Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2013

Predicting the Yield Stress of Polymer Glasses Directly from Processing Conditions: Application to Miscible Systems

  • T. A. P. Engels , B. A. G. Schrauwen , L. C. A. van Breemen and L. E. Govaert

Abstract

A previously developed model which predicts the yield stress of a polymer glass directly from processing conditions is applied to a system of miscible polymers. The selected system consists of a blend of polycarbonate with polyester and three blend compositions of increasing weight percentages polyester are investigated with respect to their aging kinetics. Based on these kinetics, the yield stress as it results form the thermal history experienced during processing is predicted and found to be in good agreement with experimental results. The parameters governing the evolution of the yield stress are shown to follow the rule of mixtures, enabling the prediction of the yield stress of any blend composition.


Mail address: Leon E. Govaert, Dutch Polymer Institute (DPI), Section Materials Technology (MaTe), Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands. E-mail:

References

Bauwens-Crowet, C., Bauwens, J. C., “Annealing of Polycarbonate below the Glass Transition: Quantitative Interpretation of thee Effect on Yield Stress and Differential Scanning Calorimetry Measurements”, Polymer, 23, 15991604(1982)10.1016/0032-3861(82)90178-1Search in Google Scholar

Bauwens-Crowet, C., et al., “The Strain-rate and Temperature Dependence of the Yield of Polycarbonate in Tension, Tensile Creep and Impact Tests”, J. Mater. Sci., 9, 11971201(1974)10.1007/BF00552841Search in Google Scholar

Crissman, J. M., McKenna, G. B., “Relating Creep and Creep Rupture in PMMA Using a Reduced Variable Approach”, J. Polym. Sci.,: Part B: Polym. Phys., 25, 16671677(1987)10.1002/polb.1987.090250809Search in Google Scholar

Crissman, J. M., McKenna, G. B., “Physical and Chemical Aging in PMMA and Their Effects on Creep and Creep Rupture Behavior”, J. Polym. Sci.,: Part B: Polym. Phys., 28, 14631473(1990)10.1002/polb.1990.090280904Search in Google Scholar

Engels, T. A. P., et al., “Predicting the Mechanical Performance of Glassy Polymers Directly from Processing Conditions”, in: Govaert, L. E., Meijer, H. E. H. (Eds.), “13th International Conference on Deformation Yield and Fracture of Polymers”, Materials Technology Group, Kerkrade, The Netherlands(2006a)Search in Google Scholar

Engels, T. A. P., et al., “Processing Induced Properties in Glassy Polymers: Application of Structural Relaxation to Yield Stress Development”, J. Polym. Sci.,: Part B: Polym. Phys., 44, 12121225(2006b)10.1002/polb.20773Search in Google Scholar

Govaert, L. E., et al., “Processing Induced Properties in Glassy Polymers: Developmen of the Yield Stress in Polycarbonate”, Int. Polym. Processing, XX, 170177(2005)10.3139/217.1870Search in Google Scholar

Govaert, L. E., Tervoort, T. A., “Strain Hardening of Polycarbonate in the Glassy State: Influence of Temperature and Molecular weight”, J. Polym. Sci.,: Part B: Polym. Phys., 42, 20412049(2004)10.1002/polb.20095Search in Google Scholar

G'Sell, C., McKenna, G. B., “Influence of Physical Aging on the Yield Response of Model dgebapoly/(propyleneoxide) Epoxy Glasses”, Polymer, 33, 21032113(1992)10.1016/0032-3861(92)90876-XSearch in Google Scholar

Hodge, I. M., “Enthalpy Relaxation and Recovery in Amorphous Materials”, J. Non-Crystalline Solids, 169, 211266(1993)10.1016/0022-3093(94)90321-2Search in Google Scholar

Hutchinson, J. M., “Physical Aging of Polymers”, Progress in Polymer Science, 20, 703760(1995)10.1016/0079-6700(94)00001-ISearch in Google Scholar

Janssen, R. P. M., et al., “An Analytical method to Predict Fatigue Life of Thermoplasics in Uniaxial Loading: Sensitivity to Wave Type, Frequency and Stress Amplitude”, Macromolecules, 41, 25312540(2008a)10.1021/ma071274aSearch in Google Scholar

Janssen, R. P. M., et al., “Fatigue Life Predictions for Glassy Polymers: A Constitutive Approach”, Macromolecules, 41, 25202530(2008b)10.1021/ma071273iSearch in Google Scholar

Klompen, E. T. J., et al., “Quantitative prediction of Long-term Failure of Polycarbonate”, Macromolecules, 38, 70097017(2005a)10.1021/ma0504973Search in Google Scholar

Klompen, E. T. J., “Modelling of the Post-yield Response of Glassy Polymer: Influence of Thermomechanical History”, Macromolecules, 38, 69977008(2005b)10.1021/ma050498vSearch in Google Scholar

Marchese, P., et al., “Relationship between the Molecular Architecture, Crystallization Capacity, and Miscibility in poly(butyleneterephthalate)/Polycarbonate blends: A Comparison with Poly(ethyleneterephthalate)/Polycarbonate blends”, J. Polym. Sci.,: Part B: Polym. Phys., 42, 28212832(2004)10.1002/polb.20156Search in Google Scholar

McKenna, G. B., Comprehensive Polymer Science, Vol. 2: Polymer Properties, chapter Glass Formation and Glassy Behavior, pp. 311362, Pergamon Press, Oxford(1989)10.1016/B978-0-08-096701-1.00047-1Search in Google Scholar

van Melick, H. G. H., et al., “On the Origin of Strain Hardening in Glassy Polymers”, Polymer, 44, 24932505(2003)10.1016/S0032-3861(03)00112-5Search in Google Scholar

Moynihan, C. T., et al., “Thermodynamic and Transport Properties of Liquids near the Glass Transition Temperature. Structural Relaxation in Vitreous Materials”, Annals of the New York Academy of Sciences, 279, 1535(1976)10.1111/j.1749-6632.1976.tb39688.xSearch in Google Scholar

Nanzai, Y., “Plastic Deformation Mechanism in PMMA under Creep Stress”, JSME International Journal, Series A: Solid Mechanics and Material Engineering, 37, 149153(1994)Search in Google Scholar

Narayanaswamy, O. S., “Model of Structural Relaxation in Glass”, J. Amer. Ceram. Soci., 54, 491498(1971)10.1111/j.1151-2916.1971.tb12186.xSearch in Google Scholar

Narisawa, I., et al., “Delayed Yielding of Polycarbonate under Constant Load”, J. Polym. Sci.,: Polym. Phys. Edition, 16, 14591470(1978)10.1002/pol.1978.180160811Search in Google Scholar

Samios, C. K., Kalfoglou, N. K., “Compatibility Characterization of Polycarbonate/Copolyester Blends”, Polymer, 41, 57595767(2000)10.1016/S0032-3861(99)00803-4Search in Google Scholar

Scherer, G. W., Relaxation in Glass and Composites, Krieger Publishing Company, Malabar, Florida(1986)Search in Google Scholar

Struik, L. C. E., Physical Aging of Amorphous Polymers and Other Materials, Elsevier, Amsterdam(1978)Search in Google Scholar

Tool, A. Q., “Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range”, J. Amer. Ceram. Sci., 29, 240253(1946)10.1111/j.1151-2916.1946.tb11592.xSearch in Google Scholar

Utracki, L. A.: Polymer Blends Handbook, Vol. I&II, Kluwer Academic Publishers, Dordrecht(2002)10.1007/0-306-48244-4Search in Google Scholar

Xylex, “http://www.sabic-ip.com/gep/plastics/en/productsandservices/productline/xylex.html(2008)Search in Google Scholar

Yavari, A., et al., “Effect of Transesterification Products on the Miscibility and Phase Behavior of Poly(trimethyleneterephthalate)/bisphenol a Polycarbonate Blends”, European Polymer Journal, 41, 28802886(2005)10.1016/j.eurpolymj.2005.06.004Search in Google Scholar

Received: 2008-08-21
Accepted: 2009-02-08
Published Online: 2013-04-06
Published in Print: 2009-05-01

© 2009, Carl Hanser Verlag, Munich

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.2224/html
Scroll to top button