Skip to content
BY 4.0 license Open Access Published by De Gruyter April 3, 2019

Influence of the Phase Transformation Behaviour on the Microstructure and Mechanical Properties of a 4.5 wt.-% Mn Q&P Steel*

Einfluss des Umwandlungsverhaltens auf das Gefüge und die mechanischen Eigenschaften eines Q&P-Stahls mit 4,5 % Mn
  • S. Kaar , R. Schneider , D. Krizan , C. Béal and C. Sommitsch

Abstract

“Quenching and Partitioning” (Q&P) steels have a microstructure consisting of a tempered martensitic matrix with austenite islands, which can be stabilized to room temperature due to the C partitioning from martensite to the remaining austenite. This heat-treatment is a novel approach for producing ultra-high strength and good formable steels. In the present work the impact of the Q&P processing parameters on the phase transformation behavior and mechanical properties of a 4.5 wt.% Mn steel was investigated. Using dilatometry the influence of the quenching temperature (TQ) on the amount of martensite and the kinetics of the bainitic transformation was thoroughly studied. The microstructure was characterized by means of light optical and scanning electron microscopy. The amount of retained austenite was determined using the saturation magnetization measurement. In order to obtain the mechanical properties hardness measurements according to Vickers were performed. Furthermore, using tensile tests the Q&P concept was compared to the Quenching and Tempering (Q&T) process in terms of strength-ductility performance.

Kurzfassung

„Quenching and Partitioning“ (Q&P)-Stähle weisen ein Gefüge aus einer angelassenen martensitischen Matrix mit feinverteiltem Austenit auf, welcher durch die Umverteilung von Kohlenstoff aus dem Martensit in den Austenit bis auf Raumtemperatur (RT) stabilisiert wird. Derart wärmebehandelte Stähle verfügen über eine hohe Festigkeit bei gleichzeitig guter Umformbarkeit. In der vorliegenden Arbeit wurde die Abhängigkeit des Umwandlungsverhaltens und folglich der mechanischen Eigenschaften von den Q&P-Prozessparametern für einen Stahl mit 4,5 % Mn untersucht. Mittels Dilatometrie wurde der Einfluss der Quenching-Temperatur (TQ) auf die Martensitmenge und die Kinetik der anschließenden Bainitumwandlung analysiert. Die Gefügecharakterisierung erfolgte durch den Einsatz von Licht- und Rasterelektronenmikroskopie. Die Restaustenitmenge wurde mittels magnetischer Methode bestimmt. Neben der Härteprüfung nach Vickers wurden die mechanischen Eigenschaften durch Zugversuche ermittelt und hier ein Vergleich zwischen dem Q&P-Prozess und dem Vergüten gezogen.


Lecture was presented at the HeatTreatmentCongress, HK 2018, October 16–18, 2018, Cologne, Germany. The lecture was awarded the Paul-Riebensahm Prize.

4 (Corresponding author/Kontakt)

References

1. Kwon, O.; Lee, K.; Kim, G.; Chin, K.: New trends in advanced high strength steel – developments for automotive application. Mater. Sci. Forum638-642 (2010), pp. 136141, 10.4028/www.scientific.net/MSF.638-642.136Search in Google Scholar

2. Spenger, F.; Hebesberger, T.; Pichler, A.; Krempaszky, C.; Werner, E.; Doppler, C.: AHSS steel grades: strain hardening and damage as material design criteria. Int. Conf. on New Developments in AHSS, 2008, Orlando, USA, pp. 3949Search in Google Scholar

3. Jacques, P.; Petein, A.; Harlet, P.: Improvement of mechanical properties through concurrent deformation and transformation: new steels for the 21st century. Proc. Int. Conf. on TRIP-aided high strength ferrous alloys, 2002, Ghent, Belgium, pp. 281285Search in Google Scholar

4. Hashimoto, K.; Yamasaki, M.; Fujimura, K.; Matsui, T.; Izumiya, K.: Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater. Sci. Eng.A 267 (1999) 2, pp. 200206, 10.1016/S0921-5093(99)00092-1Search in Google Scholar

5. Zaefferer, S.; Ohlert, J.; Bleck, W.: A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater.52 (2004), pp. 27652778, 10.1016/j.actamat.2004.02.044Search in Google Scholar

6. Matlock, D.; Speer, J.; De Moor, E.; Gibbs, P.: Recent developments in advanced high strength steels for automotive applications: an overview. JESTECH15 (2012), pp. 112Search in Google Scholar

7. Kuziak, R.; Kawalla, R.; Waengler, S.: Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering VIII, 2 (2008), pp. 103117, 10.1016/S1644-9665(12)60197-6Search in Google Scholar

8. Billur, E.; Altan, T.; Dykeman, J.: Three generations of advanced high-strength steels for automotive applications, Part I. Stamp. J., 2013, pp. 1617Search in Google Scholar

9. De Cooman, B. C.; Chin, K.; Kim, J.: High Mn TWIP steels for automotive applications. Chapter 6 in: New trends and developments in automotive system engineering; M.Chiaberge (ed.), 10.5772/14086Search in Google Scholar

10. Steineder, K.; Krizan, D.; Schneider, R.; Béal, C.; Sommitsch, C.: On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater.139 (2017), pp. 3950, 10.1016/j.actamat.2017.07.056Search in Google Scholar

11. Steineder, K.; Schneider, R.; Krizan, D.; Béal, C.; Sommitsch, C.: Comparative Investigation of Phase Transformation Behavior as a Function of Annealing Temperature and Cooling Rate of Two Medium-Mn Steels. Steel Res. Int.86 (2015), pp. 11791186, 10.1002/srin.201400551Search in Google Scholar

12. De Cooman, B. C.; Speer, J.: Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications. Steel Res. Int.77 (2006), pp. 634640, 10.1002/srin.200606441Search in Google Scholar

13. Speer, J.; Matlock, D.; De Cooman, B. C.; Schroth, J.: Carbon partitioning into austenite after martensite transformation. Acta Mater.51 (2003), pp. 26112622, 10.1016/S1359-6454(03)00059-4Search in Google Scholar

14. Edmonds, D.; He, K.; Rizzo, F.; De Cooman, B. C.; Matlock, D.; Speer, J.: Quenching and partitioning martensite – A novel steel heat treatment. Mater. Sci. Eng.A 438-440 (2006), pp. 2534, 10.1007/s13632-013-0082-8Search in Google Scholar

15. Arlazarov, A.; Gouné, M.; Bouaziz, O.; Hazotte, A.; Petitgand, G.; Barges, P.: Evolution of microstrucutre and mechanical properties of medium Mn steels during double annealing. Mater. Sci. Eng. A542 (2012), pp. 3139, 10.1016/j.msea.2012.02.024Search in Google Scholar

16. Seo, E.; Cho, L.; De Cooman, B. C.: Application of quenching and partitioning processing to medium Mn steel. Metall. Mater. Trans. A46 (2015) 1, pp. 2731, 10.1007/s11661-014-2657-7Search in Google Scholar

17. Seo, E.; Cho, L.; Estrin, Y.; De Cooman, B. C.: Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater.113 (2016), pp. 124130, 10.1016/j.actamat.2016.04.048Search in Google Scholar

18. Clarke, A.; Speer, J.; Miller, M.; Hackenberg, R.; Edmonds, D.; Matlock, D.; Rizzo, F.; Clarke, K.; De Moor, E.: Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment. Acta Mater.56 (2008), pp. 1622, 10.1016/j.actamat.2007.08.051Search in Google Scholar

19. Kim, D.; Speer, J.; De Cooman, B. C.: Isothermal transformation of a CMnSi steel below the MS temperature. Metall. Mater. Trans. A42a (2011), pp. 15751585, 10.1007/s11661-010-0557-zSearch in Google Scholar

20. Van Bohemen, S.; Santofimia, M.; Sietsma, J.: Experimental evidence for bainite formation below MS in Fe-0.66C. Scr. Mater.58 (2009), pp. 488491, 10.1016/j.scriptamat.2007.10.045Search in Google Scholar

21. Kaar, S.; Schneider, R.; Krizan, D.; Béal, C.; Sommitsch, C.: Influence of the quenching and partitioning process on the isothermal bainitic transformation kinetics in a lean medium manganese steel. Proc. 25th Congr. of IFHTSE, 2018, Xian, China, p. 4810.3390/met9030353Search in Google Scholar

22. Koistinen, D.; Marburger, R.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall.7 (1959), pp. 5960, 10.1016/0001-6160(59)90170-1Search in Google Scholar

23. Bhadeshia, H. K. D. H.; Honeycombe, R.: Steels – Microstructure and properties; 3rd ed.Butterworht-Heinemann, Oxford, UK, 2006. – ISBN 978-0-750-68084-4Search in Google Scholar

24. Speer, J.; Streicher, A.; Matlock, D.; Rizzo, F.: Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures. Sympos. Austenite formation and decomposition, 2003, Chicago, USA, pp. 505522Search in Google Scholar

25. Bhadeshia, H. K. D. H.: The bainite transformation in a silicon steel. Metall. Trans. A10 (1979) 7, pp. 89590710.1007/BF02658309Search in Google Scholar

26. Garcia-Mateo, C.; Caballero, F.; Bhadeshia, H. K. D. H.: Acceleration of low-temperature bainite. ISIJ Int.43 (2003) 11, pp. 18211825, 10.2355/isijinternational.43.1821Search in Google Scholar

27. Girault, E.; Martens, A.; Jacques, P.; Houbaert, Y.; Verlinden, B.; Van Humbeeck, J.: Comparison of the effects of silicon and aluminum on the tensile behaviour of multiphase TRIP-assisted steels. Scr. Mater.44 (2001), pp. 885892, 10.1016/S1359-6462(00)00697-7Search in Google Scholar

28. Jacques, P.; Girault, E.; Harlet, P.; Delannay, F.: The developments of cold-rolled TRIP-assisted multiphase steels. Low silicon TRIP-assisted multiphase Steels. ISIJ Int.41 (2001), pp. 10611067, 10.2355/isijinternational.41.1061Search in Google Scholar

29. De Moor, E.; Lacroix, S.; Clarke, A.; Penning, J.; Speer, J.: Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall. Mater. Trans. A39A (2008), pp. 25862595, 10.1007/s11661-008-9609-zSearch in Google Scholar

30. De Moor, E.; Speer, J.; Matlock, D.; Kwak, J.; Lee, S.: Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels. ISIJ Int.51 (2011) 1, pp. 137144, 10.2355/isijinternational.51.137Search in Google Scholar

31. Yan, S.; Liu, X.; Liu, W.; Lan, H.; Wu, H.: Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) process. Mater. Sci. Eng. A620 (2015), pp. 5866, 10.1016/j.msea.2014.09.047Search in Google Scholar

32. Kähkönen, J.: Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel; molybdenum; aluminum and copper additions. Mines Theses & Dissertations, Colorado School of Mines, 2016Search in Google Scholar

33. Matlock, D.; Speer, J.; De Moor, E.; Gibbs, P.: TRIP steels – Historical perspectives and recent developments. Proc. of 1st International Conference on High Manganese Steels, 2011, Seoul, South Korea, pp. 115Search in Google Scholar

34. Krauss, G.: Martensite in steel: strength and structure. Mater. Sci. Eng. A273-275 (1999), pp. 4057, 10.1016/S0921-5093(99)00288-9Search in Google Scholar

Published Online: 2019-04-03
Published in Print: 2019-04-09

© 2019, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.3139/105.110381/html
Scroll to top button