Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 11, 2015

Extrusion Defects and Flow Instabilities of Molten Polymers

  • B. Vergnes

Abstract

When certain critical conditions are exceeded, the flow of a polymer melt becomes unstable, giving rise to particular phenomena that are the subject of this review. These instabilities are a vital industrial problem, as they are the key to productivity of extrusion processes. Indeed, their onset leads to unacceptable products and is thus the upper limit of the processing conditions. They are also a fascinating scientific problem because, although studied and discussed for more than half a century, they are still not fully understood and their mechanisms are still sometimes controversial. In the present literature review, we present an overview of the studies carried out for fifty years, as well as our own opinion on the underlying mechanisms.


* Mail address: Bruno Vergnes, MINES ParisTech, CEMEF, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France. E-mail:

References

Aarts, A. C. T., Van de Ven, A. A. F., “The Occurrence of Periodic Distortion in the Extrusion of Polymeric Melts”, Continuum Mech. Thermodyn., 11, 113139 (1999) 10.1007/s001610050107Search in Google Scholar

Achilleos, E., Georgiou, G. T. and Hatzikiriakos, S. G., “On Numerical Simulation of Polymer Extrusion Instabilities”, Appl. Rheo., 12, 88104 (2002a)10.1515/arh-2002-0006Search in Google Scholar

Achilleos, E., Georgiou, G. T. and Hatzikiriakos, S. G., “The Role of Processing Aids in the Extrusion of Polymer Melts”, J. Vinyl Addit. Technol., 8, 724 (2002b) 10.1002/vnl.10340Search in Google Scholar

Adewale, K. P., Leonov, A. I., “Modeling Spurt and Stress Oscillations in Flows of Molten Polymers”, Rheol. Acta, 36, 110127 (1997) 10.1007/BF00366817Search in Google Scholar

Agassant, J. F., Arda, D., Combeaud, C., Merten, A., Münstedt, H., Mackley, M. R., Robert, L. and Vergnes, B., “Polymer Processing Extrusion Instabilities and Methods for their Elimination or Minimisation”, Int. Polym. Proc., 21, 239255 (2006) 10.3139/217.0084Search in Google Scholar

Ajji, A., Varennes, S., Schreiber, H. P. and Duchesne, D., “Flow Defects in Linear Low Density Polyethylene Processing: Instrumental Detection and Molecular Weight Dependence”, Polym. Eng. Sci., 33, 15241531 (1993) 10.1002/pen.760332303Search in Google Scholar

Allal, A., Lavernhe, A., Vergnes, B. and Marin, G., “Relationships between Molecular Structure and Sharkskin Defect for Linear Polymers”, J. Non-Newtonian Fluid Mech., 134, 127135 (2006) 10.1016/j.jnnfm.2005.12.010Search in Google Scholar

Allal, A., Vergnes, B., “Molecular Design to Eliminate Sharkskin Defect for Linear Polymers”, J. Non-Newtonian Fluid Mech., 146, 4550 (2007) 10.1016/j.jnnfm.2006.12.003Search in Google Scholar

Allal, A., Vergnes, B., Marin, G., “Forme de la Distribution des Masses Molaires pour Supprimer le Défaut de Peau de Requin”, C.R. Physique, 8, 109114 (2007) 10.1016/j.crhy.2006.12.012Search in Google Scholar

Allal, A., Vergnes, B., “Molecular Interpretation of the “Stick-Slip” Defect of Linear Polymers”, J. Non-Newtonian Fluid Mech., 164, 18 (2009) 10.1016/j.jnnfm.2009.06.007Search in Google Scholar

Allal, A., Vergnes, B., “Effect of Die Surface on the Onset of Stick-Slip Transition in the Flow of Molten Linear Polymers”, J. Non-Newtonian Fluid Mech., 167–168, 4649 (2012)10.1016/j.jnnfm.2011.10.002Search in Google Scholar

Ansari, M., Hatzikiriakos, S. G., Sukhadia, A. M. and Rohlfing, D. C., “Melt Fracture of Two Broad Molecular Weight Distribution High-Density Polyethylenes”, Polym. Eng. Sci., 52, 795804 (2012) 10.1002/pen.22144Search in Google Scholar

Ansari, M., Inn, Y. W., Sukhadia, A. M., Deslauriers, P. J. and Hatzikiriakos, S. G., “Wall Slip of HDPEs: Molecular Weight and Molecular Weight Distribution Effects”, J. Rheol., 57, 927948 (2013) 10.1122/1.4801758Search in Google Scholar

Arda, D. R., Mackley, M. R., “The Effect of Die Exit Curvature, Die Surface Roughness and a Fluoropolymer Additive on Sharkskin Extrusion Instabilities in Polyethylene Processing”, J. Non-Newtonian Fluid Mech., 126, 4761 (2005a) 10.1016/j.jnnfm.2004.12.005Search in Google Scholar

Arda, D. R., Mackley, M. R., “Sharkskin Instabilities and the Effect of Slip From Gas-Assisted Extrusion”, Rheol. Acta, 44, 352359 (2005b) 10.1007/s00397-004-0416-1Search in Google Scholar

Atwood, B. T., Schowalter, W. R., “Measurements of Slip at the Wall During Flow of High-Density Polyethylene through a Rectangular Conduit”, Rheol. Acta, 28, 134146 (1989) 10.1007/BF01356974Search in Google Scholar

Bagley, E. B., “End Corrections In the Capillary Flow of Polyethylene”, J. Appl. Phys., 28, 624627 (1957) 10.1063/1.1722814Search in Google Scholar

Bagley, E. B., Cabott, I. M. and West, D. C., “Discontinuity in the Flow Curve of Polyethylene”, J. Appl. Phys., 29, 109110 (1958) 10.1063/1.1722930Search in Google Scholar

Bagley, E. B., Birks, A. M., “Flow of Polyethylene into a Capillary”, J. Appl. Phys., 31, 556561 (1960) 10.1063/1.1735627Search in Google Scholar

Bagley, E. B., Schreiber, H. P., “Effect of Die Entry Geometry on Polymer Melt Fracture and Extrudate Distortion”, Trans. Soc. Rheol., 5, 341353 (1961) 10.1122/1.548904Search in Google Scholar

Baik, J. J., Tzoganakis, C., “A Study of Extrudate Distortion in Controlled-Rheology Polypropylenes”, Polym. Eng. Sci., 38, 274281 (1998) 10.1002/pen.10188Search in Google Scholar

Baldi, F., Briatico-Vangosa, F. and Franceschini, A., “Experimental Study of the Melt Fracture Behavior of Filled High-Density Polyethylene Melts”, Polym. Eng. Sci., 54, 364377 (2014) 10.1002/pen.23580Search in Google Scholar

Ballenger, T. F., White, J. L., “The Development of the Velocity Field In Polymer Melts in a Reservoir Approaching a Capillary Die”, J. Appl. Polym. Sci., 15, 19491962 (1971) 10.1002/app.1971.070150813Search in Google Scholar

Ballenger, T. F., Chen, I. J., Crowder, J. W., Hagler, G. E., Bogue, D. C. and White, J. L., “Polymer Melt Flow Instabilities in Extrusion: Investigation of the Mechanism and Material and Geometric Variables”, Trans. Soc. Rheol., 2, 195215 (1971) 10.1122/1.549207Search in Google Scholar

Barnett, S. M., “A Correlation for Melt Fracture”, Polym. Eng. Sci., 7, 168174 (1967) 10.1002/pen.760070307Search in Google Scholar

Barone, J. R., Plucktaveesak, N. and Wang, S. Q., “Interfacial Molecular Instability Mechanism for Sharkskin Phenomenon in Capillary Extrusion of Linear Polyethylenes”, J. Rheol., 42, 813832 (1998) 10.1122/1.550902Search in Google Scholar

Barone, J. R., Wang, S. Q., “Flow Birefringence Study of Sharkskin and Stress Relaxation in Polybutadiene Melts”, Rheol. Acta, 38, 404414 (1999) 10.1007/s003970050191Search in Google Scholar

Barone, J. R., Wang, S. Q., “Rheo-Optical Observations of Sharkskin Formation in Slit Die Extrusion”, J. Rheol., 45, 4960 (2001) 10.1122/1.1332385Search in Google Scholar

Bartos, O., “Fracture of Polymer Melts at High Shear Stress”, J. Appl. Phys., 35, 27672775 (1964) 10.1063/1.1713838Search in Google Scholar

Bartos, O., Holomek, J., “Unstable Flow of Amorphous Polymers through Capillaries. I. Velocity Profiles of Polymer Having Discontinuous Flow Curve”, Polym. Eng. Sci., 11, 324334 (1971) 10.1002/pen.760110410Search in Google Scholar

Beaufils, P.: Etudes des Défauts d’extrusion des Polyéthylènes Linéaires: Approche Expérimen-Tale et Modélisation des Ecoulements, PhD Dissertation, Ecole Des Mines De Paris, Sophia-Antipolis (1989)Search in Google Scholar

Beaufils, P., Vergnes, B. and Agassant, J. F., “Characterization of the Sharkskin Defect and its Development with the Flow Conditions”, Inter. Polym. Proc., 4, 7884 (1989) 10.3139/217.890078Search in Google Scholar

Becker, J., Bengtsson, P., Klason, C., Kubat, J. and Saha, P., “Pressure Oscillations during Capillary Extrusion of High Density Poyethylene”, Inter. Polym. Proc., 6, 318325 (1991) 10.3139/217.910318Search in Google Scholar

Benbow, J. J., Lamb, P., “New Aspects of Melt Fracture”, SPE Trans., 3, 717 (1963)Search in Google Scholar

Bergem, N.Visualization Studies of Polymer Flow Anomalies in Extrusion”, VIIth Congress on Rheology, Göteborg, Sweden, 5054 (1976)Search in Google Scholar

Bialas, G. A., White, J. L., “Extrusion of Polymer Melts and Melt Flow Instabilities. I. Experimental Study of Capillary Flow and Extrudate Distortion”, Rubber Chem. Tech., 42, 675681 (1969) 10.5254/1.3539248Search in Google Scholar

Bigio, D., Meillon, M. G., Kharchenko, S. B., Morgan, D., Zhou, H., Oriani, S. R., Macosko, C. W. and Migler, K. B., “Coating Kinetics of Fluoropolymer Processing Aids for Sharkskin Elimination – The Role of Droplet Size”, J. Non-Newtonian Fluid Mech., 131, 2231 (2005) 10.1016/j.jnnfm.2005.04.008Search in Google Scholar

Blyler, L. L., Hart, A. C., “Capillary Flow Instability of Ethylene Polymer Melts”, Polym. Eng. Sci., 10, 193203 (1970) 10.1002/pen.760100402Search in Google Scholar

Borisenkova, E. K., Dreval, V. E., Vinogradov, G. V., Kurbanaliev, M. K., Moiseyev, V. V. and Shalganova, V. G., “Transition of Polymers from the Fluid to the Forced High-Elastic and Leathery States at Temperatures above the Glass Transition Temperature”, Polymer, 23, 9199 (1982) 10.1016/0032-3861(82)90021-0Search in Google Scholar

Boudreaux, E., Cuculo, J. A., “Polymer Flow Instability: A Review and Analysis”, J. Macromol. Sci.-Rev. Macromol. Chem., 16, 3977 (1977–1978)10.1080/00222357608064314Search in Google Scholar

Brochard, F., De Gennes, P. G., “Shear Dependant Slippage at a Polymer Interface”, Langmuir, 8, 30333037 (1992) 10.1021/la00048a030Search in Google Scholar

Cable, P. J., Boger, D. V., “A Comprehensive Experimental Investigation of Tubular Entry Flow of Viscoelastic Fluids: Part III. Unstable Flow”, AIChE J., 25, 152159 (1979) 10.1002/aic.690250117Search in Google Scholar

Chiba, K., Nakamura, K., “Instabilities in a Circular Entry Flow of Dilute Polymer Solutions”, J. Non-Newtonian Fluid Mech., 73, 6780 (1997) 10.1016/S0377-0257(97)00036-0Search in Google Scholar

Clegg, P. L., “The Flow Properties of Polyethylene and their Effect on Fabrication”, British Plast., 535597 (1957)Search in Google Scholar

Cogswell, F. N., “Converging Flow of Polymer Melts in Extrusion Dies”, Polym. Eng. Sci., 12, 6473 (1972) 10.1002/pen.760120111Search in Google Scholar

Cogswell, F. N., “Stretching Flow Instabilities at the Exit of Extrusion Dies”, J. Non-Newtonian Fluid Mech., 2, 3747 (1977) 10.1016/0377-0257(77)80031-1Search in Google Scholar

Cogswell, F. N., “On the Oscillatory Flow of HDPE in a Capillary”, J. Rheol., 37, 407408 (1999) 10.1122/1.550450Search in Google Scholar

Combeaud, C.: Etude des Instabilités Volumiques en Extrusion de Polystyrène et Polypro-pylène, PhD Dissertation, Ecole Des Mines De Paris, Sophia-Antipolis (2004)Search in Google Scholar

Combeaud, C., Demay, Y. and Vergnes, B., “Etude Expérimentale du Défaut Hélicoïdal d’un Polystyrène en Ecoulement”, Rhéologie, 4, 5057 (2003)Search in Google Scholar

Combeaud, C., Demay, Y. and Vergnes, B., “Experimental Study of the Volume Defects in Polystyrene Extrusion”, J. Non-Newtonian Fluid Mech., 121, 175185 (2004) 10.1016/j.jnnfm.2004.06.007Search in Google Scholar

Combeaud, C., Vergnes, B., Merten, A., Hertel, D. and Münstedt, H., “Volume Defects during Extrusion of Polystyrene Investigated by Flow Induced Birefringence and Laser-Doppler Velocimetry”, J. Non-Newtonian Fluid Mech., 145, 6977 (2007) 10.1016/j.jnnfm.2007.01.002Search in Google Scholar

Constantin, D., “Linear-Low-Density Polyethylene Melt Rheology: Extensibility and Extrusion Defects”, Polym. Eng. Sci., 24, 268274 (1984) 10.1002/pen.760240407Search in Google Scholar

Cook, D. G., Cooke, R. and Rudin, A., “Used of Chilled Lips To Improve Production Rates In Extrusion of Polyethylenes”, Inter. Polym. Proc., 42, 7377 (1989) 10.3139/217.890073Search in Google Scholar

Dao, T. T., Archer, L. A., “Stick-Slip Dynamics of Entangled Polymer Liquids”, Langmuir, 18, 26162624 (2002) 10.1021/la0112662Search in Google Scholar

Deeprasertkul, C., Rosenblatt, C. and Wang, S. Q., “Molecular Character of Sharkskin Phenomenon in Metallocene Linear Low Density Polyethylenes”, Macromol. Chem. Phys., 199, 21132118 (1998) 10.1002/(SICI)1521-3935(19981001)199:10<2113::AID-MACP2113>3.0.CO;2-TSearch in Google Scholar

De Gennes, P. G., “Soft Adhesive”, Langmuir, 12, 44974500 (1996) 10.1021/la950886ySearch in Google Scholar

Deiber, J. A., Schowalter, W. R., “On the Comparison of Simple Non-Monotonic Constitutive Equations with Data Showing Slip of Well-Characterized Polybutadienes”, J. Non-Newtonian Fluid Mech., 40, 141150 (1991) 10.1016/0377-0257(91)87030-2Search in Google Scholar

Delgadillo-Velázquez, O., Georgiou, G., Sentmanat, M. and HatzikiriakosS. G., “Sharkskin and Oscillating Melt Fracture: Why in Slit and Capillary Dies and Not in Annular Dies?”, Polym. Eng. Sci., 48, 405414 (2008) 10.1002/pen.20939Search in Google Scholar

Den Doelder, C. F. J., Koopmans, R. J., Molenaar, J. and Van De Ven, A. A. F., “Comparing the Wall Slip and the Constitutive Approach for Modelling Spurt Instabilities in Polymer Melt Flows”, J. Non-Newtonian Fluid Mech., 75, 2541 (1998a) 10.1016/S0377-0257(97)00081-5Search in Google Scholar

Den Doelder, C. F. J., Koopmans, R. J. and Molenaar, J., “Quantitative Modelling of HDPE Spurt Experiments Using Wall Slip and Generalized Newtonian Flows”, J. Non-Newtonian Fluid Mech., 79, 503514 (1998b) 10.1016/S0377-0257(98)00117-7Search in Google Scholar

Den Doelder, J., Koopmans, R., Dees, M. and Mangnus, M., “Pressure Oscillations and Periodic Extrudate Distortions of Long-Chain Branched Polyolefins”, J. Rheol., 49, 113126 (2005) 10.1122/1.1835335Search in Google Scholar

Denn, M. M., “Issues in Viscoelastic Fluid Mechanics”, Ann. Rev. Fluid Mech., 22, 1334 (1990) 10.1146/annurev.fl.22.010190.000305Search in Google Scholar

Denn, M. M., “Extrusion Instabilities and Wall Slip”, Ann. Rev. Fluid Mech., 33, 265287 (2001) 10.1146/annurev.fluid.33.1.265 Search in Google Scholar

Dennison, M. T., “Flow Instability in Polymer Melts: A Review”, J. Plast. Inst., 35, 803808 (1967)Search in Google Scholar

Den Otter, J. L., “Mechanisms of Melt Fracture”, Plast. & Polym., 38, 155168 (1970)Search in Google Scholar

Den Otter, J. L., “Some Investigations of Melt Fracture”, Rheol. Acta, 10, 200207 (1971) 10.1007/BF02040441Search in Google Scholar

De Smedt, C., Nam, S., “The Processing Benefits of Fluoroelastomer Application in LLDPE”, Plast. Rubber Proc. Appl., 8, 1116 (1987)Search in Google Scholar

Dhori, P. K., Jeyaseelan, R. S., Giacomin, A. J. and Slattery, J. C., “Common Line Motion; III: Implications in Polymer Extrusion”, J. Non Newtonian Fluid Mech., 71, 213243 (1997) 10.1016/S0377-0257(97)00007-4Search in Google Scholar

Done, D. S., Baird, D. G. and Everage, A. E., “The Influence of Porous Media On the Flow of Polymer Melts in Capillaries”, Chem. Eng. Commun., 21, 293309 (1983) 10.1080/00986448308940293Search in Google Scholar

Drda, P. A., Wang, S. Q., “Stick-Slip Transition at Polymer Melt/Solid Interfaces”, Phys. Rev. Lett., 75, 26982701 (1995) 10.1103/PhysRevLett.75.2698Search in Google Scholar

Dubbeldam, J. L. A., Molenaar, J., “Dynamics of the Spurt Instability in Polymer Extrusion”, J. Non-Newtonian Fluid Mech., 112, 217235 (2003) 10.1016/S0377-0257(03)00101-0Search in Google Scholar

Dubrocq-Baritaud, C.: Mécanismes d’action de “Polymer Processing Aids” Fluorés durant l’Extrusion d’un Polyéthylène Basse Densité Linéaire: Etude Expérimentale et Interprétations, PhD Dissertation, Ecole Des Mines De Paris, Sophia-Antipolis (2008)Search in Google Scholar

Dubrocq-Baritaud, C., Darque-Ceretti, E. and Vergnes, B., “Multi-Scale Phenomena Induced by Fluoropolymer Processing Aids during Linear-Low Density Polyethylene Extrusion”, J. Non-Newtonian Fluid Mech., 166, 111 (2011a) 10.1016/j.jnnfm.2010.09.008Search in Google Scholar

Dubrocq-Baritaud, C., Darque-Ceretti, E. and Vergnes, B., “Influence of Die Surface on the Efficiency of Fluoropolymer Processing Aids during the Extrusion of Linear-Low Density Polyethylene”, J. Non-Newtonian Fluid Mech., 166, 847858 (2011b) 10.1016/j.jnnfm.2010.09.008Search in Google Scholar

Dubrocq-Baritaud, C., Darque-Ceretti, E. and Vergnes, B., “Fluoropolymer Processing Aids in Linear-Low Density Polyethylene Extrusion: How to Improve their Efficiency?” J. Non-Newtonian Fluid Mech., 208–209, 4252 (2014)10.1016/j.jnnfm.2014.04.002Search in Google Scholar

Durand, V.: Ecoulement et Instabilité Oscillante des PEHD, PhD Dissertation, Ecole Des Mines De Paris, Sophia-Antipolis (1993)Search in Google Scholar

Durand, V., Vergnes, B., Agassant, J. F., Benoit, E. and Koopmans, R. J., “Experimental and Theoretical Approach of the Oscillating Flow of High Density Polyethylenes”, J. Rheol., 40, 383394 (1996) 10.1122/1.550749Search in Google Scholar

Eggen, S., Hinrichsen, E., “Swell and Distortion of High-Density Polyethylene Extruded through Capillary Dies”, Polym. Eng. Sci., 36, 410424 (1996) 10.1002/pen.10428Search in Google Scholar

Elgasri, S., Ayadi, A. and Elhalouani, F., “Effect of Die Geometry On Helical Defect during Extrusion of PDMS across a Radial Flow Upstream the Contraction”, J. Non-Newtonian Fluid Mech., 166, 14151420 (2011) 10.1016/j.jnnfm.2011.09.005Search in Google Scholar

El Kissi, N., Piau, J. M., “The Different Capillary Flow Regimes of Entangled PDMS Polymers: Macroscopic Slip at the Wall, Hysteresis and Cork Flow”, J. Non-Newtonian Fluid Mech., 37, 5594 (1990) 10.1016/0377-0257(90)80004-JSearch in Google Scholar

El Kissi, N., Piau, J. M., “Adhesion of Linear Low Density Polyethylene for Flow Regimes with Sharkskin”, J. Rheol., 38, 14471462 (1994) 10.1122/1.550552Search in Google Scholar

El Kissi, N., Léger, L., Piau, J. M. and Mezghani, A., “Effect of Surface Properties on Polymer Melt Slip and Extrusion Defects”, J. Non-Newtonian Fluid Mech., 52, 249261 (1994) 10.1016/0377-0257(94)80054-5Search in Google Scholar

El Kissi, N., Piau, J. M. and Toussaint, F., “Sharkskin and Cracking of Polymer Melt Extrudates”, J. Non-Newtonian Fluid Mech., 68, 271290 (1997) 10.1016/S0377-0257(96)01507-8Search in Google Scholar

Fernandez, M., Vega, J. F., Santamaria, A., Munoz-Escalona, A. and Lafuente, P., “The Effect of Chain Architecture on ‘Sharkskin’ of Metallocene Polyethylenes”, Macromol. Rapid Commun., 21, 973978 (2000) 10.1002/1521-3927(20000901)21:14<973::AID-MARC973>3.0.CO;2-7Search in Google Scholar

Fernandez, M., Santamaria, A., Munoz-Escalona, A. and Mendez, L., “A Striking Hydrodynamic Phenomenon: Split of a Polymer Melt in a Capillary Flow”, J. Rheol., 45, 595602 (2001) 10.1122/1.1346600Search in Google Scholar

Ferri, D., Canetti, M., “Spurt and Melt Flow Distortions of Linear Styrene-Isoprene-Styrene Triblock Copolymers”, J. Rheol., 50, 611624 (2006) 10.1122/1.2210025Search in Google Scholar

Fujiki, T., Uemura, M. and Kosaka, Y., “Flow Properties of Molten Ethylene-Vinyl Acetate Copolymer and Melt Fracture”, J. Appl. Polym. Sci., 12, 267279 (1968) 10.1002/app.1968.070120203Search in Google Scholar

Fujiyama, M., Inata, H., “Melt Fracture Behavior of Polypropylene-Type Resins with Narrow Molecular Weight Distribution. I. Temperature Dependence”, J. Appl. Polym. Sci., 84, 21112119 (2002a) 10.1002/app.10373Search in Google Scholar

Fujiyama, M., Inata, H., “Melt Fracture Behavior of Polypropylene-Type Resins with Narrow Molecular Weight Distribution. II. Suppression of Sharkskin by Addition of Adhesive Resins”, J. Appl. Polym. Sci., 84, 21202127 (2002b) 10.1002/app.10373Search in Google Scholar

Fyrillas, M., Georgiou, G., Vlassopoulos, D. and Hatzikiriakos, S. G., “A Mechanism for Extrusion Instabilities in Polymer Melts”, Polym. Eng. Sci., 39, 24982504 (1999) 10.1002/pen.11637Search in Google Scholar

Garofalo, E., Incarnato, L. and Di Maio, L., “Effect of Short-Chain Branching on Melt Fracture Behavior of Metallocene and Conventional Poly(ethylene/A-Olefin) Copolymers”, Polym. Eng. Sci., 52, 19681977 (2012) 10.1002/pen.23140Search in Google Scholar

Gendron, R., Piché, L., Hamel, A., Dumoulin, M. M. and Tatibouet, J., “Ultrasonic Characterization of Extrusion Instabilities”, SPE ANTEC Tech. Papers, 22542256 (1997)Search in Google Scholar

Georgiou, G. C., “Extrusion of a Compressible Newtonian Fluid with Periodic Inflow and Slip at the Wall”, Rheol. Acta, 35, 532544 (1996) 10.1007/BF00396505Search in Google Scholar

Georgiou, G. C., Crochet, M. J., “Compressible Viscous Flow in Slits with Slip at the Wall”, J. Rheol., 38, 639654 (1994) 10.1122/1.550479Search in Google Scholar

Georgiou, G. C., Vlassopoulos, D., “On the Stability of the Simple Shear Flow of a Johnson-Segalman Fluid”, J. Non-Newtonian Fluid Mech., 75, 7797 (1998) 10.1016/S0377-0257(97)00078-5Search in Google Scholar

Ghanta, V. G., Riise, B. L. and Denn, M. M., “Disappearance of Extrusion Instabilities in Brass Capillary Dies”, J. Rheol., 43, 435442 (1999) 10.1122/1.550988Search in Google Scholar

Goutille, Y., Guillet, J., “Influence of Filters in the Die Entrance Region on Gross Melt Fracture: Extrudate and Flow Visualization”, J. Non-Newtonian Fluid Mech., 102, 1936 (2002a) 10.1016/S0377-0257(01)00125-2Search in Google Scholar

Goutille, Y., Guillet, J., “Disentanglement of Polymer Melts Flowing through Porous Medium before Entering a Capillary Die”, J. Rheol., 46, 13071323 (2002b) 10.1122/1.1501926Search in Google Scholar

Goutille, Y., Majesté, J. C., Tassin, J. F. and Guillet, J., “Molecular Structure and Gross Melt Fracture Triggering”, J. Non-Newtonian Fluid Mech., 111, 175198 (2003a) 10.1016/S0377-0257(03)00054-5Search in Google Scholar

Goutille, Y., Guillet, J., “Gross Melt Fracture Mitigation in Converging Dies: A Singular Behavior due to Polymer Wall Slip”, Polym. Eng. Sci., 43, 11231137 (2003b) 10.1002/pen.10095Search in Google Scholar

Greenberg, J. M., Demay, Y., “A Simple Model of Melt Fracture Instability”, Eur. J. Appl. Math., 5, 337357 (1994) 10.1017/S0956792500001492Search in Google Scholar

Griffith, A. A., “The Phenomena of Rupture and Flow in Solid”, Phil. Trans. Roy., 221, 163198 (1921) 10.1098/rsta.1921.0006Search in Google Scholar

Han, C. D., Lamonte, R. A., “A Study of Melt Flow Instabilities in Extrusion”, Polym. Eng. Sci., 11, 385394 (1971) 10.1002/pen.760110507Search in Google Scholar

Hatzikiriakos, S. G., “The Onset of Wall Slip and Sharkskin Melt Fracture in Capillary Flow”, Polym. Eng. Sci., 34, 493499 (1994) 10.1002/pen.760340606Search in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “Wall Slip of Molten High Density Polyethylenes. II. Capillary Rheometer Studies”, J. Rheol., 36, 703741 (1992a) 10.1122/1.550313Search in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “Role of Slip and Fracture in the Oscillating Flow of HDPE in a Capillary”, J. Rheol., 36, 845884 (1992b) 10.1122/1.550320Search in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “Effects of Interfacial Conditions on Wall Slip and Sharkskin Melt Fracture”, Inter. Polym. Proc., 8, 3643 (1993) 10.3139/217.930036Search in Google Scholar

Hatzikiriakos, S. G., Stewart, C. W. and Dealy, J. M., “Effects of Surface Coating on Wall Slip of LLDPE”, Inter. Polym. Proc., 8, 3035 (1993) 10.3139/217.930030Search in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “The Onset of Wall Slip and Sharkskin Melt Fracture in Capillary Flow”, Polym. Eng. Sci., 34, 493499 (1994) 10.1002/pen.760340606Search in Google Scholar

Hatzikiriakos, S. G., Hong, P., Ho, W. and Stewart, C. W., “The Effect of Teflon Coatings in Polyethylene Capillary Extrusion”, J. Appl. Polym. Sci., 55, 595603 (1995) 10.1002/app.1995.070550406Search in Google Scholar

Hatzikiriakos, S. G., Kazatchkov, I. B. and Vlassopoulos, D., “Interfacial Phenomena in the Capillary Extrusion of Metallocene Polyethylenes”, J. Rheol., 41, 12991316 (1997) 10.1122/1.550836Search in Google Scholar

Hatzikiriakos, S. G., Migler, K. B.: Polymer Processing Instabilities: Understanding and Control, Marcel Dekker, New York (2004)10.1201/9781420030686Search in Google Scholar

Hatzikiriakos, S. G., Rathod, N. and Muliawan, E. B., “The Effect of Nanoclays on the Processability of Polyolefins”, Polym. Eng. Sci., 45, 10981107 (2005) 10.1002/pen.20388Search in Google Scholar

Herrainen, M., Savolainen, A., “Correlation between Melt Fracture and Ultrasonic Velocity”, Rheol. Acta, 23, 461464 (1984) 10.1007/BF01329201Search in Google Scholar

Hong, Y., Cooper-White, J. J., Mackay, M. E., Hawker, C. J., Malmstrom, E. and Rehnberg, N., “A Novel Processing Aid for Polymer Extrusion: Rheology and Processing of Polyethylene and Hyperbranched Polymer Blends”, J. Rheol., 43, 781793 (1999) 10.1122/1.550999Search in Google Scholar

Howells, E. R., Benbow, J. J., “Flow Defects in Polymer Melts”, Trans. Plast. Inst., 30, 240253 (1962)Search in Google Scholar

Huang, J. C., Tao, Z., “Melt Fracture, Melt Viscosities, and Die Swell of Polypropylene Resin in Capillary Flow”, J. Appl. Polym. Sci., 87, 15871594 (2003) 10.1002/app.11499Search in Google Scholar

Hunter, J. K., Slemrod, M., “Viscoelastic Fluid Flow Exhibiting Hysteretic Phase Change”, Phys. Fluids, 26, 23452351 (1983) 10.1063/1.864437Search in Google Scholar

Hürlimann, H. P., Knappe, W., “Der Zusammenhang zwischen der Dehnspannung von Kunststoffschmelzen im Düseneinlauf und im Schmelzbruch”, Rheol. Acta, 11, 292301 (1972) 10.1007/BF01974772Search in Google Scholar

Huseby, T. W., “Hypothesis on a Certain Flow Instability in Polymer Melts”, Trans. Soc. Rheol., 10, 181190 (1966) 10.1122/1.549056Search in Google Scholar

Inn, Y. W., “Melt Fracture and Wall Slip of Metallocene-Catalyzed Bimodal Polyethylenes in Capillary Flow”, J. Rheol, 57, 393406 (2013) 10.1122/1.4774397Search in Google Scholar

Inn, Y. W., Fischer, R. J., and ShawM. T., “Visual Observations of Development of Sharkskin Melt Fracture in Polybutadiene Extrusion”, Rheol. Acta, 37, 573582 (1998) 10.1007/s003970050144Search in Google Scholar

Inn, Y. W., Fischer, R. J. and Shaw, M. T., “Studies of Sharkskin Melt Fracture Using a Model Polymer”, SPE ANTEC Tech. Papers, 12801282 (1999)Search in Google Scholar

Inn, Y. W., Wang, L. S. and Shaw, M. T., “Efforts to Find Stick-Slip Flow in the Land of a Die under Sharkskin Melt Fracture Conditions”, Macromol. Symp., 158, 6575 (2000) 10.1002/1521-3900(200008)158:1<65::AID-MASY65>3.0.CO;2-HSearch in Google Scholar

Joseph, D. D., “Steep Wave Fronts on Extrudates of Polymer Melts and Solutions: Lubrication Layer and Boundary Lubrication”, J. Non-Newtonian Fluid Mech., 70, 187203 (1997) 10.1016/S0377-0257(96)01532-7Search in Google Scholar

Joseph, D. D., Liu, Y. J., “Steep Waved Fronts on Extrudates of Polymer Melts and Solutions, J. Rheol., 40, 317319 (1996) 10.1122/1.550743Search in Google Scholar

Kalika, D. S., Denn, M. M., “Wall Slip and Extrudate Distortion in Linear Low Density Polyethylene”, J. Rheol., 31, 815834 (1987) 10.1122/1.549942Search in Google Scholar

Karbashewski, E., Rudin, A., Kale, L., Tchir, W. J. and Schreiber, H. P., “Effects of Polymer Structure on the Onset of Processing Defects in LLDPE's”, SPE ANTEC Tech. Papers, 13781381 (1991)Search in Google Scholar

Kay, D.: Etude des Instabilités d’extrusion des Polyéthylènes Linéaires, Master Dissertation, Ecole Polytechnique De Montréal, Montréal (1999)Search in Google Scholar

Kay, D., Carreau, P. J., Lafleur, P. G., Robert, L. and Vergnes, B., “A Study of the Slip-Stick Phenomenon in Single Screw Extrusion of Linear Polyethylene”, Polym. Eng. Sci., 43, 7890 (2003) 10.1002/pen.10007Search in Google Scholar

Kazatchkov, I. B., Hatzikiriakos, S. G. and Stewart, C. W., “Extrudate Distortion in the Capillary/Slit Extrusion of a Molten Polypropylene”, Polym. Eng. Sci., 35, 18641871 (1995) 10.1002/pen.760352305Search in Google Scholar

Kazatchkov, I. B., Bohnet, N., Goyal, S. K. and Hatzikiriakos, S. G., “Influence of Molecular Structure on the Rheological and Processing Behavior of Polyethylene Resins”, Polym. Eng. Sci., 39, 804815 (1999) 10.1002/pen.11468Search in Google Scholar

Kazatchkov, I. B., Yip, F. and Hatzikiriakos, S. G., “The Effect of Boron Nitride on the Rheology and Processing of Polyolefins”, Rheol. Acta, 39, 583594 (2000) 10.1007/s003970000113Search in Google Scholar

Kim, S., Dealy, J. M., “Gross Melt Fracture of Polyethylene: A Criterion Based on Tensile Stress”, Polym. Eng. Sci., 42, 482494 (2002a) 10.1002/pen.10965Search in Google Scholar

Kim, S., Dealy, J. M., “Gross Melt Fracture of Polyethylene: II: Effects of Molecular Structure”, Polym. Eng. Sci., 42, 495503 (2002b) 10.1002/pen.10966Search in Google Scholar

Kiriakidis, D. G., Park, H. J., Mitsoulis, E., Vergnes, B. and Agassant, J. F., “A Study of Stress Distribution in Contraction Flows of an LLDPE Melt”, J. Non-Newtonian Fluid Mech., 47, 339356 (1993) 10.1016/0377-0257(93)80057-ISearch in Google Scholar

Kolkka, R. W., Malkus, D. S., Hansen, M. G., Ierley, G. R. and Worthing, R. A., “Spurt Phenomena of the Johnson-Segalman Fluid and Related Models”, J. Non-Newtonian Fluid Mech., 29, 303335 (1988) 10.1016/0377-0257(88)85059-6Search in Google Scholar

Kolkka, R. W., Ierley, G. R., “Phase Space Analysis of the Spurt Phenomenon for the Giesekus Viscoelastic Fluid Model”, J. Non-Newtonian Fluid Mech., 33, 305323 (1989) 10.1016/0377-0257(89)80004-7Search in Google Scholar

Kolnaar, J. W. H., Keller, A., “Temperature Window of Reduced Flow Resistance in Polyethylene with Implications for Melt Flow Rheology. 1. The Basic Effect and Principal Parameters”, Polymer, 35, 38633874 (1994) 10.1016/0032-3861(94)90269-0Search in Google Scholar

Kometani, H., Kitajima, H., Matsumura, T., Suga, T. and Kanai, T., “Visualization of Flow Instabilities for High Density Polyethylene”, Inter. Polym. Proc., 21, 3240 (2006) 10.3139/217.0057Search in Google Scholar

Koopmans, R. J., Molenaar, J., “The Sharkskin Effect in Polymer Extrusion”, Polym. Eng. Sci., 38, 101107 (1998) 10.1002/pen.10169Search in Google Scholar

Koopmans, R., Den Doelder, J. and Molenaar, J.: Polymer Melt Fracture, CRC Press, Boca Raton (2011)10.1201/9781420018288Search in Google Scholar

Koran, F., Dealy, J. M., “Wall Slip of Polyisobutylene: Interfacial and Pressure Effects”, J. Rheol., 43, 12911306 (1999) 10.1122/1.551025Search in Google Scholar

Kulikov, O., Hornung, K., “A Simple Way to Suppress Surface Defects in the Processing of Polyethylenes”, J. Non-Newtonian Fluid Mech., 124, 103114 (2004) 10.1016/j.jnnfm.2004.07.009 Search in Google Scholar

Kulikov, O., Hornung, K. and Wagner, M., “Silanols Cured by Borates as Lubricants in Extrusion of LLDPE. Impact of Elasticity of the Lubricant on Sliding Friction”, Rheol. Acta, 46, 741754 (2007) 10.1007/s00397-007-0171-1Search in Google Scholar

Kumar, K. A., Graham, M. D., “Effect of Pressure-Dependent Slip on Flow Curve Multiplicity”, Rheol. Acta, 37, 245255 (1998) 10.1007/s003970050112Search in Google Scholar

Kurtz, S. J., “Die Geometry Solutions to Sharkskin Melt Fracture”, in Advances in Rheology, Mena, B., Garcia Rejon, A., Rangel Naffaille, C. (Eds.), UNAM Press, Mexico, p. 339407 (1984)Search in Google Scholar

Kurtz, S. J., “The Dynamics of Sharkskin Melt Fracture: Effect of Die Geometry”, in Theoretical and Applied Rheology, Moldenaers, P., Keunings, R. (Eds.), Elsevier, Amsterdam, p. 377379 (1992) 10.1016/B978-0-444-89007-850151-9Search in Google Scholar

Kurtz, S. J., “Visualization of Exit Fracture in the Sharkskin Process”, Annual Meeting of the Polymer Processing Society, Akron, Ohio (1994)Search in Google Scholar

Lai, S. I., Knight, G. W., “Unique Rheology and Processing Aspects of ULDPE”, SPE ANTEC Tech. Papers, 38, 20842087 (1992)Search in Google Scholar

Larrazabal, H. J., Hrymak, A. N., “Flow Instabilities of Linear PE in Capillary Dies”, Intern. Polym. Proc., 17, 4448 (2002) 10.3139/217.1673Search in Google Scholar

Larson, R. G., “Instabilities in Viscoelastic Flows”, Rheol. Acta, 31, 213263 (1992) 10.1007/BF00366504Search in Google Scholar

Lee, S. M., Nam, G. J. and Lee, J. W., “The Effect of Boron Nitride Particles and Hot-Pressed Boron Nitride Die on the Capillary Melt Flow Processing of Polyethylene”, Adv. Polym. Tech., 22, 343354 (2003) 10.1002/adv.10061Search in Google Scholar

Le Gall, F., Bartos, O., Davis, J. and Philip, P., “On a Classification of Surface Defects of Extruded Polymer Melts”, European Meeting of the Polymer Processing Society, Stuttgart, Germany (1995)Search in Google Scholar

Legrand, F., Piau, J. M., “Spatially Resolved Stress Birefringence and Flow Visualization in the Flow Instabilities of Polydimethylsiloxane Extruded through a Slit Die”, J. Non-Newtonian Fluid Mech., 77, 123150 (1998) 10.1016/S0377-0257(97)00129-8Search in Google Scholar

Li, H., Hürlimann, H. P. and Meissner, J., “Two Separate Ranges for Shear Flow Instabilities with Pressure Oscillations in Capillary Extrusion of HDPE and LLDPE”, Polym. Bulletin, 15, 8388 (1986) 10.1007/BF00263497Search in Google Scholar

Lim, T. S., “Capillary Extrusion of Composite Materials”, Polym. Eng. Sci., 11, 240246 (1971) 10.1002/pen.760110312Search in Google Scholar

Lim, F. J., Schowalter, W. R., “Wall Slip of Narrow Molecular Weight Distribution Poly-Butadienes”, J. Rheol., 33, 13591382 (1989) 10.1122/1.550073Search in Google Scholar

Lin, Y. H., “Explanation for Slip-Stick Melt Fracture in Terms of Molecular Dynamics in Polymer Melts”, J. Rheol., 29, 605637 (1985) 10.1122/1.549804Search in Google Scholar

Lin, Y. H., “Unified Molecular Theories of Linear and Non-Linear Viscoelasticity of Flexible Linear Polymers, Explaining the 3.4 Power Law of the Zero Shear Viscosity and the Slip-Stick Melt Fracture Phenomenon”, J. Non-Newtonian Fluid Mech., 23, 163187 (1987) 10.1016/0377-0257(87)80017-4Search in Google Scholar

Liu, X., Li, H., “Effect of Diatomite/Polyethylene Glycol Binary Processing Aid on the Melt Fracture and the Rheology of Polyethylenes”, Polym. Eng. Sci., 45, 898903 (2005) 10.1002/pen.20355Search in Google Scholar

Lupton, J. M., Regester, J. W., “Melt Flow of Polyethylene at High Rates”, Polym. Eng. Sci., 5, 235245 (1965) 10.1002/pen.760050406Search in Google Scholar

Lyngaee-Jorgensen, J., Marcher, B., “Spurt Fracture in Capillary Flow”, Chem. Eng. Commun., 32, 117151 (1985) 10.1080/00986448508911645Search in Google Scholar

Mackley, M. R., Rutgers, R. P. G. and Gilbert, D. G., “Surface Instabilities during the Extrusion of Linear Low Density Polyethylene”, J. Non-Newtonian Fluid Mech., 76, 281297 (1998) 10.1016/S0377-0257(97)00122-5Search in Google Scholar

Malkus, D. S., Nohel, J. A. and Plohr, B. J., “Dynamics of Shear Flow of a Non-Newtonian Fluid”, J. Comput. Phys., 87, 464487 (1990) 10.1016/0021-9991(90)90261-XSearch in Google Scholar

Martyn, M. T., Nakason, C. and Coates, P. D., “Flow Visualisation of Polymer Melts in Abrupt Contraction Extrusion Dies: Quantification of Melt Recirculation and Flow Patterns”, J. Non-Newtonian Fluid Mech., 91, 109122 (2000) 10.1016/S0377-0257(99)00107-XSearch in Google Scholar

Martyn, M. T., Spares, R., Gough, T. and Coates, P. D., “Start-Up Instabilities in Axisymmetric Contraction Geometries for Polyolefin Melts”, SPE ANTEC Tech. Papers, 10311035 (2001)Search in Google Scholar

Mcintire, L. V., “Initiation of Melt Fracture”, J. Appl. Polym. Sci., 16, 29012908 (1972) 10.1002/app.1972.070161115Search in Google Scholar

Mckinley, G. H., Pakdel, P. and Oztekin, A., “Rheological and Geometric Scaling of Purely Elastic Flow Instabilities”, J. Non-Newtonian Fluid Mech., 67, 1947 (1996) 10.1016/S0377-0257(96)01453-XSearch in Google Scholar

Mcleish, T. C. B., “Stability of the Interface between Two Dynamic Phases in Capillary Flow of Linear Polymer Melts”, J. Polym. Sci. B: Polym. Phys., 25, 22532264 (1987) 10.1002/polb.1987.090251103Search in Google Scholar

Mcleish, T. C. B., Ball, R. C., “Molecular Approach to the Spurt Effect in Polymer Melt Flow”, J. Polym. Sci. B: Polym. Phys., 24, 17351745 (1986) 10.1002/polb.1986.090240809Search in Google Scholar

Meller, M., Luciani, A., Sarioglu, A. and Manson, J. A. E., “Flow through a Convergence. Part 1: Critical Conditions for Unstable Flow”, Polym. Eng. Sci., 42, 611633 (2002) 10.1002/pen.10976Search in Google Scholar

Metzger, A. P., Hamilton, C. W., “The Oscillating Shear Phenomenon in HDPE”, SPE Trans., 4, 107112 (1964)Search in Google Scholar

Metzner, A. B., Carley, E. L. and Park, I. K., “Polymer Melts: A Study of Steady-State Flow, Extrudate Irregularities and Normal Stresses”, Modern Plastics, 133140 (1960)Search in Google Scholar

Migler, K., Lavallée, C., Dillon, M. P., Woods, S. S. and Gettinger, C. L., “Visualizing the Elimination of Sharkskin through Fluoropolymer Additives: Coating and Polymer-Polymer Slippage”, J. Rheol., 45, 565581 (2001) 10.1122/1.1349136Search in Google Scholar

Migler, K. B., Son, Y., Qiao, F. and Flynn, K., “Extensional Deformations, Cohesive Failure and Boundary Conditions during Sharkskin Melt Fracture”, J. Rheol., 46, 383400 (2002) 10.1122/1.1445186Search in Google Scholar

Miller, E., Rothstein, J. P., “Control of the Sharkskin Instability in the Extrusion of Polymer Melts Using Induced Temperature Gradients”, Rheol. Acta, 44, 160173 (2004) 10.1007/s00397-004-0393-4Search in Google Scholar

Miller, E., Lee, S. J. and Rothstein, J. P., “The Effect of Temperature Gradients on the Sharkskin Surface Instability in Polymer Extrusion through a Slit Die”, Rheol. Acta, 45, 943950 (2006) 10.1007/s00397-006-0086-2Search in Google Scholar

Molenaar, J., Koopmans, R. J., “Modeling Polymer Flow Instabilities”, J. Rheol., 38, 99109 (1994) 10.1122/1.550603Search in Google Scholar

Molenaar, J., Koopmans, R. J. and Den Doelder, C. F. J., “Onset of the Sharkskin Phenomenon in Polymer Extrusion”, Phys. Rev. E., 58, 46834691 (1998) 10.1103/PhysRevE.58.4683Search in Google Scholar

Mooney, M., “Explicit Formulas for Slip and Fluidity”, J. Rheol., 2, 210222 (1931) 10.1122/1.2116364Search in Google Scholar

Moynihan, R. H., Baird, D. G. and Ramanathan, R., “Additional Observations on the Surface Melt Fracture Behavior of Linear Low-Density Polyethylene”, J. Non-Newtonian Fluid Mech., 36, 255263 (1990) 10.1016/0377-0257(90)85012-NSearch in Google Scholar

Muliawan, E. B., Hatzikiriakos, S. G. and Sentmanat, M., “Melt Fracture of Linear PE. A Critical Study in Terms of their Extensional Behaviour”, Inter. Polym. Proc., 20, 6067 (2005) 10.3139/217.1862Search in Google Scholar

Muller, R., Vergnes, B., “Validity of the Stress Optical Law and Application of Birefringence to Polymer Complex Flows”, in Rheology for Polymer Processing, Piau, J. M., Agassant, J. F., (Eds.), Elsevier, Amsterdam (1996) 10.1016/S0169-3107(96)80010-4Search in Google Scholar

Münstedt, H., Schmidt, M. and Wassner, E., “Stick and Slip Phenomena during Extrusion of Polyethylene Melts as Investigated by Laser-Doppler Velocimetry”, J. Rheol., 44, 245255 (2000) 10.1122/1.551092Search in Google Scholar

Myerholtz, R. W., “Oscillating Flow Behaviour of High Density Polyethylene Melts”, J. Appl. Polym. Sci., 11, 687698 (1967) 10.1002/app.1967.070110506Search in Google Scholar

Nakamura, K., Ituaki, S., Nishimura, T. and Horikawa, A., “Instability of Polymeric Flow through an Abrupt Contraction, Part 1. Shear Rate at the Onset of Instability and Cycle of Instability Phenomena”, J. Text. Machin. Jap., 36, 4957 (1987)Search in Google Scholar

Nam, S., “Mechanism of Fluoroelastomer Processing Aid in Extrusion of LLDPE”, Inter. Polym. Proc., 1, 98101 (1987) 10.3139/217.870098Search in Google Scholar

Nason, H. K., “A High Temperature, High Pressure Rheometer for Plastics”, J. Appl. Phys., 16, 338343 (1945) 10.1063/1.1707598Search in Google Scholar

Nigen, S., El Kissi, N., Piau, J. M. and Sadun, S., “Velocity Field for Polymer Melts Extrusion Using Particle Image Velocimetry. Stable and Unstable Flow Regimes”, J. Non-Newtonian Fluid Mech., 112, 177202 (2003) 10.1016/S0377-0257(03)00097-1Search in Google Scholar

Nithi-Uthai, N., Manas-Zloczower, I., “Numerical Simulation of Sharkskin Phenomena in Polymer Melts”, Appl. Rheol.13, 7986 (2003)10.1515/arh-2003-0006Search in Google Scholar

Noroozi, N., Schafer, L. L. and Hatzikiriakos, S. G., “Thermorheological Properties of Poly(e-caprolactone)/Polylactide Blends”, Polym. Eng. Sci., 52, 23482359 (2012) 10.1002/pen.23186Search in Google Scholar

Okubo, S., Hori, Y., “Model Analysis of Oscillating Flow of HDPE”, J. Rheol., 24, 253257 (1980) 10.1122/1.549592Search in Google Scholar

Othman, N., Jazrawi, B., Mehrkhodavandi, P. and Hatzikiriakos, S. G., “Wall Slip and Melt Fracture of Poly(lactides)”, Rheol. Acta, 51, 357369 (2012) 10.1007/s00397-011-0613-7Search in Google Scholar

Oyanagi, Y., “Irregular Flow Behaviour of High Density Polyethylene”, Appl. Polym. Symp., 20, 123136 (1973)Search in Google Scholar

Park, C. B., Behravesh, A. H. and Venter, R. D., “Low Density Microcellular Foam Processing in Extrusion Using CO2”, Polym. Eng. Sci., 38, 18121823 (1998) 10.1002/pen.10351Search in Google Scholar

Park, H. E., Lim, S. T., Smillo, F., Dealy, J. M. and Robertson, C. G., “Wall Slip and Spurt Flow of Polybutadiene”, J. Rheol., 52, 12011239 (2008) 10.1122/1.2964199Search in Google Scholar

Paskhin, E. D., “Motion of Polymer Liquids under Unstable Conditions and in Channel Terminals”, Rheol. Acta, 17, 663675 (1978) 10.1007/BF01522039Search in Google Scholar

Pearson, J. R. A., “Mechanisms for Melt Flow Instability”, Plast. Polym., August, 285291 (1969)Search in Google Scholar

Perez-Gonzalez, J., Perez-Trejo, L., De Vargas, L. and Manero, O., “Inlet Instabilities in the Capillary Flow of Polyethylene Melts”, Rheol. Acta, 36, 677685 (1997) 10.1007/BF00367364Search in Google Scholar

Perez-Gonzalez, J., De Vargas, L., Pavlinek, V., Hausnerova, B. and Saha, P., “Temperature-Dependent Instabilities in the Capillary Flow of a Metallocene Linear Low-Density Polyethylene Melt”, J. Rheol., 44, 441451 (2000) 10.1122/1.551095Search in Google Scholar

Perez-Gonzalez, J., Denn, M. M., “Flow Enhancement in the Continuous Extrusion of Linear Low-Density Polyethylene”, Ind. Eng. Chem. Res., 40, 43094316 (2001) 10.1021/ie0007771Search in Google Scholar

Perez-Gonzalez, J., “Study of the Stick-Slip Phenomenon of Linear Low-Density Polyethylene in a Brass Die by Using Electrical Measurements”, J. Rheol., 49, 571583 (2005) 10.1122/1.1888645Search in Google Scholar

Petrie, C. J. S., Denn, M. M., “Instabilities in Polymer Processing”, AIChE. J., 22, 209236 (1976) 10.1002/aic.690220202Search in Google Scholar

Piau, J. M, El Kissi, N. and Tremblay, B., “Low Reynolds Number Flow Visualization of Linear and Branched Silicones Upstream of Orifice Dies”, J. Non Newtonian Fluid Mech., 30, 197232 (1988) 10.1016/0377-0257(88)85025-0Search in Google Scholar

Piau, J. M, El Kissi, N. and Tremblay, B., “Influence of Upstream Instabilities and Wall Slip on Melt Fracture and Sharkskin Phenomena during Silicones Extrusion through Orifice Dies”, J. Non Newtonian Fluid Mech., 34, 145180 (1990) 10.1016/0377-0257(90)80016-SSearch in Google Scholar

Piau, J. M., El Kissi, N., “Measurement and Modelling of Friction in Polymer Melts during Macroscopic Slip at the Wall”, J. Non-Newtonian Fluid Mech., 54, 121142 (1994) 10.1016/0377-0257(94)80018-9Search in Google Scholar

Piau, J. M., El Kissi, N., Toussaint, F. and Mezghani, A., “Distortions of Polymer Melt Extrudates and their Elimination Using Slippery Surfaces”, Rheol. Acta, 34, 4057 (1995a) 10.1007/BF00396053Search in Google Scholar

Piau, J. M., El Kissi, N. and Mezghani, A., “Slip Flow of Polybutadiene through Fluorinated Dies”, J. Non-Newtonian Fluid Mech., 59, 1130 (1995b) 10.1016/0377-0257(95)01349-ZSearch in Google Scholar

Piau, J. M., Nigen, S., El Kissi, N., “Effect of Die Entrance Filtering on Mitigation of Upstream Instability during Extrusion of Polymer Melts”, J. Non-Newtonian Fluid Mech., 91, 3757 (2000) 10.1016/S0377-0257(99)00083-XSearch in Google Scholar

Pol, H. V., Joshi, Y. M., Tapadia, P. S., Lele, A. K. and Mashelkar, R. A., “A Geometrical Solution to the Sharkskin Instability”, Ind. Eng. Chem. Res., 46, 30483056 (2007) 10.1021/ie0610391Search in Google Scholar

Pomar, G., Muller, S. J. and Denn, M. M., “Extrudate Distortions in Linear Low-Density Poly-Ethylene Solutions and Melt”, J. Non-Newtonian Fluid Mech., 54, 143151 (1994) 10.1016/0377-0257(94)80019-7Search in Google Scholar

Pudjijanto, S., Denn, M. M., “A Stable ‘Island’ in the Stick-Slip Region of Linear Low Density Polyethylene”, J. Rheol., 38, 17351744 (1994) 10.1122/1.550523Search in Google Scholar

Ramamurthy, A. V., “Wall Slip in Viscous Fluids and Influence of Materials of Construction”, J. Rheol., 30, 337357 (1986) 10.1122/1.549852Search in Google Scholar

Ramamurthy, A. V., “Extrudate Irregularities and the Polymer-Metal Interface Connection”. Xth International Congress on Rheology, Sydney, Australia, 8590 (1988)Search in Google Scholar

Ramsteiner, F., “Einfluss der Düsengeometrie auf Strömungswiderstand, Strangaufweitung und Schmelzbruch von Kunststoffschmelzen”, Kunststoffe, 62, 766772 (1972)Search in Google Scholar

Ramsteiner, F., “Zum Schmelzbruchverhalten von Kunststoffen”, Rheol. Acta, 16, 650651 (1977) 10.1007/BF01517011Search in Google Scholar

Rathod, N., Hatzikiriakos, S. G., “The Effect of Surface Energy of Boron Nitride on Polymer Processability”, Polym. Eng. Sci., 44, 15431550 (2004) 10.1002/pen.20151Search in Google Scholar

Robert, L.: Instabilité Oscillante de Polyéthylènes Linéaires: Observations et Interprétations. PhD Dissertation, Université de Nice Sophia-Antipolis, Sophia-Antipolis (2001)Search in Google Scholar

Robert, L., Vergnes, B. and Demay, Y., “Complex Transients in the Capillary Flow of Linear Polyethylene”, J. Rheol., 44, 11831187 (2000) 10.1122/1.1289284Search in Google Scholar

Robert, L., Vergnes, B. and Demay, Y., “Flow Birefringence Study of the Stick-Slip Instability during Extrusion of High Density Polyethylenes”, J. Non-Newtonian Fluid Mech., 112, 2742 (2003) 10.1016/S0377-0257(03)00059-4Search in Google Scholar

Robert, L., Vergnes, B. and Demay, Y., “Stick-Slip Flow of High Density Polyethylene in a Transparent Slit Die Investigated by Laser Doppler Velocimetry”, Rheol. Acta, 43, 8998 (2004) 10.1007/s00397-003-0323-xSearch in Google Scholar

Rosenbaum, E. E., Randa, S. K., Hatzikiriakos, S. G., Stewart, C. W., Henry, D. L. and Buckmaster, M., “Boron Nitride as a Processing Aid for the Extrusion of Polyolefins and Fluoropolymers”, Polym. Eng. Sci., 40, 179190 (2000) 10.1002/pen.11151Search in Google Scholar

Rudin, A., Schreiber, H. P. and Duchesne, D., “Use of Fluorocarbon Elastomers as Processing Additives for Polyolefins”, Polym. Plast. Technol. Eng., 29, 199234 (1990) 10.1080/03602559008049842Search in Google Scholar

Rutgers, R., Mackley, M. R., “The Correlation of Experimental Surface Extrusion Instabilities with Numerically Predicted Exit Surface Stress Concentrations and Melt Strength for Linear Low Density Polyethylene”, J. Rheol., 44, 13191334 (2000) 10.1122/1.1319176Search in Google Scholar

Rutgers, R. P. G., Mackley, M. R., “The Effect of Channel Geometry and Wall Boundary Conditions on the Formation of Extrusion Surface Instabilities for LLDPE”, J. Non Newtonian Fluid Mech., 98, 185199 (2001) 10.1016/S0377-0257(01)00103-3   Search in Google Scholar

Sabia, R., Mullier, M. E., “On the Discontinuity in the Flow Curve of Polyethylene”, J. Appl. Polym. Sci., 24, 842843 (1962)Search in Google Scholar

Santamaria, A., Fernandez, M., Sanz, E., Lafuente, P. and Munoz-Escalona, A., “Postponing Sharkskin of Metallocene Polyethylenes at Low Temperature: The Effect of Molecular Parameters”, Polymer, 44, 24732480 (2003) 10.1016/S0032-3861(03)00048-XSearch in Google Scholar

Santanach Carrera, E., El Kissi, N. and Piau, J. M., “Block Copolymer Extrusion Distortions. Exit Delayed Transversal Primary Cracks and Longitudinal Secondary Cracks: Extrudate Splitting and Continuous Peeling”, J. Non-Newtonian Fluid Mech., 131, 121 (2005)Search in Google Scholar

Sato, K., Toda, A., “Physical Mechanism of Stick-Slip Behaviour in Polymer Melt Extrusion: Temperature Dependence of Flow Curve”, J. Phys. Soc. Jap., 70, 32683273 (2001) 10.1143/JPSJ.70.3268Search in Google Scholar

Schott, H., Kaghan, W. S., “Flow Irregularities in the Extrusion of Polyethylene Melt”, Ind. Eng. Chem., 51, 844 (1959) 10.1021/ie50595a034Search in Google Scholar

Schreiber, H. P., Bagley, E. B. and Birks, A. M., “Filament Distortion and Die Entry Angle Effects in Polyethylene Extrusión”, J. Appl. Polym. Sci., 4, 362363 (1960) 10.1002/app.1960.070041214Search in Google Scholar

Sentmanat, M., Hatzikiriakos, S. G., “Mechanism of Gross Melt Fracture Elimination in the Extrusion of Polyethylenes in the Presence of Boron Nitride”, Rheol. Acta, 43, 624633 (2004) 10.1007/s00397-004-0359-6Search in Google Scholar

Seth, M., Hatzikiriakos, S. G. and Clere, T. M., “Gross Melt Fracture Elimination: The Role of Surface Energy of Boron Nitride Powders”, Polym. Eng. Sci., 42, 743752 (2002) 10.1002/pen.10986Search in Google Scholar

Shaw, M. T., “Flow of Polymer Melts through a Well-Lubricated Conical Die”, J. Appl. Polym. Sci., 19, 28112816 (1975) 10.1002/app.1975.070191016Search in Google Scholar

Shaw, M. T., “Detection of Multiple Flow Regimes in Capillary Flow at Low Shear Stress”, J. Rheol., 51, 13031318 (2007) 10.1122/1.2794759Search in Google Scholar

Shaw, M. T., Wang, L., “Sharkskin Melt Fracture: Recent Findings Using Model Geometries”, XIIIth international Congress on Rheology, Cambridge (Great Britain), Vol. 3, p. 170172 (2000)Search in Google Scholar

Shore, J. D., Ronis, D., Piché, L. and Grant, M., “Sharkskin Texturing Instabilities in the Flow of Polymer Melts”, Physica A, 239, 350357 (1997) 10.1016/S0378-4371(96)00491-8Search in Google Scholar

Son, Y., Migler, K. B., “Cavitation of Polyethylene during Extrusion Processing Instabilities”, J. Polym. Sci., Part B: Polym. Phys., 40, 27912799 (2002) 10.1002/polb.10314Search in Google Scholar

Sornberger, G., Quantin, J. C., Fajolle, R., Vergnes, B. and Agassant, J., “Experimental Study of the Sharkskin Defect in Linear Low Density Polyethylene”, J. Non-Newtonian Fluid Mech., 23, 123135 (1987) 10.1016/0377-0257(87)80014-9Search in Google Scholar

Spencer, R S., Dillon, R. E., “The Viscous Flow of Molten Polystyrene-I.”, J. Coll. Sci., 3, 163180 (1948) 10.1016/0095-8522(48)90066-XSearch in Google Scholar

Spencer, R. S., Dillon, R. E., “The Viscous Flow of Molten Polystyrene-II.”, J. Coll. Sci., 4, 241255 (1949) 10.1016/0095-8522(49)90007-0Search in Google Scholar

Tonon, S., Lavernhe-Gerbier, A., Flores, F., Allal, A. and Guerret-Piécourt, C., “Electrical Charging during the Sharkskin Instability of a Metallocene Melt”, J. Non-Newtonian Fluid Mech., 126, 6369 (2005) 10.1016/j.jnnfm.2004.01.027Search in Google Scholar

Tordella, J. P., “Melt Fracture – Extrudate Roughness in Plastic Extrusion”, SPE J., February, 3640 (1956)Search in Google Scholar

Tordella, J. P., “An Instability in the Flow of Molten Polymers”, Rheol. Acta, 1, 216221 (1958) 10.1007/BF01968870Search in Google Scholar

Tordella, J. P., “Unstable Flow of Molten Polymers: A Second Site of Melt Fracture”, J. Appl. Polym. Sci., 7, 215229 (1963) 10.1002/app.1963.070070119Search in Google Scholar

Tordella, J. P., “Chapter 2 Unstable Flow of Molten Polymers”, in Rheology, EirichF. R. (Ed.), Academic Press, New York, p. 57 (1969)10.1016/B978-1-4832-2942-3.50008-9Search in Google Scholar

Tordella, J. P., Wilkens, J. B., “Comments on a Proposed Mechanism of the Departure from Steady Laminar Flow in Molten Polymers”, J. Appl. Polym. Sci., 11, 2590 (1967) 10.1002/app.1967.070111219Search in Google Scholar

Torregrosa, J. M., Weill, A. and Druz, J., “Relation between Kneading Behavior and Flow Instability of a High Molecular Weight High Density Polyethylene. Application to Extrusión”, Polym. Eng. Sci., 21, 768775 (1981) 10.1002/pen.760211205Search in Google Scholar

Tremblay, B., “Sharkskin Defect of Polymer Melts: The Role of Cohesion and Adhesion”, J. Rheol., 35, 985998 (1991) 10.1122/1.550177Search in Google Scholar

Tzoganakis, C., Price, B. C. and Hatzikiriakos, S. G., “Fractal Analysis of the Sharkskin Phenomenon in Polymer Melt Extrusion”, J. Rheol., 37, 355366 (1993) 10.1122/1.550447Search in Google Scholar

Uhland, E., “Das anormale Fliessverhalten von Polyäthylene hoher Dichte”, Rheol. Acta, 18, 124 (1979) 10.1007/BF01515684Search in Google Scholar

Ui, J., Ishimaru, Y., Murakami, H., Fukushima, N. and Mori, Y., “Study of Flow Properties of Polymer Melt with the Screw Extruder”, SPE Trans., 10, 295305 (1964)Search in Google Scholar

Utracki, L. A., Gendron, R., “Pressure Oscillations during Extrusion of Polyethylenes”, J. Rheol., 28, 601623 (1984) 10.1122/1.549769Search in Google Scholar

Van der Pol, B., “On Relaxation Oscillations”, Phil. Mag., 7th Series, 978992 (1926)10.1080/14786442608564127Search in Google Scholar

Vega, J. F., Fernandez, M., Santamaria, A., Munoz-Escalona, A. and Lafuente, P., “Rheological Criteria to Characterize Metallocene Catalysed Polyethylenes”, Macromol. Chem. Phys., 200, 22572268 (1999) 10.1002/(SICI)1521-3935(19991001)200:10<2257::AID-MACP2257>3.0.CO;2-LSearch in Google Scholar

Vega, J. F., Exposito, M. T., Otegui, J. and Martínez-Salazar, J., “Eliminating Sharkskin Distortion in Polyethylene Extrusion via a Molecular Route”, J. Rheol., 55, 855873 (2011) 10.1122/1.3589798Search in Google Scholar

Venet, C.: Défauts de Surface et Propriétés d’écoulement de Polyéthylènes, PhD Dissertation, Ecole des Mines de Paris, Sophia-Antipolis (1996)Search in Google Scholar

Venet, C., Vergnes, B., “An Experimental Study of Sharkskin in Polyethylenes”, J. Rheol., 41, 873892 (1997) 10.1122/1.550837Search in Google Scholar

Venet, C., Vergnes, B., “Stress Distribution around Capillary Die Exit: An Interpretation of the Onset of Sharkskin Defect”, J. Non-Newtonian Fluid Mech., 93, 117132 (2000) 10.1016/S0377-0257(00)00105-1Search in Google Scholar

Vinogradov, G. V., “Ultimate Regimes of Deformation of Linear Flexible Chain Fluid Polymers”, Polymer, 18, 12751285 (1977) 10.1016/0032-3861(77)90293-2Search in Google Scholar

Vinogradov, G. V., Manin, V. N., “An Experimental Study of Elastic Turbulence”, Kolloid Z. Z. Polym., 201, 9398 (1965) 10.1007/BF01520490Search in Google Scholar

Vinogradov, G. V., Ivanova, L. I., “Viscous Properties of Polymer Melts and Elastomers Exemplified by Ethylene-Propylene Comonomer”, Rheol. Acta, 6, 209222 (1967) 10.1007/BF01976438Search in Google Scholar

Vinogradov, G. V., Ivanova, L. I., “Wall Slippage and Elastic Turbulence of Polymers in the Rubbery State”, Rheol. Acta, 7, 243254 (1968) 10.1007/BF01985785Search in Google Scholar

Vinogradov, G. V., Frieman, M. L., Yarlikov, B. V. and Malkin, A. Ya., “Unsteady Flow of Polymer Melts: Polypropylene”, Rheol. Acta, 9, 323329 (1970) 10.1007/BF01975398Search in Google Scholar

Vinogradov, G. V., Insarova, N. I., Boiko, B. B. and Borisenkova, E. K., “Critical Regimes of Shear in Linear Polymer”, Polym. Eng. Sci., 12, 323334 (1972a) 10.1002/pen.760120503Search in Google Scholar

Vinogradov, G. V., Malkin, A. Ya., Yanovski, Y. G., Borisenkova, E. K., Yarlykov, B. V. and Berezhnaya, G. V., “Viscoelastic Properties and Flow of Narrow Distribution Polybutadienes and Polyisoprenes”, J. Polym. Sci. Part A: Polym Chem., 10, 10611084 (1972b)10.1002/pol.1972.160100609Search in Google Scholar

Vinogradov, G. V., Protasov, V. P., Dreval, V. E., “The Rheological Behavior of Flexible Chain Polymers in the Region of High Shear Rates and Stresses, the Critical Process of Spurting and the Supercritical Conditions of their Movement at T > TG”, Rheol. Acta, 23, 4661 (1984) 10.1007/BF01333875Search in Google Scholar

Vlachopoulos, J., “Die Swell and Melt Fracture. Effects of Molar Weight Distribution”, Rheol. Acta, 13, 223227 (1974) 10.1007/BF01520879Search in Google Scholar

Vlachopoulos, J., Lidorikis, S., “Melt Fracture of Polystyrene”, Polym. Eng. Sci., 11, 15 (1971) 10.1002/pen.760110102Search in Google Scholar

VlachopoulosJ., Alam, M., “Critical Stress and Recoverable Shear for Polymer Melt Fracture”, Polym. Eng. Sci., 12, 184192 (1972) 10.1002/pen.760120305Search in Google Scholar

Waddon, A. J., Keller, A., “A Temperature Window of Extrudability and Reduced Flow Resistance in High-Molecular-Weight Polyethylene – Interpretation in Terms of Flow-Induced Mobile Hexagonal Phase”, J. Polym. Sci. Part B: Polym. Phys., 28, 10631073 (1990) 10.1002/polb.1990.090280706Search in Google Scholar

Wang, J., Kontopoulou, M., Ye, Z., Subramanian, R. and Zhu, S., “Chain-Topology-Controlled Hyperbranched Polyethylene as Effective Polymer Processing Aid (PPA) for Extrusion of Metallocene Linear-Low-Density-Polyethylene”, J. Rheol., 52, 243260 (2008) 10.1122/1.2807445Search in Google Scholar

Wang, S. Q., “Molecular Transitions and Dynamics at Polymer/Wall Interfaces: Origins of Flow Instabilities and Wall Slip”, Adv. Polym. Sci., 138, 227275 (1999) 10.1007/3-540-69711-X_6Search in Google Scholar

Wang, S. Q., Drda, P. A., “Superfluid Like Stick-Slip Transition in Capillary Flow of Linear Polyethylene Melts 1. General Features”, Macromol., 29, 26172632 (1995)Search in Google Scholar

Wang, S. Q., Drda, P. A., “Stick-Slip Transition in Capillary Flow of Polyethylene. 2. Molecular Weight Dependence and Low-Temperature Anomaly”, Macromol., 29, 41154119 (1996)10.1021/ma951512eSearch in Google Scholar

Wang, S. Q., Drda, P. A. and Inn, Y. W., “Exploring Molecular Origins of Sharkskin, Partial Slip, and Slope Change in Flow Curves of Linear Low Density Polyethylene”, J. Rheol., 40, 875898 (1996) 10.1122/1.550766Search in Google Scholar

Wang, S. Q., Drda, P. A., “Molecular Instabilities in Capillary Flow of Polymer Melts: Interfacial Stick-Slip Transition, Wall Slip and Extrudate Distortion”, Macromol. Chem. Phys., 198, 673701 (1997a) 10.1002/macp.1997.021980302Search in Google Scholar

Wang, S. Q., Drda, P. A., “Stick-Slip Transition in Capillary Flow of Polyethylene. 3. Surface Conditions”, Rheol. Acta, 36, 128134 (1997b) 10.1007/BF00366818Search in Google Scholar

Wang, S. Q., Plucktaveesak, N., “Self-Oscillations in Capillary Flow of Entangled Polymers”, J. Rheol., 43, 875898 (1999) 10.1122/1.551033Search in Google Scholar

Watson, J. H., “The Mystery of the Mechanism of Sharkskin”, J. Rheol., 43, 245252 (1999) 10.1122/1.551032Search in Google Scholar

Weill, A., “Capillary Flow of Linear Polyethylene Melt: Sudden Increase of Flow Rate”, J. Non Newtonian Fluid Mech., 7, 303314 (1980a) 10.1016/0377-0257(82)80021-9Search in Google Scholar

Weill, A., “About the Origin of Sharkskin”, Rheol. Acta, 19, 623632 (1980b) 10.1007/BF01517516Search in Google Scholar

White, J. L., “Dynamics of Viscoelastic Fluids, Melt Fracture, and the Rheology of Fiber Spinning”, J. Appl. Polym. Sci., 8, 23392357 (1964) 10.1002/app.1964.070080527Search in Google Scholar

White, J. L., “Critique on Flow Patterns in Polymer Fluids at the Entrance of a Die and Instabilities Leading to Extrudate Distortion”, Appl. Polym. Symp., 20, 155174 (1973)Search in Google Scholar

White, J. L., Kondo, A., “Flow Pattterns in Polyethylene and Polystyrene Melts during Extrusion through a Die Entry Region: Measurement and Interpretation”, J. Non Newtonian Fluid Mech., 3, 4164 (1977/1978) 10.1016/0377–0257(77)80011–6Search in Google Scholar

Wise, G. M., Denn, M. M. and Bell, A. T., “Surface Mobility and Slip of Polybutadiene Melts in Shear Flow”, J. Rheol., 44, 549567 (2000) 10.1122/1.551100Search in Google Scholar

Yang, X., Wang, S. Q., Halasa, A. and Ishida, H., “Fast Flow Behavior of Highly Entangled Monodisperse Polymers. 1 Interfacial Stick-Slip Transition of Polybutadiene Melts”, Rheol. Acta, 37, 415423 (1998a) 10.1007/s003970050128Search in Google Scholar

Yang, X., Wang, S. Q., Halasa, A. and Ishida, H., “Fast Flow Behavior of Highly Entangled Monodisperse Polymers. 2. Barrel Correction, Hysteresis and Self-Oscillation in Capillary Flow of PB Melts”, Rheol. Acta, 37, 424429 (1998b) 10.1007/s003970050128Search in Google Scholar

Yang, X., Ishida, H. and Wang, S. Q., “Wall Slip and Absence of Interfacial Flow Instabilities in Capillary Flow of Various Polymer Melts”, J. Rheol., 42, 6380 (1998c) 10.1122/1.550890Search in Google Scholar

Zhu, Z., “Wall Slip and Extrudate Instability of 4-Arms Star Polybutadienes in Capillary Flow”, Rheol. Acta, 43, 373382 (2004) 10.1007/s00397-003-0353-4Search in Google Scholar

Received: 2014-08-21
Accepted: 2014-10-01
Published Online: 2015-03-11
Published in Print: 2015-03-02

© 2015, Carl Hanser Verlag, Munich

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.3139/217.3011/html
Scroll to top button