Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2013

The effect of grain size on strain rate sensitivity and activation volume – from nano to ufg nickel

  • Horst Vehoff , Delphine Lemaire , Kerstin Schüler , Thomas Waschkies and Bo Yang

Abstract

The strain rate sensitivity of nanocrystalline nickel was studied at different temperatures in tensile tests and with a nanoindenter in order to examine the effect of grain size on the different deformation mechanisms of nanocrystalline materials. The experiments yielded, depending on temperature and strain rate, the strain rate sensitivity, the activation volume and the creep exponents as a function of stress and grain size. From the creep experiments the transition between grain boundary sliding and dislocation climb as a function of temperature was obtained. The strain rate jump tests gave extremely small activation volumes, nearly a factor of 100 smaller than in conventional nickel as a function of grain size. To help in understanding this behaviour the strain rate sensitivity of single grains was tested with a nanoindenter. The results clearly showed that the primary interaction of dislocations with grain boundaries is the reason for the strong rate effects and small activation volumes observed.


* Correspondence address, Dipl. Ing. Kerstin Schüler Saarland University, FR 8.4. Materials Science and Methods D-66123 Saarbrücken, Germany Tel.: +49 6801 302 5178 Fax: +49 6801 302 5015 E-mail:

References

[1] Q.Wei, S.Cheng, K.T.Ramesh, E.Ma: Mater. Sci. Eng. A381 (2004) 71.10.1016/j.msea.2004.03.064Search in Google Scholar

[2] J.Schiøtz: Scripta Mater.51 (2004) 837.10.1016/j.scriptamat.2004.05.013Search in Google Scholar

[3] R.J.Asaro, S.Suresh: Acta Mater.53 (2005) 3369.10.1016/j.actamat.2005.03.047Search in Google Scholar

[4] J.Chen, L.Lu, K.Lu: Scripta Mater.54 (2006) 1913.10.1016/j.scriptamat.2006.02.022Search in Google Scholar

[5] F.Dalla Torre, H.Van Swygenhoven, M.Victoria: Acta Mater.50 (2002) 3957.10.1016/S1359-6454(02)00198-2Search in Google Scholar

[6] J.Lian, G.Changdong, J.Qing, J.Zhonghao: J. Appl. Phys.99 (2006) 076103.10.1063/1.2186981Search in Google Scholar

[7] Y.M.Wang, A.V.Hamza, E.Ma: Acta Mater.54 (2006) 2715.10.1016/j.actamat.2006.02.013Search in Google Scholar

[8] H.Van Swygenhoven, A.Caro: Phys. Rev. B58 (1998) 11246.10.1103/PhysRevB.58.11246Search in Google Scholar

[9] V.Yamakov, D.Wolf, S.R.Phillpot, H.Gleiter: Acta Mater.50 (2002) 5005.10.1016/S1359-6454(02)00318-XSearch in Google Scholar

[10] X.-L.Wu: Appl. Phys. Lett.88 (2006) 061905.10.1063/1.2172404Search in Google Scholar

[11] E.Ma: Science305 (2004) 623.10.1126/science.1101589Search in Google Scholar

[12] M.Y.Gutkin, I.A.Oid9ko, N.V.Skiba: Acta Mater.51 (2003) 4059.10.1016/S1359-6454(03)00226-XSearch in Google Scholar

[13] Z.Shan, E.A.Stach, J.M.K.Wiezorek, J.A.Knapp, D.M.Follstaed, S.X.Mao: Science305 (2004) 654.10.1126/science.1098741Search in Google Scholar

[14] J.Markmann, P.Bunzel, H.Rösner, K.W.Liu, K.A.Padmanabhan, R.Birringer, H.Gleiter, J.Weissmüller: Scripta Mater.49 (49) (2003) 637.10.1016/S1359-6462(03)00401-9Search in Google Scholar

[15] Y.R.Kolobov, G.B.Grabovetskaya, K.V.Ivanov, M.B.Ivanov: Interface Sci.10 (2002) 31.10.1023/A:1015128928158Search in Google Scholar

[16] K.W.Jacobsen, J.Schiotz: Science301 (2003) 1357.10.1126/science.1086636Search in Google Scholar PubMed

[17] B.Yang, H.Vehoff: Z. Metallkd.95 (2004) 499.Search in Google Scholar

[18] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427.10.1016/j.pmatsci.2005.08.003Search in Google Scholar

[19] L.Hollang, E.Hieckmann, D.Brunner, C.Holste, W.Strotzki: Mater. Sci. Eng. A424 (2006) 138.10.1016/j.msea.2006.03.002Search in Google Scholar

[20] H.Natter, R.Hempelmann: Electrochim. Acta 49, 51 (2003) 51.10.1016/j.electacta.2003.04.004Search in Google Scholar

[21] H.Natter, M.Schmelzer, R.Hempelmann: J. Mater. Res.13 (1998) 1186.10.1557/JMR.1998.0169Search in Google Scholar

[22] A.Noll, M.Marx, H.Vehoff: (2006) unpublished results.Search in Google Scholar

[23] B.Yang: PhD-thesis, Saarbrücken, Germany, 2006.Search in Google Scholar

[24] A.Seeger: Report of a Conf. on Defects in Crystalline Solids, 391, The Pysical Society, London (1954).Search in Google Scholar

[25] R.S.Kottada, A.H.Chokshi: Scripta Mater.53 (2005) 887.10.1016/j.scriptamat.2005.06.035Search in Google Scholar

[26] M.Goeken, M.Kempf: Acta Mater.47 (1999) 1043.10.1016/S1359-6454(98)00377-2Search in Google Scholar

[27] M.Kempf, M.Goeken, H.Vehoff: Mater. Sci. Eng. A184 (2002) 329.Search in Google Scholar

[28] M.Goeken, M.Kempf: Z. Metallkd.92 (2001) 1061.Search in Google Scholar

[29] Y.Gaillard, C.Tromas, J.Woirgard: Acta Mater.51 (2003) 1059.10.1016/S1359-6454(02)00509-8Search in Google Scholar

[30] B.Yang, H.Vehoff: Mater. Sci. Eng. A400–401 (2005) 467.Search in Google Scholar

[31] F.Dalla Torre, P.Spätig, R.Schäublin, M.Victoria: Acta Mater.53 (2005) 2337.10.1016/j.actamat.2005.01.041Search in Google Scholar

[32] B.Yang, H.Vehoff: Acta Mater., in press.Search in Google Scholar

[33] K.Durst, B.Backes, M.Goeken: Scripta Mater.32 (2005) 1093.Search in Google Scholar

[34] N.Wang, Z.R.Wang, K.T.Aust, U.Erb: Mater. Sci. Eng. A237 (1997) 150.10.1016/S0921-5093(97)00124-XSearch in Google Scholar

[35] B.Yang, H.Vehoff, R.Hempelmann: J. Mater. Res.97 (2006) 1220.Search in Google Scholar

[36] D.M.Dimiduk, M.D.Uchic, T.A.Parthasarathy: Acta Mater.53 (2005) 4065.10.1016/j.actamat.2005.05.023Search in Google Scholar

Received: 2006-10-16
Accepted: 2007-1-18
Published Online: 2013-05-23
Published in Print: 2007-04-01

© 2007, Carl Hanser Verlag, München

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.101464/html
Scroll to top button