6.7 Continuity. Let gd 2 C1
b(R). Then the FIMA process Yd has a continuous

version on every bounded interval I of R.

Proof. Applying Theorem 2.5 of Marcus and Rosinski (2005), we obtain that Yd has a

continuous version on I � R if gd(0) ¼ 0 and if, for some E . 0,

sup
u,v2 I

log
1

ju� vj

� 	1=2þE
jgd(u)� gd(v)j ,1:

We have

jgd(u)� gd(v)j < jgd9(�)(u� v)j < Cju� vj, u < � < v, � 2 I :

Therefore,

sup
u,v2 I

log
1

ju� vj

� 	1=2þE
jgd(u)� gd(v)j < sup

t2 I9

Cjtj(�logjtj)1=2þE ¼ sup
t2 I9

m(t),

where m(t) ¼ Cjtj(�logjtj)1=2þE < Cjtj(�logjtj)! 0 as t! 0þ: Moreover m is continuous

and assumes its maximum on any compact interval. Hence, sup t2 I9m(t) ,1. h

Remark 6.2. If the process L has paths of bounded variation then

Yd(t) ¼
ð t

�1
gd(t � s) L(ds) ¼ (gd � L)(t), t 2 R,

is the convolution of the kernel gd with the jumps of L, taken pathwise. In this case, as gd is

continuous, it is obvious that Yd is continuous.

Remark 6.3. Finally, we remark that, like an FLP, an FIMA process has a generalized shot

noise representation (3.25) with the kernel function f t( � ) replaced by the kernel gd(t � � )
given in (6.52).

The results of this section can be applied to CARMA and FICARMA processes, which

are the continuous-time analogues of the well-known autoregressive moving average

(ARMA) and fractionally integrated ARMA processes, respectively. Details on CARMA and

FICARMA processes can be found in Brockwell (2001, 2004) and Brockwell and

Marquardt (2005). Due to the slow decay of the fractionally integrated kernel gd ,
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simulation algorithms for FICARMA processes have been very slow and expensive. The

rapid decay of the kernel g in the new representation (6.57) allows much more efficient

simulation of these processes.

The results of a simulation of FICARMA processes will be available at http://

www-m4.ma.tum.de/pers/marquardt/.
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