Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 7, 2015

An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar

  • Jian Yang , Ehsan Mohseni , Babak Behforouz and Mojdeh Mehrinejad Khotbehsara
This article has been retracted. Retraction note.

Abstract

In this paper, the effects of using Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortars are investigated. A fraction of Portland cement was replaced with 1, 2, 3, 4 or 5 wt.% of either Cr2O3 or ZnO2 nanoparticles, and 25 wt.% fly ash. The rheological properties of these mortars were determined through the mini-slump flow diameter and V-funnel flow time tests. The mechanical and durability characteristics were evaluated by compressive and flexural strength, water absorption, electrical resistivity and rapid chloride permeability tests. The microstructure of the mortars was assessed through the use of scanning electron microscopy. The inclusion of 2 wt.% Cr2O3 or 4 wt.% ZnO2 nanoparticles had the best result in compressive and flexural strength tests. Also, mixtures containing either 3 wt.% of Cr2O3 or 5 wt.% of ZnO2 nanoparticles obtained the best result in terms of durability. It can be deduced that the properties of these mixtures are significantly improved by the addition of Cr2O3 and ZnO2 nanoparticles.


* Correspondence address, Ehsan Mohseni, Department of Civil Engineering, University of Guilan, Rasht, P.O. Box 3756, Iran, Tel.: +989125590423, Fax: +981316690271, E-mail:

References

[1] F. Sanchez , K.Sobolev: Constr. Build. Mater.24 (2010) 2060. 10.1016/j.conbuildmat.2010.03.014Search in Google Scholar

[2] Q. Ye , Z.Zenan, K.Deyu, C.Rongshen: Constr. Build. Mater.21 (2007) 539. 10.1016/j.conbuildmat.2005.09.001Search in Google Scholar

[3] T. Ji : Cem. Concr. Res.35 (2005) 1943. 10.1016/j.cemconres.2005.07.004Search in Google Scholar

[4] G. Li : Cem. Concr. Res.34 (2004) 1043. 10.1016/S0008-8846(03)00128-5Search in Google Scholar

[5] B.W. Jo , C.H.Kim, G.H.Tae, J.B.Park: Constr. Build. Mater.21 (2007) 1351. 10.1016/j.conbuildmat.2005.12.020Search in Google Scholar

[6] K. Lin , W.Chang, D.Lin, H.Luo, M.Tsai: J. Environ. Manage.88 (2008) 708. 10.1016/j.jenvman.2007.03.036Search in Google Scholar PubMed

[7] A. Nazari , S.Riahi, S.Riahi, S.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 98.Search in Google Scholar

[8] H. Li , M.H.Zhang, J.P.Ou: Wear260 (2006) 1262. 10.1016/j.wear.2005.07.002Search in Google Scholar

[9] A. Shekari , M.Razzaghi: Procedia Eng.14 (2011) 3036. 10.1016/j.proeng.2011.07.382Search in Google Scholar

[10] A.N. Givi , S.A.Rashid, F.N.A.Aziz, M.A.M.Salleh: J. Exp. Nanosci.8 (2013) 1. 10.1080/17458080.2010.548834Search in Google Scholar

[11] J. Björnström , A.Martinelli, A.Matic, L.Börjesson, I.Panas: Chem. Phys. Lett.392 (2004) 242. 10.1016/j.cplett.2004.05.071Search in Google Scholar

[12] H. Li , H.G.Xiao, J.Yuan, J.Ou: Composites Part B35 (2004) 185. 10.1016/S1359-8368(03)00052-0Search in Google Scholar

[13] A. Nazari , S.Riahi: Mater. Sci. Eng., A528 (2011) 1173. 10.1016/j.msea.2010.09.098Search in Google Scholar

[14] A. Nazari , S.Riahi: Mater. Res.14 (2011) 178. 10.1590/S1516-14392011005000030Search in Google Scholar

[15] A. Nazari , S.Riahi: J. Exp. Nanosci.7 (2012) 491. 10.1080/17458080.2010.524669Search in Google Scholar

[16] P. Hou , S.Kawashima, K.Wang, D.Corr, J.Qian, S.Shah: Cem. Concr. Compos.35 (2013) 12. 10.1016/j.cemconcomp.2012.08.027Search in Google Scholar

[17] P. Hou , K.Wang, J.Qian, S.Kawashima, D.Kong, S.Shah: Cem. Concr. Compos.34 (2012) 1095. 10.1016/j.cemconcomp.2011.10.003Search in Google Scholar

[18] M. Şahmaran , H.A.Christianto, I.O.Yaman: Cem. Concr. Compos.28 (2006) 432. 10.1016/j.cemconcomp.2005.12.003Search in Google Scholar

[19] ASTM C150: Standard specification for Portland cement. Annual Book of ASTM Standards. Philadelphia: PA (2001).Search in Google Scholar

[20] ASTM C494 TYPE F: Standard Specification for Chemical Admixtures for Concrete. Annual Book of ASTM Standards. Philadelphia: PA (2001).Search in Google Scholar

[21] EFNARC: Specification and guidelines for self-compacting concrete. Feb. (2002) 29–35.Search in Google Scholar

[22] A. Nazari , S.Riahi: Composites Part B42 (2011) 167. 10.1016/j.compositesb.2010.09.001Search in Google Scholar

[23] ASTM C642-13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, Annual Book of ASTM Standards, PA (2006).Search in Google Scholar

[24] M. Jalal , E.Mansouri, M.Sharifipour, A.R.Pouladkhan: Mater. Des.34 (2012) 38. 10.1016/j.matdes.2011.08.037Search in Google Scholar

[25] T. Wee , A.K.Suryavanshi, S.Tin: ACI Mater. J.97 (2000) 221.Search in Google Scholar

[26] A.S. El-Dieb : Mater. Des.30 (2009) 4286. 10.1016/j.matdes.2009.04.024Search in Google Scholar

[27] ASTM C 1202: Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, Annual book of ASTM Standards, Philadelphia, PA (2003).Search in Google Scholar

[28] ACI Committee 222: Protection of metals in concrete against corrosion, ACI 222R-01. (2001).Search in Google Scholar

[29] A. Nazari , S.Riahi: Energy Build.43 (2011) 864. 10.1016/j.enbuild.2010.12.006Search in Google Scholar

Received: 2014-11-26
Accepted: 2015-03-10
Published Online: 2015-08-07
Published in Print: 2015-08-11

© 2015, Carl Hanser Verlag, München

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.111245/html
Scroll to top button