Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2017

Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods

  • Maren Lepple , Jochen Rohrer , Robert Adam , Damian M. Cupid , David Rafaja , Karsten Albe and Hans J. Seifert

Abstract

Compounds in the Li–Cu–O system are of technological interest due to their electrochemical properties which make them attractive as electrode materials, i. e., in future lithium ion batteries. In order to select promising compositions for such applications reliable thermochemical data are a prerequisite. Although various groups have investigated individual ternary phases using different experimental setups, up to now, no systematic study of all relevant phases is available in the literature. In this study, we combine drop solution calorimetry with density function theory calculations to systematically investigate the thermodynamic properties of ternary Li–Cu–O phases. In particular, we present a consistently determined set of enthalpies of formation, Gibbs energies and heat capacities for LiCuO, Li2CuO2 and LiCu2O2 and compare our results with existing literature.


*Correspondence address, Dr.-Ing. Maren Lepple, Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany, Tel.: +49 06151 1622938, Fax: +49 06151 1622941, E-mail: , Web: http://www.chemie.tu-darmstadt.de/albert/ak_albert/mitarbeiterinnen/index.de.jsp

References

[1] M.Armand, J.-M.Tarascon: Nature451 (2008) 652657. PMid: 18256660 10.1038/451652aSearch in Google Scholar

[2] M.S.Whittingham: MRS Bull.33 (2008) 411419. 10.1557/mrs2008.82Search in Google Scholar

[3] C.T.Love, W.Dmowski, M.D.Johannes, K.E.Swider-Lyons: J. Solid State Chem.184 (2011) 24122419. 10.1016/j.jssc.2011.07.007Search in Google Scholar

[4] G.Vitins, E.Raekelboom, M.Weller, J.Owen: J. Power Sources119–121 (2003) 938942. 10.1016/S0378-7753(03)00236-2Search in Google Scholar

[5] R.E.Ruther, H.Zhou, C.Dhital, K.Saravanan, A.K.Kercher, G.Chen, A.Huq, F.M.Delnick, J.Nanda: Chem. Mater.27 (2015) 67466754. 10.1021/acs.chemmater.5b02843Search in Google Scholar

[6] N.Imanishi, K.Shizuka, T.Ikenishi, T.Matsumura, A.Hirano, Y.Takeda: Solid State Ionics177 (2006) 13411346. 10.1016/j.ssi.2006.03.058Search in Google Scholar

[7] R.Bates, Y.Jumel, in: J. P.Gabano (Ed) Lithium Batteries: Lithium-Cupric Oxide Cells, Academic Press, New York (1983).Search in Google Scholar

[8] S.Grugeon, S.Laruelle, R.Herrera-Urbina, L.Dupont, P.Poizot, J.-M.Tarascon: J. Electrochem. Soc.148 (2001) A285. 10.1149/1.1353566Search in Google Scholar

[9] J.Cabana, L.Monconduit, D.Larcher, M.R.Palacin: Adv. Mater.22 (2010) E17092. PMid: 20730811 10.1002/adma.201000717Search in Google Scholar

[10] L.Kaufman, H.Bernstein (1970) Computer calculation of phase diagrams: With special reference to refractory metals. Refractory materials 4, Acad. Press, New York.Search in Google Scholar

[11] N.Godshall: Solid State Ionics18–19 (1986) 788793. 10.1016/0167-2738(86)90263-8Search in Google Scholar

[12] K.E.Kamentsev, A.A.Bush, E.A.Tishchenko, S.A.Ivanov, M.Ottoson, R.Mathieu, P.Nordblad: J. Exp. Theor. Phys.117 (2013) 320326. 10.1134/S1063776113100026Search in Google Scholar

[13] M.Lepple, R.Adam, D.M.Cupid, P.Franke, T.Bergfeldt, D.Wadewitz, D.Rafaja, H.J.Seifert: J. Mater. Sci.48 (2013) 58185826. 10.1007/s10853-013-7374-xSearch in Google Scholar

[14] S.Patat, D.Blunt, A.Chippindale, P.Dickens: Solid State Ionics46 (1991) 325329. 10.1016/0167-2738(91)90233-2Search in Google Scholar

[15] M.Lepple, D.M.Cupid, P.Franke, H.J.Seifert: J. Phase Equilib. Diff.35 (2014) 650657. 10.1007/s11669-014-0335-5Search in Google Scholar

[16] S.Hibble: Solid State Ionics39 (1990) 289295. 10.1016/0167-2738(90)90409-KSearch in Google Scholar

[17] P.Hohenberg, W.Kohn: Phys. Rev.136 (1964) B864B871. 10.1103/PhysRev.136.B864Search in Google Scholar

[18] W.Kohn, L.J.Sham: Phys. Rev.140 (1965) A1133A1138. 10.1103/PhysRev.140.A1133Search in Google Scholar

[19] M.Bomio, P.Lavela, J.L.Tirado: J. Solid State Electrochem.12 (2008) 729737. 10.1007/s10008-007-0420-3Search in Google Scholar

[20] S.-N.Le, A.Navrotsky, V.Pralong: Solid State Sci.10 (2008) 761767. 10.1016/j.solidstatesciences.2007.08.008Search in Google Scholar

[21] H.M.Rietveld: Acta Cryst.22 (1967) 151152. 10.1107/S0365110X67000234Search in Google Scholar

[22] H.M.Rietveld: J Appl. Crystallogr.2 (1969) 6571. 10.1107/S0021889869006558Search in Google Scholar

[23] L.Lutterotti, S.Matthies, H.R.Wenk: IUCr: Newsletter of the CPD21 (1999).Search in Google Scholar

[24] A.Navrotsky: Phys. Chem. Miner.2 (1977) 89104. 10.1007/BF00307526Search in Google Scholar

[25] A.Navrotsky: Phys. Chem. Miner.24 (1997) 222241. 10.1007/s002690050035Search in Google Scholar

[26] D.M.Cupid, A.Reif, H.J.Seifert: Thermochim. Acta599 (2015) 3541. 10.1016/j.tca.2014.11.003Search in Google Scholar

[27] P.E.Blöchl: Phys. Rev. B50 (1994) 1795317979. 10.1103/PhysRevB.50.17953Search in Google Scholar

[28] G.Kresse, J.Furthmüller: Phys. Rev. B54 (1996) 1116911186. 10.1103/PhysRevB.54.11169Search in Google Scholar PubMed

[29] S.H.Vosko, L.Wilk, M.Nusair: Can. J. Phys.58 (1980) 12001211. 10.1139/p80–159Search in Google Scholar

[30] J.P.Perdew, K.Burke, M.Ernzerhof: Phys. Rev. Lett.77 (1996) 38653868. PMid: 10062328 10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[31] H.J.Monkhorst, J.D.Pack: Phys. Rev. B13 (1976) 51885192. 10.1103/PhysRevB.13.5188Search in Google Scholar

[32] S.Baroni, S.de Gironcoli, A.Dal Corso, P.Giannozzi: Rev. Mod. Phys.73 (2001) 515562. 10.1103/RevModPhys.73.515Search in Google Scholar

[33] X.Gonze, C.Lee: Phys. Rev. B55 (1997) 1035510368. 10.1103/PhysRevB.55.10337Search in Google Scholar

[34] A.Togo, I.Tanaka: Scripta Mater.108 (2015) 15. 10.1016/j.scriptamat.2015.07.021Search in Google Scholar

[35] L.Wang, T.Maxisch, G.Ceder: Phys. Rev. B73 (2006) 195107. 10.1103/PhysRevB.73.092101Search in Google Scholar

[36] M.Heinemann, B.Eifert, C.Heiliger: Phys. Rev. B87 (2013) 115111. 10.1103/PhysRevB.87.115111Search in Google Scholar

[37] A.K.Mishra, A.Roldan, N.H.de Leeuw: J. Phys. Chem. C120 (2016) 21982214. 10.1021/acs.jpcc.5b10431Search in Google Scholar

[38] J.I.XUE, R.Dieckmann: High Temperatures. High Pressures24 (1992) 271284.Search in Google Scholar

[39] J.Zhang, H.W.Richardson: Ullmann's Encyclopedia of Industrial Chemistry (2000).Search in Google Scholar

[40] F.L.Forray, A.Smith, A.Navrotsky, K.Wright, K.A.Hudson-Edwards, W.E.Dubbin: Geochim. Cosmochim. Ac.127 (2014) 107119. 10.1016/j.gca.2013.10.043Search in Google Scholar

[41] M. W.Chase: National Institute of Standards, Technology (1998) NIST-JANAF thermochemical tables, American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, Washington and D.C. and Woodbury and N.Y.Search in Google Scholar

[42] (2016) SGTE Substance Database, Thermo-Calc.Search in Google Scholar

[43] A.Navrotsky: J. Am. Ceram. Soc.97 (2014) 33493359. 10.1111/jace.13278Search in Google Scholar

[44] J.M.McHale, A.Navrotsky, G.R.Kowach, V.E.Balbarin, F.J.DiSalvo: Chem. Mater.9 (1997) 15381546. 10.1021/cm970244rSearch in Google Scholar

[45] M.Wang, A.Navrotsky: Solid State Ionics166 (2004) 167173. 10.1016/j.ssi.2003.11.004Search in Google Scholar

[46] K.Chang, B.Hallstedt: Calphad35 (2011) 160164. 10.1016/j.calphad.2011.02.003Search in Google Scholar

[47] B.Hallstedt, D.Risold, L. J.Gauckler: J. Phase Equilib.15 (1994) 483499. 10.1007/BF02649399Search in Google Scholar

[48] D.Fischer, W.Carl, H.Glaum, R.Hoppe: Z. anorg. allg. Chem.585 (1990) 7581. 10.1002/zaac.19905850109Search in Google Scholar

[49] W.Losert, R.Hoppe: Z. anorg. allg. Chem.524 (1985) 716. 10.1002/zaac.19855240502Search in Google Scholar

[50] W.I.F.David, M.O.Jones, D.H.Gregory, C.M.Jewell, S. R.Johnson, A.Walton, P.P.Edwards: J. Am. Chem. Soc.129 (2007) 15941601. PMid: 17243680 10.1021/ja066016sSearch in Google Scholar

[51] R.Restori, D.Schwarzenbach: Acta Crystallogr. B Struct. Sci.42 (1986) 201208. 10.1107/S0108768186098336Search in Google Scholar

[52] R.Hoffmann, R.Hoppe, W.Schäfer: Z. anorg. allg. Chem.578 (1989) 1826. 10.1002/zaac.19895780103Search in Google Scholar

[53] F.Sapiña, J.Rodríguez-Carvajal, M.J.Sanchis, R.Ibáñez, A.Beltrán, D.Beltrán: Solid State Commun.74 (1990) 779784. 10.1016/0038-1098(90)90934-4Search in Google Scholar

[54] S.Åsbrink, L.J.Norrby: Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem.26 (1970) 815. 10.1107/S0567740870001838Search in Google Scholar

[55] M.Lepple (2015) Kupfer- und Eisenoxide als Konversions-Elektrodenmaterialien für Lithium-Ionen-Batterien: Thermodynamische und Elektrochemische Untersuchungen. Dissertation, Karlsruhe.Search in Google Scholar

[56] R.Berger, A.Meetsma, S.van Smaalen, M.Sundberg: J. Less-Common Met.175 (1991) 119129. 10.1016/0022-5088(91)90356-9Search in Google Scholar

[57] A.A.Bush, K. E.Kamentsev, E.A.Tishchenko: Inorg. Mater.40 (2004) 4449. 10.1023/B:INMA.0000012177.38378.10Search in Google Scholar

[58] A.Rusydi, I.Mahns, S.Müller, M.Rübhausen, S.Park, Y. J.Choi, C. L.Zhang, S.-W.Cheong, S.Smadici, P.Abbamonte, M.v Zimmermann, G. A.Sawatzky: Appl. Phys. Lett.92 (2008) 262506. 10.1063/1.2787973Search in Google Scholar

[59] A.Kirfel, K.Eichhorn: Acta Crystallogr. A46 (1990) 271284. 10.1107/S0108767389012596Search in Google Scholar

[60] R.W.G.Wyckoff: Structure, Cryst. Struct1 (1963) 783.Search in Google Scholar

[61] R.W.G.Wyckoff: Structure, Cryst. Struct1 (1963) 239444.Search in Google Scholar

Received: 2017-07-11
Accepted: 2017-08-17
Published Online: 2017-10-30
Published in Print: 2017-11-10

© 2017, Carl Hanser Verlag, München

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.111560/html
Scroll to top button