Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 31, 2017

Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy

Auswirkungen der Sintertemperatur und -zeit auf die Eigenschaften von Al-Cu PM-Legierungen
  • A. Gökçe , F. Findik and A. O. Kurt
From the journal Practical Metallography

Abstract

Aluminium-based powder metallurgy (PM) alloys have a number of advantages over cast and wrought aluminium alloys. These PM alloys can be produced using either prealloyed or elemental premixes, with the latter offering a longer die life because of their softer nature compared with prealloyed powders. It is found that the use of an Al-Cu premixed PM alloy gives green density values higher than those of Al-Cu prealloyed systems reported in the literature. Most commercial aluminium PM alloys and alloy developments are based on the Al4Cu system. The amount of liquid phase has significant effects on the microstructure and the mechanical properties of sintered products. Lack of a liquid phase results in inadequate mechanical properties, while an excess of liquid phase causes distortion and shape deformation of the compacts formed by sintering. The objective of this study is to determine the properties of an Al4Cu PM alloy produced using an elemental premix. The effects of the amount of liquid phase on microstructural features and mechanical properties are assessed through thermal analyses. It is found that the optimum transverse rupture strength is obtained by sintering at 600 °C for 2 h.

Kurzfassung

Aluminiumbasierte Pulvermetallurgie-Legierungen (PM) haben gegenüber Guss- und Schmiede-Aluminiumlegierungen eine Reihe von Vorteilen. Diese PM-Legierungen können entweder mithilfe von vorlegierten oder elementaren Vormischungen hergestellt werden, wobei letztere eine längere Lebensdauer bieten, da sie im Vergleich zu vorlegierten Pulvern weicher sind. Es stellte sich heraus, dass durch die Verwendung einer vorgemischten Al-Cu PM-Legierung Anfangsdichtewerte erreicht werden, die höher sind als die von vorlegierten Al-Cu-Systemen, von denen in der Literatur berichtet wird. Die meisten kommerziellen Aluminium-PM-Legierungen und Legierungsentwicklungen basieren auf dem Al4Cu-System. Der Anteil an flüssiger Phase hat erhebliche Auswirkungen auf die Mikrostruktur und die mechanischen Eigenschaften von Sinterprodukten. Das Fehlen einer flüssigen Phase führt zu unzureichenden mechanischen Eigenschaften, während ein Überschuss an flüssiger Phase Verzerrungen und Deformationen der durch Sintern geformten Presskörper verursachen kann. Das Ziel dieses Beitrags besteht darin, die Eigenschaften einer Al4Cu PM-Legierung zu bestimmen, die mithilfe einer elementaren Vormischung hergestellt wurde. Die Auswirkungen der Menge an flüssiger Phase auf mikrostrukturelle Merkmale und mechanische Eigenschaften werden mithilfe von thermischen Analysen beurteilt. Es wurde festgestellt, dass durch Sintern für 2 h bei 600 °C die optimale Biegebruchfestigkeit erreicht wird.


Translation: M. Lackas


References / Literatur

[1] Lin, Y. C. et. al.: Comp. Mater. Sci.50 (2010) 1, 22723310.1016/j.commatsci.2010.08.003Search in Google Scholar

[2] Albertini, G. et. al.: Mat. Sci. Eng. A-Struct.224 (1997) 12,157–165 10.1016/S0921-5093(96)10546-3Search in Google Scholar

[3] Shen, P.; Elgallad, E. M.; Chen, X. G.: On the Aging Behavior of AA2618 DC Cast Alloy, in: Proc. Int. Conf. Light Metals 2013, B.Saddler (Ed.), Wiley Corporation, New Jersey, 201310.1002/9781118663189.ch65Search in Google Scholar

[4] Heinz, A. et al.: Mat. Sci. Eng. A-Struct.280 (2000) 1, 374910.1016/S0921-5093(99)00674-7Search in Google Scholar

[5] Ghassemieh, E.: Materials in Automotive Application, State of the Art and Prospects. "Materials in Automotive Application, State of the Art and Prospects, New Trends and Developments in Automotive Industry" MarcelloChiaberge (Ed.), InTech Corporation, Rijeka, 201110.5772/13286Search in Google Scholar

[6] Lesuer, D. R.; Kipouros, G. J.: Jom-Us.47 (1995) 6, 172110.1007/BF03221222Search in Google Scholar

[7] Report, European Aluminium Association, Available Online: http://www.alueurope.eu/pdf/Aluminium_in_cars_Sept2008.pdfSearch in Google Scholar

[8] Pohl, A.: Powder Metall.49 (2006) 2, 10410610.1179/174329006X115984Search in Google Scholar

[9] Jangg, G. et al.: Materialwiss Werkst.27 (1996) 4, 17918910.1002/mawe.19960270413Search in Google Scholar

[10] Schubert, T. et. al.: Metal Powder. Rep.60 (2005) 3, 323410.1016/S0026-0657(05)00370-XSearch in Google Scholar

[11] Kehl, W., Fischmeister, F. H.: Powder Metall.23 (1980) 3, 11311910.1179/pom.1980.23.3.113Search in Google Scholar

[12] Dhokey, N. B. et. al.: Adv. Mat. Lett.4 (2013) 2, 23524010.5185/amlett.2013.icnano.110Search in Google Scholar

[13] Boland, C. D. et al.: Mat. Sci. Eng A-Struct.559 (2013), 90290810.1016/j.msea.2012.09.049Search in Google Scholar

[14] Lefebvre, L. F. P.; Thomas, Y.; White, B.: J. Light Metals.2 (2002) 4, 23924610.1016/S1471-5317(03)00007-5Search in Google Scholar

[15] Savitskii, A. P. et al.: Sov. Powder Metall.25 (1986) 9, 72172510.1007/BF00797300Search in Google Scholar

[16] Liu, Z. Y.; Sercombe, T. B.; Schaffer, G. B.: Metall. Mater. Trans. A.38 (2007) 6, 1351135710.1007/s11661-007-9153-2Search in Google Scholar

[17] Pieczonka, T.; SchubertT.H.; Baunack, S.; Kieback, B.: Mat. Sci. Eng. A-Struct.478 (2008)12, 251–256 10.1016/j.msea.2007.06.002Search in Google Scholar

[18] Schaffer, G. B.; Hall, B. J.: Metall Mater Trans A33 (2008) 10, 32793284Search in Google Scholar

[19] Schaffer, G. B.; Sercombe, T. B.; LumleyR.N.: Mater. Chem. Phys.67 (2001) 12, 85–91 10.1016/S0254-0584(00)00424-7Search in Google Scholar

[20] Romanov, G. N., Russ. J. Non-Ferr. Met.51 (2010) 4, 34735110.3103/S1067821210040164Search in Google Scholar

[21] Martin, J. M.; Castro, F.: Mater. Process. Tech.143–144 (2003), 81482110.1016/S0924-0136(03)00335-2Search in Google Scholar

[22] Standard Test Method for Transverse Rupture Strength of Powder Metallurgy (PM) Specimens, ASTM B528–12Search in Google Scholar

[23] Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, ASTM B212–13Search in Google Scholar

[24] Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle, ASTM B962–13Search in Google Scholar

[25] Standard Test Method for Brinell Hardness of Metallic Materials, ASTM E10–12Search in Google Scholar

[26] Meluch, L.: Warm compaction of aluminium alloy alumix 123, PhD Thesis, University of Birmingham, UK, 200910.1179/003258909X12450768327144Search in Google Scholar

[27] Davies, J. R.: Aluminium and Aluminium Alloys, ASM International, 1993Search in Google Scholar

[28] Min, K. H.; Kang, S. P.; Lee, B.; Lee, J. K.; Kim, Y. D.: J. Alloy. Compd.419 (2006) 12, 290–293 10.1016/j.jallcom.2005.09.070Search in Google Scholar

[29] Kaftelen, H.; Ünlü, N.; Göller, G.; Öveçoglu, M. L.; Henein, H.: Compos. Part. A-Appl. S.42 (2011) 7, 81282410.1016/j.compositesa.2011.03.016Search in Google Scholar

[30] Min, L.; Hongwei, W.; Zunjie, W.; Zhaojun, Z.: Res. Dev. China Foundry7 (2010) 1, 3742Search in Google Scholar

[31] Yanwei, S.; Bangsheng, L.; Aihui, L.; Jingjie, G.; Hengzhi, F.: Res. Dev. China Foundry7 (2010) 1, 4346Search in Google Scholar

[32] Martin, J. M.; Castro, F.: Int. J. Powder. Metall.43 (2007) 6, 5969Search in Google Scholar

[33] Savitskii, A. P.; Romanov, G. N.; Gopienko, V. G.; Sov. Powder Metall.7 (1988) 27, 568571Search in Google Scholar

[34] Ekici, M.; Gülesin, M.; Özçatalbaş, Y.: Ön karıştırılmış ve sıcak preslenmiş Al-Cu alaşımı toz metal parçalarda Kirkendall etkisi ve fiziksel özelliklerinin araştırılması, in: Proc. 6th Int. Powder Metallurgy Symp., 2011, TurkerM, DemirT, ArıcıoğluA. (Eds). Middle East Technical University, Ankara, 2011Search in Google Scholar

[35] Gökçe, A.; Fındık, F.; Kurt, A. O.: Mater. Design46 (2013), 52453110.1016/j.matdes.2012.10.045Search in Google Scholar

[36] Maksimovic, V.; Slavica, Z.; Radmilovic, V.; Jovanovic, M. T.: J. Serb. Chem. Soc.68 (2003) 11, 89390110.2298/JSC0311893MSearch in Google Scholar

[37] Vieira, A. E.; Silva, R. V.; Itman, F. A.; Bromerschenkel, J.: Acta Microscopica18 (2009)Search in Google Scholar

[38] Mostaed, A.; Saghafian, H.; Mostaed, E.; Shokuhfar, A.; Rezaieb, H. R.: Mater. Charact.76 (2013), 768210.1016/j.matchar.2012.12.007Search in Google Scholar

[39] Kim, T. S.; Kim, H.; Oh, K. H.; Lee, H. I.: J. Mater. Sci.27 (2010) 10, 25992605Search in Google Scholar

[40] Keyawa, N. R.: ASM Quad Chap Newspaper November (2008), 22Search in Google Scholar

[41] Dobrzanski, L. A.; Labisza, K.; Olsen, A.; Zagierski, P.; Achievements in Mechanical and Materials Engineering10 (2001), 153158Search in Google Scholar

[42] Schaffer, G. B.; Hall, B. J.; Bonner, S. J.; Huo, S. H.; Sercombe, T. B.: Acta Mater.54 (2006) 1, 13113810.1016/j.actamat.2005.08.018Search in Google Scholar

[43] Chung, H.; Kim, M.; Choi, J. H.; Ahn, J. H.: Mater. Sci. Forum539–543 (2007),2645265010.4028/www.scientific.net/MSF.539-543.2645Search in Google Scholar

[44] Gökçe, A., Fındık, F., Kurt, A. O.: Mater. Charact.62 (2011) 7, 73073510.1016/j.matchar.2011.04.021Search in Google Scholar

Received: 2017-02-28
Accepted: 2017-04-12
Published Online: 2017-07-31
Published in Print: 2017-08-14

© 2017, Carl Hanser Verlag, München

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.3139/147.110461/html
Scroll to top button