
USER'S GUIDE TO PHREEQC A COMPUTER 

PROGRAM FOR SPECIATION, REACTION-PATH, 

ADVECTIVE-TRANSPORT, AND INVERSE 

GEOCHEMICAL CALCULATIONS

By David L. Parkhurst

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 95-4227

Lakewood, Colorado 
1995



U.S. DEPARTMENT OF THE INTERIOR 

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY 

Gordon P. Eaton, Director

The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government.

For additional information write to: Copies of this report can be purchased from:

Chief, Branch of Regional Research U.S. Geological Survey
U.S. Geological Survey Earth Science Information Center
Box 25046, MS 418 Open-File Reports Section
Denver Federal Center Box 25286, MS 517
Denver, CO 80225 Denver Federal Center

	Denver, CO 80225



CONTENTS

Abstract...............................................................^ 1
Introduction..........................................................................................^ 1

Program capabilities.................................................................................................................................................... 2
Program limitations..................................................................................................................................................... 3

Aqueous model................................................................................................................................................. 3
Ion exchange..................................................................................................................................................... 3
Surface complexation........................................................................................................................................ 3
Convergence problems...................................................................................................................................... 4
Inverse modeling............................................................................................................................................... 4

How to obtain the software and manual...................................................................................................................... 4
Installation and setup of the DOS version .................................................................................................................. 5
Installation and setup of the Unix version .................................................................................................................. 5
Purpose and scope....................................................................................................................................................... 6

Equations for speciation and forward modeling ................................................................................................................... 6
Activities and mass-action equations.......................................................................................................................... 6

Mass-action and activity-coefficient equations for aqueous species................................................................. 7
Mass-action equations for exchange species .................................................................................................... 8
Mass-action equations for surface species........................................................................................................ 10

Equations for the Newton-Raphson Method............................................................................................................... 11
Activity of water ............................................................................................................................................... 11
Ionic strength..................................................................................................................................................... 12
Equations for equilibrium with a multicomponent gas phase........................................................................... 12
Equations for equilibrium with pure phases ..................................................................................................... 13
Mole-balance equation for a surface................................................................................................................. 14
Mole-balance equation for an exchanger.......................................................................................................... 15
Mole-balance equation for alkalinity ............................................................................................................... 15
Mole-balance equations for elements ............................................................................................................... 16
Aqueous charge-balance equation..................................................................................................................... 17
Surface charge-potential equation without explicit calculation of the diffuse-layer composition.................... 19
Surface charge-balance equation with explicit calculation of the diffuse-layer composition........................... 20
Non-electrostatic surface-complexation modeling ........................................................................................... 22

Numerical method for speciation and forward modeling ..................................................................................................... 22
Application to aqueous speciation calculations .......................................................................................................... 24
Application to initial exchange calculations............................................................................................................... 25
Application to initial surface calculations................................................................................................................... 26
Application to reaction and transport calculations...................................................................................................... 27

Equations and numerical method for inverse modeling........................................................................................................ 28
Organization of the computer code....................................................................................................................................... 32
Description of data input....................................................................................................................................................... 34

Conventions for data input.......................................................................................................................................... 34
Reducing chemical equations to a standard form ....................................................................................................... 36
Conventions for documentation.................................................................................................................................. 36
Overview of data files and keyword data blocks ........................................................................................................ 36
Keywords .......................................................................... 39

END...................................................................................................................................................^
Example problems................................................................................................................................... 39

EQUILIBRIUM_PHASES ...........................................
Example .................................................................................................................................................. 40
Explanation............................................................................................................................................. 40
Notes .......................................................................................................................................................41
Example problems................................................................................................................................... 41

CONTENTS Hi



Related keywords.................................................................................................................................... 41
EXCHANGE....................................^

Example 1 ............................................................................................................................................... 42
Explanation 1 .......................................................................................................................................... 42
Notes 1 ....................................................................................................................................................42
Example 2 ............................................................................................................................................... 42
Explanation 2.......................................................................................................................................... 42
Notes 2......................................................................
Example problems................................................................................................................................... 43
Related keywords.................................................................................................................................... 43

EXCHANGE_MASTER_SPECIES................................................................................................................. 44
Example .................................................................................................................................................. 44
Explanation............................................................................................................................................. 44
Notes ....................................................................................................................................................... 44
Example problems................................................................................................................................... 44
Related key words.................................................................................................................................... 44

EXCHANGE_SPECIES................................................................................................................................... 45
Example .................................................................................................................................................. 45
Explanation............................................................................................................................................. 45
Notes .......................................................................................................................................................45
Example problems................................................................................................................................... 46
Related keywords.................................................................................................................................... 46

GAS_PHASE....................................................................................................................................................47
Example.................................................................................................................................................. 47
Explanation............................................................................................................................................. 47
Notes .......................................................................................................................................................47
Example problems................................................................................................................................... 48
Related key words.................................................................................................................................... 48

INVERSE_MODELING ...............................................
Example .................................................................................................................................................. 49
Explanation............................................................................................................................................. 49
Notes .......................................................................................................................................................5
Example problems................................................................................................................................... 52
Related keywords.................................................................................................................................... 52

KNOBS...................................................................................................................................
Example .................................................................................................................................................. 53
Explanation............................................................................................................................................. 53
Notes ....................................................................................................................................................... 55
Example problems................................................................................................................................... 55

MIX...................................................................................................................................................................56
Example .................................................................................................................................................. 56
Explanation............................................................................................................................................. 56
Notes ....................................................................................................................................................... 56
Example problems................................................................................................................................... 56
Related key words.................................................................................................................................... 56

PHASES.............................................................................................................................................57
Example ...................................................................................................................................... 57
Explanation .................................................................................................... 57
Notes ................................................................................................................ 58
Example problems.............................................................................................................. 58
Related key words.......................................................................................................................... 58

PRINT.......................................................................................................................... 59
Example ............................................................................................... 59
Explanation ............................................................................................................................................ 59

IV



Notes ....................................................................................................................................................... 60
Example problems................................................................................................................................... 60
Related keywords.................................................................................................................................... 60

REACTION ....................................................................
Example 1 ............................................................................................................................................... 61
Explanation 1 .......................................................................................................................................... 61
Example 2 ............................................................................................................................................... 61
Explanation 2.......................................................................................................................................... 61
Notes ....................................................................................................................................................... 62
Example problems................................................................................................................................... 62
Related keywords.................................................................................................................................... 62

REACTION_TEMPERATURE................................^
Example 1 ............................................................................................................................................... 63
Explanation 1 .......................................................................................................................................... 63
Example 2 ............................................................................................................................................... 63
Explanation 2.......................................................................................................................................... 63
Notes ....................................................................................................................................................... 63
Example problems................................................................................................................................... 64
Related keywords.................................................................................................................................... 64

SAVE...............................................................^
Example .................................................................................................................................................. 65
Explanation............................................................................................................................................. 65
Notes ....................................................................................................................................................... 65
Example problems................................................................................................................................... 65
Related key words.................................................................................................................................... 65

SELECTED_OUTPUT........................................^
Example .................................................................................................................................................. 66
Explanation............................................................................................................................................. 66
Notes ....................................................................................................................................................... 67
Example problems................................................................................................................................... 68
Related keywords.................................................................................................................................... 68

SOLUTION...................................................................................^
Example .................................................................................................................................................. 69
Explanation............................................................................................................................................. 69
Notes ....................................................................................................................................................... 7
Example problems................................................................................................................................... 71
Related keywords.................................................................................................................................... 71

SOLUTION_MASTER_SPECffiS................................................................................................................... 72
Example .................................................................................................................................................. 72
Explanation............................................................................................................................................. 72
Notes .....................................................................................................................................................^
Example problems................................................................................................................................... 73
Related keywords.................................................................................................................................... 73

SOLUTTON_SPECffiS .....................................
Example .................................................................................................................................................. 74
Explanation............................................................................................................................................. 74
Notes............................................................
Example problems................................................................................................................................... 76
Related keywords.................................................................................................................................... 76

SURFACE.........................................^
Example 1 ............................................................................................................................................... 77
Explanation 1 .......................................................................................................................................... 77
Notes 1 .................................................................................................................................................... 78
Example 2 ............................................................................................................................................... 79

CONTENTS



Explanation 2.......................................................................................................................................... 79
Notes 2.................................................................................................................................................... 79
Example problems................................................................................................................................... 79
Related key words.................................................................................................................................... 79

SURFACE_MASTER_SPECIES..................................................................................................................... 80
Example .................................................................................................................................................. 80
Explanation............................................................................................................................................. 80
Notes ......................................................................_
Example problems................................................................................................................................... 80
Related key words.................................................................................................................................... 80

SURFACE_SPECIES ....................................................................................................................................... 81
Example .................................................................................................................................................. 81
Explanation............................................................................................................................................. 81
Notes ....................................................................................................................................................... 82
Example problems................................................................................................................................... 82
Related keywords.................................................................................................................................... 82

TITLE.............................................................^
Example .................................................................................................................................................. 83
Explanation............................................................................................................................................. 83
Notes .....................................................................^
Example problems................................................................................................................................... 83

TRANSPORT.................................................................................................................................................... 84
Example .................................................................................................................................................. 84
Explanation ............................................................................................................................................. 84
Notes ....................................................................................................................................................... 84
Example problems................................................................................................................................... 85
Related key words.................................................................................................................................... 85

USE...................................................................................................................................................................86
Example .................................................................................................................................................. 86
Explanation............................................................................................................................................. 86
Notes ....................................................................................................................................................... 86
Example problems................................................................................................................................... 86
Related keywords.................................................................................................................................... 87

Summary of data input.......................................................................................................................................................... 88
Examples.......................................................................................................................^^ 92

Example 1 Speciation calculation ............................................................................................................................. 92
Example 2 Equilibration with pure phases................................................................................................................ 97
Example 3.--Mixing............................................................._ 100
Example 4. Evaporation and homogeneous redox reactions..................................................................................... 102
Example 5.--Irreversible reactions.............................................................................................................................. 103
Example 6.--Reaction-path calculations ..................................................................................................................... 105
Example 7. Gas-phase calculations........................................................................................................................... 109
Example 8. Surface complexation............................................................................................................................. 110
Example 9. Advective transport and cation exchange............................................................................................... 114
Example lO.-Advective transport, cation exchange, surface complexation, and mineral equilibria......................... 116

Initial conditions ............................................................................................................................................... 117
Recharge water.................................................................................................................................................. 119
Transport calculations....................................................................................................................................... 119

Example 11. Inverse modeling.................................................................................................................................. 120
Example 12. Inverse modeling with evaporation...................................................................................................... 126

References cited.................................................................................................................................................................... 128
Attachment A Listing of notation........................................................................................................................................ 130
Attachment B Description of database files and listing ...................................................................................................... 134

VI



FIGURES

1. Graph showing saturation indices of gypsum and anhydrite in solutions that have equilibrated with the
more stable of the two phases over the temperature range 25 to 75° Celsius........................................................... 98

2. Phase diagram for the dissolution of microcline in pure water at 25°C, showing stable phase boundary
intersections and reaction paths across stability fields.............................................................................................. 108

3-6. Graphs showing:
3. Composition of the gas phase during decomposition of organic matter with a composition of

CH2ON0 07 in pure water............................................................................................................................... 110
4. Distribution of zinc between the aqueous phase and strong and weak surface sites of hydrous

iron oxide as a function of pH for total zinc concentrations of 10 and 10 molal...................................... 114
5. Transport simulation of the replacement of sodium and potassium on an ion exchanger by inflowing

calcium chloride solution ............................................................................................................................... 116
6. Chemical evolution of ground water due to calcium magnesium bicarbonate water inflow to an

aquifer initially containing a brine, calcite and dolomite, a cation exchanger, and a surface complexer 
containing arsenic........................................................................................................................................... 119

TABLES

1. Elements and element valence states included in default database phreeqc.dat, including PHREEQC
	notation and default formula for gram formula weight..................................................................................... 38

2. Seawater composition ............................................................................................................................................... 92
3. Input data set for example 1...................................................................................................................................... 93
4. Output for example 1 ................................................................................................................................................ 94
5. Input data set for example 2...................................................................................................................................... 97
6. Selected output for example 2................................................................................................................................... 99
7. Input data set for example 3...................................................................................................................................... 100
8. Selected results for example 3 .................................................................................................................................. 101
9. Input data set for example 4...................................................................................................................................... 102

10. Selected results for example 4 .................................................................................................................................. 103
11. Input data set for example 5...................................................................................................................................... 104
12. Selected results for example 5 .................................................................................................................................. 104
13. Input data set for example 6...................................................................................................................................... 106
14. Selected results for example 6 .................................................................................................................................. 107
15. Input data set for example 7...................................................................................................................................... 109
16. Input data set for example 8...................................................................................................................................... 112
17. Input data set for example 9...................................................................................................................................... 115
18. Input data set for example 10.................................................................................................................................... 118
19. Input data set for example 11.................................................................................................................................... 122
20. Selected output for example 11................................................................................................................................. 123
21. Input data set for example 12.................................................................................................................................... 125
22. Selected output for example 12................................................................................................................................. 127

CONTENTS Vll



ABBREVIATIONS OF UNITS

The following abbreviations are used in this report:

atmosphere atm
calorie cal

Coulomb C
degrees Celsius °C
degrees Kelvin °K

equivalent eq
gram g
Joule J

kilocalorie kcal
kilogram kg
kilojoule kJ

liter L
meter m
mole mol

milliequivalent meq
millimole mmol

micromole fimol
parts per million ppm
parts per billion ppb

square meter m2
Volt V

Degree Celsius (°C) may be converted to degree Fahrenheit (°F) by using the following equation:
°F = 9/5 (°C) + 32.

Degree Fahrenheit (°F) may be converted to degree Celsius (°C) by using the following equation:
°C = 5/9 (°F-32).
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User's Guide to PHREEQC a Computer Program for 
Speciation, Reaction-Path, Advective-Transport, and 
Inverse Geochemical Calculations

By David L. Parkhurst 

Abstract

PHREEQC is a computer program written in the C programming language that is designed to perform a wide 
variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has 
capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calcula­ 
tions involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria, surface-complex- 
ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole 
transfers that account for composition differences between waters, within specified compositional uncertainties.

PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with 
the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox 
elements among their valence states in speciation calculations; to model ion-exchange and surface-complexation 
reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate 
the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of 
minerals present in the solid phases and determine automatically the thermodynarnically stable phase assemblage; 
to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make 
inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved 
through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for 
hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral 
names and standard chemical symbolism rather than index numbers. The use of C eliminates nearly all limitations 
on array sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character strings.

A new equation solver that optimizes a set of equalities subject to both equality and inequality constraints is 
used to determine the thermodynarnically stable set of phases in equilibrium with a solution. A more complete 
Newton-Raphson formulation, master-species switching, and scaling of the algebraic equations reduce the number 
of failures of the numerical method in PHREEQC relative to PHREEQE.

This report presents the equations that are the basis for chemical equilibrium and inverse-modeling calcula­ 
tions in PHREEQC, describes the input for the program, and presents twelve examples that demonstrate most of 
the program's capabilities.

INTRODUCTION

PHREEQE (Parkhurst and others, 1980) has been a useful geochemical program for nearly 15 years. 
PHREEQE is capable of simulating a wide range of geochemical reactions including mixing of waters, addition of 
net irreversible reactions to solution, dissolving and precipitating phases to achieve equilibrium with the aqueous 
phase, and effects of changing temperature. Concentrations of elements, molalities and activities of aqueous spe­ 
cies, pH, pe, saturation indices, and mole transfers of phases to achieve equilibrium can be calculated as a function 
of specified reversible and irreversible geochemical reactions, provided sufficient thermodynamic data are avail­ 
able.

However, PHREEQE suffers from a number of deficiencies. As a speciation code, it lacks flexibility in defin­ 
ing mole balances on valence states and in distributing redox elements among their valence states. As a reaction 
path code, it does not keep track of the mass of water in solution nor the moles of minerals in contact with the 
solution. Surface complexation, ion exchange, or a fixed-pressure gas phase can not be modeled without program 
modification. Determining reaction paths and thermodynarnically stable mineral assemblages is time consuming 
and tedious. The numerical method fails for some redox problems, which causes the program not to converge to
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the correct solution to the algebraic equations. Perhaps most importantly, the fixed format input and reliance on 
index numbers is cumbersome and prone to errors. There are also many Fortran-imposed limits, such as limits on 
the numbers of elements, aqueous species, phases, solutions, and lengths of character strings (mineral names for 
instance) that are inconvenient and time consuming to modify.

Program Capabilities

PHREEQC retains the capabilities of PHREEQE and eliminates many of the deficiencies and limitations. 
Mole balances for speciation calculations can be defined for any valence state or combination of valence states. 
Distribution of redox elements among their valence states can be based on a specified pe or any redox couple for 
which data are available. A new capability with PHREEQC allows the concentration of an element to be adjusted 
to obtain equilibrium (or a specified saturation index or gas partial pressure) with a specified phase. Solution com­ 
positions can be specified more easily with a larger selection of concentration units and a simple method for con­ 
verting mass units to molal units.

In reaction-path calculations, PHREEQC is oriented more toward system equilibrium than just aqueous 
equilibrium. Essentially, all of the moles of each element in the system are distributed among the aqueous phase, 
pure-phases, exchange sites, and surface sites to attain system equilibrium. Mole balances on hydrogen and oxygen 
allow the calculation of pe and the mass of water in the aqueous phase, which obviates the need for the special 
redox convention used in PHREEQE and allows water-producing or -consuming reactions to be modeled correctly. 
The diffuse double-layer model (Dzombak and Morel, 1990) and a non-electrostatic model (Davis and Kent, 1990) 
have been incorporated for modeling surface-complexation reactions. Surface complexation constants from 
Dzombak and Morel (1990) are included in the default databases for the program. The capability to model ion 
exchange reactions has been added and exchange reactions using the Gaines-Thomas convention are included in 
the default databases of the program. Exchange modeling with the Gapon convention is also possible. It is possible 
to define independently any number of solution compositions, gas phases, or pure-phase, gas-phase, exchange, or 
surface-complexation assemblages. During reaction calculations, any combination of these solutions, gas phases, 
and assemblages can be brought together to define a system and can react to system equilibrium.

The determination of reaction paths and the stable phase assemblage has been simplified, but the capability 
to solve for individual phase boundaries has been retained. A new equation solver, that allows both equality and 
inequality constraints is used to determine the stable phases among a list of candidate phases. Mole transfers occur 
until each candidate phase is in equilibrium with the aqueous phase or is undersaturated with the solution and the 
total number of moles of the phase have been removed. Conceptually, it is not possible to produce a Gibbs' phase 
rule violation. A more complete Newton-Raphson formulation, master-species switching, and numerical scaling 
have been included in PHREEQC to eliminate some, if not all, of the convergence problems in PHREEQE.

The ability to define multiple solutions and assemblages combined with the capability to determine the stable 
phase assemblage, leads naturally to 1-dimensional, advective transport modeling. PHREEQC provides a simple 
method for simulating the movement of solutions through a column. The initial composition of the aqueous, gas, 
and solid phases within the column may be specified and the changes in composition due to advection of an infill­ 
ing solution and chemical reaction within the column can be modeled.

A completely new capability added to PHREEQC allows calculation of inverse models. Inverse modeling 
attempts to account for the chemical changes that occur as a water evolves along a flow path (Plummer and Back, 
1980; Parkhurst and others, 1982; Plummer and others, 1991, Plummer and others, 1994). Assuming two water 
analyses represent starting and ending water compositions along a flow path, inverse modeling is used to calculate 
the moles of minerals and gases that must enter or leave solution to account for the differences in composition. 
PHREEQC allows uncertainties in the analytical data to be defined, such that inverse models are constrained to 
satisfy mole balance for each element and valence state and charge balance for the solution, but only within spec­ 
ified uncertainties. One mode of operation finds minimal inverse models, that is, sets of minerals such that no min­ 
eral can be eliminated and still find mole transfers with the remaining minerals that satisfy all of the constraints; 
another mode of operation finds all sets of minerals that can satisfy the constraints, even if they are not minimal. 
Optionally, for each inverse model, minimum and maximum mole transfers that are consistent with the uncertain­ 
ties are computed individually for each mineral in the inverse model.

The input to PHREEQC is completely free format and is based on chemical symbolism. Balanced equations, 
written in chemical symbols, are used to define aqueous species, exchange species, surface-complexation species,
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and pure phases, which eliminates all use of indices. At present, no interactive version of the program is available. 
However, the free-format structure of the data, the use of order-independent keyword data blocks, and the rela­ 
tively simple syntax make it easy to generate input data sets with a standard editor. The C programing language 
allows dynamic allocation of computer memory, so there are very few limitations on array sizes, string lengths, or 
numbers of entities, such as solutions, phases, sets of phases, exchangers, or surface complexers that can be defined 
to the program.

Program Limitations

PHREEQC is a general geochemical program and is applicable to many hydrogeochemical environments. 
However, several limitations need to be considered.

Aqueous Model

PHREEQC uses ion-association and Debye Huckel expressions to account for the non-ideality of aqueous 
solutions. This type of aqueous model is adequate at low ionic strength but may break down at higher ionic 
strengths (in the range of seawater and above). An attempt has been made to extend the range of applicability of 
the aqueous model through the use of an ionic-strength term in the Debye Huckel expressions. These terms have 
been fit for the major ions using chloride mean-salt activity-coefficient data (Truesdell and Jones, 1974). Thus, in 
sodium chloride dominated systems, the model may be reliable to higher ionic strengths. For high ionic strength 
waters, the specific interaction approach to thermodynamic properties of aqueous solutions should be used (for 
example, Pitzer, 1979, Harvie and Weare, 1980, Harvie and others, 1984, Plummer and others, 1988).

The other limitation of the aqueous model is lack of internal consistency in the data in the database. Most of 
the log K's and enthalpies of reaction have been taken from various literature sources. No systematic attempt has 
been made to determine the aqueous model that was used to develop the log K's or whether the aqueous model 
defined by the current database file is consistent with the original experimental data. The database files provided 
with the program should be considered to be preliminary. Careful selection of aqueous species and thermodynamic 
data is left to the users of the program.

Ion Exchange

The ion-exchange model assumes that the thermodynamic activity of an exchange species is equal to its 
equivalent fraction. Other formulations use other definitions of activity, mole fraction for example, or additional 
activity coefficients to convert equivalent fraction to activity (Appelo, 1994). No attempt has been made to include 
other or more complicated exchange models. In many field studies, ion-exchange modeling requires experimental 
data on material from the study site for appropriate model application.

Surface Complexation

PHREEQC incorporates the Dzombak and Morel (1990) diffuse double-layer and a non-electrostatic sur- 
face-complexation model (Davis and Kent, 1990). Other models, including isotherms and triple- and quadru­ 
ple-layer models have not been included in PHREEQC.

Davis and Kent (1990) reviewed surface-complexation modeling and note theoretical problems with the 
standard state for sorbed species. Other uncertainties occur in determining the number of sites, the surface area, 
the composition of sorbed species, and the appropriate log K's. In many field studies, surface-complexation mod­ 
eling requires experimental data on material from the study site for appropriate model application.

The capability of PHREEQC to calculate the composition of the diffuse layer (-diffusejayer option) is ad 
hoc and should be used only as a preliminary sensitivity analysis.

INTRODUCTION 3



Convergence Problems

PHREEQC tries to identify input errors, but it is not capable of detecting some physical impossibilities in 
the chemical system that is modeled. For example, PHREEQC allows a solution to be charge balanced by addition 
or removal of an element. If this element has no charged species or if charge imbalance remains even after the con­ 
centration of the element has been reduced to zero, then the numerical method will appear to have failed to con­ 
verge. Other physical impossibilities that have been encountered are (1) when a base is added to attain a fixed pH, 
but in fact an acid is needed (or vice versa) and (2) when noncarbonate alkalinity exceeds the total alkalinity given 
on input.

At present, the numerical method has proved to be relatively robust. Known convergence problems cases 
when the numerical method fails to find a solution to the non-linear algebraic equations have occurred only when 
physically impossible equilibria have been posed and when trying to find the stable phase assemblage among a 
large number (approximately 25) minerals, each with a large number of moles (5 moles or more). It is suspected 
that the latter case is caused by loss of numerical precision in working with sparingly soluble minerals (that is, 
small aqueous concentrations) in systems with large total concentrations (on the order of 100 moles). Occasionally 
it has been necessary to use the scaling features of the KNOBS keyword. The scaling features appear to be neces­ 
sary when total dissolved concentrations fall below approximately 10" 15 molal.

Inverse Modeling

Inclusion of uncertainties in the process of identifying inverse models is a major advance. However, the 
numerical method has shown some lack of robustness due to the way the solver handles small numbers. The option 
to change the tolerance used by the solver is an attempt to remedy this problem. In addition, the inability to include 
isotopic information in the modeling process is a serious limitation.

How to Obtain the Software and Manual

The latest DOS and Unix versions of the software described in this report and a Postscript file of this manual 
can be obtained by anonymous ftp from the Internet address: brrcrftp.cr.usgs.GOV (136.177.112.5). The files 
reside in directories /geochem/pc/phreeqc and/geochem/unix/phreeqc. A typical anonymous ftp session follows:

% ftp brrcrftp.cr.usgs.GOV
Name: anonymous
Password: userid@computer (replaced with your userid and computer name)
ftp> cd geochem/pc/phreeqc (change directory)
ftp> Is (list files in directory)
phrqcsfx.exe
ftp> type binary (eliminate any ascii translation for binary files)
ftp> get phrqcsfx.exe (transfer the file)
ftp> quit (quit ftp)

Alternatively, the documentation and DOS or Unix versions of the software can be ordered from the follow­ 
ing address:

U.S. Geological Survey 
NWIS Program Office 
437 National Center 
Reston, VA 22092 
(703) 648-5695

Additional copies of this report are available from: 

4 User's Guide to PHREEQC



U.S. Geological Survey 
Earth Science Information Center 
Open-File Reports Section 
Box 25286, MS 517 
Denver Federal Center 
Denver, CO 80225-0046

For additional information, write to the address on page ii of this report.

Installation and Setup of the DOS Version

The self-extracting file PHRQCSFX.EXE, obtained by anonymous ftp or from the distribution diskette, 
should be copied to a directory on the hard drive of the microcomputer where PHREEQC is to be set up and exe­ 
cuted. To retain pre-designed sub-directories during extraction, type:

PHRQCSFX -D

at the DOS prompt for the hard drive. During extraction, the executable file (PHREEQC.EXE) and database files 
(PHREEQC.DAT and WATEQ4F.DAT) are extracted in the directory where PHRQCSFX.EXE was copied (here, 
C:\PHREEQC is used as an example). The source code is extracted in the sub-directory C:\PHREEQC\SRC. The 
sub-directory C:\PHREEQC\EXAMPLES\ contains the files for each simulation described in the Examples 
section of this manual.

To run the examples in the EXAMPLES sub-directory, it will be necessary to copy the executable and data 
files (PHREEQC.EXE and PHREEQC.DAT) from the top-level directory into the EXAMPLES sub-directory. Then, 
PHREEQC can be invoked from this sub-directory with any of the following commands:

phreeqc (The program will query for each of the needed files.)

phreeqc input (The input file is named input, the output file will be
named input.out and the default database file will be 
used.)

phreeqc input output (The input file is named input, the output file is
named output, and the default database file will be 
used.)

phreeqc input output database (All file names are specified explicitly.)

Example 1 could be run with the command: phreeqc exl. The results of the simulation then will be found

Installation and Setup of the Unix Version

The Unix source code is identical to the DOS source code. Additional scripts and a makefile are included in 
the Unix distribution. The following steps should be used to transfer, compile, and install the program on a Unix 
computer.

(1) Transfer the compressed tar files to your home computer with ftp or obtain the Unix version on diskette 
as described above. Be sure to use "type binary" for transferring the tar file.

(2) Uncompress the compressed tar file and extract the files with tar. The files will automatically extract into 
subdirectories named bin, data, doc, src, and test. Here, "x.x" represents a version number.

% uncompress phreeqc.x.x.tar.Z 

% tar -xvof phreeqc.x.x.tar

(3) Change directory into src and compile the programs using make. By default the makefile (named 
src/Makefile) uses gcc as the compiler. Change the variables "CC" and "CCFLAGS" in the makefile to be consis-
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tent with the C compiler on your system if necessary. The following commands will create an executable file 
named, ../bin/phreeqc.exe.

% cd src 

%make

(4) Install the script to run PHREEQC. This script needs to be installed in a directory where executables are 
stored. The makefile automatically edits the scripts to contain the appropriate pathnames for the data file, phre- 
eqc.dat by default, and the executable file. The directory is assumed to be included in your PATH environmental 
variable, so that the programs will run regardless of the directory from which they are invoked. The default direc­ 
tory in which the scripts are installed is $(HOME)/bin.

This command installs the script in $(HOME)/bin:

% make install

This command installs the script in the specified directory: 

% make install BINDIR=/home/jdoe/local/bin

After the scripts are properly installed, they can be executed in any directory with any of the commands 
described in the DOS installation section with the understanding that Unix is case sensitive. Most Unix commands 
and file names are lower case. The examples from this manual can be run from the sub-directory, test.

Purpose and Scope

The purpose of this report is to describe the theory and operation of the program PHREEQC. The scope of 
the report includes the definition of the constituent equations, explanation of the transformation of these equations 
into a numerical method, description of the organization of the computer code that implements the numerical 
method, description of the input for the program, and presentation of a series of examples of input data sets and 
model results that demonstrate many of the capabilities of the program.

EQUATIONS FOR SPECIATION AND FORWARD MODELING

In this section of the report, the algebraic equations used to define thermodynarnic activities of aqueous spe­ 
cies, ion-exchange species, surface-complexation species, gas-phase components, and pure phases are presented. 
A set of functions, denoted /, are defined that must be solved simultaneously to determine equilibrium for a given 
set of conditions. Most of these functions are derived from mole-balance equations for each element, exchange 
site, and surface site and from mass-action equations for each pure phase. Each function is reduced to contain a 
minimum number of variables, usually, one for each element, exchange site, surface site, and pure phase. The pro­ 
gram uses a modified Newton-Raphson method to solve the simultaneous nonlinear equations. This method uses 
the residuals of the functions and an array of partial derivatives of each function with respect the set of master vari­ 
ables. For clarity, the set of variables used in partial differentiation are referred to as "master variables" or "master 
unknowns". The total derivatives of each function, /, will be presented without derivation.

After all of the functions are presented, the following section presents the solution algorithm for each type 
of speciation and forward model that can be solved by PHREEQC: initial solution (speciation), initial exchanger, 
initial surface, and reaction or transport modeling. A table of notation is included in Attachment A. In general, lack 
of a subscript or the subscript "(aq)" will refer to entities in the aqueous phase, "(e)" refers to exchangers, "(g)" 
refers to gases, and "(s)" refers to surfaces.

Activities and Mass-Action Equations

In this section the activities of aqueous, exchange, and surface species are defined and the mass-action rela­ 
tions for each species are presented. Equations are derived from the mass-action expression for the number of 
moles of each species in the chemical system in terms of the master variables. These equations are then differen­ 
tiated with respect to the master variables. Later, these equations for the number of moles of a species and the par-
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tial derivatives will be substituted into the constituent mole-balance, charge-balance, and phase-equilibria 
functions.

Mass-Action and Activity-Coefficient Equations for Aqueous Species

PHREEQC allows speciation or equilibration with respect to a single aqueous phase. However, multiple 
aqueous phases may be defined in the course of a run and an aqueous phase may be defined as a mixture of one or 
more aqueous phases (see MIX keyword in data input section). The dissolved species in the aqueous phase are 
assumed to be in thermodynamic equilibrium, except in initial solution calculations, when equilibrium may be 
restricted to obtain only among the species of each element valence state. The unknowns for each aqueous species 
are the activity, a^ activity coefficient, y., molality, ra z , and number of moles in solution, n-t , of each aqueous spe­

cies, L The following relationships apply to all aqueous species (except aqueous electrons and water itself): 
a. = Y.ra. and n. = m.W , where W is the mass of water in the aqueous phase.i 'i i i i aq' aq i r

PHREEQC rewrites all chemical equations in terms of master species. There is one master aqueous species
associated with each element (for example, Ca+2 for calcium) or element valence state (for example, Fe+3 for ferric 
iron) plus the activity of the hydrogen ion, the activity of the aqueous electron, and the activity of water. For PHRE­ 
EQC, the identity of each aqueous master species is defined with SOLUTION_MASTER_SPECIES keyword 
data block. (See Description of Data Input.) The numerical method reduces the number of unknowns to be a min­ 
imum number of master unknowns, and iteratively refines the values of these master unknowns until a solution to 
the set of algebraic equations is found. The master unknowns for aqueous solutions are the natural log of the activ­ 
ities of master species, the natural log of the activity of water, aH o , the ionic strength, fi , and the mass of solvent

water in an aqueous solution, Waq.

Equilibrium among aqueous species in an ion-association model requires that all mass-action equations for 

aqueous species are satisfied. For example, the association reaction for the aqueous species CaSO^ is

Ca + SO4 = CaSO4 . The log K for this reaction at 25°C is 2.3, which results in the following mass-action 

equation:

a 0
2 3 CaSOA 

102 - 3 =      4  . (1)
2 2 - 

Ca S04

In general, mass-action equations can be written as follows:

K. = aT\a Cm'\ (2)' v '
m

where cm f is the stoichiometric coefficient of master species m in species /. The values of cmi may be positive or 
negative. For PHREEQC, terms on the right-hand side of an association reaction are assigned negative 
coefficients and terms on the left-hand side are assigned positive coefficients. Kj is an equilibrium constant that is 
dependent on temperature, and m ranges over all master species. The same formalism applies to master species,

a
where the mass-action equation is simply 1 =   .

am

For aqueous species the equation, derived from the mass-action expression, for the total number of moles of 
species i is

n Cm,i
am

n. = m.W = K.W -&   . (3) i i aq i aq y v
'i
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The Newton-Raphson method uses the total derivative of the number of moles with respect to the master 
unknowns. The total derivative is

dn, = «,. pin ( Wag ) + £cmj ,.<fln (aj - |-ln ( y,) d^ . (4)
L m ^ J

Activity coefficients of aqueous species are defined with the following equations:

logy, = -Az-=- 0.3 (5)
M + V^L '

which is referred to as the Davies equation, or

AzJ\L
, (6)

1 + Ba.J\Ji

which is referred to as either the extended Debye-Hiickel equation, if /?/ is zero, or the WATEQ Debye-Hiickel 
equation (see Truesdell and Jones, 1974), if h; is not equal to zero. A and B are constants dependent only on

temperature, a. is the ion-size parameter in the extended Debye-Hiickel equation, a. and b-v are ion-specific 

parameters fitted from mean-salt activity-coefficient data in the WATEQ Debye-Hiickel equation, and z,- is the
ionic charge of aqueous species /. Unless otherwise specified in the database file or the input data set, the Davies 
equation is used for charged species. For uncharged species, the first term of the activity coefficient equation is 
zero, and unless otherwise specified &,- is assumed to be 0.1 for all uncharged species.

The partial derivatives of these activity coefficient equations with respect to ionic strength are

AlnY/ = -In (10) \Azf( r *     ~7 -0.3 jl , (7) 
^ ' L 'V2V^(V^+1) 2 ^J

for the Davies equation and

^-Iny. = -In (10)    ,     -     r= + M» (8) 
T' ° 2 '

for the extended or WATEQ Debye-Hiickel equation.
For data input to PHREEQC, the chemical equation for the mole-balance and mass-action expression, the 

log K and its temperature dependence, and the activity coefficient parameters for each aqueous species are defined 
through the SOLUTION_SPECIES keyword data block. Master species for elements and element valence states 
are defined with the SOLUTION_MASTER_SPECIES keyword data block. Composition of a solution is 
defined with the SOLUTION keyword data block. (See Description of Data Input.)

Mass-Action Equations for Exchange Species

Ion-exchange equilibria are included in the model through additional, heterogeneous mass-action equations. 
PHREEQC allows multiple exchangers, termed an "exchange assemblage", to exist in equilibrium with the aque­ 
ous phase. The approach uses mass-action expressions based on half-reactions between aqueous species and a fic- 
tive unoccupied exchange site (Appelo and Postma, 1993) for each exchanger. This unoccupied exchange site is 
the master species for the exchanger and the log of its activity is an additional master unknown. Its identity is 
defined with EXCHANGE_MASTER_SPECIES keyword data block. (See Description of Data Input.) How­ 
ever, the master species is not included in the mole-balance equation for the exchanger, forcing its physical con­ 
centration to be zero. Its activity is also physically meaningless, but is such that all of the exchange sites are filled 
by other exchange species.
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The unknowns for exchange calculations are the activity, a. , which is defined to be the equivalent fraction
e

in PHREEQC, and the number of moles, n. , of each exchange species, i , of exchanger e. The equivalent fraction
l e e

is the number of moles of sites occupied by an exchange species divided by the total number of exchange sites.
b .n.

e, i i
The activity of an exchange species is defined as follows: a. =  -Z - , where b . is the number of equivalents

l e l e e > l e

of exchanger, e, occupied by the exchange species, i and T is the total number of exchange sites for the 

exchanger, in equivalents. Note that T is the total number of equivalents of the exchanger in the system which is 

not necessarily equal to the number of equivalents per kilogram of water (eq/kg I^O), because the mass of water 
in the system may be more or less than 1 kg.

Equilibrium among aqueous and exchange species requires that all mass-action equations for the exchange 

species are satisfied. The association reaction for the exchange species CaX^ is Ca +2X = CaX^ , where X

is the exchange master species for the default database. The use of equivalent fractions for activities and this form 
for the chemical reaction is known as the Gaines-Thomas convention (Gaines and Thomas, 1953) and is the con­ 
vention used in the default database for PHREEQC. [It is also possible to use the Gapon convention in PHREEQC,

which uses equivalent fraction, but writes the exchange reaction as 0.5 C'a +X - CaQ5X. See Appelo and

Postma (1993) for more discussion.] The log K for calcium exchange in the default database file is 0.8, which 
results in the following mass-action equation:

)°'8 =    V   P>

a , .a
C.n \

In general, mass-action equations can be written as follows:

where m varies over all master species, including exchange master species, c . is the stoichiometric coefficient
' e

of master species, m, in the association half reaction for exchange species ie . The values of cm . may be positive
' e

or negative. For PHREEQC, terms on the right-hand side of an association reaction are assigned negative 
coefficients and terms on the left-hand side are assigned positive coefficients. K. , is a half-reaction selectivity

e

constant.
For an exchange species, the equation for the total number of moles of species ie is

TTF
n. =*.-2L__-. (11)

The natural log of the activity of the master species of the exchanger is an additional master unknown in the 
numerical method. The total derivative of the number of moles of species ie with respect to the master unknowns 
is
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For data input to PHREEQC, the chemical equation for the mole-balance and mass-action expression and 
the log K and its temperature dependence for each exchange species are defined through the 
EXCHANGE_SPECIES keyword data block. Exchange master species are defined with the 
EXCHANGE_MASTER_SPECIES keyword data block. Number of exchange sites and exchanger composition 
are defined with the EXCHANGE keyword data block. (See Description of Data Input.)

Mass-Action Equations for Surface Species

Surface-complexation processes are included in the model through additional, heterogeneous mass-action 
equations, and charge-potential relations. PHREEQC allows multiple surface complexers, termed a "surface 
assemblage", to exist in equilibrium with the aqueous phase. Two formulations of the mass-action equations for 
surface species are available in PHREEQC: (1) including an electrostatic potential term and (2) excluding any 
potential term. The two principle differences between the formulation of exchange reactions and surface reactions 
are that exchange reactions are formulated as half reactions, which causes the master species not to appear in any 
mole-balance equations, and the exchange species are expected to be neutral. Surface reactions are not half-reac­ 
tions, so the master species is a physically real species and appears in mole-balance equations, and surface species 
may be anionic, cationic, or neutral. If the Dzombak and Morel (1990) model, which includes an electrostatic 
effects, is used, additional equations and mass-action terms are included because of surface charge and surface 
electrostatic potential.

The basic theory for surface-complexation reactions including electrostatic potentials is presented in Dzom­ 
bak and Morel (1990). The theory assumes that the number of active sites, Ts (equivalents, eq), the specific area,

r\

As (meters squared per gram, m /g), and the mass, Ss (g), of the surface are known. The activity of a surface species 
is assumed to be equal to its molality (moles of surface species per kilogram of water, even though surface species 
are conceptually in the solid phase). The two additional master unknowns are (1) the quantity,

= In 2RT
e , where F is the Faraday constant, *¥ is the potential at surface s, R is the gas con-

2RT s

stant, and Tis temperature in Kelvin and (2) the natural log of the activity of the master surface species. The iden­ 
tity of the master surface species is defined with SURFACE_MASTER_SPECIES keyword data block. (See 
Description of Data Input.) Note that the quantity \na^ is defined with a 2 in the denominator of the term on the

s

right hand side. This is a different master unknown than that used in Dzombak and Morel (1990), but produces the 
same results as their model because all equations are written to be consistent with this master unknown.

If "HfoOH" is used to represent a neutral surface-complexation site ("Hfo ", /fydrous/erric oxide, is used in 
the default database files), the association reaction for the formation of a negatively charged site (it is an association 
reaction in the sense that the defined species is on the right hand side of the equation) can be written as follows:

HfoOH -> HfoO~ + H+ , (13) 

and the mass-action expression including the electrostatic potential term is

 e RT , (14) 
aHfoOH

where K is the intrinsic equilibrium constant for the reaction, e is a factor that accounts for the work 
HfoO

involved in moving a charged species (H+) away from a charged surface. In general, the equation for surface 
species is is
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where is is the z surface species for surface s, m varies over all master species, including surface master species, 
cm . is the stoichiometric coefficient of master species, m, in the association half reaction for surface species is .

The values of cm . may be positive or negative. For PHREEQC, terms on the right-hand side of an association 

reaction are assigned negative coefficients and terms on the left-hand side are assigned positive coefficients. K. ,
ls

is the intrinsic equilibrium constant, and Az   is the net change in surface charge due to the formation of the
s

surface species.
For a surface species, the equation for the total number of moles of species is is

i. = m.W = K.W e
* s, * s. aq i s aq

^ (16)

m

The total derivative of the number of moles of species is with respect to the master unknowns is

dn. =n.\d\\\(W ) +2\ c -d\n(a ) - 2Az- dlna^ 1 . (17) 
'V L m * s J

The second formulation of mass-action equations for surface species excludes the electrostatic potential term 
in the mass-action expression (-no_edl identifier in the SURFACE keyword data block). The equation for the 
number of moles of a surface species is the same as equation 16, except the factor involving a^, does not appear.

Likewise, the total derivative of the number of moles is the same as equation 17, except the final term is absent.
For data input to PHREEQC, the chemical equation for the mole-balance and mass-action expression and 

the log K and its temperature dependence of surface species are defined through the SURFACE_SPECDES key- 
word data block. Surface master species or types of surface sites are defined with the 
SURFACE_MASTER_SPECIES keyword data block. The number of sites, the composition of the surface, the 
specific surface area, and the mass of the surface are defined with the SURFACE keyword data block. (See 
Description of Data Input.)

Equations for the Newton-Raphson Method

A series of functions, denoted by /, are defined in this section. These functions describe heterogeneous equi­ 
librium and are derived primarily by substituting the equations for the number of moles of species (derived from 
mass-action equations in the previous section) into mole- and charge-balance equations. Each function is presented 
along with the total derivative with respect to the master unknowns.

Activity of Water

The activity of water is calculated from an approximation given by Garrels and Christ (1965, p. 65-66), 
which is based on Raoult's law:

affj0 = 1-0.017^ A. (18)
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The function, /  o , is defined as follows:

and the total derivative of this function is

n i 

Va d\n(Wa ) + 0.017 ^T dn i , (20)
i= 1 

The master unknown is the natural log of the activity of water.

Ionic Strength

The ionic strength of the aqueous solution is a master unknown and is defined as follows:

n. 
IT-   (21)

The function, / , is defined as follows:

f = W LL--^z.n., (22) 
i

and the total derivative of this function is

Equations for Equilibrium with a Multicomponent Gas Phase

Equilibrium between a multicomponent gas phase and the aqueous phase is modeled with additional, heter­ 
ogeneous mass-action equations. Only one gas phase can exist in equilibrium with the aqueous phase, but the gas 
phase may contain multiple components. The fugacity or activity of a gas component is assumed to be equal to its 
partial pressure. PHREEQC assumes the total pressure of the gas phase in equilibrium with a solution is fixed and 
is specified as P total- ^ tne sum °f tne Partial pressures of the gas components in solution is less than Ptotai, the gas 
phase does not exist. The additional master unknown for the gas phase is the total number of moles of gas in the 
gas phase (including all gas components), Ngas . The number of moles of a gas component, g, in the gas phase is n .

A mass-action equation is used to relate gas-component activities (fugacities) to aqueous phase activities. 
PHREEQC uses dissolution equations, in the sense that the gas component is assumed to be on the left-hand side 
of the chemical reaction. For carbon dioxide, the dissolution reaction may be written as follows:

CO 9 = CO, . (24)
2(#) 2(aq) V

The Henry's law constant relates the partial pressure of the gas component to the activity of aqueous species. For
carbon dioxide, the Henry's law constant is 10 , and the following mass-action equation obtains at 
equilibrium:

P = lO 1 '468 * , (25)
2

where PCO is the partial pressure calculated using activities in the aqueous phase. In general, the partial pressure 

of a gas component may be written in terms of aqueous phase activities as follows:
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. (26)
g m

where P is the partial pressure of gas component g, calculated using activities in the aqueous phase; K is the
o o

Henry's law constant for the gas component; and cm is the stoichiometric coefficient of master species, ra, in 

the dissolution equation. The values of c . may be positive or negative. For PHREEQC, terms on the left-hand

side of a dissolution reaction are assigned negative coefficients and terms on the right-hand side are assigned 
positive coefficients.

At equilibrium, the number of moles of a gas component in the gas phase is equal to the partial pressure of 
the gas times the total number of moles of gas in the gas phase,

n = N p = .. (27)
8 8as g K Al m ^ '

8 m

The total derivative of the number of moles of a gas component in the gas phase is

dn = P dN + \N PC d\na . (28) g g gas Z-t gas g m, g m ^ '
m

For mole-balance equations, the numerical model treats the gas phase components in the same way that it treats 
aqueous species. Thus, the terms dn appear in the Jacobian for the mole-balance equations for each element.

o

The total number of moles of each element in the system includes both the number of moles in the gas phase and 
the number of moles in the aqueous phase.

Apart from the new terms in mole-balance equations, the one new function for the gas phase requires that 
the sum of the partial pressures of the component gases is equal to the total pressure, Ptotai. The function fp is

total

defined as follows:

The total derivative of fp with respect to the master unknowns, with the convention that positive dNeas
^ total S

are increases in solution concentration, is

For data input to PHREEQC, the mass-action equations, Henry's law constant, and temperature dependence 
of the constant for gas phases are defined with the PHASES keyword data block. Components to include in 
gas-phase calculations and initial gas composition are defined with the GAS_PHASE keyword data block. (See 
Description of Data Input.)

Equations for Equilibrium with Pure Phases

Equilibrium between the aqueous phase and pure phases, including single-component gas phases, is 
included in the model through the addition of heterogeneous mass-action equations. PHREEQC allows multiple 
pure phases, termed a pure-phase assemblage, to exist in equilibrium with the aqueous phase, subject to the limi­ 
tations of the Gibbs' Phase Rule. The activity of a pure phase is assumed to be identically 1.0. The additional mas­ 
ter unknown for each pure phase is the number of moles of the pure phase that is present in the system, np, where

p refers to the /?th phase. Terms representing the changes in the number of moles of each pure phase occur in the 
mole-balance equations for elements.
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The new function corresponding to each of the new unknowns is a mass-action expression for each pure 
phase. PHREEQC uses dissolution reactions, in the sense that the pure phase is on the left-hand side of the chem­ 
ical equation. For calcite, the dissolution reaction may be written as

CaCO,j = Ca + CO^ , (31)

and, using log K of 10~8 -48 and activity of the pure solid is 1.0, the resulting mass-action expression is

= a 2+ a 2.. (32)

In general, pure-phase equilibria can be represented with the following equation:

KP = IK""- < 33 >
m

where cm is the stoichiometric coefficient of master species, m, in the dissolution reaction. The values of cm .

may be positive or negative. For PHREEQC, terms on the left-hand side of a dissolution reaction are assigned 
negative coefficients and terms on the right-hand side are assigned positive coefficients. The saturation index for
the mineral, SIp, is defined to be

m, p
am

ft
;^   (34)

The function used for phase equilibrium in the numerical method is

f = (InK + [In (10)] 57 , ,) -Y c In (a ), (35) 'p ^ p L v ' J p, tar get' ^ m, p v m' ' v '
m

where SI {ar et is a specified target saturation index for the phase (see keyword EQUILIBRIUM_PHASES) 

and In ( 10) converts base- 10 log to natural log. For single-component gas phases, SI e{ is equivalent to the 

log of the partial pressure of the gas. The total derivative with respect to the master unknowns is

df = -Yc din (a ) . (36) J p 4 t m,p^m^ v '
m

For data input to PHREEQC, the mass-action equations, equilibrium constant, and temperature dependence 
of the constant for pure phases are defined with the PHASES keyword data block. Initial composition of a 
pure-phase assemblage is defined with the EQUILIBRIUM_PHASES keyword data block. (See Description of 
Data Input.)

Mole-Balance Equation for a Surface

Mole balance for a surface site is a special case of the general mole-balance equation. The total number of 
moles of a surface site is specified by input to the model. The sum of the moles of all of the surface species for the 
site must equal the total number of moles of surface sites. The following function is derived from the mole-balance 
relation for a surface site:

N* 

f = T -\b . n. , (37)>s s ^ s,i r i ' v '
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where the value of the function, fs, is zero when mole balance is achieved, Ts is the number of equivalents surface 
site 5, and b i is the number of surface sites occupied by the surface complex. The total derivative of fs is

08)

For data input to PHREEQC, the number of moles of each type of surface site is defined with the SURFACE 
keyword data block. Surface species are defined with the SURFACE_SPECIES keyword data block. (See 
Description of Data Input.)

Mole-Balance Equation for an Exchanger

Mole balance for an exchange site is a special case of the general mole-balance equation. The total number 
of moles of each exchange site is specified by input to the model. The sum of the moles of all of the exchange 
species for a site must equal the total number of moles of the exchange site. The following function is derived from 
the mole-balance relation for an exchange site:

N

where, the value of the function, fe , is zero when mole balance is achieved, Te is the total number of exchange 
sites for exchanger e, and b . is the number of exchange sites occupied by the exchange species. The totale, i e

derivative offe is

Ne

df = -\b -dn. . (40) J e £j e,i e i e ^ '
* e

For data input to PHREEQC, the number of moles of exchange sites is defined in the EXCHANGE keyword 
data block. Exchange species are defined with the EXCHANGE_SPECIES data block. (See Description of Data 
Input.)

Mole-Balance Equation for Alkalinity

The mole-balance equation for alkalinity is used only in speciation calculations and in inverse modeling. 
Mole balance for alkalinity is a special case of the general mole-balance equation, but special definitions of coef­ 
ficients are needed. Alkalinity is defined as an element in PHREEQC and a master species is associated with this 
element (see SOLUTION_MASTER_SPECIES keyword). In the default databases for PHREEQC, the master

2-
species for alkalinity is C#3 . The master unknown for alkalinity is \naAlk , or for the default databases, Ina 2..

O C/o

The total number of equivalents of alkalinity is specified by input to the model. The sum of the alkalinity 
contribution of each aqueous species must equal the total number of equivalents of alkalinity. The following func­ 
tion is derived from the alkalinity-balance equation:

EQUATIONS FOR SPECIATION AND FORWARD MODELING 15



where, the value of the function,./^, is zero when mole balance is achieved, TAik is the number of equivalents of 
alkalinity in solution, and b^k . is alkalinity contribution of the aqueous species, eq/mol. The total derivative of

fAlk is

The value of 7^ may be positive or negative. Conceptually, a measured alkalinity differs from the alkalin­ 

ity calculated by PHREEQC. In the default database files for PHREEQC the values of bAlk . have been chosen 

such that the reference state (bAlk   = 0) for each element or element valence state is the predominant species at

a pH of 4.5. It is assumed that all of the element or element valence state is converted to this predominant species 
in a theoretical alkalinity titration. However, in a real alkalinity titration, significant concentrations of species of 
elements and element valence states that have nonzero alkalinity contributions may exist at the endpoint of the 
titration, and the extent to which this occurs causes the alkalinity calculated by PHREEQC to be a different quan­ 
tity than the measured alkalinity. Species that are especially susceptible to this problem are the hydroxide com­ 
plexes of iron and aluminum. Thus, the alkalinity of a solution as calculated by PHREEQC, though it will be 
numerically equal to the measured alkalinity, is necessarily an approximation because of the assumption that a 
titration totally converts elements and element valence states to their reference state. In most solutions, where the 
alkalinity is derived predominantly from carbonate species, the approximation is valid.

For data input to PHREEQC, the alkalinity of each species is calculated from the association reaction for the 
species, which is defined in the SOLUTIONJSPECIES keyword data block, and the alkalinity contributions of 
the master species, which are defined with the SOLUTION_MASTER_SPECIES keyword data block. Total 
alkalinity is part of the solution composition defined with the SOLUTION keyword data block. (See Description 
of Data Input.)

Mole-Balance Equations for Elements

The total number of moles of an element in the system is the sum of the number of moles initially present in 
the pure-phase assemblage, aqueous phase, exchange assemblage, surface assemblage, gas phase, and diffuse lay­ 
ers of the surfaces. The following function is derived from the general mole-balance equation:

yvp
T -m

"

m,
n. -

(43) 
".,

II'b .n.-yb n   > yb .n. , i m, * s J y ^ m, g g Z^ Z^ m, i i, s'

where the value of the function,/m, is zero when mole-balance is achieved. Tm is the total number of moles of the 
element in the system. E is the number of exchangers in the exchange assemblage, S is the number of surfaces in 
the surface assemblage. Np is the number of phases in the pure-phase assemblage, Naq is the number of aqueous 
species, Ne is the number of exchange species for exchanger e, Ns is the number of surface species for surface s, 
and No is the number of gas components. The number of moles of each entity in the system is represented by nn

o *

for phases in the pure-phase assemblage, «, for aqueous species, n. for the exchange species of exchanger e, n.
l e l s

for surface species for surface s, «  for the gas components, and ni for the aqueous species in the diffuse layer

of surface s. The number of moles of element, m, per mole of each entity is represented by bm, with an additional 
subscript to define the relevant entity; b is usually, but not always, equal to cm (the coefficient of the master 

species for m in the mass-action equation), except for elements hydrogen and oxygen.
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To avoid solving for small differences between large numbers, the quantity in parenthesis in the previous 
function is not explicitly included in the solution algorithm and the value of T is never actually calculated. Instead

Nr 

the quantity Tm = Tm - ])T &m n is used in the function fm . Initially, Tm is calculated from the total concen-

P 
tration of m in the aqueous phase, the exchange assemblage, the surface assemblage, and the gas phase:

T = T +T +T +T (44) m m, aq m, e m, s m, gas' ^ '

During the iterative solution to the equations, T is updated by the mole transfers of the pure phases:

k+l = k + y

m m jLs m, p p ' v ' 
P

where k refers to the iteration number. It is possible for T to be negative in intermediate iterations, but must be

positive when equilibrium is attained.
The total derivative of the function, fm, is

Np % E "e

df - - > b dn .-> b .dn.- > > b . dn.  J m jL* m, p p jL* rn,i i sL^jLi m,i lp p
i e i (46) 

\id\ s
s is g s i

For data input to PHREEQC, total moles of elements are defined initially through keyword data input and 
speciation, initial exchange, and initial surface calculations. Moles of elements are initially defined for an aqueous 
phase (Tm a ) with the SOLUTION keyword data block, for an exchange assemblage (T ) with the

EXCHANGE keyword data block, for a surface assemblage (Tm s ) with the SURFACE keyword data block, for 

the gas phase (T ) with a GAS_PHASE keyword data block. The number of moles of each phase in a pure phase 

assemblage (n ) is defined with the EQUILIBRIUM_PHASES keyword data block. Total moles of elements and 

total moles of pure phases may be modified by reaction calculations. (See Description of Data Input.)

Aqueous Charge-Balance Equation

The charge-balance equation sums the ionic charges of aqueous species and, in some cases, the charge imbal­ 
ances developed on surfaces. For generality, net charge on an exchanger is also included in the derivation, though 
it is not justified by the theoretical framework. When specified, a charge-balance equation is used in initial solution 
calculations to adjust the pH or the activity of a master species (and consequently the total concentration of an ele­ 
ment or element valence state) to produce electroneutrality in the solution. The charge-balance equation is used to 
calculate pH in reaction and transport simulations.

In real solutions, the sum of the equivalents of anions and cations must be zero. However, analytical errors 
and unanalyzed constituents in chemical analyses generally cause electrical imbalances to be calculated for solu­ 
tions. If a charge imbalance is calculated for an initial solution, the pH is adjusted in subsequent reaction or trans­ 
port simulations to maintain the same charge imbalance. If mixing is performed, the charge imbalance for the 
reaction step is the sum of the charge imbalances of each solution weighted by its mixing factor. If a surface is used 
in a simulation and the explicit diffuse-layer calculation is not specified, then the formation of charged surface spe­ 
cies will result in a charged surface. Similarly, if exchange species are not electrically neutral (all exchange species 
in the default database are electrically neutral), the exchanger will accumulate a charge. These charge imbalances 
must be included in the charge-balance equation to calculate the correct pH in reaction and transport simulations.
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In general, the charge imbalance for a solution is calculated at the end of the initial solution calculation and at the 
end of each reaction and transport simulation with the following equation:

where zz- is the charge on the aqueous species and T is the charge imbalance for aqueous phase q. If charged

surfaces or exchangers are not present, the charge imbalance for a solution at the end of a simulation will be the 
same as at the beginning of the simulation.

The charge imbalance on a surface is calculated at the end of the initial surface calculation and at the end of 
each reaction and transport simulation with the following equation:

W_

n. , (48)

where T is the charge imbalance for the surface, and z   is the charge on the surface species / of surface s. If thez, s i s

composition of the diffuse layer is explicitly included in the calculation (-diffusejayer in SURFACE keyword 
data block), then each solution should be charge balanced using one of the charge balance options, and T will

Zj S

equal to zero.
Normally, exchange species have no net charge, but for generality, this is not required. However, the activity 

of exchange species (the equivalent fraction) is not well defined if the sum of the charged species is not equal to 
the total number of equivalents of exchange sites (exchange capacity). If charged exchange species exist, then the 
charge imbalance on an exchanger is calculated at the end of the initial exchange calculation and at the end of each 
reaction and transport simulation with the following equation:

Ne

T = Yz.n. , (49) z,e 4-t i e l e
le

where T is the charge imbalance for the exchanger, and z   is the charge on the exchange species / of exchangerz, e i e

e.
The charge imbalance for the system is defined at the beginning of each reaction or transport simulation with 

the following equation:

Q S E
T = Y a T + Y r + Y r , (50)

Z £j q Z, q £j Z, s 4-t z, e' v ' 
q s e

where T is the charge imbalance for the system, Q is the number of aqueous phases that are mixed in the reaction 

or transport step, a is the mixing fraction for aqueous phase q.

The charge-balance function is

aqN- S Ns E Ne

 n -YYz n - in i 2w2/* v z,
i s is e ie

where / is zero when charge balance has been achieved and the double summation for surfaces is present only if 

the diffuse-layer composition is not explicitly calculated. The total derivative of / is
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N

(52)

and, again, the double summation for surfaces is present only if the diffuse-layer composition is not explicitly 
calculated.

For data input to PHREEQC, charge imbalance is defined by data input for SOLUTION, EXCHANGE, 
and SURFACE keyword data blocks combined with speciation, initial exchange, and initial surface calculations. 
The charge on a species is defined in the balanced chemical reaction that defines the species in 
SOLUTION_SPECIES, EXCHANGE_SPECIES, or SURFACE_SPECIES keyword data blocks. (See 
Description of Data Input.)

Surface Charge-Potential Equation without Explicit Calculation of the Diffuse-Layer Composition

By default, PHREEQC uses the approach described by Dzombak and Morel (1990) to relate the charge accu­ 
mulated on the surface with the potential at the surface, XP s . The surface-charge density is the amount of charge

per area of surface material, which can be calculated from the distribution of surface species as follows:

a =
A Ss s .

r\

where a is the charge density for surface s in coulombs per square meter (C/m ), F is the Faraday constant in
r\

coulomb per mole (96,485 C/mol), As is the specific area of the surface material (m /g), and Ss is the mass of

surface material (g). At 25°C, the surface-charge density is related to the electrical potential at the surface by the 
following equation involving the hyperbolic sine:

2 (vFy \ 
G = 0.1174U. sinh    * (54)

where v is the valence of a symmetric electrolyte, |i is the ionic strength, F is the Faraday constant in kilojoules 

per volt-equivalent (kJ V" 1 eq , which equals C/mol), *¥s is the potential at the surface in volts, R is the gas

constant (8.314 J mol" 1 °K" 1 ), and 7 is in Kelvin. The following assumptions apply to equation 54: (1) Although
strictly valid only at 25°C, the constant 0.1174 is used at all temperatures, and (2) the valence of the electrolyte is 
assumed to be 1. See the following sections, Surface Charge-Potential Equation with Explicit Calculation of the 
Diffuse-Layer Composition and Non-Electrostatic Surface-Complexation Modeling, for alternate formulations of 
surface-complexation modeling.

The charge-potential function is defined as follows:

- N* 
/ , = 0.1174^i2 sinh(  ^j- -Yz-«. , (55)

s ^K -/ /I O  "" s s
S

and the total derivative of this function is
l 

,, 0.1174 "2 . , ..... 
^ ', ' ( }

For data input to PHREEQC, calculation without an explicit diffuse layer is the default. Specific surface area 
and mass of surface (Sg ) are defined in the SURFACE keyword data block. The charge on a surface species
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is defined in the balanced chemical reaction that defines the species in the SURFACE_SPECIES keyword data 
block. (See Description of Data Input.)

Surface Charge-Balance Equation with Explicit Calculation of the Diffuse-Layer Composition

As an alternative to the previous model for the surface charge-potential relation, PHREEQC optionally will 
use the approach developed by Borkovec and Westall (1983). Their development solves the Poisson-Boltzmann 
equation to determine surface excesses of ions in the diffuse layer at the oxide-electrolyte interface. Throughout 
the derivation that follows, it is assumed that a volume of one liter (L) contains 1 kg of water.

The surface excess is defined to be

(57)

r\

where 1^. s is the surface excess in mol m , xd s is the location of the outer Helmholtz plane, c . (x) is

concentration as a function of distance from the surface in mol m"3 , and c. is the concentration in the bulk 

solution. The surface excess is related to concentration in the reference state of 1.0 kg of water,

where mi s is the surface excess of aqueous species / in mol/kg water. This surface-excess concentration can be 

related to the concentration in the bulk solution by

mi,s = 8i,smi'

where g i is a function of the potential at the surface and the concentrations and charges of all ions in the bulk 

solution:

>. = A S sgn(X,-l)a f'i, s s s fc v a * j

z, X l -l

N 1/2
dX, (60)

where X = e , Xd is the value at the outer Helmholtz plane, and a = (ee0/?7Y2) , e is the dielectric 

constant for water, 78.5 (unitless), and 8Q is the dielectric permittivity of a vacuum, 8.854xlO" 12 C V" 1 m" 1 . The

value of a at 25°C is 0.02931 [(L/mol) 1/2 C m"2 , where L is liters, mol is moles, C is coulombs, and m is meters]. 
The relation between the unknown (X) used by Borkovec and Westall (1983) and the master unknown used by

PHREEQC is a^ = X~2 .
s

The development of Borkovec and Westall (1983) calculates only the total excess concentration in the dif­ 
fuse layer of each aqueous species. A problem arises in reaction and transport modeling when a solution is 
removed from the surface, for example, in an advection simulation when the water in one cell advects into the next 
cell. In this case, the total number of moles that remain with the surface needs to be known. In PHREEQC, an arbi­ 
trary assumption is made that the diffuse layer is a specified thickness and that all of the surface excess resides in 
the diffuse layer. The total number of moles of an aqueous species in the diffuse layer is then the sum of the con­ 
tribution from the surface excess plus the bulk solution in the diffuse layer:
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n. = n. i, s i, s, excess + n. = g. W i,s,aq °i, s i

n.

aq

n.
WS W ' 

aq
(61)

where n. refers to the number of moles of aqueous species i that is present in the diffuse layer due to the
I) S) dtf

contribution from the bulk solution, n i excess refers to the number of moles that is added to the diffuse layer 

due to the surface excess calculation, Wa is the mass of water in the system excluding the diffuse layer, W is

the mass of water in the diffuse layer of surface s, and = W mass °f water in the diffuse

layer is calculated from the thickness of the diffuse layer and the surface area, assuming 1 L contains 1 kg water:

where t is the thickness of the diffuse layer in meters.

The total derivative of the number of moles of an aqueous species in the diffuse layer is as follows:

dn. =
l, S

'g. W6 i,s bulk l, S

Waq

W

aq

-dlnW

-2e

(63)

aq
aq'

where the second term is the partial derivative with respect to the master unknown for the potential at the surface,

XT, . The partial derivative, -^\' s , is equal to the integrand from equation 60 evaluated at x,: 
.9 6X a

~dX N

I

1/2' (64)

and the partial derivative of the function g. with respect to the master unknown is

-__* N ~2
.JRT.-2e

l,S _ "i, S    -    

dx N
Y 1 Xd~ l

1/2 '
(65)

In the numerical method, it is computationally expensive to calculate the functions g. , so the same
l, S

approach as Borkovec and Westall (1983) is used in PHREEQC to reduce the number of function evaluations. A 
new level of iterations is added when the diffuse layer is explicitly included in the calculations. The functions and 
their partial derivatives are explicitly evaluated once at the beginning of each of these diffuse-layer iterations. Dur­ 
ing the model iterations, which occur within the diffuse-layer iterations, the values of the functions are updated 
using the following equation:

k+1 
i, s (66)
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where k refers to the model iteration number and g. is the value that is evaluated explicitly at the beginning of
I) S

the diffuse-layer iteration. The model iterations end when the Newton-Raphson method has converged on a 
solution, however, convergence is based on the values of the functions g. that are estimates. Thus, diffuse-layer

2; S

iterations must continue until the values of. the functions have converged within specified tolerances, that is, the 
changes in the values of the functions are small between one diffuse-layer iteration and the next.

When explicitly calculating the composition of the diffuse layer, the function involving the sink of the poten­ 
tial unknown (equation 54) is replaced with a charge-balance function that includes the surface charge and the dif­ 
fuse-layer charge:

where, the value of the function, f , is zero when charge balance is achieved. The total derivative of thez, s
function, / s , is

For data input to PHREEQC, explicit calculation of the diffuse layer is invoked using the -diffuse_layer 
identifier in the SURFACE keyword data block. Specific surface area (A^) and mass of surface (5^) are also

defined in the SURFACE keyword data block. The charge on a surface species or an aqueous species is defined 
in the balanced chemical reaction that defines the species in the SURFACE_SPECIES or 
SOLUTION_SPECIES keyword data block. (See Description of Data Input.)

Non-Electrostatic Surface-Complexation Modeling

Davis and Kent (1990) describe a non-electrostatic surface-complexation model. In this model, the electro­ 
static term is ignored in the mass-action expressions for surface complexes. In addition, no surface charge balance 
or surface charge versus potential relation is used; only the mole-balance equation is included for each surface site.

For data input to PHREEQC, the non-electrostatic model for a surface is invoked by using the -no_edl iden­ 
tifier in the SURFACE keyword data block. (See Description of Data Input.)

NUMERICAL METHOD FOR SPECIATION AND FORWARD MODELING

The formulation of any chemical equilibrium problem solved by PHREEQC is derived from the set of func­ 
tions denoted / in the previous sections. These include fA ik ,fe ,fg ,fH,fHO , fm > >fo >fp > fp > fs » fz ' fz, s ' ^ '

and /ij, , where fH and fo are the simply the mole-balance functions for hydrogen and oxygen and m' refers to all
s

aqueous master species except H+ , e", H2O and the alkalinity master species. The corresponding set of master 
unknowns is Ina.,, , Ina , n , Ina . , lna w n , \na , , \nW , N , n (or possibly Ina , in speciation calcu-

j\ IK ^ S ~ "^1 ^"^ ^^ dQ $ CIS p iiT

lations), Ina , Ina (or possibly Ina , in speciation calculations), lnaw (explicit diffuse-layer calculation), |i,
s H m s

and ln#u/ (implicit diffuse-layer calculation). When the residuals of all the functions that are included for a given
s

calculation are equal to zero, a solution to the set of nonlinear equations has been found, and the equilibrium values 
for the chemical system have been determined. (Note that some equations that are initially included in a given cal­ 
culation may be dropped if a pure phase or gas phase does not exist at equilibrium.) The solution technique assigns 
initial values to the master variables and then uses a modification of the Newton-Raphson method iteratively to 
revise the values of the master variables until a solution to the equations has been found within specified tolerances.

22 User's Guide to PHREEQC



For a set of equations, fi = 0 , in unknowns x . the Newton-Raphson method involves iteratively revising an 

initial set of values for the unknowns. Let r. = /. be the residuals of the equations for the current values of the 

unknowns. The following set of equations is formulated:

" (69)

The set of equations is linear and can be solved simultaneously for the unknowns, dx.. New values of the
k + 1 k

unknowns are calculated, Xj = x. + dx   , where k refers to the iteration number, after which, new values of

the residuals are calculated. The process is repeated until the values of the residuals are less than a specified 
tolerance.

Two problems arise when using the Newton-Raphson method for chemical equilibria. The first is that the 
initial values of the unknowns must be sufficiently close to the equilibrium values, or the method does not con­ 
verge, and the second is that a singular matrix may arise in problems involving multiple phases (if the number of 
phases exceeds the number allowed by the Gibbs' Phase Rule). PHREEQC uses an optimization technique devel­ 
oped by Barrodale and Roberts (1980) to solve the same Newton-Raphson equations, while avoiding some of the 
problems caused by singular matrices. The technique also allows inequality constraints to be added to the problem, 
which are useful for constraining the total amounts of phases that can react.

The selection of initial estimates for the master unknowns is described for each type of modeling in the fol­ 
lowing sections. Regardless of the strategy for assigning the initial estimates, the estimates for the activities of the 
master species for elements or element valence states are revised, if necessary, before the Newton-Raphson itera­ 
tions to produce approximate mole balance. The procedure is as follows. After the initial estimates are made, the 
distribution of species is calculated and, for each element (except hydrogen and oxygen), element valence state, 
exchanger, and surface. Then, the ratio of the calculated number of moles to the input number of moles is calcu­
lated. If the ratio for a master species, m, is greater than 1.5 or less than 10~5 , then the following equation is used 
to revise the value of the master unknown:

, k+ 1 , k
Ina , = ma , + winm m (70)

where w is 1.0 if the ratio is greater than 1.5 and 0.3 if the ratio is less than 10"5 , and k is the iteration number. 
After revisions to the initial estimates, the distribution of species is calculated. The iterations continue until the 
ratios are within the specified ranges, at which point the modified Newton-Raphson technique is used.

The optimization technique of Barrodale and Roberts (1980) is a modification of the simplex linear program­ 
ming algorithm that performs an LI optimization (minimize sum of absolute values) on a set of linear equations 
subject to equality and inequality constraints. The general problem can be posed with the following matrix equa­ 
tions:

AX = B

CX = D 

EX<F .

The first matrix equation is minimized in the sense that 2_, b.~2\ a -  * 

(71)

is a minimum, where i is the index of

rows and j is the index for columns, subject to the equality constraints of the second matrix equation and the 
inequality constraints of the third matrix equation.

The approach of PHREEQC is to include some of the Newton-Raphson equations (eq. 69) in the optimiza­ 
tion equations (first matrix equation above), rather than include all of the Newton-Raphson equations as equalities 
(second matrix equation above). Equations that are included in the A matrix may not be solved for exact equality 
at a given iteration, but will be optimized in the sense given above. Thus, at a given iteration, an approximate math-
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ematical solution to the set of Newton-Raphson equations can be found even if no exact equality solution exists, 
for example when direct application of the Newton-Raphson approach would result in unsolvable singular matri­ 
ces.

After a solution to the equations, with equality and inequality constraints, is returned by the solver, the 
results, which are the size of the changes to the master unknowns, are checked to make sure that the values of the 
variables do not change too fast, as specified by default criteria in the program (or specified by the KNOBS key­ 
word). If the criteria are not met, then the changes to the unknowns, except the mole transfers of pure phases, are 
decreased proportionately to satisfy all the criteria. Pure-phase mole transfers are not altered except to produce 
nonnegative values for the total moles of the pure phases. If all of the changes to the unknowns are small (as spec­ 
ified by convergence criteria within the program), the problem is solved. Otherwise, after suitable changes to the 
unknowns have been calculated, the master unknowns are updated, new molalities and activities of all the aqueous, 
exchange, and surface species are calculated, and residuals for all of the functions are calculated. The residuals are 
tested for convergence, and a new iteration is begun if convergence has not been attained.

Application to Aqueous Speciation Calculations

A limited set of equations is included in aqueous speciation calculations. Assuming pH and pe are known, 
the Newton-Raphson equations are derived from the functions / , , /  n , and f , which are equations for moletit ^ ^o *-^ M1

balance for elements or element valence states, activity of water, and ionic strength. Mole-balance equations for 
hydrogen and oxygen are not included, because the total masses of hydrogen and oxygen generally are not known. 
Instead, the mass of water is assumed to be 1 .0 kg and the total masses of hydrogen and oxygen are calculated after 
the speciation calculation has been completed. An additional mole-balance equation for alkalinity, /\ /£, may be

included to calculate \naAlk and the total molality of the element associated with alkalinity (carbon in the default

database). A charge-balance equation, / , may be included to calculate the Ina + that produces charge balance inz H

the solution or a phase-equilibrium equation, / , may be included to calculate \na + that produces a target satu-' H 
ration index for the phase. In either of these last two cases, the pH of the solution is calculated and will not equal
the input pH. A charge-balance equation, / , may be included to calculate the \na that produces charge balancez e

in the solution (not recommended) or a phase-equilibrium equation, / , may be included to calculate \na _ that
P e

produces a target saturation index for the phase. In either of these last two cases, the pe of the solution is calculated 
and will not equal the input pe. A charge-balance equation, f , may be specified to replace a mole-balance equa­

tion, / , , in which case, \na , is adjusted to produce charge balance for the solution. A phase-equilibrium equa­

tion, / may be specified to replace a mole-balance equation, / , , in which case, Ina^, is adjusted to produce a

target saturation index for the phase. If a mole-balance equation is replaced by either the charge-balance equation 
or a phase-equilibrium equation, then the total amount of the element or valence state in the speciated solution will 
be calculated and will not equal the input concentration.

If the problem definition contains a mole-balance equation for both carbon [or carbon(+4)] and alkalinity, 
then the two master unknowns associated with these equations are \na AI , = \na , (for the default databaseAIK co~3
files) and \na + . In this case, the pH will be calculated in the speciation calculation and will not be equal to the

H 
input pH.

For speciation calculations, if the alkalinity mole-balance equation is included in the problem formulation, 
it is included as the only optimization equation for the solver. All other equations are included as equality con­ 
straints. No inequality constraints are included for speciation calculations.

The redox options for aqueous speciation calculations are determined by the mass-action expressions used 
for aqueous species. By default, whenever a value of the activity of the electron is needed to calculate the molality 
or activity of an aqueous species, the input pe is used. If a default redox couple is given (-redox) or a redox couple 
is specified for an element (or combination of element valence states) (see SOLUTION keyword), then the
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mass-action expression for each aqueous species of the redox element is rewritten to remove the activity of the 
electron from the expression and replace it with the activities of the redox couple. For example, if iron (Fe) is to
be distributed using the sulfate-sulfide redox couple [S(+6)/S(-2)], then the original chemical reaction for Fe+3 :

Fe+Z = Fe+5 + e (72) 

would be rewritten using the association reaction for sulfide,

SO'l + 9H+ + Se~ = HS~ + 4H2 O , (73) 

to produce the following chemical reaction that does not include electrons:

Fe+2 + is<942 + \H+ = Fe+3 + ±HS + ±H2 O . (74)

The mass-action expression for this final reaction would be used as the mass-action expression for the species 

Fe , and the differential for the change in the number of moles of Fe , dn +3 , would also be based on this
Fe

mass-action expression. However, the original mass-action expression (based on equation 72) is used to 

determine the mole-balance equations in which the term dn +3 appears, that is, the species Fe would appear
Fe

in the mole-balance equation for iron, but not in the mole-balance equations for S(+6) or S(-2).
By default, if a saturation-index calculation requires a value for pe (or activity of the electron), then the input 

pe is used. If a default redox couple has been defined (-redox), then the dissolution reaction for the phase is rewrit­ 
ten as above to eliminate the activity of the electron and replace it with the activities of the redox couple.

The set of master unknowns may change for redox elements during a calculation. The process, which is 
termed "basis switching", occurs if the activity of the master species which is the master unknown for a mole-bal­ 
ance equation becomes ten orders of magnitude smaller than the activity of another master species included in the 
same mole-balance equation. In this case, all of the mass-action expressions involving the current master unknown 
(including aqueous, exchange, gas, and surface species, and pure phases) are rewritten in terms of the new master 
species that has the larger activity. An example of this process is, if nitrogen is present in a system that becomes 
reducing, the master unknown for nitrogen would switch from nitrate, which would be present in negligible 
amounts under reducing conditions, to ammonium, which would be the dominant species. Basis switching does 
not affect the ultimate equilibrium distribution of species, but it does speed calculations and avoid numerical prob­ 
lems in dealing with small concentrations.

Initial values for the master unknowns are estimated and then revised according to the strategy described in 
the previous section. For initial solution calculations, the input values for pH and pe are used as initial estimates. 
The mass of water is 1.0 kg, and the activity of water is estimated to be 1.0. Ionic strength is estimated assuming 
the master species are the only species present and their concentrations are equal to the input concentrations (con­ 
verted to units of molality). The activity of the master species of elements (except hydrogen and oxygen) and ele­ 
ment valence states are set equal to the input concentration (converted to molality). If the charge-balance equation 
or a phase-equilibrium equation is used in place of the mole-balance equation for an element or element valence 
state, then the initial activity of the master species is set equal to one thousandth of the input concentration (con­ 
verted to molality).

For data input to PHREEQC all options for a speciation calculation-use of an alkalinity equation; 
charge-balance equation; phase-equilibrium equation to adjust pH, or the concentrations of an element or an ele­ 
ment valence state; and redox couples are all defined in SOLUTION keyword data block. (See Description of 
Data Input.)

Application to Initial Exchange Calculations

A limited set of equations is included in initial exchange calculations, that is, when the composition of an 
exchange assemblage is defined to be that which is in equilibrium with a specified solution composition. The New- 
ton-Raphson equations for the initial exchange calculation are derived from fe ,fm>,fH Q, and / , which are equa-
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tions for mole balance for each exchanger, mole balance for each element or element valence state, activity of 
water, and ionic strength. For initial exchange calculations, the values of T , include only the aqueous concentra­ 

tions and the mole-balance equations fm< do not contain terms for the contribution of the exchangers to the total

element concentrations. The values calculated for all quantities related to the aqueous phase are the same as for 
the solution without the exchanger present. Essentially, only the values of the master unknowns of the exchange 
assemblage, lnag , are adjusted to achieve mole balance for the exchanger mole-balance equations. Once mole bal­ 

ance is achieved, the composition of each the exchanger is known.

All equations for initial exchanger calculations are included as equality constraints in the solver. No equa­ 
tions are optimized and no inequality constraints are included.

An initial exchange calculation is performed only if the exchanger is defined to be in equilibrium with a spec­ 
ified solution. The distribution of species for this solution has already been calculated, either by an initial solution 
calculation or by a reaction or transport calculation. Thus, the initial estimates of all master unknowns related to 
the aqueous phase are set equal to the values from the previous distribution of species. The initial estimate of the 
master unknown for each exchanger is set equal to the number of moles of exchange sites for that exchanger.

For data input to PHREEQC, definition of the initial exchange calculation is made with the EXCHANGE 
keyword data block. (See Description of Data Input.)

Application to Initial Surface Calculations

A limited set of equations is included in initial surface calculations, that is, when the composition of a surface 
assemblage is defined to be that which is in equilibrium with a specified solution composition. The Newton-Raph- 
son equations for the initial surface calculation are derived from f ,f\y or / , / , , fH o , and / , which are equa­

tions for mole-balance equations for each type of surface site in the surface assemblage, charge-potential or charge 
balance for each surface (both of these equations are excluded in the non-electrostatic model), mole balance for 
each element or element valence state, activity of water, and ionic strength. For initial surface calculations, the val­ 
ues of T , include only the aqueous concentrations and the corresponding mole-balance equations / , do not con­

tain terms for the contribution of the surfaces to the total element concentrations. The values calculated for all 
quantities related to the aqueous phase are the same as for the solution without the surface assemblage present.

For the explicit calculation of the diffuse layer, a charge-balance equation is used for each surface, / ; the
Zj S

values of the master unknowns for each surface of the surface assemblage, Ina and \naw , are adjusted to achieve
S s

mole balance and charge balance for each surface. If the diffuse-layer composition is not explicitly included in the 
calculation, then the charge-potential equation, f^ , is used in place of the surface charge-balance equation. If the

s

non-electrostatic model is used for the surface assemblage, then neither the surface charge balance nor the 
charge-potential equation is included in the set of equations to be solved.

All equations for initial surface calculations are included as equality constraints in the solver. No equations 
are optimized and no inequality constraints are included.

An initial surface calculation is performed only if the surface initially is defined to be in equilibrium with a 
specified solution. The distribution of species for this solution has already been calculated, either by an initial solu­ 
tion calculation or by a reaction or transport calculation. Thus, the initial estimates of all master unknowns related 
to the aqueous phase are set equal to the values from the previous distribution of species. The initial estimate of 
the activity of the master species for each surface is set equal to one tenth of the number of moles of surface sites 
for that surface. For explicit and implicit diffuse-layer calculations, the initial estimate of the potential unknown,

, for each surface is zero, which implies that the surface potential is zero.

For data input to PHREEQC, definition of the initial surface calculation is made with the SURFACE key­ 
word data block. (See Description of Data Input.)
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Application to Reaction and Transport Calculations

The complete set of Newton-Raphson equations that can be included in reaction and transport calculation 
are derived from f , /"  , /"  n , / , , fn , fp ,f,f,f,f .,/!., and /L . A mole-balance equation for alkalinity

e n n^y m u total "  >*.*.» > H- T ̂

can not be included; it is used only in initial solution calculations. All mole-balance equations are for total concen­ 
trations of elements, not individual valence states or combinations of individual valence states. The charge-balance 
equation, / , is always used to calculate Ina + . The mole-balance equation on hydrogen, fH , is always used to

calculate Ina . The mole-balance equation on oxygen, fo , is always used to calculate the mass of water in the
e

system, W . The equation fp is included if a gas phase is specified and is present at equilibrium. The equations
a 1 ^ total

f are included if an exchange assemblage is specified. The equation f is included if a surface assemblage is spec­s
ified. In addition, / / is included if an implicit diffuse-layer calculation is specified or / is included if an explicit

.v Z' S

diffuse-layer calculation is specified. An equation / is included for each pure phase that is present at equilibrium.

It is not known at the beginning of the calculation whether a particular pure phase or a gas phase will be 
present at equilibrium. Thus, at each iteration, the equation for a phase is included if it has a positive number of 
moles, n > 0 , or if the saturation index is calculated to be greater than the target saturation index. If the equation

is not included in the matrix, then all coefficients for the unknown dn in the matrix are set to zero. Similarly, at 

each iteration, the equation for the sum of partial pressures of gas components in the gas phase is included if the
-14

number of moles in the gas phase is greater than a small number N as > 1 ;clO , or the sum of the partial pres­

sures of the gas-phase components, as calculated from the activities of aqueous species, is greater than the total 
pressure. If the equation for the sum of the partial pressures of gas components in the gas phase is not included in 
the matrix, then all coefficients of the unknown dN are set to zero.

o

Equations fp and f are included as optimization equations in the solver. All other equations are included
^ total P

as equality constraints in the solver. In addition, several inequality constraints are included in the solver: (1) the

value of the residual of an optimization equation f , which is equal to b - a .x. , is constrained to be nonne-
j 

gative, which maintains an estimate of saturation or undersaturation for the mineral, (2) the residual of the optimi­
zation equation for fp is constrained to be nonnegative, which maintains a nonnegative estimate of the total gas

total

pressure, (3) the decrease in the number of moles in the gas phase, dN , is constrained to be less than the number
g<25

of moles in the gas phase, N , and (4) the decrease in the mass of a pure phase, dn , is constrained to be less 

than or equal to the total moles of the phase present, n .

Initial values for the master unknowns for the aqueous phase are taken from the previous distribution of spe­ 
cies for the solution. If mixing of two or more solutions is involved, the initial values are the sums of the values in 
the solutions, weighted by their mixing factor. If exchangers or surfaces have previously been equilibrated with a 
solution, initial values are taken from the previous equilibration. If they have not been equilibrated with a solution, 
the estimates of the master unknowns are the same as those used for initial exchange and initial surface calcula­ 
tions. Initial values for the number of moles of each phase in the pure-phase assemblage and each gas component 
in the gas phase are set equal to the input values or the values from the last simulation in which they were saved.

For data input to PHREEQC, definition of reaction and transport calculations rely on many of the keyword 
data blocks. Initial conditions are defined with SOLUTION, EXCHANGE, SURFACE, GAS_PHASE, and 
EQUILIBRIUM_PHASES keyword data blocks. Reactions are defined with MIX, REACTION, 
REACTION_TEMPERATURE, and USE keyword data blocks. Transport calculations are specified with the 
TRANSPORT keyword data block. (See Description of Data Input.)
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EQUATIONS AND NUMERICAL METHOD FOR INVERSE MODELING

In inverse modeling, one aqueous solution is assumed to react with minerals and gases to produce the 
observed composition of a second aqueous solution. The inverse model calculates the amounts of these gases and 
minerals from the difference in elemental concentrations between the two aqueous solutions. It is also possible to 
determine mixing fractions for two or more aqueous solutions and the mass transfers of minerals necessary to pro­ 
duce the composition of another aqueous solution. The basic approach in inverse modeling is to solve a set of linear 
equalities that account for the changes in the number of moles of each element by the dissolution or precipitation 
of minerals (Garrels and Mackenzie, 1967, Parkhurst and others, 1982). Previous approaches have also included 
an equation to conserve electrons, which forces oxidative reactions to balance reductive reactions (Plummer and 
Back, 1980; Parkhurst and others, 1982; Plummer and others, 1983; Plummer, 1984; Plummer and others, 1990; 
Plummer and others, 1991; and Plummer and others, 1994).

PHREEQC expands on these previous approaches by including a larger set of equations in the mole-balance 
formulation and accounts for uncertainties in the analytical data. Mole-balance equations are included for (1) each 
element or, for a redox-active element, each valence state of the element, (2) alkalinity, (3) electrons, which allows 
redox processes to be modeled, and (4) water, which allows for evaporation and dilution and accounts for water 
gained or lost from minerals. In addition, because alkalinity is explicitly included in the formulation, it is possible 
to include (5) a charge-balance equation for each aqueous solution.

The unknowns for this set of equations are ( 1) the mixing fraction of each aqueous solution a , (2) the aque­

ous mole transfers between valence states of each redox element ar (for each redox element, the number of redox 
reactions is the number of valence states minus one), (3) the mole transfers of minerals and gases into or out of the 
aqueous solution ap, and (4) a set of unknowns that account for uncertainties in the analytical data, 8^ . Unlike

previous approaches to inverse modeling, uncertainties are assumed to be present in the analytical data, as evi­ 
denced by the charge imbalances found in all water analyses. Thus, the unknowns, 8 , represent errors in the

number of moles of each element, element valence state, or alkalinity, m, in each aqueous solution q.
The mole-balance equations (including the unknown 8's) for elements and valence states are defined as fol­ 

lows:

Q
YOC (T +8 )+Yc a+Yc a=0, (75)£j q ^ m, q m,q' ^ m,rr ^ m, p p ' v ' 

q r p

where Q indicates the number of aqueous solutions that are included in the calculation. Tm is the total number 

of moles of element or element valence state, m, in aqueous solution q, cm r is the coefficient of secondary master 

species m in redox reaction r, c is the coefficient of master species m in the dissolution reaction for phase p.

The last aqueous solution, number Q, is assumed to be formed from mixing the first Q-l aqueous solutions, and 
so OC0 = -1.0. For PHREEQC, redox reactions are taken from the reactions for secondary master species in

SOLUTION_SPECIES input data blocks. Dissolution reactions for the phases are derived from chemical 
reactions defined in PHASES and EXCHANGE_SPECIES input data blocks.

The form of the mole-balance equation for alkalinity is identical to the form of all other mole-balance equa­ 
tions:

Q
(TAlt +8,,, ) + C*U a + c*i; a =0, (76)q^ Alk,q Alk,q' ^ Alk, r r ^ Alk,pp' ^ ' 

q r p

where Alk refers to alkalinity. The difference between alkalinity and other mole-balance equations is in the 
meaning of c.,, and cAlk . What is the contribution to the alkalinity of an aqueous solution due to aqueous

redox reactions or due to the dissolution or precipitation of phases? The alkalinity contribution is defined by the 
sum of the alkalinities of the master species in a chemical reaction. PHREEQC defines cAlk r and cAlk as

follows:
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, = \Alk c , (77), r £j m m, r' v '

and

.,,Alk,
m

c.,. = Alk c , (78)Alk,p ^ m m, />' v ' 
m

where Alkm is the alkalinity assigned to master species m, and cm is the stoichiometric coefficient of the master

species m in the aqueous redox reactions and the phase dissolution reactions.
The mole-balance equation for electrons assumes that no free electrons are present in any of the aqueous 

solutions. Electrons may enter or leave the system through the aqueous redox reactions or through the phase dis­ 
solution reactions. However, the electron-balance equation requires that any electrons entering the system through 
one reaction be removed from the system by another reaction:

Yc . a + Yc a = 0 (79) 
r e ' r r p e ' p p

where c _ represents the number of electrons released or consumed in the aqueous redox and phase dissolution
e

reactions.
The mole-balance equation for water is

Q w (80)
q 2 r p

where GFWH Q is the gram formula weight for water (approximately 0.018 kg/mol), Wa is the mass of water 

in aqueous solution q, CH o is the stoichiometric coefficient of water in the aqueous redox reaction, and 

CH o is the stoichiometric coefficient of water in the dissolution reaction for phase p.

The charge-balance equations for the aqueous solutions constrain the unknown 8 's to be such that, when the 
8 's are added to the original data, charge balance is produced in each aqueous solution. The charge balance equa­ 
tion for an aqueous solution is as follows:

where T is the charge imbalance in aqueous solution q calculated by a speciation calculation. The summation 
ranges over all elements and element valence states with non-zero concentrations and also includes a separate 
term for alkalinity. For alkalinity, zAlk is defined to be -1.0. For master species of an element or valence state, m,

z is defined to be the charge on the master species plus the alkalinity assigned to the master species, 

zm = zm + Alkm . Adding the alkalinity to the charge avoids double accounting of the charge contribution of the 

master species. For example, the contribution of the carbonate master species to charge imbalance is zero with 
this definition of z ; all of the contribution to charge imbalance for carbonate is included in the alkalinity term of 
the summation.

This formulation of the inverse problem makes sense only if the values of the 8 's are small, meaning that 
the revised aqueous solution compositions (original plus 8 's) do not deviate much from the original data. A set of 
inequalities insure that the values of the 8 's are small. The absolute value of each 8 is constrained to be smaller 
than a specified value, um :
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(82)
In addition, the mixing fractions for the initial aqueous solutions (q<Q) are constrained to be nonnegative,

%>0, (83)

and the final aqueous-solution mixing fraction is constrained to be -1.0 (oc^ = -1.0). If phases are known only to

dissolve, or only to precipitate, the mole transfer of the phases may be constrained to be nonpositive or 
nonnegative:

o^O, (84)

or

oc^O. (85)

If inorganic carbon is included in the inverse model, one additional equation is added for each aqueous solu­ 
tion. Unlike all other mole-balance quantities, which are assumed to vary independently, alkalinity, pH, and inor­ 
ganic carbon must be assumed to co-vary. The following equation is used to relate 8 values for each of these 
quantities:

= pH, q>

where the partial derivatives are evaluated numerically for each aqueous solution. Inequality constraints 
(equation 82) are also included for carbon(+4), alkalinity, and pH for each aqueous solution.

The system of equations for inverse modeling as formulated is nonlinear because it includes the product of 
unknowns of the form oc (Tm + 8^ ) = oc Tm + a 8^ . However, if the following substitution is made

£ = oc 8 , (87)m,qqm,q' ^ '

then the mole-balance equations can be written as follows:

Q Q 
Yoc T +Ye +Yc OC+YC oc = 0, (88)
L^ q m, q £^ m, q Z^t m, r r ^t fn,Pn 

q q r p

the charge-balance equation can be rewritten as follows:

e+ = 0 - < 89>
m

the inequality constraints can be written as follows:

IE I < oc u , (90)
I m,q\ q m> > ^ >

and the relation among carbon(+4), pH, and alkalinity is

dC 3C
lk, q +

All of these equality and inequality equations are linear in the unknowns oc and £ , and once the values of all of 
the oc and £ are known, the values of 8 can be easily determined from equation 87.

This formulation of the inverse-modeling problem produces a series of linear equality and inequality con­ 
straints that need to be satisfied. The algorithm developed by Barrodale and Roberts (1980) is used to solve this 
optimization problem. Their algorithm performs an LI optimization (minimize sum of absolute values) on a set of 
linear equations subject to equality and inequality constraints. The problem can be posed with the following matrix 
equations:
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AX = B

CX = D (92)
EX<F.

is a minimum, where / is the index ofThe first matrix equation is minimized in the sense that > b. - > a.n % jLj i 4-1 i,
i J

rows and j is the index for columns, subject to the equality constraints of the second matrix equation and the 
inequality constraints of the third matrix equation. The method will find a solution that minimizes the objective 
functions (AX = B) or it will determine that no feasible model for the problem exists.

8

Initially, AX = B is set to minimize \ \ m ' q . The equality constraints (CX = D ) include all mole-bal-
q m m,q

ance, alkalinity-balance, charge-balance, electron-balance, and water-balance equations and all inorganic car- 
bon-alkalinity-pH relations. The inequality constraints (EX < F) include two inequalities for each of the 8 's, one 
for positive and one for negative (to account for the absolute values used in the formulation), an inequality relation 
for each mixing fraction for the aqueous solutions, and an inequality relation for each phase that is specified to 
dissolve only or precipitate only. Application of the optimization technique will determine whether any inverse 
models exist that are consistent with the constraints.

Thus, we may be able to find one set of mixing fractions and phase mole transfers (plus associated 8 's) that 
satisfy the constraints. Ignoring the values of the 8 's and redox mole transfers (a ), let the set of nonzero a and

a (mixing fractions and phase mole transfers) uniquely identify an inverse model. The magnitude of the a's is

not considered in the identity of an inverse model, only the fact that a certain set of the a's are nonzero. (At this 
point, little significance should be placed on the exact numbers that are found, only that it is possible to account 
for the observations using the stated aqueous solutions and phases.) But could other sets of aqueous solutions and 
phases also produce feasible inverse models? An additional algorithm is used to find all of the unique inverse mod­ 
els.

Assuming P phases and Q aqueous solutions, we proceed as follows: If no feasible model is found when all 
Q aqueous solutions and P phases are included in the equations, we are done and no feasible models exist. If a 
feasible model is found, then each of the phases in this model is sequentially removed and the remaining set of 
aqueous solutions and phases is tested to see if a feasible model can be found. If a feasible model is not found when 
excluding a particular phase, then it is retained in the model, else it is discarded. After each phase has been tested, 
the phases that remain constitute a "minimal" model, that is, none of the phases can be removed and still obtain a 
feasible model. Three lists are kept during this process, each feasible model is kept in one list, each infeasible 
model is kept in another list, and each minimal model is kept in a third list.

Next, each combination of P-l phases is tested for feasible models as follows: If the set of aqueous solutions 
and phases is a subset of an infeasible model or a subset of a minimal model, the model is skipped. If only minimal 
models are to be found (-minimal in INVERSE_MODELING keyword data block), the model is also skipped if 
it is a superset of a minimal model. Otherwise, the inverse problem is formulated and solved using the set of aque­ 
ous solutions and the P-l phases in the same way as described above, maintaining the three lists during the process. 
Once all sets of P-l phases have been tested, the process continues with sets of P-2 phases, and so on until the set 
containing no phases is tested or until, for the given number of phases, every set of phases tested is either a subset 
of an infeasible model or a subset of a minimal model.

At this point, the entire process is repeated using each possible combination of one or more of the Q aqueous 
solutions. Although the process at first appears extremely computer intensive, most sets of phases are eliminated 
by the subset and superset comparisons, which are very fast. The number of models that are formulated and solved 
by the optimization methods are relatively few. Also the process has the useful feature that if no feasible models 
exist, this is determined immediately with the first invocation of the optimization procedure. During all of the test­ 
ing, whenever a feasible model is found, it is printed to the output device or optionally, only the minimal models 
are printed to the output device.

An alternative formulation of the objective functions can be used to determine the range of mole transfer for 
each aqueous solution and each phase that is consistent with the specified uncertainties. For the "range" calculation
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(-range in INVERSE_MODELING keyword data block), the equations for a given model are solved twice for 
each aqueous solution and phase in the model, once to determine the maximum value of the mixing fraction or 
mole transfer and once to determine the minimum value of the mixing fraction or mole transfer. In these calcula-

£tions, the - 's are not minimized, instead, the single objective function for maximization is simply
IA>

<x = M, (93) 

and in the minimization case,

a = -M, (94) 

where a refers to either a or a . By default, the value of M is 1000. The optimization method will try to

minimize the difference between a and 1000 and -1000. The number 1000 should be large enough for most 
calculations, but it is possible that the method will fail, causing a to be equal to 1000 instead of a true maximum,
in some evaporation problems, where a mixing fraction of greater than 1000 is conceivable. The value of M may 
be changed with a parameter in the -range identifier.

For data input to PHREEQC, identifiers in the INVERSE_MODELING keyword data block are used for 
the selection of aqueous solutions (-solutions), uncertainties (-uncertainties and -balances), reactants (-phases), 
mole-balance equations (-balances), range calculations (-range) and minimal models (-minimal), aqueous solu­ 
tion compositions are defined with the SOLUTION keyword data block and reactants must be defined with 
PHASES or EXCHANGE_SPECIES keyword data blocks. (See Description of Data Input.)

ORGANIZATION OF THE COMPUTER CODE

The computer code for PHREEQC is arbitrarily divided into 16 files, roughly corresponding to processing 
tasks. All global variables and global structures are defined in the header file global.h. This file is included in all 
of the source code files (those ending in ".c") except cll.c.

The main program is in the file main.c. It is very short and contains the logic for the sequence of calculations, 
which occur in the following order: (1) At the beginning of the run, the database file is read. The database file usu­ 
ally defines the elements and mass-action expressions for all of the aqueous species and phases. Definition of spe­ 
cies for exchangers and surfaces may also be included in this file. (2) A simulation is read from the input data file. 
(3) Any initial solution calculations are performed. (4) Any initial exchange calculations are performed. (5) Any 
initial surface calculations are performed. (6) Any reaction calculations (mixing, irreversible reaction, mineral 
equilibration, and others) are performed. (7) Any inverse modeling calculations are performed. And, (8) any trans­ 
port calculations are performed. The sequence from (2) through (6) is repeated until the end of the input file is 
encountered. The subroutines that perform tasks (3) through (6) are found in the file mainsubs.c.

The file read.c is used to read both the database file and the input file. It is arranged in subroutines that read 
each keyword data block. In the process of reading, memory is allocated to store the information for each keyword. 
Thus, the memory used by the program grows depending on the number and type of keywords that are included in 
the input file. The only restriction on the size of the program is the available memory and swap space that is phys­ 
ically present in the computer that is used. Chemical equations that are read from the input files are interpreted and 
checked for charge and mole balance by the subroutines in parse.c.

Subroutines in the file tidy.c check and organize the data read in read.c. These subroutines sort the lists of 
species, solutions, phases, pure-phase assemblages, and others, so that the order of these entities is known. They 
ensure that any elements used in mass-action equations are defined to the program and that all necessary primary 
and secondary master species exist. In addition, they rewrite all mass-action equations so that they contain only 
primary and secondary master species. Other consistency checks and data organization for exchangers, gas phases, 
pure-phase assemblages, surfaces, and inverse modeling are performed by the subroutines in this file. Also, the 
selected output file is prepared for writing.

Subroutines in the file prep.c set up the equations for a calculation. The equations and unknowns that are 
needed for the calculation are determined and work space to solve a matrix with this number of equations and 
unknowns is allocated. All mass-action expressions are rewritten according to the master-species and redox infor­ 
mation for the calculation. Several lists of pointers are prepared that allow the residuals of equations, the New- 
ton-Raphson array, and the change in moles of elements due to mineral mole transfers to be calculated very
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quickly. These lists are C structures that in general contain a pointer to a "source" datum in memory, a coefficient, 
and another pointer to a "target" memory location. The source datum is retrieved, multiplied by the coefficient, and 
added to the target memory location. Thus, for example, the molality of the species CaSO^ should appear in the

mole-balance equations for calcium, sulfur, and oxygen. One of the lists is used to calculate the residuals of the 
mole-balance equations. There would be three entries in this list for the species CaSO^. In all three entries, the

source datum would be a pointer to the number of moles of the species. The target memory locations would be the 
variable locations where the residuals for calcium, sulfur, and oxygen mole balances are stored, and the coefficients 
would be 1.0, 1.0, and 4.0, respectively. Once the entire list is generated, at each iteration, it is only necessary to 
perform the multiplications and additions as described by the list to calculate the residuals of the mole-balance 
equations, no extraneous calculations (multiplication by zero, for example), additional loops, or conditional state­ 
ments are necessary. The actual implementation uses several lists for each task to skip multiplication if the coeffi­ 
cient is 1.0, and to include constants that are not iteration dependent (that is, do not require the pointer to a source 
datum). An additional list is generated that is used for printing. For each aqueous species, this list includes an entry 
for each master species in the mass-action equation. This list is sorted by master species and concentration after 
the equilibrium calculation is completed and provides all the information for aqueous, exchange, and surface spe­ 
cies for printing results to the output file.

The subroutines in model.c actually solve the equations that have been set up in prep.c. Initial estimates for 
the master unknowns are calculated and the residuals for mole-balance equations are reduced below tolerances to 
provide suitable estimates for the Newton-Raphson technique. Once suitable estimates of the master unknowns 
have been found, the following iterative process occurs. (1) The residuals of the equations are tested for conver­ 
gence; if convergence is found, the calculation is complete. Otherwise, (2) the Newton-Raphson matrix is formu­ 
lated and solved (by subroutine ell, in file cll.c), (3) the master unknowns are updated, (4) activity coefficients are 
calculated, (5) the distribution of species is calculated, (6) if a master species of a redox element becomes small, 
basis switching may be performed. In this process, new mass-action equations are written and the lists for calcu­ 
lating residuals and the Newton-Raphson matrix are remade, and (7) the residuals of the equations are calculated. 
Steps (1) through (7) are repeated until a solution to the equations is found or a prescribed number of iterations is 
exceeded.

Following a calculation, the subroutines mprint.c write data to the output file and to the selected output file. 
Concentration data for species are sorted so that species are printed in descending order by concentration. The 
blocks of output that are written are selected with the keywords PRINT and SELECTED_OUTPUT. If no data are 
to be printed to the output file, the species sort is not needed and is not performed. If the aqueous solution, exchange 
assemblage, gas phase, pure-phase assemblage, or surface assemblage is to be saved following a calculation, the 
routines that perform these tasks are found in mainsubs.c.

The subroutines in step.c are used to accumulate the moles of each element before reaction and transport 
calculations. Total concentrations of elements are calculated from the amounts in solution, on exchangers, in the 
gas phase, and on surfaces. A check is made to ensure that all of the elements in the pure phases are included in 
the list of elements with positive concentrations. If an element is in a pure phase, but not in the aqueous solution, 
a small amount of the pure phase is added to the aqueous solution. If the moles of the pure phase is zero and one 
of its constituent elements is not present, that pure phase is ignored in the calculations.

The subroutines that perform inverse modeling are found in inverse, c, and the subroutines that perform 
advective transport modeling are found in transport.c. If explicit diffuse-layer calculations are made, the integra­ 
tion of the Poisson equation is performed by the subroutines in integrates. A few functions that are used through­ 
out the code are found in utilities.c. Finally, many of the manipulations of structures, including allocating space, 
initializing, copying, and freeing space are performed by subroutines in the file structures.c. The subroutine 
"clean_up" (in structures, c) frees all allocated memory, except for character strings, at the termination of the pro­ 
gram.

For efficiency, a hash table of character strings is kept by the program. Each character string, including ele­ 
ment names, species names, phase names, and others, is stored only once. All references to the same string then 
point to the same memory location. Thus, for example, a comparison of element names need only check to see if 
the memory address is the same, avoiding the necessity of comparing the strings character by character. Finding 
the memory location of a specified string is performed by a hash table lookup. Hash tables are also used to speed 
up lookups for species, elements, and phases.
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In reaction and transport calculations, if the set of elements, exchanger components, gas-phase components, 
pure phases, and surface components does not change from one calculation to the next, then the lists prepared in 
prep.c do not need to be regenerated. In this case, the lists used during the previous calculation are used for the 
current calculation. Thus, most of the time spent in the subroutines of the file prep.c can be saved.

DESCRIPTION OF DATA INPUT

The input for PHREEQC is arranged by keyword data blocks. Each data block begins with a line that con­ 
tains the keyword (and possibly additional data) followed by additional lines containing data related to the key­ 
word. The keywords that define the input data for running the program are listed alphabetically: END, 
EQUILIBRIUM_PHASES, EXCHANGE, EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES, 
GAS_PHASE, INVERSE_MODELING, KNOBS, MIX, PHASES, PRINT, REACTION, 
REACTION_TEMPERATURE, SAVE, SELECTED_OUTPUT, SOLUTION, 
SOLUTION_MASTER_SPECffiS, SOLUTION_SPECIES, SURFACE, SURFACE_MASTER_SPECffiS, 
SURFACE_SPECIES, TITLE, TRANSPORT, and USE. Keywords and their associated data are read from a 
database file at the beginning of a run to define the aqueous model. Then data are read from the input file until the 
END keyword is encountered, after which the specified calculations are performed. The process of reading data 
from the input file until an END is encountered followed by performing calculations is repeated until the last END 
keyword or the end of the input file is encountered. The set of calculations, defined by keyword data blocks termi­ 
nated by an END, is termed a "simulation". A "run" is a series of one or more simulations that are contained in the 
same input data file and calculated during the same invocation of the program PHREEQC.

Each simulation may contain one or more of five types of speciation, reaction, and transport calculations: 
(1) initial solution speciation, (2) determination of the composition of an exchange assemblage in equilibrium with 
a fixed solution composition, (3) determination of the composition of a surface assemblage in equilibrium with a 
fixed solution composition, (4) calculation of chemical composition as a result of chemical reactions, which 
include mixing; net addition or removal of elements from solution, termed "net stoichiometric reaction"; equili­ 
bration with an assemblage of exchangers; equilibration with a gas phase at a fixed total pressure; equilibration 
with an assemblage of surfaces; dissolution or precipitation of pure phases; or variation in temperature, and (5) 
advective transport through a series of cells in combination with any of the available chemical processes. This 
combination of capabilities allows the modeling of very complex geochemical reactions and transport processes 
by using one or more simulations.

In addition to speciation, reaction, and transport calculations, the code may be used for inverse modeling, by 
which net chemical reactions are deduced that account for differences between one or a mixture of initial water 
compositions and a final water composition.

Conventions for Data Input

PHREEQC was designed to eliminate some of the input errors due to complicated data formatting. Data for 
the program are free format; spaces or tabs may be used to delimit input fields. Keyword data blocks may be 
entered in any order. However, data elements entered on a single line are order specific. As much as possible, the 
program is case insensitive. The important exception to this rule regards chemical formulas. The following con­ 
ventions are used for data input to PHREEQC.

Keywords Input data blocks are identified with an initial keyword. This word must be spelled exactly, 
although case is not important. Several of the keywords have synonyms. For example PURE_PHASES is a syn­ 
onym for EQUILIBRIUM_PHASES.

Identifiers-Identifiers are options that may be used within a keyword data block. Identifiers may have two 
forms: (1) they may be spelled completely and exactly (case insensitive) or (2) they may be preceded by a hyphen 
and then only enough characters to uniquely define the identifier are needed. The form with the hyphen is always 
acceptable. Usually, the form without the hyphen is acceptable, but in some cases the hyphen is needed to indicate 
the word is an identifier rather than an identically spelled keyword; these cases are noted in the definition of the 
identifiers in the following sections. In this report, the hyphen is usually used except for identifiers of the SOLU­ 
TION keyword and the identifiers log_k and delta_h. The hyphens are not used in these cases to avoid confusion 
about negative quantities. The hyphen in the identifier never implies the negative of a quantity is entered. For
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example, the identifier "-log_k" does not mean the negative of the log K, it is simply an alternate form for the iden­ 
tifier "log_k".

Chemical equations For aqueous, exchange, and surface species, chemical reactions must be association 
reactions, with the defined species occurring in the first position past the equal sign. For phases, chemical reactions 
must be dissolution reactions with the formula for the defined phase occurring in the first position on the left-hand 
side of the equation. Additional terms on the left-hand side are allowed. All chemical equations must contain an 
equal sign, "=". In addition, left- and right-hand sides of all chemical equations must balance in numbers of atoms 
of each element and total charge. All equations are checked for these criteria at runtime, unless they are specifically 
excepted. Nested parentheses in chemical formulas are acceptable. Spaces and tabs within chemical equations are
ignored. Waters of hydration and other chemical formulas that normally are represented by a "-"--as in the formula 
for gypsum, CaSO4'2H2O~are designated with a colon (":") in PHREEQC (CaSO4:2H2O), but only one colon per 
formula is allowed.

Element names An element formula, wherever it is used, must begin with a capital letter and may be fol­ 
lowed by one or more lowercase letters or underscores, "_". Thus, "Fulvate" is an acceptable element name.

Charge on a chemical species-The charge on a species may be defined by the proper number of pluses or 
minuses following the chemical formula or by a single plus or minus followed by a integer number designating the 
charge. Either of the following are acceptable, Al+3 or A1+++. However, A13+ would be interpreted as a molecule 
with three aluminum atoms with a charge of plus one.

Log K and Temperature dependence The identifier log_k is used to define the log K at 25°C for a reac­ 
tion. The temperature dependence for log K may be defined by the van't Hoff expression or by an analytical expres­ 
sion. The identifier delta_h is used to give the standard enthalpy of reaction at 25°C for a chemical reaction, which 
is used in the van't Hoff equation. By default the units of the standard enthalpy are kilojoules per mole (kJ/mol). 
Optionally, for each reaction the units may be defined to be kilocalories per mole (kcal/mol). An analytical expres­ 
sion for the temperature dependence of log K for a reaction may be defined with the -analytical_expression iden­ 
tifier. Up to five numbers may be given, which are the coefficients for the following equation:

3 5log 10/T = Aj + A^T+   + A 4 log lor+   , where T is in Kelvin. A log K must always be defined either with 
T jl

log_k or -analytical_expression; the enthalpy is optional. If both are present, an analytical expression for temper­ 
ature dependence is used in preference to the van't Hoff expression.

Comments The "#" character delimits the beginning of a comment in the input file. All characters in the 
line which follow this character are ignored. If the entire line is a comment, the line is not echoed to the output file. 
If the comment follows input data on a line, the entire line, including the comment, is echoed to the output file. The 
"#" is useful for adding comments explaining the source of various data or describing the problem set up. In addi­ 
tion, it is useful for temporarily removing lines from an input file.

Logical line separator A semicolon (";") is interpreted as a logical end of line character. This allows mul­ 
tiple logical lines to be entered on the same physical line. For example, solution data could be entered as:

"pH 7.0; pe 4.0; temp 25.0",

on one line. The semicolon should not be used in character fields, such as the title or other comment or description 
fields.

Logical line continuation A backslash ("\") is interpreted as a signal to ignore the character immediately 
following the backslash. The primary use of this signal is to ignore the end-of-line character, which allows a single 
logical line to be written on two physical lines. For example, a long chemical equation could be entered as:

"Ca0.165A12.33Si3.67O10(OH)2 + 12 H2O = \" 

"0.165Ca+2 + 2.33 A1(OH)4- + 3.67 H4SiO4 + 2 H+"

on two lines. The program would interpret this sequence as a balanced equation entered on a single logical line. 
Note that if a space follows the backslash and precedes the end-of-line, the space will be ignored and the 
end-of-line will be interpreted as normal. The backslash character should not be used in character fields, such as 
the title or other comment or description fields.
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Reducing Chemical Equations to a Standard Form

The numerical algorithm of PHREEQC requires that chemical equations be written in a particular form. 
Every equation must be written in terms of a minimum set of chemical species, essentially, one species for each 
element or valence state of an element. In the program PHREEQE, these species were called "master species" and 
the reactions for all aqueous complexes had to be written using only these species. PHREEQC also needs reactions 
in terms of master species; however, the program contains the logic to rewrite the input equations into this form. 
Thus, it is possible to enter an association reaction and log K for an aqueous species in terms of any aqueous spe­ 
cies in the database (not just master species) and PHREEQC will internally rewrite the equation to the proper inter­ 
nal form. PHREEQC will also rewrite reactions for phases, exchange complexes, and surface complexes. 
Reactions are still required to be dissolution reactions for phases and association reactions for aqueous, exchange, 
or surface complexes.

There is one restriction on the rewriting capabilities for aqueous species. PHREEQC allows mole balances 
on individual valence states or combinations of valence states of an element for initial solution calculations. It is 
necessary for PHREEQC to be able to determine the valence state of an element in a species from the chemical 
equation that defines the species. To do this, the program requires that at most one aqueous species of an element 
valence state contain electrons in its chemical reaction. This aqueous species is defined to be a "secondary master 
species"; there must be a one-to-one correspondence between valence states, for which total concentrations can be 
defined, and secondary master species. In addition, there must be one "primary master species" for each element, 
such that reactions for all aqueous species for an element can be written in terms of the primary master species. 
The equation for the primary master species is simply an identity reaction. If the element is a redox element, the 
primary master species must also be a secondary master species. For example, to be able to calculate mole balances 
on total iron, total ferric iron, and total ferrous iron, a primary master species must be defined for Fe and secondary 
master species must be defined for Fe(+3) and Fe(+2). In the default databases, the primary master species for Fe
is Fe , the secondary master species for Fe(+2) is Fe , and the secondary master species for Fe(+3) is Fe+3 . The 
correspondence between master species and elements and element valence states is defined by the 
SOLUTION_MASTER_SPECIES keyword data block. The chemical equations for the master species and all 
other aqueous species are defined by the SOLUTION_SPECIES keyword data block.

Conventions for Documentation

The descriptions of keywords and their associated input are now described in alphabetical order. Several for­ 
matting conventions are used to help the user interpret the input requirements. Keywords are always capitalized 
and bold. Words in bold must be included literally when creating input data sets (although upper and lower case 
are interchangeable and optional spellings may be permitted). "Identifiers" are additional keywords that apply only 
within a given keyword data block; they can be described as sub-keywords. "Temperature" is an identifier for 
SOLUTION input. Each identifier may have one of two forms: (1) the identifier word spelled exactly (for exam­ 
ple, "temperature"), or (2) a hyphen followed by a sufficient number of characters to define the identifier uniquely 
(for example, -t for temperature). Words in italics are input values that are variable and depend on user selection 
of appropriate values. Items in brackets ([]) are optional input fields. Mutually exclusive input fields are enclosed 
in parentheses and separated by the word "or". In general, the optional fields must be entered in the specified order. 
For clarity, commas are used to delimit input fields in the explanations of data input; however, commas are not 
allowed in the input data file; only white space (spaces and tabs) may be used to delimit fields in input data sets. 
Where applicable, default values for input fields are stated.

Overview of Data Files and Keyword Data Blocks

When the program PHREEQC is invoked two files are used to define the thermodynamic model and the 
types of calculations that will be done, the input file and the database file. The database file is read once (to the end 
of the file or until an END keyword is encountered) at the beginning of the program. The input file is then read and 
processed simulation by simulation until the end of the file. The formats for the keyword data blocks are the same 
between the input file and the database file.
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The database file is used to define static data for the thermodynamic model. Although any keyword data 
block can occur in the database file, normally, it contains the keyword data blocks: 
EXCHANGE_MASTER_SPECIES, EXCHANGE_SPECIES, SOLUTION_MASTER_SPECIES, 
SOLUTION_SPECIES, SURFACE_MASTER_SPECIES, SURFACE_SPECIES, and PHASES. These key­ 
word data blocks define master species and the stoichiometric and thermodynamic properties of all of the aqueous 
phase species, exchange species, surface species, and pure phases. Two database files are provided with the pro­ 
gram, a database file derived from PHREEQE (Parkhurst and others, 1980) and a database file derived from 
WATEQ4F (Ball and Nordstrom, 1991). These files are described in more detail in Attachment B and the 
PHREEQE-derived database file is listed. The elements and element valence states that are included mphreeqc.dat 
are listed in table 1 along with the PHREEQC notation and the default formula used to convert mass concentration 
units to mole concentration units.

The input data file is used primarily (1) to define the types of calculations that are to be made, and (2) if nec­ 
essary, to modify the data read from the database file. If new elements and aqueous species, exchange species, sur­ 
face species, or phases need to be included in addition to those defined in the database file, or if the stoichiometry 
or log K or activity coefficient information from the database file needs to be modified for a given run, then the 
keywords mentioned above can be included in the input file. The data read for these data blocks in the input file 
will augment or supercede the data read from the database file. In many cases, the thermodynamic model defined 
in the database will not be modified, and the above keywords will not be used in the input data file.

Initial conditions are defined with SOLUTION, EXCHANGE, SURFACE, EQUILIBRIUM_PHASES, 
and GAS_PHASE keywords. Solution compositions and speciation calculations are defined with the SOLUTION 
keyword data block. The composition of an exchange assemblage is defined with the EXCHANGE keyword data 
block; the composition of a surface assemblage is defined with the SURFACE keyword data block; and the iden­ 
tity and amount of each phase in a pure-phase assemblage is defined with the EQUILIBRIUMJPHASES key­ 
word data block. The composition of a fixed-total-pressure multicomponent gas phase is defined with the 
GAS_PHASE keyword data block. Multiple solutions, exchange assemblages, surface assemblages, pure-phase 
assemblages, and gas phases can be defined.

Reactions are defined by allowing a solution or mixture of solutions to come to equilibrium with one or more 
of the following entities: an exchange assemblage, a surface assemblage, a pure-phase assemblage, or a multicom­ 
ponent gas phase. In addition, mixtures, irreversible reactions, and reaction temperatures can be specified for reac­ 
tion calculations. An entity in a reaction can be defined implicitly or explicitly. For implicit definitions, a solution 
or mixture (SOLUTION or MIX keywords) must be defined within the simulation, then the first of each kind of 
entity defined in the simulation will be used in the reaction simulation. That is, the first solution (or mixture) will 
be equilibrated with the first defined of each of the following entities in the simulation: exchange-assemblage 
(EXCHANGE), gas phase (GAS_PHASE), pure-phase-assemblage (EQUILIBRIUM_PHASES), surface 
assemblage (SURFACE), irreversible reaction (REACTION), and reaction temperature 
(REACTIONJTEMPERATURE). Alternatively, "USE keyword number" can be used to explicitly define an 
entity to be used in the reaction calculation from any previously defined entities. (See examples 3, 6, 7, 8, and 9). 
"USE keyword none" can be used to eliminate an entity that was implicitly defined (See examples 8 and 9.) Any 
combination of entities can be used to define a reaction. The composition of the solution, exchange assemblage, 
surface assemblage, pure-phase assemblage, or gas phase can be saved after a set of reaction calculations with the 
SAVE keyword.

Advective, 1-dimensional transport can be modeled with the TRANSPORT keyword and a combination of 
the EQUILIBRIUM_PHASES, EXCHANGE, GAS_PHASE, MIX, REACTION, 
REACTION_TEMPERATURE, SOLUTION, and SURFACE keywords. Logically, a sequence of n reaction 
cells are defined. An initial solution corresponding to numbers 1 through n must be defined for each cell. In addi­ 
tion, gas phases and exchange, pure-phase, and surface assemblages may be defined for each cell with their num­ 
bers corresponding to the cell numbers. The infilling solution is always solution number 0. Advection is modeled 
by "shifting" solution 0 to cell 1, the solution in cell 1 to cell 2, and so on. At each shift, the solution in each cell 
is equilibrated with the gas phase and assemblages that are present in the cell. To facilitate definition of the initial 
conditions the keywords EQUILIBRIUMJPHASES, EXCHANGE, GAS_PHASE, MIX, REACTION, 
REACTION_TEMPERATURE, SOLUTION, and SURFACE allow simultaneous definition of a range of cell 
numbers. The SAVE keyword also allows a range of solution, gas phase, or assemblage numbers to be saved 
simultaneously.

Inverse modeling is defined with the INVERSE_MODELING keyword. Previous definitions of solution 
compositions with SOLUTION input and possibly new reactants with PHASES or EXCHANGE_SPECIES 
input are needed for inverse modeling.
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Table 1. Elements and element valence states included in default database phreeqc.dat, including 
PHREEQC notation and default formula for gram formula weight

[For alkalinity, formula for gram equivalent weight is given]

Element or element valence state

Alkalinity

Aluminum

Barium

Boron

Bromide

Cadmium

Calcium

Carbon

Carbon(IV)

Carbon(-IV), methane

Chloride

Copper

Copper(II)

Copper(I)

Fluoride

Hydrogen(O), dissolved hydrogen

Iron

Iron(II)

Iron(III)

Lead

Lithium

Magnesium

Manganese

Manganese(II)

Manganese(III)

Nitrogen

Nitrogen(V), nitrate

Nitrogen(III), nitrite

Nitrogen(O), dissolved nitrogen

Nitrogen(-III), ammonia

Oxygen(O), dissolved oxygen

Phosphorous

Potassium

Silica

Sodium

Strontium

Sulfur

Sulfur(VI), sulfate

Sulfur(-II), sulfide

Zinc

PHREEQC notation

Alkalinity

Al

Ba

B

Br

Cd

Ca

C

C(4)

C(-4)

Cl

Cu

Cu(2)

Cu(l)

F

H(0)

Fe

Fe(2)

Fe(3)

Pb

Li

Mg

Mn

Mn(2)

Mn(3)

N

N(5)

N(3)

N(0)

N(-3)

0(0)

P

K

Si

Na

Sr

S

S(6)

S(-2)

Zn

Formula used for default 
gram formula weight

Cao.5(C03)o.5

Al

Ba

B

Br

Cd

Ca

HCO3

HCO3

CH4

Cl

Cu

Cu

Cu

F

H

Fe

Fe

Fe

Pb

Li

Mg

Mn

Mn

Mn

N

N

N

N

N

O

P

K

SiO2

Na

Sr

S04

S04

S

Zn

38 User's Guide to PHREEQC



END

Keywords

The following sections describe the data input requirements for the program. Each type of data are input 
through a specific keyword data block. The keywords are listed in alphabetical order.

END

This keyword has no associated data. It ends the data input for a simulation. After this keyword is read by 
the program, the calculations described by the input for the simulation are performed and the results printed. Addi­ 
tional simulations may follow in the input data set, each in turn will be terminated with an END keyword.

Example problems 

The keyword END is used in all example problems, 1 through 12.
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EQUILIBRIUM_PHASES

EQUILIBRIUM PHASES

This keyword is used to define the amounts of an assemblage of pure phases that can react reversibly with 
the aqueous phase. Conceptually, when the phases included in this keyword data block are brought into contact 
with an aqueous solution, each phase will dissolve or precipitate to achieve equilibrium or will dissolve com­ 
pletely. Pure phases include fixed-composition minerals and gases with fixed partial pressures. Two types of input 
are available: in one type, the phase itself reacts to equilibrium (or a specified saturation index or gas partial pres­ 
sure); in the other type, an alternative reaction occurs to the extent necessary to reach equilibrium (or a specified 
saturation index or gas partial pressure) with the specified pure phase.

Example

Line 0: EQUILIBRIUM_PHASES 1 Define amounts of phases in phase assemblage.
Line la: Chalcedony 0.0 0.0
Linelb: CO2(g) -3.5 1.0
Linelc: Gibbsite(c) 0.0 KAlSiOS 1.0
Line Id: Calcite 1.0 Gypsum 1.0
Linele: pH_Fix -5.0 HC1 10.0

Explanation

Line 0: EQUILIBRIUMJPHASES [number] [description]
EQUILIBRIUM_PHASES is the keyword for the data block. Optionally, EQUILIBRIUM, EQUI­ 

LIBRIA, PURE_PHASES, PURE.
number positive number to designate this phase assemblage and its composition. Default is 1. A 

range of numbers may also be given in the form m-n, where m and n are positive integers, m is 
less than n, and the two numbers are separated by a hyphen without intervening spaces.

description is an optional character field that describes the phase assemblage. 
Line 1: phase name [saturation index ([alternative formula] or [alternative phase}} [amount]}

phase name-name of a phase. The phase must be defined with PHASES input, either in the default 
database file or in the current or previous simulations of the run. The name must be spelled iden­ 
tically to the name used in PHASES input (except for case).

saturation index target saturation index for the pure phase in the aqueous phase (line la); for gases, 
this number is the log of the partial pressure (line Ib). Default is 0.0. The target saturation index 
may not be attained if the amount of the phase in the assemblage is insufficient.

alternative formula chemical formula that is added (or removed) to attain the target saturation index. 
By default, the mineral defined by phase name dissolves or precipitates to attain the target sat­ 
uration index. If alternative formula or alternative phase is entered, phase name does not react; 
the stoichiometry of alternative formula or the alternative phase is added or removed from the 
aqueous phase to attain the target saturation index. Alternative formula must be a legitimate 
chemical formula composed of elements defined to the program. Line Ic indicates that the sto­ 
ichiometry given by alternative formula, KAlSi3 O8 (potassium feldspar), will be added or 
removed from the aqueous phase until gibbsite equilibrium is attained.

alternative phase the chemical formula defined for alternative phase is added (or removed) to attain 
the target saturation index. By default, the mineral defined by phase name dissolves or precipi­ 
tates to attain the target saturation index. If alternative phase or alternative formula is entered, 
phase name does not react; the stoichiometry of the alternative phase or alternative formula is 
added or removed from the aqueous phase to attain the target saturation index, alternative phase 
must be defined through PHASES input (either in the database file or in the present or previous 
simulations). Line Id indicates that the phase gypsum will be added to or removed from the 
aqueous phase until calcite equilibrium is attained.

amount moles of the phase in the phase assemblage or moles of the alternative reaction. Default is 
10.0 moles. This number of moles is the maximum amount of the mineral or gas that can dis­ 
solve. It may be possible to dissolve the entire amount without reaching the target saturation
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index, in which case the solution will have a smaller saturation index for this phase than the tar­ 
get saturation index. If amount is equal to zero, then the phase can not dissolve, but will precip­ 
itate if the solution becomes supersaturated with the phase.

Notes

If just one number is included on line 1, it is assumed to be the target saturation index and the amount of the 
phase defaults to 10.0 mol. If two numbers are included on the line, the first is the target saturation index and the 
second is the amount of the phase present. Line 1 may be repeated to define all pure phases that are assumed to 
react reversibly. It is possible to include a pure phase that has an amount of zero (line la). In this case, chalcedony 
can only precipitate if the solution is supersaturated with this phase, either by initial conditions, or through disso­ 
lution of pure phases or other specified reactions (mixing or stoichiometric reactions). It is possible to maintain 
constant pH conditions by proper specification of an alternative formula and a phase (PHASES input). Line le
would maintain a pH of 5.0 by adding HC1, provided a phase named "pH_Fix" were defined with reaction H+ =
H+ and log K = 0.0 (see example 8). (Note: If the acid, HC1, is specified and, in fact, a base is needed to attain pH 
5.0, it is possible the program will fail to find a solution to the algebraic equations.)

After a pure-phase assemblage has reacted with the solution, it is possible to save the resulting assemblage 
composition (that is, the identity and number of moles of each phase) with the SAVE keyword. If the new compo­ 
sition is not saved, the assemblage composition will remain the same as it was before the reaction calculation. After 
it has been defined or saved, the assemblage may be used in subsequent simulations by the USE keyword.

Example problems 

The keyword EQUILffiRIUM_PHASES is used in example problems 2, 3, 5, 6, 7, 8, and 10.

Related keywords 

PHASES, SAVE equilibrium_phases, and USE equilibrium_phases.
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EXCHANGE

EXCHANGE

This keyword is used to define the amount and composition of an assemblage of exchangers. The initial com­ 
position of the exchange assemblage can be defined in two ways, (1) explicitly by listing the composition of each 
exchanger or (2) implicitly, by specifying that each exchanger is in equilibrium with a solution of fixed composi­ 
tion. The exchange master species, stoichiometries, and log K's for the exchange reactions are defined with the 
keywords EXCHANGE_MASTER_SPECIES and EXCHANGE_SPECIES.

Example 1

Line 0: EXCHANGE 1 Measured exchange composition
Line la: CaX2 0.3
Line Ib: MgX2 0.2
Line Ic: NaX 0.5

Explanation 1

Line 0: EXCHANGE [number] [description]
EXCHANGE is the keyword for the data block.
number positive number to designate this exchange assemblage and its composition. Default is 1. A 

range of numbers may also be given in the form m-n, where m and n are positive integers, m is 
less than n, and the two numbers are separated by a hyphen without intervening spaces. 

description is an optional character field that describes the exchanger. 
Line 1: chemical formula, amount

chemical formula component of the exchanger. 
amount quantity of component, in moles.

Notes 1

Line 1 may be repeated to define the entire composition of each exchanger. Although this example only 
defines one exchanger, X, other exchangers could be included in the exchange assemblage. In the example, the 
total number of exchange sites of X is 1.5 mol and the total concentrations of calcium, magnesium, and sodium on 
the exchanger are 0.3, 0.2, and 0.5 mol, respectively.

Example 2

Line 0: EXCHANGE 1 Exchanger in equilibrium with solution 1
Line 1: -equilibrate with solution 1
Line2a: X 1.0
Line 2b: Xa 0.5

Explanation 2

Line 0: EXCHANGE [number] [description]
As in example 1. 

Line 1 : -equilibrate number
-equilibrate-This string at the beginning of the line indicates that the exchange assemblage is defined 

to be in equilibrium with a given solution composition. Optionally, equil, equilibrate, -e[quil- 
ibrate].

number-solution number with which the exchange assemblage is to be in equilibrium. Any alphabetic 
characters following the identifier and preceding an integer ("with solution" in line 1) are 
ignored. 

Line 2: exchanger name, amount
exchanger name name of an exchanger that is defined to the program.
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amount quantity of exchanger, in moles.

Notes 2

The order of lines 1 and 2 is not important. Line 1 should occur only once within the data block. Line 2 may 
be repeated to define the amounts of other exchangers, if more than one exchanger is present in the assemblage. 
Example 2 requires the program to make a calculation to determine the composition of the exchange assemblage. 
The calculation will be performed before the any reaction calculations to determine the concentrations of each 
exchange component [such as CaX2, MgX2 , or NaX (from the default database) provided calcium, magnesium, 
and sodium are present in the solution] that would exist in equilibrium with the specified solution (solution 1 in 
this example). The composition of the solution will not change during this calculation.

When an exchange assemblage (defined as in example 1 or example 2) is placed in contact with a solution 
during a reaction calculation, both the exchange composition and the solution composition will adjust to reach a 
new equilibrium. After a reaction has been simulated, it is possible to save the resulting exchange assemblage com­ 
position with the SAVE keyword. If the new composition is not saved, the exchange assemblage composition will 
remain the same as it was before the reaction calculation. After it has been defined or saved, the exchange assem­ 
blage composition may be used in subsequent simulations through the USE keyword.

Example problems 

The keyword EXCHANGE is used in example problems 9 and 10.

Related keywords 

EXCHANGE_MASTER_SPECEES, EXCHANGE_SPECIES, SAVE exchange, and USE exchange.
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EXCHANGE_MASTER_SPECIES

This keyword is used to define the correspondence between the name of an exchanger and its master species. 
Normally, this data block is included in the database file and only additions and modifications are included in the 
input file.

Example

Line 0: EXCHANGE_MASTER_SPECIES
Line la: XX-
Line Ib: Xa Xa-

Explanation

Line 0: EXCHANGE_MASTER_SPECIES
Keyword for the data block. No other data are input on the keyword line. 

Line 1: exchange name, exchange master species
exchange name name of an exchanger, X and Xa in this example. It must begin with a capital letter,

followed by zero or more lower case letters or underscores ("_")  
exchange master species formula for the master exchange species, X" and Xa" in this example.

Notes

All half reactions for the exchanger (X and Xa, in this example) must be written in terms of the master
exchange species (X" and Xa" in this example). Each exchange master species must be defined by an identity reac­ 
tion with log K of 0.0 in EXCHANGEJSPECIES input. Any exchange reactions for exchange name must be 
defined with EXCHANGE_SPECIES input.

Example problems

The keyword EXCHANGE_MASTER_SPECIES is not used in the example problems. See listing of 
default database file in Attachment B for example.

Related keywords 

EXCHANGE, EXCHANGE_SPECIES, SAVE exchange, and USE exchange.
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EXCHANGE SPECIES

This keyword is used to define a half reaction and relative log K for each exchange species. Normally, this 
data block is included in the database file and only additions and modifications are included in the input file.

Example

Line 0:
Line la:
Line 2a:
Line Ib:
Line 2b:
Line Ic:
Line 2c:
Line Id:
Line 2d:
Line le:
Line 2e:
Line If:
Line 2f :

EXCHANGE.SPECIES
v _

X- +

X-
log_k

Na+ = NaX
log_k

0.0

0.0
2X- + Ca+2 = CaX2

Xa- =

X- +

2Xa-

log_k
= Xa-

log_k
Na+ = NaX

log_k
+ Ca+2 = CaXa2

log_k

0.8

0.0

0.0

2.0

Explanation

Line 0: EXCHANGE_SPECIES
Keyword for the data block. No other data are input on the keyword line. 

Line 1: Association reaction
Association reaction for exchange species. The defined species must be the first species to the right of
the equal sign. The association reaction must precede any identifiers related to the exchange species.
Master species have an identity reaction (lines la and Id). 

Line 2: log_k log K
log_k-Identifier for log K at 25°C. Optionally, -log_k, logk, -l[og_k], or -l[ogk].
log K Log K at 25°C for the reaction. Default 0.0. Unlike log K for aqueous species, the log K for 

exchange species is implicitly relative to a single exchange species. In the default database file,
sodium (NaX) is used as the reference and the reaction X" + Na+ = NaX is given a log K of 0.0 
(line 2b). The log K for the exchange reaction for the reaction given in line 2c is then numeri­ 
cally equal to the log K for the reaction 2NaX + Ca+2 = CaX2 + 2Na+ . Master species have log 
K of 0.0 (lines 2a and 2d); reference species have log K of 0.0 (lines 2b and 2e).

Notes

Lines 1 and 2 may be repeated as necessary to define all of the exchange reactions. One identity reaction is 
needed to define the exchange master species (in example, lines la and 2a, Id and 2d) for each exchanger. The 
reference half reaction for each exchanger will have a log K of 0.0 (in example, lines Ib and 2b, le and 2e); in the
default database file the reference half reaction is Na+ + X" = NaX. Multiple exchangers may be defined simply by 
defining multiple exchange master species and additional half reactions involving these master species, as in this 
example.

Temperature dependence of log K can be defined with the standard enthalpy of reaction (identifier delta_h) 
using the van't Hoff equation or with an analytical expression (-analytical_expression). See 
SOLUTION_SPECIES or PHASES for examples.

The identifier -no_check can be used to disable checking charge and elemental balances (see 
SOLUTION_SPECIES). The use of -no_check is not recommended. The equation given for the exchange spe­ 
cies (line 1) is used to determine the mass-action equation and the contribution of the species to each mole-balance 
equation. Alternatively, the contribution of the species to each mole-balance equation can be defined using the
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-mole_balance identifier. See SOLUTION_SPECIES and SURFACE_SPECIES for an example. If the
-no_check identifier is needed, then the -molejbalance identifier is also needed.

Example problems

The keyword EXCHANGE_SPECIES is not used in the example problems. See listing of default database 
file in Attachment B for examples.

Related keywords 

EXCHANGE, EXCHANGE_MASTER_SPECIES, SAVE exchange, and USE exchange.
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GAS PHASE

This keyword is used to define the composition of a fixed-total-pressure multicomponent gas phase. A 
GASJPHASE data block is needed if a gas bubble (with a volume that is not infinite) at a fixed pressure equili­ 
brates with an aqueous phase. A GAS_PHASE data block is not needed if fixed partial pressures of gas compo­ 
nents are desired, which corresponds to an infinite-volume gas phase; use EQUILIBRIUMJPHASES instead. 
The gas phase defined with this keyword data block subsequently may be equilibrated with an aqueous phase in 
combination with pure-phase, surface, and exchange assemblages. As a consequence of reactions, the gas phase 
may exist or not, depending on the fixed pressure for the gas phase and the sum of the partial pressures of the dis­ 
solved gases in solution. The thermodynamic properties of the gas components are defined with PHASES input.

Example

Line 0: GAS_PHASE 1-5 Air
Line 1: -pressure 1.0
Line 2: -volume 1.0
Line 3: -temperature 25.0
Line 4a: CH4(g) 0.0
Line4b: CO2(g) 0.000316
Line 4c: O2(g) 0.2
Line 4d: N2(g) 0.78

Explanation

Line 0: GAS_PHASE [number] [description]
GAS_PHASE is the keyword for the data block.
number positive number to designate this gas phase and its composition. Default is 1. A range of 

numbers may also be given in the form m-n, where m and n are positive integers, m is less than 
n, and the two numbers are separated by a hyphen without intervening spaces. 

description is an optional character field that describes the gas phase. 
Line 1: -pressure pressure

-pressure identifier defining the fixed pressure of the gas phase that obtains during all reactions.
Optionally pressure, or -p[ressure].

pressure the pressure of the gas phase, in atmospheres. Default is 1.0 atm. 
Line 2: -volume volume

-volume-identifier defining the initial volume of the gas phase. Optionally, volume, or -v[olume]. 
volume-the initial volume of the gas phase, in liters. Default is 1.0 liter. The volume and temperature

are used to compute the initial number of moles present in the gas phase. 
Line 3: -temperature temp

-temperature-identifier defining the initial temperature of the gas phase. Optionally, temperature, 
or -t[emperature].

temp the initial temperature of the gas phase, in Celsius. Default is 25.0. The volume and tempera­ 
ture are used to compute the initial number of moles present in the gas phase. 

Line 4: phase name, partial pressure
phase name name of a gas. A phase with this name must be defined by PHASES input.
partial pressure initial partial pressure of this gas in the gas phase, in atmospheres. The partial pres­ 

sure along with volume and temperature are used to compute the initial number of moles of 
this gas present in the gas phase.

Notes

Line 4 may be repeated as necessary to define all of the components initially present in the gas phase as well 
as any components which may subsequently enter the gas phase. The initial number of moles, of any gases that are 
defined to have positive partial pressures in GASJPHASE input, will be computed using the ideal gas law,
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n - PV/RT, where n is the number of moles of the gas, P is the defined partial pressure (line 4), Vis given by -vol­ 
ume, and T is given by -temperature. It is probable that the sum of the partial pressures of the defined gases will 
not be equal to the pressure given by -pressure. However, when the initial moles of gas components are brought 
in contact with a solution during a reaction simulation, the moles of gases and volume of the gas phase will adjust 
so that each component is in equilibrium with the solution and the total pressure is that specified by -pressure. It 
is possible that the gas phase will not exist if the sum of the partial pressures of dissolved gases does not exceed 
the pressure given by -pressure.

Some gas components may be defined to have initial partial pressures of zero. In this case, no moles of that 
component will be present initially, but the component will enter the gas phase when in contact with a solution. If 
no gas phase exists initially, the initial partial pressures of all components should be set to 0.0.

Example problems

The keyword GAS_PHASE is used in example problem 7.

Related keywords 

EQUILIBRIUM_PHASES, PHASES, SAVE gas_phase, and USE gas_phase.
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INVERSE MODELING

This keyword is used to define all the information used in an inverse modeling calculation. Inverse modeling 
attempts to determine sets of mole transfers of phases that account for changes in water chemistry between one or 
a mixture of initial water compositions and a final water composition. The data block includes definition of the 
solutions, phases, and uncertainties used in the calculations.

Example

Line 0:
Line 1:
Line 2: 
Line 3: 
Line 4a: 
Line 4b:
Line 4c:
Line 4d:
Line 5:
Line 6a 
Line 6b:
Line 6c: 
Line 6d:
Line 7: 
Line 8:
Line 9:

INVERSE_MODELING 1
-solutions 125
-uncertainty 0.02 
-phases

Calcite 
Dolomite
CaX2
NaX

-balances
pH 
Ca
Alkalinity 
Fe

-range 10000 
-minimal
-tolerance le-9

precipitate 
dis

0.1 
0.01
0.5 
0.05

-0.(

0.1 0.2

Explanation

Line 0: INVERSE_MODELING [number] [description]
INVERSE_MODELING is the keyword for the data block.
number-positive number to designate this inverse-modeling definition. Default is 1.
description optional character field that describes the mixture. 

Line 1: -solutions, list of solution numbers
-solutions identifier that indicates a list of solution numbers follows on the same line. Optionally, sol, 

or -solutions]. Note, solution (without a preceding hyphen) is not acceptable because it will be 
interpreted as the keyword SOLUTION.

list of solution numbers list of solution numbers to use in mole-balance calculations. At least two 
solution numbers are required and these solutions must be defined by SOLUTION input or by 
SAVE after a reaction calculation in the current or previous simulations. The final solution num­ 
ber is listed last, all but the final solution are termed "initial solutions". If more than one initial 
solution is listed, the initial solutions are assumed to mix to form the final solution. The mixing 
proportions of the initial solutions are calculated in the modeling process. In the example (line 
1), solution 5 is to be made by mixing solutions 1 and 2 in combination with phase mass trans­ 
fers. 

Line 2: -uncertainty, list of uncertainties
-uncertainty identifier that indicates a list of default uncertainties for each solution follows on the 

same line. Optionally, uncertainties, -uncertainties], or -uncertainty]. The uncertainties 
defined with -uncertainty do not apply to pH; default for pH is 0.05 pH units and may be 
changed with the -balances identifier. In this example, the default uncertainty is set to 0.02, 
which indicates that an uncertainty of 2 percent will be applied to each element and valence state 
in each aqueous solution. If -uncertainty is not entered, the program uses 0.05. The default 
uncertainties can be overridden for individual elements or element valence states using -bal­ 
ances identifier.
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list of uncertainties list of default uncertainties that are applied to each solution in the order given by 
-solutions. The first uncertainty in the list is applied to all the element and element valence 
states in the first solution listed in -solutions. The second uncertainty in the list is applied to all 
the element and element valence states in the second solution listed in -solutions and so on. A 
default uncertainty may be entered for each solution used in inverse modeling. If fewer uncer­ 
tainties are entered than the number of solutions, the final uncertainty in the list is used for the 
remaining solutions. Thus, if only one uncertainty is entered, it is applied to all solutions. The 
uncertainty may have two forms: (1) if the uncertainty is positive, it is interpreted as a fraction 
to be used to calculate the uncertainties for each element or element valence state. A value of 
0.02 indicates an uncertainty of 2 percent of the number of moles of each element in solution 
will be used; and (2) if the uncertainty is negative, it is interpreted as an absolute value in moles 
to use for each mole-balance constraint. The second form is rarely used in -uncertainty input. 

Line 3: -phases
-phases identifier that indicates a list of phases to be used in inverse modeling follows on succeeding 

lines. Optionally, phase_data, -p[hases], -p[hase_data]. Note, phases (without a preceding 
hyphen) is not acceptable because it will be interpreted as the keyword PHASES. 

Line 4: phase name [constraint]
phase name name of a phase to be used in inverse modeling. The phase must be defined in PHASES 

input or it must be a charge-balanced exchange species defined in EXCHANGE_SPECIES 
input. Any phases and exchange species defined in the database file or in the current or previous 
simulations are available for inverse modeling. Only the chemical reaction in PHASES or 
EXCHANGE_SPECIES input is important; the log K is not used in inverse-modeling calcu­ 
lations.

constraint The phase may be constrained only to enter the aqueous phase, "dissolve", or leave the 
aqueous phase, "precipitate". Any set of initial letters from these words are sufficient to define 
these constraints. 

Line 5: -balances
-balances identifier that indicates a list of element or element-valence-state constraints and, if other 

than the default, associated uncertainties follow on succeeding lines. Optionally, balances, bal­ 
ance, bal, or -bfalances]. 

Line 6: element or valence state name [list of uncertainties]
element or valence state name name of an element or element valence state to be included as a 

mole-balance constraint in inverse modeling. Mole-balance equations for all elements that are 
found in the phases of-phases input are automatically included in inverse modeling; mole-bal­ 
ance equations for all valence states of redox elements are included. Elements, element valences 
states, or pH may be listed in -balances input to override the default uncertainties or the uncer­ 
tainties defined with -uncertainty. The identifier -balances may also be used to include 
mole-balance equations for elements not contained in any of the phases (-phases).

list of uncertainties list of uncertainties for the specified element or element valence-state constraint. 
It is possible to input an uncertainty for element for each solution used in inverse modeling (as 
defined by -solutions). If fewer uncertainties are entered than the number of solutions, the final 
uncertainty in the list is used for the remaining solutions. Thus, if only one uncertainty is 
entered, it is used for the given element or element valence state for all solutions. The uncer­ 
tainty for pH must be given in standard units. Thus, the uncertainty in pH given on line 6a is 0.1 
pH units for all solutions. The uncertainties for elements and element valence states (but not for 
pH) may have two forms: (1) if the uncertainty is positive, it is interpreted as a fraction that when 
multiplied times the number of moles in solution gives the uncertainty in moles. A value of 0.02 
would indicate an uncertainty of 2 percent in the number of moles in solution; and (2) if the 
uncertainty is negative, it is interpreted as an absolute value in moles to use for the solution in 
the mole-balance equation for element. In the example, line 6b, the uncertainty for calcium in 
solution 1 is 1 percent of the moles of calcium in solution 1. The uncertainty for calcium in solu­ 
tion 2 and 5 is 0.005 moles. The uncertainty for iron (line 6d) is 5 percent in solution 1, 10 per­ 
cent in solution 2, and 20 percent in solution 5. 

Line 7: -range [maximum]
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-range identifier that specifies that ranges in mole transfer (minimum and maximum mole transfers 
that are consistent with the uncertainties) for each phase in each model should be calculated. 
Optionally, ranges, range, or -r[anges]. The calculation of these ranges is time consuming, but 
provides valuable information. In the interest of expediency, it is suggested that models are first 
identified without using the -range identifier, checked for adequacy and geochemical consis­ 
tency, and then rerun with the -range identifier.

maximum Default 1000. The maximum value for the range is calculated by minimizing the difference 
between the value of maximum and the calculated mole transfer of the phase or the solution frac­ 
tion. The minimum value of the range is calculated by minimizing the difference between the 
negative of the value of maximum and the calculated mole transfer of the phase or the solution 
fraction. In some evaporation problems, the solution fraction could be greater than 1000 (over 
1000-fold evaporative concentration). In these problems, the default value is not large enough 
and a larger value of maximum should be entered. 

Line 8: -minimal
-minimal identifier that specifies that models be reduced to the minimum number of phases that can 

satisfy all of the constraints within the specified uncertainties. Optionally, minimal, minimum, 
-m[inimal], or -m[inimum]. Note that two minimal models may have different numbers of 
phases; minimal models imply that every one of the phases included is necessary to satisfy the 
constraints. The -minimal identifier minimizes the number of calculations that will be per­ 
formed and produces the models that contain the most essential geochemical reactions. How­ 
ever, models that are not minimal may also be of interest, so the use of this option is left to the 
discretion of the user. In the interest of expediency, it is suggested that models are first identified 
using the -minimal identifier, checked for adequacy and geochemical consistency, and then 
rerun without the -minimal identifier. 

Line 9: -tolerance tol
-tolerance identifier that indicates a tolerance for the optimizing solver is to be given.
to/~Tolerance used by the optimizing solver. Default le-10. The value of tol should be greater than 

the greatest calculated mole transfer or solution fraction multiplied by le-15. The default value 
is adequate unless very large mole transfers (greater than 1000 moles) or solution fractions 
(greater than 1000-fold evaporative concentration) occur. In these cases, a larger value of tol is 
needed. Essentially, a value less than tol is treated as zero. Thus, the value of tol should not be 
too large or significantly different concentrations will be treated as equal.

Notes

Evaporation or dilution can accomplished by using the phase water (formula H2O). The mole transfer of this 
phase will affect only the water-balance equation. If the mole transfer is positive, dilution is simulated; if negative, 
evaporation is simulated. See example 12 in Examples section.

If -uncertainty is not included, a default uncertainty of 0.05 (5 percent) is used for elements and 0.05 for 
pH. Default uncertainties, specified by -uncertainty, will almost always be specified as positive numbers, indicat­ 
ing fractional uncertainties. A default uncertainty specified by a negative number, indicating a fixed molal uncer­ 
tainty for all elements in solution, is not reasonable because of wide ranges in concentrations among elements 
present in solution.

No mole-balance equation is used for pH. The uncertainty in pH only affects the mole-balance on carbon. 
Total carbon is assumed to co-vary with pH and alkalinity and an equation relating the uncertainty in carbon and 
the uncertainties of pH and alkalinity is included in the inverse model. See Equations and Numerical Method for 
Inverse Modeling.

All phase names must be defined through PHASES or EXCHANGE_SPECIES input. Line 4c and 4d are 
included to allow ion-exchange reactions in the inverse model. Exchange species with the names CaX2 and NaX 
are defined in the default database and are thus available for use in inverse modeling.

By default, mole-balance equations for every element that occurs in the phases listed in -phases input are 
included in the inverse-modeling formulation. If an element is redox active, then mole-balance equations for all 
valence states of that element are included. The -balances identifier is necessary only to define uncertainties for 
pH, elements, or element valence states that are different than the default uncertainties or to define mole-balance
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equations for elements not included in the phases. Mole-balance equations for alkalinity and electrons are always 
included in the inverse model. In some artificial solutions, such as pure water or pure sodium chloride solutions, 
the alkalinity may be very small (less than le-7) in both initial and final solutions. In this case, it may be necessary 
to use large (relative to le-7 equivalents) uncertainties (+1.0 or -le-6) to obtain a mole balance on alkalinity. For 
most natural waters, alkalinity will not be small in both solutions and special handling of the alkalinity uncertainty 
will not be necessary (note alkalinity is a negative number in acid solutions). Uncertainties for electrons are never 
used because it is always assumed that no free electrons exist in an aqueous solution.

The options -minimal and -range affect the speed of the calculations. The fastest calculation is one that 
includes the -minimal identifier and does not include -range. The slowest calculation is one that does not include 
-minimal and does include -range.

Example problems 

The keyword INVERSE_MODELING is used in example problems 11 and 12.

Related keywords 

EXCHANGE_SPECIES, PHASES, SOLUTION, and SAVE.
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KNOBS

This keyword data block is used to redefine parameters that affect convergence of the numerical method dur­ 
ing speciation, reaction, and transport calculations. It also provides the capability to produce long, uninterpretable 
output files. Hopefully, this data block is seldom used.

Example

Line 0: KNOBS
Line 1: -iterations 150
Line 2: -tolerance le-14
Line 3: -step_size 100.
Line 4: -pe_step_size 10.
Line 5: -diagonal_scale TRUE
Line 6: -debug_prep TRUE
Line?: -debug_set TRUE
Line 8: -debug_model TRUE
Line 9: -debug_inverse TRUE
Line 10: -logfile

Explanation

Line 0: KNOBS
KNOBS is the keyword for the data block. Optionally, DEBUG. 

Line 1: -iterations iterations
-iterations allows changing the maximum number of iterations. Optionally, iterations, or -i[tera- 

tions].
iterations positive integer limiting the maximum number of iterations used to solve the set of alge­ 

braic equations for a single calculation. Default 100. 
Line 2: -tolerance tolerance

-tolerance allows changing the tolerance used by solver to determine numbers equal to zero. Option­ 
ally, tolerance, or -tfolerance]. This is not the convergence criterion used to determine when 
the algebraic equations have been solved. The convergence criteria are hard-coded in the pro­ 
gram and can not be modified with the input file.

tolerance positive, decimal number used by the routine ell. All numbers smaller than this number are 
treated as zero. This number should approach the value of the least significant decimal digit that 
can be interpreted by the computer. The value of tolerance should be on the order of le-12 to 
le-14 for most computers and most simulations. Default is le-14. 

Line 3: -step_size step_size
-step_size allows changing the maximum step size. Optionally, step_size, or -s[tep_size]. 
step_size positive, decimal number limiting the maximum, multiplicative change in the activity of an 

aqueous master species on each iteration. Default is 100, that is, activities of master species may 
change by up to 2 orders of magnitude in a single iteration. 

Line 4: -pe_step_size pe_step_size
-pe_step_size allows changing the maximum step size for the activity of the electron. Optionally, 

pe_step_size, or -p[e_step_size].
pe_step_size positive, decimal number limiting the maximum, multiplicative change in the conven­ 

tional activity of electrons on each iteration. Default is 10, that is, a _ may change by up to 1
e

order of magnitude in a single iteration or pe may change by up to 1 unit. Normally, pe_step_size 
should be smaller than the step_size, because redox species are particularly sensitive to changes 
in pe. 

Line 5: -diagonal_scale [True or False]
-diagonal_scale--allows changing the default method for scaling equations. Optionally, 

diagonal_scale, or -d[iagonal_scale].

DESCRIPTION OF DATA INPUT 53



KNOBS

[True or False] a value of true (optionally, t[rue]) indicates the alternative scaling method is to be 
used; false (optionally, f[alse]) indicates alternative scaling method will not be used. If neither 
true nor false are entered, true is assumed. At the beginning of the run, the value is set to false. 
Invoking this alternative method of scaling causes any mole-balance equations with the diago­ 
nal element (approximately the total concentration of the element or element valence state in 
solution) less than le-11 to be scaled by the factor le-ll/(diagonal element). 

Line 6: -debug_prep [True or False]
-debug_prep--includes debugging prints for subroutine prep. Optionally, debug_prep or

-debug_p[rep].
[True or False] a value of true (optionally, t[rue]) indicates the debugging information will be 

included in the output file; false (optionally, f[alse]) indicates debugging information will not 
be printed. If neither true nor false is entered, a value of true is assumed. At the start of the 
program, the default value is false. If this option is set to true, the chemical equation and log K 
for each species and phase, as rewritten for the current calculation, are written to the output file. 
The printout is long and tedious. 

Line 7: -debug_set [True or False]
-debug_set includes debugging prints for subroutines called by subroutine set. Optionally,

debug_set or -debug_s[et].
[True or False] a value of true (optionally, t[rue]) indicates the debugging information will be 

included in the output file; false (optionally, f[alse]) indicates debugging information will not 
be printed. If neither true nor false is entered, a value of true is assumed. At the start of the 
program, the default value is false. If this option is set to true, the initial revisions of the master 
variables, which occur in subroutine set, are printed for each element or element valence state 
that fails the initial convergence criteria. The initial revisions occur before the Newton-Raphson 
method is invoked and provide good estimates of the master variables to the Newton-Raphson 
method. The printout is tedious. 

Line 8: -debug_model [True or False]
-debug_model~includes debugging prints for subroutines called by subroutine model. Optionally, 

debug_model or -debug_m[odel].
[True or False] a value of true (optionally, t[rue]) indicates the debugging information will be 

included in the output file; false (optionally, f[alse]) indicates debugging information will not 
be printed. If neither true nor false is entered, a value of true is assumed. At the start of the 
program, the default value is false. If this option is set to true, a large amount of information 
about the Newton-Raphson equations is printed. The program will print some or all of the fol­ 
lowing at each iteration: the array that is solved, the solution vector calculated by the solver, the 
residuals of the linear equations and inequality constraints, the values of all of the master vari­ 
ables and their change, the number of moles of each pure phase and phase mole transfers, the 
number of moles of each element in the system minus the amount in pure phases and the change 
in this quantity. The printout is very long and very tedious. If the numerical method does not 
converge in iterations-^ iterations, this printout is automatically begun. 

Line 9: -debug_inverse [True or False]
-debug_inverse includes debugging prints for subroutines called by subroutine inverse_models. 

Optionally, debug_inverse or -debug_i[nverse].
[True or False] a value of true (optionally, t[rue]) indicates the debugging information will be 

included in the output file; false (optionally, f[alse]) indicates debugging information will not 
be printed. If neither true nor false is entered, a value of true is assumed. At the start of the 
program, the default value is false. If this option is set to true, a large amount of information 
about the process of finding inverse models is printed. The program will print the following for 
each set of equations and inequalities that are attempted to be solved by the optimizing solver: 
a list of the unknowns, a list of the equations, the array that is to be solved, any nonnegativity 
or nonpositivity constraints on the unknowns, the solution vector, and the residual vector for the 
linear equations and inequality constraints. The printout is very long and very tedious. 

Line 10: -logfile [True or False]
-logfile prints information to a file namQdphreeqc.log. Optionally, logfile or -Ifogfile].
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[True or False] a value of true (optionally, t[rue]) indicates information will be written to the log 
file, phreeqc.log; false (optionally, f[alse]) indicates information will not be written. If neither 
true nor false is entered, a value of true is assumed. At the start of the program, the default value 
is false. If this option is set to true, information about each calculation will be written to the log 
file. The information includes number of iterations in revising the initial estimates of the master 
unknowns, the number of Newton-Raphson iterations, and the iteration at which any infeasible 
solution was encountered while solving the system of nonlinear equations. (An infeasible solu­ 
tion occurs if no solution to the equality and inequality constraints can be found.) At each iter­ 
ation, the identity of any species that exceeds 30 mol (an unreasonably large number) is written 
to the log file and noted as an "overflow". Any basis switches are noted in the log file. The infor­ 
mation about infeasible solutions and overflows can be useful for altering other parameters 
defined through the KNOBS data block, as described below.

Notes

Convergence problems are less frequent with PHREEQC than with PHREEQE; however, they may still 
occur. The main causes of nonconvergence appear to be (1) calculation of very large molalities in intermediate iter­ 
ations and (2) accumulation of roundoff errors in simulations involving very small concentrations of elements in 
solution. The first cause can be identified by "overflow" messages at iteration 1 or greater that appear in the file 
phreeqc.log (see -logfile above). This problem can usually be eliminated by decreasing the maximum allowable 
step sizes from the default values. The second cause of nonconvergence can be identified by messages in phre­ 
eqc.log that indicate "infeasible solutions". The remedy to these problems is an ongoing investigation, but altering 
-tolerance or -diagonal_scaling frequently fixes the problem. Additional iterations usually do not solve noncon­ 
vergence problems.

Example problems 

The keyword KNOBS is not used in the example problems.
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This keyword data block is used if two or more aqueous solutions are to be mixed together. The mixing 
occurs as part of the reaction calculation.

Example

Line 0: MIX 2 Mixing solutions 5, 6, and 7.
Line la: 5 1.1
Line Ib: 6 0.5
Line Ic: 7 0.3

Explanation

Line 0: MIX [number] [description]
MIX is the keyword for the data block.
number positive number to designate these mixing parameters. Default is 1.
description optional character field that describes the mixture. 

Line 1: solution number, mixing fraction
solution number defines a solution to be part of the mixture.
mixing fraction positive, decimal number which is multiplied times the concentrations of each ele­ 

ment in the specified solution. Mixing fractions may be greater than 1.0.

Notes

In mixing, each solution is multiplied by its mixing fraction and a new solution is calculated by summing 
over all of the fractional solutions. In the example, if the number of moles of sodium in solutions 5, 6, and 7 were 
0.1,0.2, and 0.3, the number of moles of sodium in the mixture would be 0.1 x 1.1 + 0.2 x 0.5 + 0.3 x 0.3 = 0.3. 
The moles of all elements are multiplied by the solution's mixing fraction, including hydrogen and oxygen. Thus, 
the mass of water is effectively multiplied by the same fraction. In the example, if all solutions have 1 kg of water, 
the total mass of water in the mixture is 1.1 + 0.5 + 0.3 = 1.9 kg and the concentration of sodium would be 
approximately 0.16 molal. The charge imbalance of each solution is multiplied by the mixing fraction and all the 
imbalances are then summed to calculate the charge imbalance of the mixture. The temperature of the mixture is 
approximated by multiplying each solution temperature by its mixing fraction, summing these numbers, and divid­ 
ing by the sum of the mixing fractions. Other intensive properties of the mixture are calculated in the same way as 
temperature.

This formulation of mixing can be used to approximate constant volume processes if the sum of the mixing 
fractions is 1.0 and all of the solutions have the same mass of water. The calculations are only approximate in terms 
of mixing volumes because the summation is actually made in terms of moles (or mass) and the volumes of solu­ 
tions are not known. Similarly, the formulation for mixing can approximate processes with varying volume, for 
example, a titration.

Example problems

The keyword MIX is used in example problems 3 and 4.

Related keywords 

SOLUTION, SAVE solution, USE solution, and USE mix.
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PHASES

This keyword is used to define a name, chemical reaction, and log K for each mineral and pure gas that is 
used for saturation-index calculations, reaction-path, transport, or inverse-modeling calculations. Normally, this 
data block is included in the database file and only additions and modifications are included in the input file.

Example

Line 0: PHASES
Line la: Gypsum
Line 2a: CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O
Line 3a: log_k -4.58
Line4a: deltaji -0.109
Line 5: -analytical_expression 68.2401 0.0 -3221.51 -25.0627 0.0
Line Ib: O2(g)
Line 2b: O2 = O2
Line 3b: log_k -2.96
Line4b: deltaji 1.844

Explanation

Line 0: PHASES
Keyword for the data block. No other data are input on the keyword line. 

Line 1: Phase name
phase razme alphanumeric name of phase, no spaces are allowed. 

Line 2: Dissolution reaction

Dissolution reaction for phase to aqueous species. Any aqueous species, including e", may be used in 
the dissolution reaction. The chemical formula for the defined phase must be the first chemical for­ 
mula on the left-hand side of the equation. The dissolution reaction must precede any identifiers 
related to the phase. The stoichiometric coefficient for the phase must be 1.0. 

Line 3: log_k log K
log_k--Identifier for log K at 25°C. Optionally, -log_k, logk, -l[og_k], or -l[ogk].
log K-Log K at 25°C for the reaction. Default 0.0. 

Line 4: delta_h enthalpy, units
delta_h--Identifier for enthalpy of reaction at 25°C. Optionally, -delta_h, deltah, -d[elta_h], or

-d[eltah].
enthalpy enthalpy of reaction at 25°C for the reaction. Default 0.0.
units Default units are kilojoules per mole. Units may be calories, kilocalories, joules, or kilojoules 

per mole. Only the energy unit is needed (per mole is implied) and abbreviations of these units 
are acceptable. Explicit definition of units for all enthalpy values is recommended. The enthalpy 
of reaction is used in the van't Hoff equation to determine the temperature dependence of the 
equilibrium constant. Internally, all enthalpy calculations are performed in the units of kilojoules 
per mole. 

Line 5: -analytical_expression Aj, A2, A3, A4, A5
-analytical_expression Identifier for coefficients for an analytical expression for the temperature 

dependence of log K. Optionally, analytical_expression, a_e, ae, -a[nalytical_expression],
-a[_e], -a[e]. 

Aj, A2, A 3, A4, Aj Five values defining log K as a function of temperature in the expression
A A3 5 logjQ^f = Aj + A^T+   + A 4log 1Q r+   , where Tis in Kelvin.

r
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Notes

The set of lines 1 and 2 must be entered in order, either line 3 (log_k) or 5 (-analytical_expression) must 
be entered for each phase. Lines 3, 4, and 5 may be entered as needed in any order. Additional sets of lines 1 
through 5 may be added as necessary to define all minerals and gases. The equations for the phases may be written
in terms of any aqueous chemical species, including e".

The identifiers -no_check can be used to disable checking charge and elemental balances (see 
SOLUTION_SPECIES). The use of -no_check is not recommended, except in cases where the phase is only to 
be used for inverse modeling. Even in this case, equations defining phases should be charge balanced.

Example problems 

The keyword PHASES is used in example problems 1, 8, 11, and 12.

Related keywords

EQUILIBRIUM_PHASES, INVERSE_MODELING, REACTION, SAVE equilibrium_phases, and 
USE equilibrium_phases.
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This keyword is used to select which results are written to the output file. Nine blocks of calculation results 
may be included or excluded in the output file for each simulation. In addition, the writing of results to the 
selected-output file can be suspended or resumed and a status line, which is written to the screen and monitors the 
type of calculation being performed, can be enabled or disabled.

Example

Line 0: PRINT
Line 1: -reset false
Line 2: -eh true
Line 3: -equilibrium_phases true
Line 4: -exchange true
Line 5: -gas_phase true
Line 6: -other true
Line 7: -saturation_indicies true
Line 8: -species true
Line 9: -surface true
Line 10: -totals true
Line 11: -selected_output true
Line 12: -status false

Explanation

Line 0: PRINT
Keyword for the data block. No other data are input on the keyword line. 

Line 1: -reset [True or False]
-reset-Changes all print options listed above, except -selected_output and -status, to true or false. 

Default is true. Optionally, reset or -res[et]. Should be the first identifier of the data block. Indi­ 
vidual print options may follow.

True or False-True causes all data blocks to be included in the output file; false causes all data blocks
to be excluded to the output file. Optionally, t[rue] or f[alse], case independent. 

Line 2: -eh [True or False]
-eh Prints eh values derived from redox couples in initial solution calculations if value is true,

excludes print if value is false. Default is true. Optionally, eh. 
Line 3: -equilibrium_phases [True or False]

-equilibrium_phases Prints composition of the pure-phase assemblage if value is true, excludes 
print if value is false. Default is true. Optionally, equilibria, equilibrium, pure, 
-eq[uilibrium_phases], -equilibria], -p[ure_phases], or -p[ure]. Note the hyphen is neces­ 
sary to avoid a conflict with the keyword EQUILIBRIUM_PHASES and its synonym 
PURE_PHASES. 

Line 4: -exchange [True or False]
-exchange Prints composition of the exchange assemblage if value is true, excludes print if value is 

false. Default is true. Optionally, -ex[change]. Note the hyphen is necessary to avoid a conflict 
with the keyword EXCHANGE. 

Line 5: -gas_phase [True or False]
-gas_phase Prints composition of the gas phase if value is true, excludes print if value is false. 

Default is true. Optionally, -g[as_phase]. Note the hyphen is necessary to avoid a conflict with 
the keyword GAS_PHASE. 

Line 6: -other [True or False]
-other Controls all printing to the output file not controlled by any of the other identifiers, including 

headings; lines that identify the solution, exchange assemblage, surface assemblage, pure-phase 
assemblage, and gas phase to be used in each reaction calculations; and description of the sto- 
ichiometric reaction. Default is true. Optionally, other, -o[ther].
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Line 7: -saturation_indices [True or False]
-saturation_indices--Prints saturation indices for each phase for which a saturation index can be cal­ 

culated if value is true, excludes print if value is false. Default is true. Optionally, -si, si, 
saturation_indices, or -sa[turation_indices]. 

Line 8: -species [True or False]
-species Prints the distribution of aqueous species, including molality, activity, and activity coeffi­ 

cient, if value is true, excludes print if value is false. Default is true. Optionally, species or
-sp[ecies]. 

Line 9: -surface [True or False]
-surface Prints composition of the surface assemblage if true, excludes print if false. Default is true. 

Optionally, -su[rface]. Note the hyphen is necessary to avoid a conflict with the keyword SUR­ 
FACE. 

Line 10: -totals [True or False]
-totals Prints the total molalities of elements (or element valence states in initial solutions), pH, pe, 

temperature, and other solution characteristics if true, excludes print if false. Default is true. 
Optionally, totals or -t[otals]. Note, printing of molalities and other properties of all of the aque­ 
ous species is controlled by the -species identifier. 

Line 11: -selected_output [True or False]
-selected_output Controls printing of information to the selected-output file. Default is true. 

Optionally, selected_output or -se[lected_output]. This identifier has no effect if no 
SELECTED_OUTPUT keyword data block is included in the file. If a 
SELECTED_OUTPUT keyword data block is included, the -selected_output identifier is 
used to include or exclude results from the selected-output file. When set to false, no results will 
be written to the selected-output file. Writing to the selected-output file can be resumed if
-selected_output is set to true in a PRINT keyword data block in a subsequent simulation. 
Note the hyphen in the identifier is necessary to avoid a conflict with the keyword 
SELECTED_OUTPUT. This print-control option is not affected by -reset. 

Line 12: -status [True or False]
-status-Controls printing of information to the screen. Default is true. Optionally, status or -st[atus]. 

When set to true, a status line is printed to the screen identifying the simulation number and the 
type of calculation that is currently being processed by the program. When set to false, no status 
line will be printed to the screen. This print-control option is not affected by -reset.

Notes

By default, all print options are set to true at the beginning of a run. Once set by the keyword data block, 
PRINT, options will remain in effect until the end of the run or until changed in another PRINT data block.

Unlike most of PHREEQC input, the order in which the identifiers are entered is important when using the
-reset identifier. Any identifier set before the -reset in the data block will be reset when -reset is encountered. 
Thus, -reset should be the first identifier in the data block.

The identifiers species and saturation_indices control the longest output data blocks and are the most likely 
to be excluded from long computer runs. If transport calculations are being made, the output file could become 
very large unless some or all of the output is excluded though the PRINT data block (-reset false). Alternatively,
the output in transport calculations may be limited by printing to the output file every /th time step by using the
-print identifier in the TRANSPORT data block.

Example problems

The keyword PRINT is used in example problems 4 and 9.

Related keywords 

SELECTED_OUTPUT and TRANSPORT -print.
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REACTION

This keyword data block is used to define irreversible reactions that transfer specified amounts of elements 
to or from the aqueous solution during reaction calculations.

Example 1

Line 0: REACTION 5 Add sodium chloride and calcite to solution.
Line la: NaCl 2.0
Line Ib: Calcite 0.001
Line 2: 0.25 0.5 0.75 1.0 moles

Explanation 1

Line 0: REACTION [number] [description]
REACTION is the keyword for the data block.
number positive number to designate this reaction. Default is 1. A range of numbers may also be 

given in the form m-n, where m and n are positive integers, m is less than n, and the two numbers 
are separated by a hyphen without intervening spaces.

description optional character field that describes the reaction. 
Line 1: (phase name or: formula), relative stoichiometry

phase name or formula If a phase name is given, the program uses the stoichiometry of that phase as 
defined by PHASES input; otherwise, formula is the chemical formula to be used in the irre­ 
versible reaction.

relative stoichiometry Amount of this reactant relative to other reactants, it is a molar ratio between
reactants. In the example, the reaction contains 2000 times more NaCl than calcite. 

Line 2: list of reaction amounts, units
list of reaction amounts A separate calculation will be made for each listed amount. In the example, 

a solution composition will be calculated after adding 0.25,0.5,0.75, and 1.0 mol of the reaction 
to the initial solution. The additions are not cumulative; each reaction step begins with the same 
initial solution and adds only the amount of reaction specified. The total amount of each reactant 
added at any step in the reaction is the reaction amount times the stoichiometric coefficient of 
the reactant. Thus the total amount of sodium and chloride added at each reaction step is 0.5, 
1.0, 1.5, and 2.0 mol; the total amount of calcium and carbonate added at each step is 0.00025, 
0.0005, 0.00075, and 0.001 mol. Additional lines may be used to define all reactant amounts.

units units must be moles, millimoles, or micromoles. Units must follow all reaction amounts. 
Default is moles.

If line 2 is not entered, the default is one step of 1.0 mol.

Example 2

Line 0: REACTION 5 Add sodium chloride and calcite to reaction solution.
Line la: NaCl 2.0
Line Ib: Calcite 0.001
Line 2: 1.0 moles in 4 steps

Explanation 2

Line 0: REACTION [number] [description]
Same as example 1. 

Line 1: (phase name or formula), relative stoichiometry
Same as example 1. 

Line 2: reaction amount [units] [in steps]
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reaction amount--^ single reaction amount is entered. This amount of reaction will be added in steps 
steps.

Mm'to same as example 1.
in steps--"in" indicates that the reaction will be divided into steps number of steps and must be lower 

case. Example 2 performs exactly the same calculations as example 1, 1.0 mol of reaction is 
divided into 4 steps. The first step adds 0.25 mol of reaction to the initial solution; the second 
step adds 0.5 mol of reaction to the initial solution; the third 0.75; and the fourth 1.0.

If line 2 is not entered, the default is one step of 1.0 mol.

Notes

If a phase name is used to define the stoichiometry of a reactant, that phase must be defined by PHASES 
input in the database or in the input data file. If negative relative stoichiometries or negative reaction amounts are 
used, it is possible to remove more of an element than is present in solution; ensuing calculations will probably 
fail. It is possible to "evaporate" a solution by removing H2O or dilute a solution by adding H2O. If more reaction 
steps are defined with REACTION_TEMPERATURE than in REACTION, then the final reaction amount 
denned by REACTION will be repeated for the additional temperature steps.

Example problems

The keyword REACTION is used in example problems 4, 5, 6, and 7.

Related keywords 

PHASES, and REACTION_TEMPERATURE.
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REACTION TEMPERATURE

This keyword data block is used to define temperature during reaction steps. It is necessary to enter this data 
block if a temperature other than the default temperature is needed for reaction calculations.

Example 1

Line 0: REACTION_TEMPERATURE 1 Three explicit reaction temperatures. 
Linel: 15.0 25.0 35.0

Explanation 1

Line 0: REACTION_TEMPERATURE [number] [description]
REACTION_TEMPERATURE is the keyword for the data block.
number- -positive number to designate this temperature data. Default is 1. A range of numbers may 

also be given in the form m-n, where m and n are positive integers, m is less than n, and the two 
numbers are separated by a hyphen without intervening spaces.

description  optional character field that describes the temperature data. 
Line 1: list of temperatures

list of temperatures a list of temperatures, in Celsius, that will be applied to reaction calculations. 
More lines may be used to supply additional temperatures. At least one reaction calculation will 
be performed with each listed temperature. If more reaction steps are defined in REACTION 
input than temperature steps in REACTION_TEMPERATURE, then the final temperature 
will be used for all of the additional reaction steps. If more temperature steps are defined, the 
final reaction step will be used for any remaining temperature steps.

Example 2

Line 0: REACTION_TEMPERATURE 1 Three implicit reaction temperatures. 
Linel: 15.0 35.0 in 3 steps

Explanation 2

Line 0: REACTION_TEMPERATURE [number] [description]
Same as example 1. 

Line 1 : temp], temp2, in steps
temp i  temperature of first reaction step, in Celsius.
fem/?2~temperature of final reaction step, in Celsius.
in steps  "in" indicates that the temperature will be calculated for each of steps number of steps. The 

temperature at each step, i, will be calculated by the formula

temp. = temp i +   -    ̂  (temp^ - temp^) . Example 2 performs exactly the same cal-

culations as example 1 . If more than steps reaction steps are defined by REACTION input, the 
temperature of the additional temperature steps will be temp2 . If more temperature steps are 
defined, the final reaction step will be used for any remaining temperature steps.

Notes

The default temperature of a reaction step is equal to the temperature of the initial solution or the mix­ 
ing-fraction-averaged temperature of a mixture. REACTION_TEMPERATURE input can be used even if there 
is no REACTION input. The implicit method of calculation of temperature steps is slightly different than the 
implicit calculation of reaction steps. If n implicit reaction steps are defined, then the reaction is added in n equal
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increments. If n implicit temperature steps are defined, then the temperature of the first reaction step is equal to 
tempi, temperatures in the remaining steps are defined by n-\ equal increments.

Example problems 

The keyword REACTION_TEMPERATURE is used in example problem 2.

Related keywords 

REACTION
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SAVE

This keyword data block is used to save the composition of the solution, exchange assemblage, gas phase, 
surface assemblage, or pure-phase assemblage following a reaction calculation.

Example

Line Oa: SAVE equilibrium_phases 2
Line Ob: SAVE exchange 2
Line Oc: SAVE gas_phase 2
Line Oc: SAVE solution 2
Line Od: SAVE surface 1

Explanation

Line 0: SAVE keyword, number
SAVE is the keyword for the data block.
keyword-one of five keywords, exchange, equilibrium phases, gas_phase, solution, or surface. 

Options for equilibriumjphases: equilibrium, equilibria, pure_phases, or pure.
number  user defined positive integer to be associated with the respective composition. A range of 

numbers may also be given in the form m-n, where m and n are positive integers, m is less than 
n, and the two numbers are separated by a hyphen without intervening spaces.

Notes

SAVE has effect only for the duration of the run, to save results to a permanent file, see 
SELECTED_OUTPUT. During reaction calculations, the compositions of the solution, exchange assemblage, 
gas phase, pure-phase assemblage, and surface assemblage vary to attain equilibrium. The compositions at the end 
of all reaction steps exist only in temporary storage locations that are overwritten by the next simulation. These 
compositions are not automatically saved; however, they may be saved explicitly for use in subsequent simulations 
within the run by using the SAVE keyword. The SAVE keyword must be used for each type of composition that 
is to be saved (solution, exchange assemblage, gas phase, pure-phase assemblage, or surface assemblage). SAVE 
assigns number to the corresponding composition. If one of the compositions is saved in a number that already 
exists, the old composition is deleted. There is no need to save the compositions unless they are to be used in sub­ 
sequent simulations within the run. The USE keyword can be used in subsequent simulations to use the saved com­ 
positions in equilibrium calculations.

Example problems

The keyword SAVE is used in example problems 3, 4, 7, and 10.

Related keywords 

EXCHANGE, EQUILIBRIUM_PHASES, GAS_PHASE, SOLUTION, SURFACE, and USE.
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SELECTEDJDUTPUT

This keyword data block is used to produce a file that is suitable for processing by spreadsheets and other 
data management software. It is possible to print selected entities from solution, exchange-assemblage, sur­ 
face-assemblage, pure-phase-assemblage, and gas-phase compositions after the completion of each equilibrium 
calculation.

Example

Line 0: SELECTED_OUTPUT
Linel: -file flat.fil
Line 2: -totals Hfo_s C C(4) C(-4) N N(0)
Line 2a: Fe Fe(3) Fe(2) Ca Mg Na Cl
Line 3: -molalities Fe+2 Hfo_sOZn+ ZnX2
Line 4: -activities H+ Ca+2 CO2 HCO3- CO3-2
Line 5: -equilibrium_phases Calcite Dolomite Sphalerite
Line 6: -saturation_indices CO2(g) Siderite
Line 7: -gases CO2(g) N2(g) O2(g)

Explanation

Line 0: SELECTED_OUTPUT
SELECTED_OUTPUT is the keyword for the data block. Optionally, SELECT_OUTPUT. No

additional data are read on this line. 
Line 1: -file file name

-file identifier allows definition of the name of the file where the selected results of simulations are 
written. Optionally, file, or -f[ile]. File names must conform to operating system conventions. 

file name file name for storing selected results. If the file exists, the contents will be overwritten.
Default is selected.out. 

Line 2: -totals element list
-totals identifier allows definition of a list of elements for which total concentrations will be written 

to the selected-output file. Optionally, totals, or -tfotals].
element list list of elements, element valence states, exchange sites, or surface sites for which total 

concentrations will be written. Elements or element valence states must have been defined by 
SOLUTION_MASTER_SPECIES, EXCHANGE_MASTER_SPECIES, or 
SURFACE_MASTER_SPECIES input. After each calculation of a solution composition, the 
concentration (mol/kg water) of each of the selected elements, element valence states, exchange 
sites, and surface sites will be written into the flat file containing the selected output. If a species 
is not defined or is not present in the calculation, its concentration will be printed as 0. 

Line 3: -molalities species list
-molalities identifier allows definition of a list of aqueous, exchange, or surface species for which 

concentrations will be written to the selected-output file. Optionally, molalities, or -mfolali- 
ties].

species list list of aqueous, exchange, or surface species for which concentrations will be written to 
the selected-output file. Species must have been defined by SOLUTION_SPECIES, 
EXCHANGE_SPECIES, or SURFACE_SPECIES input. After each calculation of a solution 
composition, the concentration (mol/kg water) of each species in the list will be written into the 
flat file containing the selected output. If a species is not defined or is not present in the calcu­ 
lation, its concentration will be printed as 0. 

Line 4: -activities species list
-activities identifier allows definition of a list of aqueous, exchange, or surface species for which log 

of activity will be written to the selected-output file. Optionally, activities, or -activities].
species list list of aqueous, exchange, or surface species for which log of activity will be written to 

the selected-output file. Species must have been defined by SOLUTION_SPECIES,
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EXCHANGE_SPECIES, or SURFACE_SPECIES input. After each calculation of a solution 
composition, the log (base 10) of the activity of each of the species will be written into the flat 
file containing the selected output. If a species is not defined or is not present in the calculation, 
its log activity will be printed as -999.999. 

Line 5: -equilibrium_phases phase list
-equilibrium_phases identifier allows definition of a list of pure phases for which (1) total amounts 

in the pure-phase assemblage and (2) mole transfer for the calculation will be written to the 
selected-output file. Optionally, equilibrium_phases, -eq[uilibrium_phases], pure_phases,
-p[ure_phases], pure, or -p[ure].

phase list list of phases for which data will be written to the selected-output file. Each phase must 
have been defined by PHASES input. After each calculation of a solution composition, two val­ 
ues are written to the selected-output file, (1) the amount (in moles) of each of the phases in the 
current pure-phase assemblage (defined by EQUILIBRIUM_PHASES), and (2) the mole 
transfer (in moles) of the phase in the current reaction or transport calculation. If the phase is not 
defined or is not present in the pure-phase assemblage, the amounts will be printed as 0. 

Line 6: -saturation_indices phase list
-saturation_indices identifier allows definition of a list of phases for which saturation indices [or log 

(base 10) partial pressure for gases] will be written to the selected-output file. Optionally, 
saturation_indices, si, -s[aturataion_indices], or -s[i].

phase to list of phases for which saturation indices [or log (base 10) partial pressure for gases] will 
be written to the selected-output file. Each phase must have been defined by PHASES input, 
either in the database or in the current or previous simulations in the input file. After each cal­ 
culation of a solution composition, the saturation index of each of the phases will be written to 
the file containing the selected output. If the phase is not defined or if one or more of its constit­ 
uent elements is not in solution, the saturation index will be printed as -999.999. 

Line 7: -gases gas list
-gases identifier allows definition of a list of gases for which the amount in the gas phase will be writ­ 

ten to the selected-output file. Optionally, gases, or -g[ases].
gas list list of gases in the gas phase. Each gas must have been defined by PHASES input. This iden­ 

tifier is useful only if the GAS_PHASE keyword data block has been defined. After each cal­ 
culation of a solution composition, the amount (in moles) of each of the selected gases in the gas 
phase will be written into the file containing the selected output. If the phase is not defined or is 
not present in the gas phase, the amount will be printed as 0. Before the data for the individual 
gases, the flat file will contain the total number of moles and the volume of the gas phase. Partial 
pressures of any gas, including the gases in the gas phase, can be obtained by use of the
-saturation_indices identifier.

Notes

The selected-output file contains a column for each data item defined through the identifiers of 
SELECTED_OUTPUT. In the input for this keyword, all element names, species names, and phase names must 
be spelled exactly, including the charge for the species names. One line containing an entry for each of the items 
will be written after each calculation of a solution composition that is, after any initial solution, initial exchange, 
initial surface, reaction-step, or transport-step calculation. The -selected_output identifier in the PRINT keyword 
data block can be used to selectively suspend and resume writing results to the selected-output file. In transport 
simulations, the frequency by which results are written to the selected output file can be controlled by the 
-selected_output identifier (TRANSPORT keyword).

Several integers are included at the beginning of each line in the selected-output file to identify the type of 
calculation that has been performed. These integers have the following meanings and are written in the following 
order: (1) simulation number; (2) state, I initial solution calculation, 2 initial exchange calculation, 3 initial sur­ 
face calculation, 4 reaction calculation, 5 transport calculation; (3) solution number used in the calculation; (4) 
exchange number used in the calculation; (5) surface number used in the calculation; (6) pure-phase-assemblage 
number used in the calculation; (7) gas-phase number used in the calculation; (8) the reaction or transport step
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number; (9) the temperature for the calculation, (10) the pH of the solution, (11) the pe of the solution, (12) the 
ionic strength of the solution, (13) the mass of water in solution, and (14) the amount of the reaction step (mol).

The first line of the selected-output file contains a description of each data column. The columns of data are 
written in the following order: calculation identifiers, totals, molalities, pure phases (two columns for each 
phase total amount of phase and mole transfer for current calculation), saturation indices, and the gas-phase data. 
A data item within an input list (for example an aqueous species within the -molalities list) is printed in the order 
in which it was input. If the selected-output file contains data for gases, defined by the -gases identifier, the total 
moles of gas and the total volume of the gas phase precede the moles of gases for the individual components of 
the gas phase.

Example problems 

The keyword SELECTED_OUTPUT is used in example problems 2, 5, 6, 7, 8, 9, and 10.

Related keywords

EQUILIBRIUM_PHASES, EXCHANGE_SPECIES, GAS_PHASE, 
EXCHANGE_MASTER_SPECIES, PHASES, PRINT, SOLUTION_MASTER_SPECIES, 
SOLUTION_SPECIES, SURFACE_MASTER_SPECIES, SURFACE_SPECIES, and TRANSPORT.
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This keyword data block is used to define the temperature and chemical composition of initial solutions. Spe- 
ciation calculations are performed on each solution and the resulting speciated solutions may be used in subsequent 
reaction, transport, or in verse-modeling calculations. Facilities exist to adjust individual element concentrations to 
achieve charge balance or equilibrium with a pure phase.

Example

Line 0: SOLUTION 25 Test solution number 25
Line 1: temp 25.0
Line 2: pH 7.0 charge
Line 3: pe 4.5
Line 4: redox O(-2)/O(0)
Line 5: units ppm
Line 6: density 1.02
Line 7a: Ca 80.
Line7b: S(6) 96. as SO4
Line7c: S(-2) 1. as S
Line7d: N(5) N(3) 14. asN
Line 7e: O(0) 8.0
Line7f: C 61.0 as HCO3 CO2(g)-3.5
Line7g: Fe 55. ug/kgsasFe S(6)/S(-2) Pyrite

Explanation

Line 0: SOLUTION [number] [description]
SOLUTION is the keyword for the data block.
number positive number to designate this solution. Default is 1. A range of numbers may also be

given in the form m-n, where m and n are positive integers, m is less than n, and the two numbers
are separated by a hyphen without intervening spaces. 

description optional character field that describes the solution. 
Line 1: temp value

temp indicates temperature is entered on this line. Optionally, temperature, or -t[emperature]. 
va/we--temperature in Celsius.

Line 2: pH value [([charge] or [phase name] [saturation index])] 
pH indicates pH is entered on this line. Optionally, -ph. 
value pH value, negative log of the activity of hydrogen ion. 
charge indicates pH is to be adjusted to achieve charge balance. If charge is specified for pH, it may

not be specified for any other element.
phase name pH will be adjusted to achieve specified saturation index with the specified phase. 
saturation index pH will be adjusted to achieve this saturation index for the specified phase. Default

0.0.
If line 2 is not entered, the default pH is 7.0. Specifying both charge and a phase name is not allowed. 
Be sure that specifying a phase is reasonable; it may not be physically possible to adjust the pH to 
achieve the specified saturation index.

Line 3: pe value [([charge] or [phase name] [saturation index])] 
pe indicates pe is entered on this line. Optionally, -pe. 
value pe value, conventional negative log of the activity of the electron, 
charge (not recommended) indicates pe is to be adjusted to achieve charge balance. 
phase name pe will be adjusted to achieve specified saturation index with the specified phase. 
saturation index pe will be adjusted to achieve this saturation index for the specified phase. Default

0.0.

DESCRIPTION OF DATA INPUT 69



SOLUTION

If line 3 is not entered, the default pe is 4.0. Specifying both charge and a phase name is not allowed.
Adjusting pe for charge balance is not recommended. Care should also be used in adjusting pe to a
fixed saturation index for a phase because frequently this is physically impossible. 

Line 4: redox redox couple
redox-indicates a redox couple is to be used to calculate the default pe. This pe will be used for all 

redox elements that need a pe to determine the distribution of the element among valence states. 
Optionally, -r[edox].

redox couple redox couple to use for pe calculations. A redox couple is specified by two valence 
states of an element separated by a "/". No spaces are allowed.

If line 4 is not entered, the input pe value will be the default. The use of -redox does not change the
input pe. The example uses dissolved oxygen to calculate a default pe. 

Line 5: units concentration units
units indicates default concentration units will be entered on this line. Optionally, -u[nits].
concentration units default concentration units. Three groups of concentration units are allowed, 

concentration (1) per liter, (2) per kilogram solution, or (3) per kilogram water. All concentra­ 
tion units for a solution must be within the same group. Within a group, either grams or moles 
may be used, and prefixes milli (m) and micro (u) are acceptable. Parts per thousand, ppt; parts 
per million, ppm; and parts per billion, ppb, are acceptable in the "per kilogram solution" group. 
Default is mmol/kgw (kilogram water). 

Line 6: density value
density indicates density will be entered on this line. Optionally, dens, or -d[ensity].

o

value density of the solution, kg/L or g/cm .
The density is used only if the input concentration units are "per liter". Default 1.0. 

Line 7: element list, concentration, [units], ([as formula] or [gfw gfw]), [redox couple], ([charge] or [phase
name] [saturation index])
element list an element name or a list of element valences separated by white space (see line 7d).
concentration concentration of element in solution or sum of concentrations of element valence 

states in solution.
units concentration unit for element (see line 7g). If units are not specified, the default units (units, 

line 5) are assumed.
as formula indicates a chemical formula, formula, will be given from which a gram formula weight 

will be calculated. A gram formula weight is needed only when the input concentration is in 
mass units. The calculated gram formula weight is used to convert mass units into mole units 
for this element and this solution; it is not stored for further use. If a gram formula weight is not 
specified, the default is the gram formula weight defined in 
SOLUTION_MASTER_SPECIES. For alkalinity, the formula should give the gram equiva­ 
lent weight. For alkalinity reported as calcium carbonate, the formula for the gram equivalent 
weight is Cao 5(CO3)0 5; this is the default in database files distributed with this program.

gfw gfw  indicates a gram formula weight, gfw, will be entered. A gram formula weight is needed 
only when the input concentration is in mass units. The calculated gram formula weight is used 
to convert mass units into mole units only for this element and this solution; it is not stored for 
further use. If a gram formula weight is not specified, the default is the gram formula weight 
defined in SOLUTION_MASTER_SPECIES. For alkalinity, the gram equivalent weight 
should be entered. For alkalinity reported as calcium carbonate, the gram equivalent weight is 
approximately 50.04 g/eq.

redox couple redox couple to use for element or element valence states in element list. A redox couple 
is specified by two valence states of an element separated by a "/". No spaces are allowed. If the 
element list is a redox element or if more than one valence state is listed, the specified redox 
couple overrides the default pe or default redox couple and is used to calculate a pe by which 
the element is distributed among valence states. If no redox couple is entered, the default redox 
couple defined by line 4 will be used. A redox couple is not needed for non-redox-active ele­ 
ments.

charge indicates the concentration of this element will be adjusted to achieve charge balance. The 
element must have ionic species. If charge is specified for one element, it may not be specified
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for pH or any other element. (Note that it is possible to have a greater charge imbalance than can
be adjusted by removing all of the specified element, in which case the problem is unsolvable.) 

phase name the concentration of the element will be adjusted to achieve a specified saturation index
for the given pure phase. Be sure that specifying equilibrium with the phase is reasonable; the
element should be a constituent in the phase. 

saturation index the concentration of the element will be adjusted to achieve this saturation index for
the given pure phase. Default 0.0.

Notes

The order in which the lines of SOLUTION input are entered is not important. Specifying both "as" and 
"gfw" within a single line is not allowed. Specifying both "charge" and a phase name within a single line is not 
allowed. Specifying the concentration of a valence state or an element concentration twice is not allowed. For 
example, specifying concentrations for both total Fe and Fe(+2) is not allowed, because ferrous iron is implicitly 
defined twice.

Alkalinity or total carbon or both may be specified in solution input. If both alkalinity and total carbon are 
specified, the pH is adjusted to attain the specified alkalinity. If the units of alkalinity are reported as calcium car­ 
bonate, be sure the correct gram equivalent weight is used to convert to equivalents (50.04), see as and gfw above.

After a reaction has been simulated, it is possible to save the resulting solution composition with the SAVE 
keyword. If the new composition is not saved, the solution composition will remain the same as it was before the 
reaction. After it has been defined or saved, the solution may be used in subsequent simulations through the USE 
keyword.

Example problems 

The keyword SOLUTION is used in all example problems, 1 through 12.

Related keywords 

SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES, SAVE solution, and USE solution.
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SOLUTION_MASTER_SPECIES

This keyword is used to define the correspondence between element names and aqueous primary and sec­ 
ondary master species. The alkalinity contribution of the master species, the gram formula weight used to convert 
mass units, and the element gram formula weight also are defined in this data block. Normally, this data block is 
included in the database file and only additions and modifications are included in the input file.

Example

Line 0: SOLUTION_MASTER_SPECIES
Line la: H H+ -1.0 1.008 1.008
Linelb: H(0) H2 0.0 1.008
Linelc: S SO4-2 0.0 SO4 32.06
Line Id: S(6) SO4-2 0.0 SO4
Line le: S(-2) HS- 1.0 S
Line If: Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.04

Explanation

Line 0: SOLUTION_MASTER_SPECIES
Keyword for the data block. No other data are input on the keyword line. 

Line 1: element name, master species, alkalinity, (gram formula weight or formula), gram formula weight
of element
element name name of an element or an element name followed by a valence state in parentheses. 

The element name must begin with a capital letter, followed by zero or more lower case letters 
or underscores ("_").

master species formula for the master species, including its charge. If the element name does not con­ 
tain a valence state in parentheses, the master species is a primary master species. If the element 
name does contain a valence state in parentheses, the master species is a secondary master spe­ 
cies. The master species must be one of the species defined in the SOLUTION_SPECIES data 
block.

alkalinity alkalinity contribution of the master species. The alkalinity contribution of other aqueous 
species will be calculated from the alkalinities assigned to the master species.

gram formula weight default value used to convert input data in mass units to mole units for the ele­ 
ment or element valence. Either gram formula weight or formula is required, but items are mutu­ 
ally exclusive. For alkalinity, it is the gram equivalent weight.

formula chemical formula used to calculate gram formula weight used to convert input data from 
mass units to mole units for the element or element valence. Either gram formula weight or for­ 
mula is required, but items are mutually exclusive. For alkalinity, it is the formula for the gram 
equivalent weight.

gram formula weight for element required for primary master species and must be the gram formula 
weight for the pure element, not for an aqueous species.

Notes

Line 1 must be repeated for each element and each element valence state to be used by the program. Each 
element must have a primary master species. If secondary master species are defined for an element, then the pri­ 
mary master species additionally must be defined as a secondary master species for one of the valence states. 
PHREEQC will reduce all reaction equations to a form that contains only primary and secondary master species. 
Each primary master species must be defined by SOLUTION_SPECIES input to have an identity reaction with 
log K of 0.0. The treatment of alkalinity is a special case and "Alkalinity" is defined as an additional element. In 
most cases, the definitions in SOLUTION_MASTER_SPECIES for alkalinity and carbon in the default database 
files should be used without modification.
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The gram formula weight and formula are defined for convenience in converting units. For example, if your 
data for nitrate are consistently reported in mg/L of nitrate as NC^", then gram formula weight should be set to 62.0
or formula should be set to "NO3". Then it will not be necessary to use the as or gfw options in the SOLUTION 
keyword data block. If nitrate is reported as mg/L as N, then gram formula weight should be set to 14.0 or formula 
should be set to "N". These variables (gram formula weight and formula) are only used if the concentration units 
are in terms of mass; if the data are reported in moles, then the value of the variables is unimportant. The value of 
gram formula weight for element is required for primary master species and its value is used to calculate the gram 
formula weight when a formula is given, either in SOLUTION_MASTER_SPECEES or SOLUTION keyword 
data block.

Example problems

The keyword SOLUTION_MASTER_SPECEES is used in example problem 1. See also the listing of the 
default database file in Attachment B.

Related keywords 

SOLUTION and SOLUTION SPECIES.
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SOLUTION_SPECIES

This keyword is used to define chemical reaction, log K, and activity-coefficient parameters for each aque­ 
ous species. Normally, this data block is included in the database file and only additions and modifications are 
included in the input file.

Example

Line 0: SOLUTION_SPECIES
Line la: SO4-2 = SO4-2
Line 2a: log_k 0.0
Line 5a: -gamma 5.0 -0.04
Line Ib: SO4-2 + 9H+ + 8e- = HS- + 4H2O
Line 2b: log_k 33.652
Line3b: deltaji -40.14
Line 5b: -gamma 3.5 0.0
Linelc: H2O = OH- + H+
Line 2c: log_k -14.000
Line3c: deltaji 13.362 kcal
Line4c: -analytical_expression -283.971-0.0506984213323.0 102.24447 -1119669.0
Line5c: -gamma 3.5000 0.0000
Line Id: HS- =S2-2 + H+
Line2d: log_k -14.528
Line 3d: delta_h 11.4
Line 6: -no_check
Line 7d: -molejbalance S(-2)2

Explanation

Line 0: SOLUTION_SPECIES
Keyword for the data block. No other data are input on the keyword line. 

Line 1 : Association reaction
Association reaction for aqueous species. The defined species must be the first species to the right of
the equal sign. The association reaction must precede any identifiers related to the aqueous species.
Reaction is identity reaction for primary master species. 

Line 2: log_k log K
log_k  Identifier for log K at 25°C. Optionally, -log_k, logk, -l[og_k], or -l[ogk].
log K Log K at 25°C for the reaction. Default 0.0. Log K must be 0.0 for primary master species. 

Line 3 : delta_h enthalpy, units
delta_h- -Identifier for enthalpy of reaction at 25°C. Optionally, -delta_h, deltah, -d[elta_h], or 

-d[eltah].
enthalpy  enthalpy of reaction at 25°C for the reaction. Default 0.0.
units Default units are kilojoules per mole. Units may be calories, kilocalories, joules, or kilojoules 

per mole. Only the energy unit is needed (per mole is assumed) and abbreviations of these units 
are acceptable. Explicit definition of units for all enthalpy values is recommended. The enthalpy 
of reaction is used in the van't Hoff equation to determine the temperature dependence of the 
equilibrium constant. Internally, all enthalpy calculations are performed with the units of kilo- 
joules per mole. 

Line 4: -analytical_expression Aj, A2> A3, A4, A5
-analytical_expression  Identifier for coefficients for an analytical expression for the temperature 

dependence of log K. Optionally, analytical_expression, a_e, ae, -a[nalytical_expression],
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Aj, A2, A3, A4, A5 Five values defining log K as a function of temperature in the expression

3 5 log in^ = A, + A~T+   + A /1 log inr+   , where Tis in Kelvin.
1 W 1 £ I ^T L\) ^71 T 

Line 5: -gamma Debye-Huckel a, Debye-Huckel b
-gamma indicates activity-coefficient parameters are to be entered. Optionally, -g[amma]. If 

-gamma is not input for a species, for charged species the Davies equation is used to calculate

the activity coefficient: logy = -Az { ^ -0.3|i ; for uncharged species the following
M + V|i '

equation is used logy = 0.1 |i. If -gamma is entered, then the equation from WATEQ (Truesdell
^ 

_ A f /i I

and Jones, 1974) is used, logy =    ^-  + b\i. In these equations, y is the activity coeffi-
1 + Ba Vji 

cient, |i is ionic strength, and A and B are constants at a given temperature.

Debye-Hiickel ^--parameter a° in the WATEQ activity-coefficient equation. 
Debye-Huckel ^-parameter b in the WATEQ activity-coefficient equation. 

Line 6: -no_check
-no_check indicates the reaction equation defining aqueous species should not be checked for charge 

and elemental balance. Optionally, no_check, or -n[o_check]. By default, all equations are 
checked. The only exceptions might be polysulfide species which assume equilibrium with a 
solid phase; this assumption has the effect of removing solid sulfur from the mass-action equa­ 
tion. However, the identifier -mole Jbalance is needed to ensure that the proper number of atoms 
of each element are included in mole-balance equations (see -molejbalance).

Line 7: -mole Jbalance/orww/a
-molejbalance indicates the stoichiometry of the species will be defined explicitly. Optionally, 

molejbalance, massjbalance, mb, -m[oleJbalance], -massjbalance, -m[b].
formula chemical formula defining the stoichiometry of the species. Normally, both the stoichiome­ 

try and mass-action expression for the species are determined from the chemical equation that 
defines the species. Rarely, it may be necessary to define the stoichiometry of the species sepa­ 
rately from the mass-action equation. The polysulfide species provide an example. These spe­ 
cies are traditionally assumed to be in equilibrium with native sulfur. The activity of a pure solid 
is 1.0 and thus the term for native sulfur does not appear in the mass-action expression (Line
Id). The S 2~ species contains two atoms of sulfur, but the chemical equation indicates it is 
formed from species containing a total of one sulfur atom. The -molejbalance identifier is 
needed to give the correct stoichiometry. Note that unlike all other chemical formulas used in 
PHREEQC, the valence state of the element can and should be included in the formula (Line 
7d). The example indicates that the polysulfide species will be summed into the S(-2) mole-bal­ 
ance equation in any initial solution calculations.

Notes

Line 1 must be entered first in the definition of a species. Additional sets of lines (lines 1-8 as needed) may 
be added to define all of the aqueous species. A log K must be defined for each species with either log_k (line 2) 
or -analytical_expression (line 4); default is 0.0, but is not meaningful except for primary master species. In this

/}

example, the following types of aqueous species are defined: (a) a primary master species, SO4 , the reaction is 

an identity reaction and log K is 0.0; (b) a secondary master species, HS", the reaction contains electrons; (c) an 
aqueous species that is not a master species, OH"; and (d) an aqueous species for which the chemical equation does 
not balance, S 2 .
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By default, equation checking for charge and elemental balance is in force for each equation that is pro­ 
cessed. Checking can only be disabled by using -no_check for each equation that is to be excluded from the check­ 
ing process.

Example problems

The keyword SOLUTION_SPECIES is used in example problem 1. See also the listing of the default data­ 
base file in Attachment B.

Related keywords 

SOLUTION MASTER SPECIES and SOLUTION.
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SURFACE

This keyword is used to define the amount and composition of each surface in a surface assemblage. The 
composition of a surface assemblage can be defined in two ways, (1) implicitly, by specifying that the surface 
assemblage is in equilibrium with a solution of fixed composition or (2) explicitly, by defining the amounts of the 
surfaces in their neutral form (for example, SurfbOH). A surface assemblage may have multiple surfaces and each 
surface may have multiple binding sites, which are identified by letters following an underscore.

Example 1

Line Oa: SURFACE 1 Surface in equilibrium with solution 10
Line la: -equilibrate with solution 10
Line2a: Surfa_w 1.0 1000. 0.33
Line 2b: Surfa_s 0.01
Line2c: Surfb 0.5 1000. 0.33
Line 3: -diffusejayer 2e-8
Line Ob: SURFACE 2 Ignore electrostatic double layer
Line Ib: -equilibrate with solution 10
Line2b: Surfc 0.5 1000. 0.33
Line 4: -no_edl

Explanation 1

Line 0: SURFACE [number] [description]
SURFACE is the keyword for the data block.
number- -positive number to designate this surface assemblage and its composition. Default is 1. A 

range of numbers may also be given in the form m-n, where m and n are positive integers, m is 
less than n, and the two numbers are separated by a hyphen without intervening spaces. 

description- -optional character field that describes the surface assemblage. 
Line 1: -equilibrate number

-equilibrate indicates that the surface assemblage is defined to be in equilibrium with a given solu­ 
tion composition. Optionally, equil, equilibrate, or -e[quilibrate].

number--solution number with which the surface assemblage is to be in equilibrium. Any alphabetic 
characters following the identifier and preceding an integer ("with solution" in line la) are 
ignored. 

Line 2: surface name, sites, specific area, mass
surface name name of a surface binding site (analogous to the name of an element).
sites total number of sites for this binding site, in moles.

specific area-specific area of surface, in m2/g. Default 600 m2/g. 
mass mass of surface, in g. Default 0 g. 

Line 3: -diffuse_layer [thickness]
-diffuse_layer~ indicates that the composition of the diffuse layer will be estimated, such that, the net 

surface charge plus the net charge in the diffuse layer will sum to zero. Optionally, 
diffuse_layer, -d[iffuse_layer]. See notes following the example. The identifiers 
-diffuse_layer and -no_edl are mutually exclusive.

o
thickness thickness of the diffuse layer in meters. Default is 10 m (100 Angstrom). 

Line 4: -no_edl
-no_edl--indicates that no electrostatic terms will be used in the calculation. No potential term will be 

included in the mass-action expressions for the surface species and no charge-balance equations 
for the surface will be used. The identifiers -diffuse_layer and -no_edl are mutually exclusive.
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Notes 1

The default databases contain thermodynamic data for a surface named "Hfo" (Hydrous Ferric Oxides) that 
are derived from Dzombak and Morel (1990). Two sites are defined in the databases: a strong binding site, Hfo_s, 
and a weak binding site Hfo_w.

The order of lines 1, 2,3, and 4 is not important. Lines 1 and, optionally, 3 or 4 should occur only once within 
the keyword data block. Line 2 may be repeated to define the amounts of all of the binding sites for all of the sur­ 
faces. In the example, two surfaces are considered, Surfa and Surfb. Surfa has two binding sites, Surfa_w and 
Surfa_s; the surface area and mass for Surfa must be defined in the input data for at least one of the two binding 
sites. Surfb has only one kind of binding site and the area and mass must be denned as part of the input for this 
binding site.

Lines la and Ib require the program to make two calculations to determine the composition of each of the 
surface assemblages. Before any reaction calculations, two initial surface-composition calculations will be per­ 
formed to determine the composition of the surface assemblages that would exist in equilibrium with the specified 
solution (solution 10 for both surface assemblages in this example). The composition of the solution will not 
change during these calculations. In contrast, during a reaction calculation, when a surface assemblage (defined as 
in example 1 or example 2 of this section) is placed in contact with a solution with which it is not in equilibrium, 
both the surface composition and the solution composition will adjust to reach a new equilibrium.

When the -diffusejayer identifier is used, the composition of the diffuse layer is calculated. The moles of 
each aqueous species in the diffuse layer are calculated according to the method of Borkovec and Westall (1983)

o

and the assumption that the diffuse layer is a constant thickness (optional input with -diffusejayer, default is 10 
m). The net charge in the diffuse layer exactly balances the net surface charge. Conceptually, the results of using 
this alternative approach are correct. Charge imbalances on the surface are balanced in the diffuse layer and the 
solution remains charge balanced. There still exist great uncertainties in the true composition of the diffuse layer 
and the thickness of the diffuse layer. The ion complexation in the bulk solution is assumed to apply in the diffuse 
layer, which is unlikely because of changes in the dielectric constant of water. The thickness of the diffuse layer is 
purely an assumption that allows the volume of water in the diffuse layer to remain small relative to the solution 
volume. It is possible, especially for solutions of low ionic strength, for the calculated concentration of an element 
to be negative in the diffuse layer. In these cases, the assumed thickness of the diffuse layer is too small or the entire 
diffuse-layer approach is inappropriate. The calculation of the diffuse-layer composition involves a computer 
intensive integration and an additional set of iterations. The -diffusejayer identifier causes calculations to be 5 to 
10 times slower than calculations with the default approach.

The -diffusejayer identifier is a switch that activates a different model to account for the accumulation of 
surface charge. An additional printout of the elemental composition of the diffuse layer is produced. When
-diffusejayer is not used (default), to account for the charge that develops on the surface, an equal, but opposite, 
amount of charge imbalance is attributed to the solution. Thus, charge imbalances accumulate in the solution and 
on the surface when surfaces and solutions are separated. This handling of charge imbalances for surfaces is phys­ 
ically incorrect. Consider the following, where a charge-balanced surface is brought together with a charge-bal­ 
anced solution. Assume a positive charge develops at the surface. Now remove the surface from the solution. With 
the present formulation, a positive charge imbalance is associated with the surface, Zs, and a negative charge imbal­ 
ance, Zsoin , is associated with the solution. In reality, the charged surface plus the diffuse layer surrounding it would 
be electrically neutral and both should be removed when the surface is removed from solution. This would leave 
an electrically neutral solution. The default formulation is workable; its main defect is that the counter-ions that 
should be in the diffuse layer are retained in the solution. The model results are adequate, provided solutions and 
surfaces are not separated or the exact concentrations aqueous counter-ions are not critical to the investigation. 

A third alternative for modeling surface-complexation reactions, in addition to the default and
-diffusejayer, is to ignore the surface potential entirely. The -no_edl identifier eliminates the potential term from 
mass-action expressions for surface species, eliminates any charge-balance equations for surfaces, and eliminates 
any charge-potential relationships. The charge on the surface is calculated and saved with the surface composition 
and an equal and opposite charge is stored with the aqueous phase. All of the cautions about separation of charge, 
mentioned in the previous two paragraphs, apply to the calculation using -no_edl.

For transport calculations, it is much faster in terms of cpu time to use either the default (no explicit diffuse 
layer calculation or -no_edl). However, -diffusejayer can be used to test the sensitivity of the results to dif­ 
fuse-layer effects. All solutions should be charge balanced for transport calculations.
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Example 2

Line 0: SURFACE 1 Measured surface composition
Line la: Surf_wOH 0.3 660. 0.25
Line Ib: Surf_sOH 0.003

Explanation 2

Line 0: SURFACE [number] [description]
Same as example 1. 

Line 1: formula, sites, specific area, mass
formula formula of the surface binding site in its OH form, Surf_sOH and Surf_wOH in this example. 

It is important to include the OH in the formula or hydrogen and oxygen will be extracted from 
the solution during the reaction step, which will cause unexpected redox or pH reactions. 

sites-total number of sites for this binding site, in moles.
specific area specific area of surface, in m /g. 
mass mass of surface, in g.

Notes 2

Although this example only defines one surface with two binding sites, Surf_s and Surf_w, other surfaces 
with one or more binding sites could be defined by repeating line 1. The -diffusejayer or -no_edl identifier can 
also be included in this example.

After a reaction has been simulated, it is possible to save the resulting surface composition with the SAVE 
keyword. If the new composition is not saved, the surface composition will remain the same as it was before the 
reaction. After it has been defined or saved, the surface composition may be used in subsequent simulations 
through the USE keyword.

Example problems 

The keyword SURFACE is used in example problems 8 and 10.

Related keywords 

SURFACE_MASTER_SPECIES, SURFACE_SPECEES, SAVE surface, and USE surface.
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SURFACE_MASTER_SPECIES

This keyword is used to define the correspondence between surface binding-site names and surface master 
species. Normally, this data block is included in the database file and only additions and modifications are included 
in the input file. The default databases contain master species for Hfo_s and Hfo_w, which represent the weak and 
strong binding sites of Dzombak and Morel (1990).

Example

Line 0: SURFACE_MASTER_SPECIES
Line la: Surf_s Surf_sOH
Line Ib: Surf_w Surf_wOH

Explanation

Line 0: SURFACE_MASTER_SPECIES
Keyword for the data block. No other data are input on the keyword line. 

Line 1: surface binding-site name, surface master species
surface binding-site name name of a surface binding site. It must begin with a capital letter, followed 

by zero or more lower case letters. Underscores ("_") plus one or more lower case letters are 
used to differentiate types of binding sites on a single surface. Multiple binding sites can be 
defined for each surface.

surface master species formula for the surface master species.

Notes

In this example, a surface named "Surf" has a strong and a weak binding site. Association reactions for each 
binding site must be defined with SURFACE_SPECIES. The number of sites, in moles, for each binding site must 
be defined in the SURFACE keyword data block. The surface area per gram and the number of grams of the sur­ 
face-bearing material are also defined with the SURFACE keyword data block. In setting up the equations for a 
simulation that includes multiple binding sites, one mole-balance equation is included for each binding site for 
each surface and one charge-balance equation is included for each surface (including all of its binding sites).

All reactions for the binding sites of a surface (Surf_s and Surf_w, in this example) must be written in terms 
of the surface master species (Surf_sOH and Surf_wOH in this example). Each surface master species must be 
defined by an identity reaction with log K of 0.0 in SURFACE_SPECIES input.

Example problems

The keyword SURFACE_MASTER_SPECDES is not used in the example problems. See the listing of the 
default database file in Attachment B for examples.

Related keywords 

SURFACE, SURFACE_SPECDES, SAVE surface, and USE surface.
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SURFACE SPECIES

This keyword is used to define a reaction and log K for each surface species, including surface master spe­ 
cies. Normally, this data block is included in the database file and only additions and modifications are included in 
the input file. Surface species defined in Dzombak and Morel (1990) are defined in the default databases. The mas­ 
ter species are Hfo_w and Hfo_s for the weak and strong binding sites.

Example

Line 0: SURFACE_SPECIES
Line la: Surf_sOH = Surf_sOH
Line 2a log_k 0.0
Line Ib: Surf_sOH + H+ = Surf_sOH2+
Line 2b: log_k 6.3
Line Ic: Surf_wOH = Surf_wOH
Line 2c log_k 0.0
Line Id: Surf_wOH + H+ = Surf_wOH2+
Line 2d: log_k 4.3
Line le: Surf_sOH + UO2+2 = (Surf_s2O2)UO2 + 2H+
Line 2e: log_k -2.57
Line 3: -no_check
Line 4: -molejbalance (Surf_sO)2UO2

Explanation

Line 0: SURFACE_SPECIES
Keyword for the data block. No other data are input on the keyword line. 

Line 1: Association reaction
Association reaction for surface species. The defined species must be the first species to the right of 

the equal sign. The association reaction must precede all identifiers related to the surface spe­ 
cies. Line la is the master-species identity reaction. 

Line 2: log_k log K
log_k-identifier for log K at 25°C. Optionally, -log_k, logk, -l[og_k], or -l[ogk].
log K Log K at 25°C for the reaction. Default 0.0. Log K for a master species is 0.0. 

Line 3: -no_check
-no_check indicates the equation defining the aqueous species should not be checked for charge and 

elemental balance. Optionally, no_check, or -n[o_check]. By default, all equations are checked. 
The only exceptions might be for bidentate surface sites. However, the identifier -molejbalance 
is needed to ensure that the proper number of atoms of each element and moles of surface sites 
are included in mole-balance equations. 

Line 4: -molejbalance formula
-molejbalance Indicates the stoichiometry of the species will be defined explicitly. Optionally, 

molejbalance, massjbalance, mb, -m[ole_balance], -massjbalance, -m[b].
 chemical formula defining the stoichiometry of the species. Normally, both the stoichiome­ 

try and mass-action expression for the species are determined from the chemical equation that 
defines the species. Rarely, it may be necessary to define the stoichiometry of the species sepa­ 
rately from the mass-action equation. Sorption of uranium on iron oxides as described by Waite 
and others (1994) provides an example. They use different coefficients in the mass-action equa­ 
tion than the mole-balance equations. The chemical equation defining the species (Line le) is 
used to obtain the mass-action expression. By default, the formula for the species is derived 
from the sum of all the species in the equation excluding the defined surface species. The 
-molejbalance identifier is used to specify explicitly the stoichiometry of the surface species 
(Line 4).
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Notes

Lines 1 through 4 may be repeated as necessary to define all of the surface reactions. An identity reaction is 
needed to define each master surface species, lines la, 2a and Ic, 2c in this example. The log K for the identity 
reaction must be 0.0.

An underscore plus one or more lowercase letters is used to define different binding sites for the same sur­ 
face. In the example, association reactions for a strong and a weak binding site are defined for the surface named 
"Surf." Multiple surfaces may be defined simply by defining multiple master surface species (for example, Surfa, 
Surfb, and Surfc). Multiple binding sites can be defined for each surface. Association reactions for each surface 
and binding site must be defined with SURFACE_SPECIES input.

Temperature dependence of log K can be defined with enthalpy of reaction (identifier delta_h) and the van't 
Hoff equation or with an analytical expression (-analytical_expression). See SOLUTION_SPECIES or 
PHASES for examples.

The identifier -no_check can be used to disable checking charge and elemental balances (see 
SOLUTION_SPECIES). The use of -no_check is not recommended. If -no_check is used, then the 
-molejbalance identifier is needed to ensure the correct stoichiometry for the surface species.

Example problems

The keyword SURFACE_SPECIES is used in example problems 8 and 10. See the listing of the default 
database file in Attachment B for additional examples.

Related keywords

SURFACE, SURFACE_MASTER_SPECIES, SAVE surface, SOLUTION_SPECIES, and USE sur­ 
face.
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TITLE

This keyword data block is used to include a comment for a simulation in the output file. The comment will 
appear in the echo of the input data and it will appear at the beginning of the simulation calculations.

Example

Line 0: TITLE The title may begin on this line,
Line la: or on this line.
Line Ib: It continues until a keyword is encountered at the beginning of a line
Line Ic: or until the end of the file.

Explanation

Line 0: TITLE comment
TITLE is the keyword for the data block. Optionally, COMMENT.
comment The first line of a title (or comment) may begin on the same line as the keyword. 

Line 1: comment
comment The title (or comment) may continue on as many lines as necessary. Lines are read and 

saved as part of the title until a keyword begins a line or until the end of the input file.

Notes

Be careful not to begin a line of the title with a keyword because that signals the end of the TITLE keyword 
data block. The TITLE keyword data block is intended to be used to identify each simulation in the output file. If 
more than one title keyword is entered for a simulation, each will appear in the output file as part of the echo of the 
input data, but only the last will also appear at the beginning of the simulation calculations.

Example problems 

The keyword TITLE is used in all example, 1-12.
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TRANSPORT

This keyword data block is used to specify the number of cells and the number of "shifts" for a transport 
simulation. Transport simulations are one dimensional and model advective "plug flow" only. No dispersion is 
simulated; however, all chemical processes modeled by PHREEQC may be included in a transport simulation.

Example

Line 0: TRANSPORT
Line 1: -cells 5
Line 2: -shifts 25
Line 3: -prints
Line 4: -selected_output 5

Explanation

Line 0: TRANSPORT
TRANSPORT is the keyword for the data block. 

Line 1 : -cells ncell
-cells  Indicates that the number of cells in the transport simulation will be given. Optionally, cells, or

ncell- -number of cells in a one dimensional column to be used in the transport simulation. Default 0. 
Line 2: -shifts nshift

-shifts Indicates that the number of shifts or "time steps" in the transport simulation will be given.
Optionally, shifts, or -sh[ifts]. 

nshift- -number of times the solution in each cell will be shifted to the next higher numbered cell.
Default 0. 

Line 3: -print modulus
-print  Results will be written to the output file during transport step numbers that are evenly divisible 

by modulus. Optionally, -p[rint]. Note the hyphen is required to avoid a conflict with the key­ 
word PRINT.

modulus  Printing to the output file will occur after every modulus transport steps. Default 1. 
Line 4: -selected_output modulus

-selected_output-Results will be written to the selected-output file during transport step numbers that 
are evenly divisible by modulus. Optionally, -se[lected_output]. Note the hyphen is required to 
avoid a conflict with the keyword SELECTED_OUTPUT.

modulus -Printing to the selected-output file will occur after every modulus transport steps. Default 1 .

Notes

The transport capabilities of PHREEQC are derived from a more complete formulation of 1 -dimensional, 
advective, dispersive transport presented by Appelo and Postma (1993). In this example a column of five cells 
(ncell) is modeled and 5 pore volumes of filling solution are moved through the column (nshiftlncell is 5). Most of 
the information for transport calculations must be entered with other keywords. Transport assumes that solutions 
with numbers 0 through ncell have been defined using SOLUTION input or SAVE. These solutions represent the 
infilling solution (solution 0) and the initial solution in each cell (1 through ncell). Pure-phase assemblages may 
be defined with EQUILIBRIUM_PHASES or SAVE, with the number of the assemblage corresponding to the 
cell number. Likewise, an exchange assemblage, a surface assemblage, and a gas phase can be defined for each 
cell through EXCHANGE, SURFACE, GAS_PHASE, or SAVE keywords, with the identifying number corre­ 
sponding to the cell number. Note that ranges of numbers can be used to define multiple solutions, exchange assem­ 
blages, surface assemblages, or gas phases simultaneously and that SAVE allows a range of numbers to be used. 
REACTION can also be used to define a stoichiometric reaction that applies to each cell at each time step, with 
the reaction number corresponding to the cell number. This capability is not very useful because it represents only 
zero-order kinetics. Better definition of kinetic reactions is obviously needed. The MIX keyword can be used in
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transport modeling to define simplistic dispersion or lateral inflow to the column. At each shift, solution ncell-\ is 
moved to cell ncell, any stoichiometric reaction or mixing for cell ncell is added, and the solution is equilibrated 
with the contents of cell ncell; solution ncell-2 is moved to cell ncell-l, reaction or mixing for cell ncell-l is added, 
and equilibrated with the contents of cell ncell-l; and so on until solution 0 is moved to cell 1. The moles of pure 
phases and the compositions of the exchange assemblage, surface assemblage, and gas phase in each cell are 
updated with each shift.

By default, the composition of the solution, pure-phase assemblage, exchange assemblage, surface assem­ 
blage, and gas phase are printed for each cell for each shift. Use of -print will limit the amount of data written to 
the output file. In the example, results are written to the output file after each integer pore volume has passed 
through the column. Data written to the output file can be further limited with the keyword PRINT (see -reset 
false). If SELECTED_OUTPUT has been defined (recommended), then each cell and each shift will produce an 
additional line in the selected-output file. Use of -selected_output will limit the frequency that data are written to 
the selected-output file. The setting for -print does not affect the selected-output file.

The capabilities provided with the TRANSPORT keyword are not intended to be a complete formulation 
of chemical reaction in flowing conditions. It is, however, sufficient to make initial investigations, and by compar­ 
ison to other programs it is computationally fast. For many systems with limited data, the kinds of calculations 
available with TRANSPORT are adequate and appropriate.

Example problems 

The keyword TRANSPORT is used in example problems 9 and 10.

Related keywords

EXCHANGE, GAS_PHASE, MIX, PRINT, EQUILIBRIUM_PHASES, REACTION, 
REACTION_TEMPERATURE, SAVE, SELECTED_OUTPUT, SOLUTION, and SURFACE.
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USE

This keyword data block is used to specify which solution, surface assemblage, exchange assemblage, and 
pure-phase assemblage are to be used in the reaction calculation of a simulation. USE can also specify previously 
defined reaction parameters (REACTION keyword), reaction-temperature parameters 
(REACTION_TEMPERATURE keyword), and mixing parameters (MIX keyword) are to be used in the reac­ 
tion calculation.

Example

Line Oa: USE equilibrium_phases none
Line Ob: USE exchange 2
Line Oc: USE gas_phase 3
Line Od: USE mix 1
Line Oe: USE reaction 2
Line Of: USE reaction_temperature 1
Line Og: USE solution 1
Line Oh: USE surface 1~

Explanation

Line 0: USE keyword, (number or none)
USE is the keyword for the data block.
keyword one of eight keywords, equilibrium_phases, exchange, gas_phase, mix, reaction, 

reaction_temperature, solution, or surface.
number positive integer associated with previously defined composition or reaction parameters. 
none the specified keyword will not be used in the reaction simulation.

Notes

Reactions are defined by allowing a solution or mixture of solutions to come to equilibrium with one or more 
of the following entities: an exchange assemblage, a surface assemblage, a pure-phase assemblage, or a gas phase. 
In addition, mixtures, irreversible reactions, and reaction temperatures can be specified for reaction calculations. 
Entities can be defined implicitly: a solution or mixture (SOLUTION or MIX keywords) must be defined within 
the simulation, then the first of each kind of entity defined in the simulation will be used in the reaction simulation. 
That is, the first solution (or mixture) will be brought together with the first of each of the following entities that 
is defined in the simulation: exchange assemblage (EXCHANGE), gas phase (GAS_PHASE), pure-phase assem­ 
blage (EQUILIBRIUM_PHASES), surface assemblage (SURFACE), reaction (REACTION), and reaction 
temperature (REACTION_TEMPERATURE); these entities will then be allowed to equilibrate. Alternatively, 
entities can be defined explicitly with the USE keyword. "USE keyword number" can be used to explicitly define 
an entity to be used in the reaction calculation. Any combination of the keyword keywords can be used to define a 
reaction. "USE keyword none" can be used to eliminate an entity that was implicitly defined to be in a reaction. 
For example, if only a solution and a surface are defined in a simulation and the surface is defined to be in equilib­ 
rium with the solution, then implicitly, an additional reaction calculation will be made to equilibrate the solution 
with the surface. Though not incorrect, the reaction calculation will produce the exact same compositions for the 
solution and surface. By including "USE surface none", the reaction calculation will be eliminated (see examples 
8 and 9). The composition of the solution, exchange assemblage, surface assemblage, pure-phase assemblage, or 
gas phase can be saved after a set of reaction calculations with the SAVE keyword.

Example problems

The keyword USE is used in example problems 3, 6, 7, 8, and 9.
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Related keywords

EQUILIBRIUM_PHASES, EXCHANGE, GAS_PHASE, MIX, REACTION, 
REACTIONJTEMPERATURE, SAVE, SOLUTION, and SURFACE.
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SUMMARY OF DATA INPUT

END 

EQUILIBRIUM_PHASES

Line 0: EQUILIBRIUM_PHASES [number] [description]
Line 1: phase name [saturation index ([alternative formula} or [alternative phase}} [amount}} 

EXCHANGE

Example 1

Line 0: EXCHANGE [number} [description} 
Line 1: chemical formula, amount

Example 2

Line 0: EXCHANGE [number} [description} 
Line 1: -equilibrate number 
Line 2: exchanger name, amount 

EXCHANGE_MASTER_SPECIES

Line 0: EXCHANGE_MASTER_SPECIES
Line 1: exchange name, exchange master species 

EXCHANGE_SPECIES

Line 0: EXCHANGE_SPECIES
Line 1: Association reaction 
Line 2: log_k log K 
Line 3: delta_h enthalpy, units 
Line 4: -analytical_expression A], A2, A3, A4, A5 

Line 5: -no_check 
Line 6: -molejbalance formula 

GAS_PHASE

Line 0: GAS_PHASE [number} [description} 
Line 1: -pressure pressure 
Line 2: -volume volume 
Line 3: -temperature temp 
Line 4: phase name, partial pressure 

INVERSE.MODELING

Line 0: INVERSE_MODELING [number} [description}
Line 1: -solutions, list of solution numbers
Line 2: -uncertainty, list of uncertainties
Line 3: -phases
Line 4: phase name [constraint}
Line 5: -balances
Line 6: element or valence state name [list of uncertainties]
Line 7: -range [maximum}
Line 8: -minimal
Line 9: -tolerance tol
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KNOBS

Line 0: KNOBS 
Line 1: -iterations iterations 
Line 2: -tolerance tolerance 
Line 3: -step_size step_size 
Line 4: -pe_step_size pe_step_size 
Line 5: -diagonal_scale [True or False] 
Line 6: -debug_prep [True or False] 
Line 7: -debug_set [7>w or False] 
Line 8: -debug_model [Irae or False] 
Line 9: -debug_inverse [Trwe or False] 
Line 10: -logfile [Irwe or False] 

MIX

Line 0: MIX [number] [description] 
Line 1: solution number, mixing fraction 

PHASES

Line 0: PHASES
Line 1: Phase name
Line 2: Dissolution reaction
Line 3: log_k /og A'
Line 4: delta_h enthalpy, units
Line 5: -analytical_expression A;, A^ Aj, A4, Aj

PRINT

Line 0: PRINT 
Line 1: -reset [True or False] 
Line 2: -eh [True or False] 
Line 3: -equilibrium_phases [True or False] 
Line 4: -exchange [Irae or False] 
Line 5: -gas_phase [Trae or False] 
Line 6: -other [Irae or False] 
Line 7: -saturation_indices [Irae or False] 
Line 8: -species [Irae or False] 
Line 9: -surface [Irae or False] 
Line 10: -totals [Irae or Fa/se] 
Line 11 : -selected_output [True or False] 
Line 12: -status [True or False] 

REACTION
Example 1

Line 0: REACTION [number] [description]
Line 1: (phase name or formula), relative stoichiometry
Line 2: list of reaction amounts, units

Example 2

Line 0: REACTION [number] [description]
Line 1: (phase name or formula), relative stoichiometry
Line 2: reaction amount [units] [in steps]
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REACTIONJTEMPERATURE

Example 1

Line 0: REACTION_TEMPERATURE [number] [description] 

Line 1: list of temperatures

Example 2

Line 0: REACTIONJTEMPERATURE [number] [description] 

Line 1: tempj, temp2> in steps

SAVE

Line 0: SAVE keyword, number 

SELECTEDJDUTPUT

Line 0: SELECTED_OUTPUT
Line 1: -file file name 

Line 2: -totals element list 

Line 3: -molalities species list 
Line 4: -activities species list 

Line 5: -equilibrium_phases phase list 

Line 6: -saturation_indices phase list 

Line 7: -gases gas list 

SOLUTION

Line 0: SOLUTION [number] [description]

Line 1: temp value

Line 2: pH v<2/we [([charge] or [phase name] [saturation index])]
Line 3: pe value [([charge] or [phase name] [saturation index])]

Line 4: redox redox couple

Line 5: units concentration units

Line 6: density v<2/we
Line 7: element list, concentration, [units], ([as formula] or [gfw g/vv]), [redox couple], ([charge] or [phase 

name] [saturation index])

SOLUTION_MASTER_SPECIES

Line 0: SOLUTION_MASTER_SPECIES
Line 1: element name, master species, alkalinity, (gram formula weight or formula}, gram formula weight 

of element

SOLUTION_SPECIES

Line 0: SOLUTION_SPECIES
Line 1: Association reaction
Line 2: log_k log K
Line 3: delta_h enthalpy, units

Line 4: -analytical_expression Aj, A2, A3, A4, A5

Line 5: -gamma Debye-Huckel a, Debye-Huckel b
Line 6: -no_check
Line 7: -molejbalance/ormw/a
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SURFACE

Example 1

Line 0: SURFACE [number] [description]

Line 1: -equilibrate number

Line 2: surface name, sites, specific area, mass

Line 3: -diffusejayer [thickness]

Line 4: -no_edl

Example 2

Line 0: SURFACE [number} [description} 

Line 1: formula, sites, specific area, mass 

Line 2: -diffusejayer [thickness] 

Line 3 -no_edl 

SURFACE_MASTER_SPECIES

Line 0: SURFACE_MASTER_SPECIES

Line 1: surface binding-site name, surface master species 

SURFACE_SPECIES

Line 0: SURFACE_SPECIES

Line 1: Association reaction 

Line 2: log_k log K 

Line 3: deltajh enthalpy, units 

Line 4: -analytical_expression Aj, A2, A3, A4, A5 

Line 5: -no_check 

Line 6: -molejbalance/ormw/a 

TITLE

Line 0: TITLE comment 

Line 1: comment 

TRANSPORT

Line 0: TRANSPORT

Line 1: -cells ncell 

Line 2: -shifts nshift 

Line 3: -print modulus 

Line 4: -selected_output modulus 

USE

Line 0: USE keyword, (number or none)
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EXAMPLES

In this section of the report several example calculations using PHREEQC are presented that demonstrate 
most of the capabilities of the program. Several of the examples are derived from examples in the PHREEQE man­ 
ual (Parkhurst and others, 1980). The input files for all examples are included in tables, which should serve as tem­ 
plates for modeling other geochemical processes. Only selected output from each of the example runs is presented.

Example 1-Speciation Calculation

This example calculates the distribution of aqueous species in seawater and the saturation state of seawater 
relative to a set of minerals. To demonstrate how to expand the model to new elements, uranium is added to the 
aqueous model defined by phreeqc.dat. [The larger of the two database files included with the program distribu­ 
tion, wateq4f.dat, is derived from WATEQ4F (Ball and Nordstrom, 1991) and includes uranium.]

A comment about the calculations performed in this simulation is included with the TITLE keyword. The 
essential data needed for a speciation calculation are the temperature, pH, and concentrations of elements and (or) 
element valence states (table 2). The input data set corresponding to the analytical data are shown in table 3 under 
the keyword SOLUTION. Note that valence states are identified by the chemical symbol for the element followed 
by the valence in parentheses [S(6), N(5), N(-3), and O(0)]. The default units are specified to be ppm in this data 
set. This default can be overridden for any concentration, as demonstrated by the uranium concentration, which is 
specified to be ppb instead of ppm.

Table 2. Seawater composition

Analysis

Calcium

Magnesium

Sodium

Potassium

Iron

Manganese

Silica, as SiC>2

Chloride

Alkalinity, as HCO3" 

Sulfate, as SO42'

Nitrate, as NO3 "

Ammonium, as NH4+

Uranium

pH, standard units

pe, unitless

Temperature, °C

Density, kilograms per liter

PHREEQC 

notation

Ca

Mg

Na

K

Fe

Mn

Si

Cl

Alkalinity 

S(6)

N(5)

N(-3)

U

pH

pe

temperature

density

Concentration 

ppm

412.3

1291.8

10768.0

399.1

0.002

0.0002

4.28

19353.0

141.682 

2712.0

0.290

0.03

0.0033

8.22

8.451

25.0

1.023
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The pe to be used for distributing redox elements and for calculating saturation indices is specified by the 
redox identifier. In this example, a pe is to be calculated from the O(-2)/O(0) redox couple, which corresponds to 
the dissolved oxygen/water couple, and this calculated pe will be used for all calculations that require a pe. If redox 
were not specified, the default would be the input pe. The default redox identifier can be overridden for any redox 
element, as demonstrated by the manganese input, where the input pe will be used to speciate manganese among 
its valence states, and the uranium input, where the nitrate/ammonium couple will be used to calculate a pe with 
which to speciate uranium among its valence states. Because ppm is a mass unit, not a mole unit, the program must 
use a gram formula weight to convert each concentration into molal units. The default gram formula weights for 
each master species are specified in the SOLUTION_MASTER_SPECBES input (the values for the default data­ 
base phreeqc.dat are listed in table 1 and in Attachment B). If the data are reported relative to a gram formula 
weight different from the default, it is necessary to specify the appropriate gram formula weight in the input data 
set. This can be done with the gfw identifier, where the actual gram formula weight is input, or more simply with 
the as identifier, where the chemical formula for the reported units is input, as shown in the input for alkalinity, 
nitrate, and ammonium in this example. Note finally that the concentration of O(0), dissolved oxygen, is given an 
initial estimate of 1 ppm, but that its concentration will be adjusted until a log partial pressure of oxygen gas of 
-0.7 is achieved. [O2(g) is defined under PHASES input of the default database file (Attachment B).] It is impor­ 
tant to realize when using phase equilibria to specify initial concentrations [like O(0) in this example] that only 
one concentration is adjusted. For example, if gypsum were used to adjust the calcium concentration, the concen­ 
tration of calcium would vary, but the concentration of sulfate would remain fixed.

Uranium is not included in phreeqc.dat, the smaller of the two database files that are distributed with the 
program. Thus data to describe the thermodynamics and composition of aqueous uranium species must be included 
in the input data when using this database file. Two keyword data blocks are needed to define the uranium species, 
SOLUTION_MASTER_SPECIES and SOLUTION_SPECIES. By adding these two data blocks to the input 
data file, aqueous uranium species will be defined for the duration of the run. To add uranium permanently to the 
list of elements, these data blocks should be added to the database file. The data for uranium shown here are 
intended to be illustrative and are not a complete description of uranium speciation.

It is necessary to define a primary master species for uranium with SOLUTION_MASTER_SPECIES 
input. Because uranium is a redox-active element, it is also necessary to define a secondary master species for each
valence state of uranium. The data block SOLUTION_MASTER_SPECIES (table 3) defines U+4 as the primary 
master species for uranium and the secondary master species for the +4 valence state. UO2+ is the secondary master

species for the +5 valence state, and UO2 is the secondary master species for the +6 valence state. Equations 
defining these aqueous species plus any other complexes of uranium must be defined through 
SOLUTION_SPECIES input.

In the data block SOLUTION_SPECIES (table 3), the primary and secondary master species are noted with 
comments. A primary master species is always defined with an identity reaction. Secondary master species are the 
only aqueous species that contain electrons in their chemical reaction. Additional hydroxide and carbonate com­ 
plexes are defined for the +4 and +6 valence states, but none for the +5 state.

Finally, a new phase, uraninite, is defined with PHASES input. This phase will be used in calculating satu­ 
ration indices in speciation modeling, but could also be used, without redefinition, for reaction or inverse modeling 
within the computer run.

The output from the model (table 4) contains several blocks of information delineated by headings. First, all 
keywords encountered in reading the database file are listed under the heading "Reading data base." Next, the input 
data, excluding comments and empty lines, is echoed under the heading "Reading input data for simulation 1". The 
simulation is defined by all input data up to and including the END keyword.

The next heading is "Beginning of initial solution calculations", below which are the results of the speciation 
calculation for seawater. The concentration data, converted to molality are given under the subheading "Solution 
composition". For initial solution calculations, the number of moles in solution is numerically equal to molality, 
because 1 kg of water is assumed. During reaction calculations, the mass of water may change and the number of 
moles in the aqueous phase will not exactly equal the molality of a constituent. Note that the molality of dissolved 
oxygen that produces a log partial pressure of -0.7 has been calculated and is annotated in the output.

v

After the subheading "Description of solution", some of the properties listed in the first block of output are 
equal to their input values and some are calculated. In this example, pH, pe, and temperature are equal to the input
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values. The ionic strength, total carbon (alkalinity was the input datum), total inorganic carbon ("Total CO2"), and 
electrical balance of the solution have been calculated by the model.

Under the subheading "Redox couples" the pe and Eh are printed for each redox couple for which data were 
available, in this case, nitrate/ammonium and dissolved oxygen/water.

Under the subheading "Distribution of species", the molalities, activities, and activity coefficients of all spe­ 
cies of each element and element valence state are listed. The lists are alphabetical by element name and descend­ 
ing in terms of molality within each element or element valence state. Beside the name of each element or element 
valence state, the total molality is given.

Finally, under the subheading "Saturation indices", saturation indices for all minerals that are appropriate for 
the given analytical data are listed alphabetically by phase name near the end of the output. The chemical formulas 
for each of the phases is printed in the right-hand column. Note, for example, that no aluminum bearing minerals 
are included because aluminum was not included in the analytical data. Also note that mackinawite (FeS) and other 
sulfide minerals are not included in the output because no analytical data were specified for S(-2). If a concentration 
for S [instead of S(6)] or S(-2) had been entered, then a concentration of S(-2) would have been calculated and a 
saturation index for mackinawite and other sulfide minerals would have been calculated.

Example 2 Equilibration with Pure Phases

This example determines the solubility of the most stable phase, gypsum or anhydrite, over a range of tem­ 
peratures. The input data set is given in table 5. Only the pH and temperature are used to define the pure water 
solution. Default units are millimolal, but no concentrations are specified. By default, pe is 4.0, the default redox 
calculation uses pe, and the density is 1.0 (not needed because no concentrations are "per liter"). All phases that 
are allowed to react to a specified saturation index during the reaction calculation are listed in 
EQUILIBRIUM_PHASES, whether they are initially present or not. The input data include the name of the phase 
(previously defined through PHASES input in the database or input file), the specified saturation index, and the 
amount of the phase present, in moles. If a phase is not present initially, it is given 0.0 mol in the pure-phase assem­ 
blage. In this example, gypsum and anhydrite are allowed to react to equilibrium (saturation index equal to 0.0), 
and the initial phase assemblage has 1 mol of each mineral. Each mineral will react either to equilibrium or until 
it is exhausted in the assemblage. In most cases, 1 mol of a phase is sufficient to reach equilibrium.

Table 5. Input data set for example 2

TITLE
Example 2.--Temperature dependence of solubility

of gypsum and anhydrite 
SOLUTION 1 Pure water

pH 7.0
temp 25.0 

EQUILIBRIUM_PHASES 1
Gypsum 0.0 1.0
Anhydrite 0.0 1.0 

REACTION_TEMPERATURE 1
25.0 75.0 in 51 steps 

SELECTED_OUTPUT
-file ex2.pun
-si anhydrite gypsum 

END

A set of 51 temperatures is specified in the REACTION_TEMPERATURE data block. The input data
specify that for every degree of temperature, beginning at 25°C and ending at 75°C, the phases defined by 
EQUILIBRIUM_PHASES (gypsum and anhydrite) will react to attain equilibrium, if possible, or until both 
phases are completely dissolved. Finally, SELECTED_OUTPUT is used to write the saturation indices for gyp­ 
sum and anhydrite to the file ex2.pun after each calculation. This file was then used to generate figure 1.

The results of the initial solution calculation and the first reaction step are shown in table 6. The distribution 
of species for pure water is shown under the heading "Beginning of initial solution calculations". The equilibration
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Figure 1. Saturation indices of gypsum and anhydrite in solutions that have equilibrated with the more stable of the two 
phases over the temperature range 25 to 75° Celsius.

of the system with the given amounts of gypsum and anhydrite at 25°C is the first reaction step, which is displayed 
after the heading "Beginning of reaction calculations". Immediately following this heading, the reaction step is 
identified, followed by a list of the identity of the keyword data used in the calculation. In this example, the solution 
composition stored as number 1, the pure-phase assemblage stored as number 1, and the reaction temperatures 
stored as number 1 are used in the calculation. Conceptually, the solution and the pure phases are put together in
a beaker, which is regulated to 25°C, and allowed to react to system equilibrium.

Under the subheading "Phase assemblage", the saturation indices and amounts of each of the phases defined 
by EQUILIBRIUM_PHASES are listed. In the first reaction step, the final phase assemblage contains no anhy­ 
drite, which is undersaturated with respect to the solution (saturation index equals -0.22), and 1.985 mol of gyp­ 
sum, which is in equilibrium with the solution (saturation index equals 0.0). All of the anhydrite has dissolved and 
most of the calcium and sulfate have reprecipitated as gypsum. The "Solution composition" indicates that 15.67 
mmol/kg water of calcium and sulfate remain in solution, which defines the solubility of gypsum in pure water. 
However, the total number of moles of each constituent in the aqueous phase is only 15.11 because the mass of

water is only 0.9645 kg ("Description of solution"). In precipitating gypsum (CaSO^H^O), water has been 
removed from solution. Thus, the mass of solvent water is not constant in reaction calculations as it was in 
PHREEQE; reactions and waters of hydration in dissolving and precipitating phases may increase or decrease the 
mass of solvent water.

The saturation indices for all of the reaction steps are plotted in figure 1. In each step, pure water was reacted 
with the phases at a different temperature (the reactions are not cumulative). The default database for PHREEQC
indicates that gypsum is the stable phase (saturation index equals 0.0) at temperatures below about 57°C; above 
this temperature, anhydrite is the stable phase.
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Example 3.-Mixing

This example demonstrates the capabilities of PHREEQC to perform a series of geochemical simulations, 
with the final simulations relying on results from previous simulations within the same run. The example investi­ 
gates diagenetic reactions that may occur in zones where seawater mixes with carbonate ground water. The exam­ 
ple is divided into five simulations, labeled A through E in table 7. (A) Carbonate ground water is defined by

f\ r\

equilibrating pure water with calcite at a PCO of 10 atm. (B) Seawater is defined using the major-ion data

given in table 2. (C) The two solutions are mixed together in the proportions 30 percent seawater and 70 percent 
ground water. (D) The mixture is equilibrated with calcite and dolomite. Finally, (E) the mixture is equilibrated 
with calcite only to simulate slow reaction kinetics of dolomite.

Table 7. Input data for example 3

TITLE Example 3 , part A--Calcite equilibrium at log Pco2 = -2.0 and 25C. 
SOLUTION 1 Pure water

pH 7.0
temp 25.0 

EQUILIBRIUM_PHASES
CO2(g) -2.0
Calcite 0.0 

SAVE solution 1 
END
TITLE Example 3, part B--Definition of seawater. 
SOLUTION 2 Seawater

units ppm
pH 8.22
pe 8.451
density 1.023
temp 25.0
Ca 412.3
Mg 1291.8
Na 10768.0
K 399.1
Si 4.28
Cl 19353.0
Alkalinity 141.682 as HCO3
S(6) 2712.0 

END
TITLE Example 3, part C--Mix 70% ground water, 30% seawater. 
MIX 1

1 0.7
2 0.3 

SAVE solution 3 
END
TITLE Example 3, part D--Equilibrate mixture with calcite and dolomite. 
EQUILIBRIUM_PHASES 1

Calcite 0.0
Dolomite 0.0 

USE solution 3 
END
TITLE Example 3, part E--Equilibrate mixture with calcite only. 
EQUILIBRIUM_PHASES 2

Calcite 0.0 
USE solution 3 
END
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The input for part A (table 7) consists of the definition of pure water with SOLUTION input, and the defi­ 
nition of a pure-phase assemblage with EQUILIBRIUM_PHASES input. In the definition of the phases, only a 
saturation index was given for each phase. Because it was not entered, the amount of each phase defaults to 10.0 
mol, which is essentially an unlimited supply for most phases. The reaction is implicitly defined to be the equili­ 
bration of the first solution defined in this simulation with the first pure-phase assemblage defined in the simulation. 
(Explicit definition of reaction entities is done with the USE keyword.) The SAVE keyword instructs the program 
to save the solution following the final (and only in this example) reaction step as solution number 1. Thus, when 
the simulation begins, solution number 1 is pure water. After the reaction calculations for the simulation are com­ 
pleted, the composition of the water that is in equilibrium with calcite and CC>2 replaces pure water as solution 1.

Part B defines the composition of seawater, which is stored as solution number 2. Part C mixes ground water, 
solution 1, with seawater, solution 2, in a closed system in which Pco is calculated, not specified. The MIX key­ 

word is used to define the solutions and mixing fractions. The SAVE keyword causes the mixture to be saved as 
solution number 3. The MIX keyword allows the mixing of an unlimited number of solutions in whatever fractions 
are specified. The fractions need not sum to 1.0. If the fractions were 7.0 and 3.0 instead of 0.7 and 0.3, the mass 
of water in the mixture would be approximately 10 kg instead of approximately 1 kg, but the concentrations in the 
mixture would be the same as in this example. However, during subsequent reactions it would take approximately 
10 times more mole transfer to equilibrate with the phases, that is, to produce the same concentrations as in this 
example.

Part D equilibrates the mixture with calcite and dolomite. The USE keyword specifies that solution number 
3, which is the mixture from part C, is to be the solution with which the phases will equilibrate. By defining the 
phase assemblage with "EQUILIBRIUM_PHASES 1", the phase assemblage replaces the previous assemblage 
number 1 that was defined in part A. Part E performs a similar calculation to part D, but uses phase assemblage 2, 
which does not contain dolomite as a reactant.

Table 8. Selected results for example 3

[Simulation A generates carbonate ground water; B defines seawater; C performs mixing with no other mole transfer; D equilibrates the mixture with calcite 
and dolomite; and E equilibrates the mixture with calcite only. Mole transfer is relative to the moles in the phase assemblage; positive numbers indicate an 
increase in the amount of the phase that is present, that is, precipitation; negative numbers indicate a decrease in the amount of the phase that is present, or 
dissolution. Saturation index:"--" indicates saturation index calculation not possible because one of the constituent elements was not in solution. Mole 
transfer: " " indicates no mole transfer of this mineral was allowed in the simulation]

Saturation index Mole transfer, millimoles 
Simulation pH log Prn                                                

Calcite Dolomite CO? Calcite Dolomite

A

B

C

D

E

7.297

8.220

7.350

7.057

7.443

-2.00

-3.38

-2.23

-1.98

-2.31

0.00

.76

-.11

.00

.00

-

2.40

.52

.00

.73

-1.977 -1.646

--

--

-15.71

-.040

-

-

-

7.936

-

Selected results from the output for example 3 are presented in table 8. The ground water produced by part 
A is in equilibrium with calcite and has a log PCO of -2.0, as specified by the input. The moles of CC>2 in the phase

assemblage decreased by about 2.0 mmol, which means that about 2.0 mmol dissolved into solution. Likewise, 
about 1.6 mmol of calcite dissolved. Part B defined seawater, which is calculated to have slightly greater than atmo­ 
spheric carbon dioxide (-3.38 compared to about -3.5), and is supersaturated with calcite (saturation index 0.76) 
and dolomite (2.40). No mole transfer was allowed for part B. Part C performed the mixing with no additional reac­ 
tions. The resulting log PCO is -2.23, calcite is undersaturated and dolomite is supersaturated. The saturation indi­ 

ces indicate that thermodynamically, dolomitization should occur, that is calcite should dissolve and dolomite 
should precipitate. Part D calculates the amounts of calcite and dolomite that should react. To produce equilibrium
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15.7 mmol of calcite should dissolve and 7.9 mmol of dolomite should precipitate. Dolomitization is not observed 
to occur in present-day mixing zone environments, even though dolomite is the thermodynamically stable phase. 
The lack of significant dolomitization is due to the slow reaction kinetics of dolomite formation. Therefore, part E 
simulates what would happen if dolomite does not precipitate. If dolomite does not precipitate, only a very small 
amount of calcite dissolves (0.04 mmol) for this mixing ratio.

Example 4.-Evaporation and Homogeneous Redox Reactions

Evaporation is accomplished by removing water from the chemical system. Water can be removed by two 
methods: (1) water can be specified as an irreversible reactant with a negative reaction coefficient in the REAC­ 
TION keyword input, or (2) "H2O" can be specified as the alternative reaction in EQUILIBRIUM_PHASES 
keyword input, in which case, water is removed or added to the aqueous phase to attain a specified saturation index 
for a pure phase. This example uses the first method, the REACTION keyword data block is used to simulate con­ 
centration of rain water by approximately 20 fold by removing 95 percent of the water. The resulting solution con­ 
tains only about 0.05 kg of water. In a subsequent simulation, the MIX keyword is used to generate a solution that 
has the same concentrations as the evaporated solution, but has a total of mass of water of approximately 1 kg.

The first simulation input data set (table 9) contains four keywords: (1) TITLE is used to specify a descrip­ 
tion of the simulation to be included in the output file, (2) SOLUTION is used to define the composition of rain 
water from central Oklahoma, (3) REACTION is used to specify the amount of water, in moles, to be removed 
from the aqueous phase, and (4) SAVE is used to store the result of the reaction calculation as solution number 2.

Table 9. Input data set for example 4

TITLE Example 4a.--Rain water evaporation 
SOLUTION 1 Precipitation from Central Oklahoma

units mg/L
pH 4.5 # estimated
temp 25.0
Ca .384
Mg .043
Na .141
K .036
Cl .236
C .1 C02(g) -3.5
S(6) 1.3
N(-3) .208
N(5) .237 

REACTION 1
H2O -1.0
52.73 moles 

SAVE solution 2 
PRINT

-si false 
END
TITLE Example 4b.--Factor of 20 more solution 
MIX

2 20. 
SAVE solution 3 
END

All solutions defined by SOLUTION input are scaled to have exactly 1 kg (approximately 55.5 mol) of 
water. To concentrate the solution by 20 fold, it is necessary to remove approximately 52.8 mol of water (55.5 x 
0.95).

The second simulation uses MIX to multiply by 20 the number of moles of all elements in the solution, 
including hydrogen and oxygen. This procedure effectively increases the total mass (or volume) of the aqueous 
phase, but maintains the same concentrations. The resulting solution is stored in solution 3 with the SAVE key-
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word. Solution 3 will have the same concentrations as solution 2 (from the previous simulation) but will have a 
mass of water of approximately 1 kg.

Selected results of the simulation are presented in table 10. The concentration factor of 20 is reasonable in 
terms of a water balance for the process of evapotranspiration in central Oklahoma (Parkhurst, Christenson, and 
Breit, 1993). However, the PHREEQC evaporation modeling assumes that evapotranspiration has no affect on the 
ion ratios. This assumption has not been verified and may not be correct. After evaporation, the simulated solution 
composition is still undersaturated with respect to calcite, dolomite, and gypsum. As expected, the mass of water 
decreases from 1 kg in rain water (solution 1) to approximately 0.05 kg in solution 2 after water was removed by 
the reaction. In general, the amount of water remaining after the reaction is approximate because water may be 
consumed or produced by homogeneous hydrolysis reactions, surface complexation reactions, and dissolution and 
precipitation of pure phases. The number of moles of chloride (jimol) was unaffected by the removal of water; 
however, the concentration of chloride (|imol/kg water) increased because the amount of water decreased. The 
mixing simulation increased the mass of water and the number of moles of chloride by a factor of 20. Thus, the 
number of moles of chloride increased, but the concentration is the same before (solution 2) and after the mixing 
simulation (solution 3) because of the increased mass of water.

Table 10. Selected results from example 4

[kg, kilogram, (imol, micromole]

Constituent

Mass of water, kg

Cl, umol

Cl, umol/kg water

Nitrate [N(5)], umol/kg water

Dissolved nitrogen [N(0)], umol/kg water

Ammonium [N(-3)], umol/kg water

Solution 1 

Rain water

1.000

6.657

6.657

16.9

0

14.8

Solution 2 

Concentrated 20 fold

0.05002

6.657

133.1

160.

475.

0

Solution 3 

Mixed with factor 20

1.000

133.1

133.1

160.

475.

0

An important point about homogeneous redox reactions is illustrated in the results of these simulations 
(table 10). Reaction calculations always produce redox equilibrium. The rain water analysis contained data for 
both ammonium and nitrate, but none for dissolved nitrogen. Although nitrate and ammonium should not coexist 
at thermodynamic equilibrium, the speciation calculation allows redox disequilibria and the concentrations of the 
nitrogen species are defined only by the input data. In the reaction (evaporation) step, redox equilibrium is attained 
for the aqueous phase, which caused ammonium to be oxidized and nitrate to be reduced, generating dissolved 
nitrogen. The equilibrium solution (solution 2) contains nitrate and dissolved nitrogen, but virtually no ammonium 
(table 10). This redox equilibration will occur in the reaction calculation because of the inherent redox disequilib­ 
rium in the definition of the rain water composition. Nitrogen redox reactions would have occurred even if the 
REACTION-keyword had specified that no water was to be removed.

Example 5.--lrreversible Reactions

This example demonstrates the irreversible reaction capabilities of PHREEQC in modeling the oxidation of 
pyrite. Oxygen is added irreversibly to pure water in five varying amounts (0.0, 1.0, 5.0, 10.0, and 50.0 mmol), 
while pyrite, calcite, and goethite are allowed to dissolve to equilibrium. In addition, gypsum is allowed to precip­ 
itate if it becomes supersaturated.

Pure water is defined with SOLUTION input (table 11), and the pure-phase assemblage is defined with 
EQUILIBRIUM_PHASES input. Because gypsum has an initial amount of 0.0 mol, gypsum can only precipitate
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Table 11 . Input data set for example 5

TITLE Example 5.--Add oxygen, equilibrate with pyrite, calcite, and goethite. 
SOLUTION 1 PURE WATER

pH 7.0
temp 25.0 

EQUILIBRIUM_PHASES 1
Pyrite 0.0
Goethite 0.0
Calcite 0.0
Gypsum 0.0 0.0 

REACTION 1
02 1.0
0.0 0.001 0.005 0.01 0.05 

SELECTEDJDUTPUT
-file exS.pun
-si CO2(g) Gypsum
-equilibrium_phases pyrite goethite calcite gypsum 

END

if it becomes supersaturated; it can not dissolve because no moles are present. The REACTION data block defines 
the irreversible reaction that is to be modeled. In this example, oxygen ("O2") will be added with a relative fraction 
of 1.0. The steps of the reaction are defined to be 0.0,0.001,0.005,0.01, and 0.05 mol. The reactants can be defined 
by a chemical formula, as in this case (O2) or by a phase name that has been defined with PHASES input. Thus, 
the phase name "O2(g)" from the default database file, could have been used in place of "O2" to achieve the same 
result. The number of moles of the element oxygen (as O, not O2) added in each reaction step is equal to the sto- 
ichiometric coefficient of oxygen in O2 (2) times the relative fraction (1.0) times the number of moles in the reac­ 
tion step. The relative fraction is useful in reactions that have multiple reactants because it defines the relative rates 
of reaction among the reactants. SELECTED_OUTPUT was used to write the partial pressure of carbon dioxide, 
the saturation index of gypsum, and the total amounts and mole transfers of pyrite, goethite, calcite, and gypsum 
to the file ex5.pun after each equilibrium calculation..

Table 12. Selected results for example 5

[Mole transfer is relative to the moles in the phase assemblage; positive numbers indicate an increase in the amount of the phase that is present, that is, 
precipitation; negative numbers indicate a decrease in the amount of the phase that is present, or dissolution. Mole transfer: "--" indicates no mole transfer 
of this mineral occurred in the simulation]

O2 added 

millimoles

0.0

1.0

5.0

10.0

50.0

pH

9.91

7.99

6.96

6.62

6.04

pe

-6.95

-4.05

-2.68

-2.22

-1.45

Log

-6.18

-3.19

-1.63

-1.13

-.22

Mole transfer, millimoles

Pyrite

-0.00015

-.27

-1.33

-2.67

-13.34

Goethite

0.00015

.27

1.33

2.66

13.25

Calcite

-0.12

-1.06

-4.54

-8.15

-33.06

Saturation

index of
Gypsum 

yr gypsum

-6.29

-1.97

-.93

-.53

12.73 .0

The results for example 5 are summarized in table 12. When no oxygen is added to the system, a small 
amount of calcite dissolves and trace amounts of pyrite and goethite react; the pH is relatively high (9.91), the pe 
is low (-6.95), and log PCO is low (-6.18). As oxygen is added, pyrite is oxidized and goethite, being relatively

insoluble, precipitates. This generates sulfuric acid, decreases the pH, and causes calcite to dissolve. During these
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reactions, the pe and log PCO increase. At some point between 10 and 50 mmol of oxygen added, gypsum reaches

saturation and begins to precipitate. When 50 mmol of oxygen have been added, a total of 12.73 mmol of gypsum 
has precipitated. After 1 or more millimoles of oxygen have been added, the PCO is much greater than atmo-

o c

spheric (10 atm). If the system is assumed to be open to the atmosphere, carbon dioxide should be included as 
one of the equilibrium phases with a target partial pressure of atmospheric, which would allow the simulated 
release of carbon dioxide to the atmosphere

Example 6.-Reaction-Path Calculations

In this example, the precipitation of phases as a result of incongruent dissolution of microcline (potassium 
feldspar) is investigated. Only a limited set of phases, microcline, gibbsite, kaolinite, and muscovite (potassium 
mica), is considered in this example. The reaction path for this set of phases was originally addressed by Helgeson 
and others (1969). In this example, the thermodynamic data for the phases (table 13, PHASES keyword) are 
derived from Robie and others (1978) and are the same as test problem 5 in the PHREEQE manual (Parkhurst and 
others, 1980).

PHREEQC can be used to solve this problem in two ways: (1) the individual intersections of the reaction 
path and the phase boundaries on a phase diagram can be calculated, or (2) the reaction path can be calculated 
incrementally. In the former approach, no knowledge of the amounts of reaction is needed, but a number of simu­ 
lations are needed to find the appropriate phase-boundary intersections. In the latter approach, only one simulation 
is needed, but knowledge of the appropriate amounts of reaction is necessary. Both approaches will be demon­ 
strated in this example. PHREEQC does not have all of the logic for a complete reaction-path program (for exam­ 
ple Helgeson and others, 1970, Wolery, 1979, Wolery and others, 1990); in particular, no automatic 
step-size-adjusting algorithm is present to determine the appropriate amount of irreversible reactions to add at each 
point along the path and to avoid overstepping phase boundaries. However, the ability to calculate directly the 
phase boundary intersections provides an efficient way to outline reaction paths on phase diagrams. Also, in the 
incremental approach, PHREEQC automatically finds the stable phase assemblage at each step, so overstepping 
phase boundaries does not cause any phase-rule violations.

Conceptually, the example considers the reactions that would occur if microcline were placed in a beaker 
and allowed to react slowly. As microcline dissolves, other phases may begin to precipitate. In this example, it is 
assumed that only gibbsite, kaolinite, or muscovite can form, and that these phases will precipitate reversibly if 
they reach saturation. Thus, phases precipitated at the beginning of the reaction may redissolve as the reaction pro­ 
ceeds.

The input data set (table 13) first defines pure water with SOLUTION input and the thermodynamics of the 
phases with PHASES input. Some of the minerals are defined in the database file (phreeqc.dat), but inclusion in 
the input data set replaces any previous definitions for the duration of the run (the database file is not altered). In 
simulation Al, SELECTED_OUTPUT is used to produce a file of all the data that appear in table 14 and that 
were used to construct figure 2. SELECTED_OUTPUT specifies that the activities of potassium ion, hydrogen 
ion, and silicic acid; the saturation indices for gibbsite, kaolinite, muscovite, and microcline; and the total amounts 
in the phase assemblage and mole transfer for gibbsite, kaolinite, muscovite, and microcline will be written to the 
file exd.pun after each calculation. The definitions for SELECTED_OUTPUT remain in effect for all simulations 
in the run, until a new SELECTED_OUTPUT data block is read, or until writing to the file is suspended with the 
identifier -selected_output in the PRINT keyword data block.

Simulation Al allows microcline to react until equilibrium with gibbsite is reached. This is set up in 
EQUILIBRIUM_PHASES input by specifying equilibrium for gibbsite (saturation index equals 0.0) and an alter­ 
native reaction to reach equilibrium, KAlSi3O8 (the formula for microcline). A large amount microcline (10.0 
mol) is present to assure equilibrium with gibbsite. Kaolinite, muscovite, and microcline are allowed to precipitate 
if they become saturated, but they can not dissolve because they were given zero initial moles in the phase assem­ 
blage. The amount of reaction that is calculated in this simulation is precisely enough to reach equilibrium with 
gibbsite, possibly including precipitation of one or more of the other minerals. No gibbsite will dissolve or precip­ 
itate. Simulations A2-A4 perform the same calculations for kaolinite, muscovite, and microcline.
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Figure 2. Phase diagram for the dissolution of microcline in pure water at 25°C showing stable phase boundary intersections 
(example 6, part A) and reaction paths across stability fields (example 6, part B). Diagram was constructed using thermody- 
namic data for gibbsite, kaolinite, muscovite, and microcline (Robie and others, 1978). The log of the activity of H4SiO4 is plot­ 
ted on the x axis and the log of the ratio of potassium ion activity to hydrogen ion activity is plotted on the y axis.

Selected results for simulations A1-A4 are presented in table 14 and are plotted on figure 2 as points A, B, 
D, and F. The stability fields for the phases, which are based on the thermodynamic data, are outlined on the figure 
and are not calculated by the modeling in these simulations. From the positions of point B and D, it can be deduced 
that the reaction path should follow the gibbsite-kaolinite phase boundary to some intermediate point C before the 
path crosses the kaolinite field to point D. Similarly, there is a point E on the kaolinite-muscovite phase boundary, 
where the reaction path begins to cross the muscovite field to point F. Simulations A5 and A6 (table 13) solve for 
these two points. In simulation A5, point C is calculated by allowing microcline to dissolve to a point where kaolin­ 
ite is at saturation and is present in the phase assemblage, while gibbsite is at saturation, but not present in the phase 
assemblage. Likewise, simulation A6 solves for the point where muscovite is at saturation and present in the phase 
assemblage, while kaolinite is at saturation, but is not present in the phase assemblage. Assigning an initial amount 
of 1 mol to kaolinite in A5 and muscovite in A6 is arbitrary; the amount must be sufficient to reach equilibrium 
with the mineral.

A simpler approach to determining the reaction path is simply to react microcline incrementally, allowing 
the stable phase assemblage among gibbsite, kaolinite, muscovite, and microcline to form at each point along the 
path. The only difficulty in this approach is to know the appropriate amounts of reaction to add. From points A and 
F in table 14, microcline dissolution ranges from 0.03 to 190.88 mmol. In part B (table 13) a logarithmic range of 
reaction increments is used to define the path (solid line) across the phase diagram from its beginning at gibbsite 
equilibrium (point A) to equilibrium with microcline (point F). However, the exact locations of points A through 
F will not be determined with the arbitrary set of reaction increments that are used in part B. The reaction path 
calculated by part B is plotted on the phase diagram in figure 2 with points A through F from part A included in 
the set of points.
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Example 7.-Gas-Phase Calculations

This example demonstrates the capabilities of PHREEQC to model the appearance and evolution of a 
fixed-pressure multicomponent gas phase a bubble. Gas-liquid reactions can be modeled in two ways with PHRE­ 
EQC: a gas can react to maintain a fixed partial pressure using EQUILIBRIUM_PHASES keyword, or a 
fixed-total-pressure, multicomponent gas phase can be modeled using the GAS_PHASE keyword. Conceptually, 
the difference between the two approaches depends on the size of the gas reservoir. If the reservoir is essentially 
infinite, as in the atmosphere and unsaturated zone, then fixing the partial pressure of a gas is appropriate. If the 
reservoir is finite, as in gas bubbles in estuarine and lake sediments, then fixing the total pressure of the gas phase 
is appropriate. Here, the GAS_PHASE keyword is used to model the decomposition of organic matter in pure 
water, with the assumption that only carbon and nitrogen are released by the decomposition reaction. With no other 
electron acceptors available in pure water, the pertinent microbiological decomposition reaction is methanogene- 
sis. The carbon and nitrogen released by organic decomposition are assumed to react to redox and gas-solution 
equilibrium. Aqueous carbon species are defined for two valence states, carbon(+4) and carbon(-4) (methane); no 
intermediate valence states of carbon are defined. Aqueous nitrogen may occur in the +5, +3, 0, and -3 valence 
states. The gases considered are carbon dioxide (CO2), methane (CH4), nitrogen (N2), and ammonia (NH3 ).

The initial water for this example is defined to be a ground water in equilibrium with calcite at a partial pres­ 
sure of carbon dioxide of 10 . Pure water is defined with the SOLUTION keyword by using defaults for all val­ 
ues (pH = 7, pe = 4, temperature = 25 C); calcite and carbon dioxide are defined with EQUILIBRIUMJPHASES; 
and SAVE is used to save the equilibrated solution (table 15). The organic decomposition reaction with a carbon 
to nitrogen ratio of approximately 15:1 is added irreversibly to this solution in increments ranging from 1 to 1000 
mmol (REACTION keyword). A gas phase, which initially has no moles present, is allowed to form if the sum of 
the partial pressures exceeds 1.1 atm (GASJPHASE keyword); only CO2 , CH4, N2 , and NH3 are allowed to occur
in the gas phase. SELECTED_OUTPUT is used to print to a file (exJ.puri) the partial pressures and the number 
of moles in the gas phase of each gas at each step of the reaction.

Table 15. Input data set for example 7

TITLE Example 7.--Organic decomposition and bubble formation 
SOLUTION 1 
EQUILIBRIUM_PHASES 1

Calcite
CO2(g) -1.5 

SAVE solution 1 
SELECTED_OUTPUT

-file ex?.pun
-si C02(g) CH4(g) N2(g) NH3(g)
-gas C02(g) CH4(g) N2(g) NH3(g) 

END
USE solution 1 
GAS_PHASE 1

-pressure 1.1
CO2(g) 0.0
CH4(g) 0.0
N2(g) 0.0
NH3(g) 0.0 

REACTION 1
(CH20)N0.07 1.0
1. 2. 3. 4. 8. 16. 32 64. 125. 250. 500. 1000. mmol 

END

The gas phase appears between 2 and 3 mmol of reaction have been added (fig. 3). Initially the gas is more 
than 90 percent CH4 and less than 10 percent CO2 , with only minor amounts of N2 and NH3 (NH3 partial pressures

>-j

were less than 10 atm throughout the reaction calculation). The volume of gas produced ranges from less than 1 
mL at 3 mmol of reaction to more than 20 L after 1 mol of reaction. After 1 mol of reaction is added, nearly all of 
the carbon and nitrogen is in the gas phase.
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Figure 3. Composition of the gas phase during decomposition of organic matter with a composition of CH 2ON0.o7 in pure 
water. The gas phase appears between 2 and 3 millimoles of the organic decomposition reaction. Partial pressure of ammonia 
gas is less than 10"7 atmospheres throughout (not shown).

Example 8.--Surface Complexation

PHREEQC contains three surface-complexation models: (1) By default, an electrostatic double layer model 
is used with no explicit calculation of the diffuse-layer composition. (2) Alternatively, an electrostatic double layer 
model with explicit calculation of the diffuse-layer composition may be used (-diffuse_layer). (3) Finally, a 
non-electrostatic model may be selected (-no_edl). The electrostatic model is the diffuse double-layer model 
described in Dzombak and Morel (1990) with the following modifications: (1) surfaces may have more than two 
types of binding sites, (2) surface precipitation is not included, and (3) optionally, an alternative formulation for 
the charge-potential relationship, modified from Borkovec and Westall (1983), that explicitly calculates the com­ 
position of the diffuse layer can be employed (-diffuse_layer). The non-electrostatic model does not consider the 
effects of the development of surface charge on the formation of surface complexes, with the result that surface 
complexes are treated mathematically very much like aqueous complexes without activity coefficient terms.

The following example of the diffuse double-layer model is taken from Dzombak and Morel (1990, chapter 
8) with no explicit calculation of the diffuse-layer composition. Zinc sorption on hydrous ferric oxide is simulated 
assuming two types of sites, weak and strong, are available on the oxide surface. Protons and zinc ions compete 
for the two types of binding sites, and equilibrium is described by mass-action equations. Activities of the surface 
species depend on the potential at the surface, which is due to the development of surface charge. The example 
considers the variation in sorption of zinc on hydrous ferric oxides as a function of pH for low zinc concentration
(10~7 m) and high zinc concentration (10~4 m) in 0.1 m sodium nitrate electrolyte.

Surface-complexation reactions derived from the summary of Dzombak and Morel (1990) are contained in 
the default database files for PHREEQC. However, many of the intrinsic stability constants used in this example 
differ from the values in the default database files and definitions are thus included in the input file (table 16). Three 
keyword data blocks are required to define surface-complexation data for a simulation:
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SURFACE_MASTER_SPECIES, SURFACE_SPECIES, and SURFACE.The 
SURFACE_MASTER_SPECIES data block in the default database files selects surface species to be the master 
species for the binding sites of "Hfo" (hydrous ferric oxides). The name of a binding site is composed of a name 
for the surface, "Hfo" in the default database files, optionally followed by an underscore and a lowercase binding 
site designation,"Hfo_w" and "Hfo_s" for "weak" and "strong" in the database files. The underscore notation is 
necessary only if two or more binding sites exist for a single surface. The notation allows a mole-balance equation 
to be derived for each of the binding sites (Hfo_w and Hfo_s, in this example) and a single charge-potential or 
charge-balance equation for the surface (Hfo, in this example). Thus, the charge that develops on each binding site 
will enter into a single charge-potential or charge-balance equation for the surface.

The chemical reactions and thermodynamic constants for all surface species, including the surface master 
species, are defined with the SURFACE_SPECIES data block. The mass-action equations taken from Dzombak 
and Morel (1990, p. 259) are given in the input data set (table 16), under keyword SURFACE_SPECIES. Note 
the activity coefficient or potential term is not included as part of the mass-action expression; the potential term is 
added internally by the program.

The composition and other characteristics of an assemblage of surfaces is defined with the SURFACE data 
block. The composition of multiple surfaces, each with multiple binding sites, may be defined within the data 
block. For each surface, the number of moles of sites, the initial composition of the surface, and the surface area 
must be defined. Although the composition of the surfaces may change due to reactions, the number of surfaces, 
moles of binding sites, and surface areas remain fixed until the end of the run or until the entire assemblage is rede­ 
fined. In this example, one surface (Hfo) with two binding sites (Hfo_w and Hfo_s) is defined. The number of
moles of strong binding sites, Hfo_s, is 5x10~6 sites and the number of moles of weak binding sites, Hfo_w, is 
2x10~4 . Initially, all surface sites are in the uncharged, protonated form. The surface area for the entire surface, Hfo,

r\

must be defined with two numbers, the area per mass of surface material (600 m /g, in this example) and the total 
mass of surface material (0.09 g, in this example). The use of these two numbers to define surface area is tradi­ 
tional, but only the product of these numbers is used in the model to obtain the surface area; the individual numbers 
are not used separately. Surface area may be entered with the data for any of the binding sites for a surface; in this 
example, the surface area is entered with Hfo_s.

To complete the definition of the initial conditions for the simulations, two sodium nitrate solutions are 
defined with differing concentrations of zinc (SOLUTION 1 and 2 data blocks). A pseudo-phase, "Fix_H+" is 
defined with the PHASES data block. This phase is used in each of the reaction simulations to adjust pH to fixed 
values. Finally, the line "USE surface none" eliminates an implicitly defined reaction calculation for the first sim­ 
ulation. By default, if a SOLUTION and SURFACE data block are defined in a simulation, then the first solution 
defined in the simulation (SOLUTION 1 in this example) and the first surface defined in the simulation are put 
together (possibly with other assemblages and a gas phase) and allowed to equilibrate. The USE keyword with 
"surface none" removes the surface from any reaction calculated for the simulation, with the effect that no reaction 
calculation is performed because nothing is defined with which the solution may react. (The same logic applies to 
the EXCHANGE, GAS_PHASE, EQUILIBRIUM_PHASES, REACTION, REACTIONJTEMPERATURE 
keywords that are defined within the input for a simulation. A reaction step is implicitly defined whenever a solu­ 
tion or mixture is defined in the simulation and any one of these keyword data blocks also is defined in the same 
simulation.).

The remaining simulations in the input data set equilibrate the surface assemblage with either solution 1 or 
solution 2 for pH values that range from 5 to 8. Each of the simulations uses the phase "Fix_H+" in an 
EQUILIBRIUM_PHASES keyword data block with varying saturation indices to adjust pH. The reaction NaOH 
is added or removed from each solution to produce a specified saturation index which, by the definition of the reac­ 
tion for "Fix_H+" is numerically equal to the log of the hydrogen activity, or negative pH. Note that, although it 
is possible to attain the desired pH in all of these simulations, a pH that is sufficiently low will cause the program 
to fail because a very low pH can not be reached even by removing all of the sodium in solution.

The results of the simulation are plotted on figure 4 and are consistent with the results shown in Dzombak 
and Morel (1990, figure 8.9). Zinc is more strongly sorbed at high pH values than at low pH values. In addition, at 
low concentrations of zinc, the strong binding sites outcompete the weak binding sites for zinc over the entire pH 
range, and at high pH most of the zinc resides at the strong binding sites. At larger zinc concentrations, the strong 
binding sites predominate only at low pH. Because all the strong binding sites become filled at higher pH, most of 
the zinc resides at the more numerous weak binding sites at high pH and large zinc concentrations.
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Figure 4. Distribution of zinc between the aqueous phase and strong and weak surface sites of hydrous iron oxide as a func­ 
tion of pH for total zinc concentrations of 10~7 and 10~4 molal.

Example 9.-Advective Transport and Cation Exchange

The following example of advective transport in the presence of a cation exchanger is derived from a sample 
calculation for the program PHREEQM (Appelo and Postma, 1993, example 10.13, p. 431-434). The chemical 
composition of the effluent from a column containing a cation exchanger is simulated. Initially the column contains 
a sodium-potassium nitrate solution in equilibrium with the cation exchanger. The column is then flushed with 
three pore volumes of calcium chloride solution. Calcium, potassium, and sodium react to equilibrium with the 
exchanger at all times. Dispersion is included in the calculations of Appelo and Postma, but PHREEQC lacks the 
capability to calculate dispersive effects.

The input data set is listed in table 17. The column has 40 cells to be consistent with one of the runs described 
by Appelo and Postma (1993). The solution filling each of the 40 cells of the column is defined with the SOLU­ 
TION 1-40 keyword data block. The infilling solution for the column must be defined as SOLUTION 0, and it is
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a calcium chloride solution. The amount and composition of the exchanger in each of the 40 cells is defined by the 
EXCHANGE 1-40 keyword data block. The number of exchange sites in each cell is 1.1 mmol, and the initial 
composition of the exchanger is calculated such that it is in equilibrium with solution 1. Note that the initial 
exchange composition is calculated assuming that the composition of solution 1 is fixed, that is, the composition 
of solution 1 is not changed during the initial exchange calculation.

Table 17. Input data set for example 9

TITLE Example 9.--Transport and ion exchange 
SOLUTION 0 CaC12

units mmol/kgw
pH 7.0 charge
pe 8
temp 25.0
Ca 0.6
Cl 1.2 

SOLUTION 1-40 Initial solution for column
units mmol/kgw
pH 7.0 charge
pe 8
temp 25.0
Na 1.0
K 0.2
N(5) 1.2 

EXCHANGE 1-40
equilibrate 1
X 0.0011 

USE exchange none 
TRANSPORT

-cells 40
-shifts 120 

PRINT
-reset false 

SELECTED_OUTPUT
-file ex9.pun
-totals Na Cl K Ca 

END

The number of cells to be used in the transport simulation and the number of times to shift the contents of 
each cell to the next cell are defined with the TRANSPORT keyword data block. In this example, 40 cells are used. 
This requires that 40 solutions, numbered 1 through 40, be defined; the number of the solution corresponds to the 
number of the cell in a column. In this example, all cells contain the same solution, but this is not required. Solu­ 
tions could be defined differently for each cell and could be defined by reactions in the current or preceding simu­ 
lations (using the SAVE keyword). The definition of a solution for each cell is mandatory, but the definition of an 
exchanger for each cell is optional. The number of the exchanger corresponds to the number of the cell in a column, 
and if an exchanger is defined for a cell number, then it is used in the calculations for that cell. In this example, an 
identical exchanger is defined for each cell.

The USE data block (table 17) is necessary to eliminate an implicitly defined reaction after the initial solu­ 
tion and initial exchange composition have been calculated. (Such a reaction step would not be an error, but the 
results would indicate no net reaction because the exchanger is already in equilibrium with last solution defined.) 
The PRINT keyword is used to eliminate all printing to the output file. The SELECTED_OUTPUT data block 
specifies that the total dissolved concentrations of sodium, chloride, potassium, and calcium will be written to the 
file ex9.pun. The selection of the master species for exchanger X occurs in the default database file in the 
EXCHANGE_MASTER_SPECIES data block; the exchange reactions are defined by the 
EXCHANGE_SPECIES data block of the default database file.

The results for example 9 are shown by the curves in figure 5. Also shown are the results of PHREEQM 
simulations for the same problem, except that dispersion was included in the PHREEQM calculations. Only the 
points from the PHREEQM calculations that differ from the PHREEQC results are included on figure 5. The main

EXAMPLES 115



PORE VOLUMES

Figure 5. Transport simulation of the replacement of sodium and potassium on a cation exchanger by inflowing calcium 
chloride solution. Lines are concentrations at the outlet of the column as calculated with PHREEQC, symbols are shown for 
PHREEQM calculations (Appelo and Postma, 1993) where they differ from the results of PHREEQC: circles for Na 
(sodium), diamonds for Cl (chloride), squares for K (potassium) and triangles for Ca (calcium).

features of the calculations are the same between the two models. Chloride is a conservative solute and begins to 
be eluted at about one pore volume. The sodium initially present in the column, exchanges with the incoming cal­ 
cium and is eluted until it is exhausted at about 1.5 pore volumes. Because potassium exchanges more strongly 
than sodium (larger log K in the exchange reaction), potassium is released after sodium. Finally, when all of the 
potassium has been released, the concentration of calcium has increased to a steady-state value equal to the con­ 
centration in the infilling solution.

The differences between the two model simulations are due entirely to the inclusion of dispersion in the 
PHREEQM calculations. The breakthrough curve for chloride in the PHREEQM calculations coincides with an 
analytical solution to the advection dispersion equation for a conservative solute (Appelo and Postma, 1993, p. 
433). Without dispersion, PHREEQC models the advection of chloride as a square-wave front of chloride concen­ 
tration. The characteristic smearing effects of dispersion are absent in the fronts calculated for the other elements 
as well, although some curvature exits due to the effects of the exchange reactions.

Example 10.-Advective Transport, Cation Exchange, Surface Complexation, and Mineral 
Equilibria

This example uses the phase-equilibrium, cation-exchange, and surface-complexation reaction capabilities 
of PHREEQC in combination with transport capabilities to model the evolution of water in the central Oklahoma 
aquifer. The geochemistry of the aquifer has been described in Parkhurst, Christenson, and Breit (1993). Two pre-
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dominant water types occur in the aquifer, a calcium magnesium bicarbonate water with pH in the range of 7.0 to 
7.5 in the unconfmed part of the aquifer and a sodium bicarbonate water with pH in the range of 8.5 to 9.2 in the 
confined part of the aquifer. In addition, marine-derived sodium chloride brines exist below the aquifer and pre­ 
sumably in fluid inclusions and dead-end pore spaces within the aquifer. Large concentrations of arsenic, selenium, 
chromium, and uranium occur naturally within the aquifer. Arsenic is associated almost exclusively with the 
high-pH, sodium bicarbonate water type.

The conceptual model for the calculation of this example assumes that brines initially filled the aquifer. The 
aquifer contains calcite, dolomite, clays with cation exchange capacity, and hydrous ferric oxide surfaces, and ini­ 
tially, the cation exchanger and surfaces are in equilibrium with the brine. The aquifer is assumed to be recharged 
with rain water that is concentrated by evaporation and equilibrates with calcite and dolomite in the vadose zone. 
This water then enters the saturated zone and reacts with calcite and dolomite in the presence of the cation 
exchanger and hydrous ferric oxide surfaces.

The calculations use the advective transport capabilities of PHREEQC with just a single cell representing 
the saturated zone. A total of 200 pore volumes of recharge water are advected into the cell and, with each pore 
volume, the water is equilibrated with the minerals, cation exchanger, and the surfaces in the cell. The evolution 
of water chemistry in the cell represents the evolution of the water chemistry at a point within the saturated zone 
of the aquifer.

Initial conditions

Parkhurst, Christenson, and Breit (1993) provide data from which it is possible to estimate the number of 
moles of calcite, dolomite, and cation exchange sites in the aquifer per liter of water. The weight percent ranges 
from 0 to 2 percent for calcite and 0 to 7 percent for dolomite, with dolomite much more abundant. Porosity is 
stated to be 0.22. Cation exchange capacity for the clay ranges from 20 to 50 meq/100 g, with average clay content 
of 30 percent. For these example calculations, calcite was assumed to be present at 0.1 weight percent and dolomite 
at 3 weight percent, which, assuming a rock density of 2.7, corresponds to 0.1 mol/L for calcite and 1.6 mol/L for 
dolomite. The number of cation exchange sites was estimated to be 1.0 eq/L.

The amount of arsenic on the surface was estimated from sequential extraction data on core samples (Mosier 
and others, 1991). Arsenic concentrations in the solid phases generally ranged from 10 to 20 ppm., which corre­ 
sponds to 1.3 to 2.6 mmol/L arsenic. The number of surface sites were estimated from the amount of extractable 
iron in sediments, which ranged from 1.6 to 4.4 percent (Mosier and others, 1991). A content of 2 percent iron for 
the sediments corresponds to 3.4 mol/L of iron. However, most of the iron is in goethite and hematite, which have 
far fewer surface sites than hydrous ferric oxides. The fraction of iron in hydrous ferric oxides was arbitrarily 
assumed to be 0.1. Thus, a total of 0.34 mol of iron was assumed to be in hydrous ferric oxides, and using a value 
of 0.2 for the number of sites per mole of iron, a total of 0.7 mol of sites per liter was used in the calculations. A 
gram formula weight of 89 was used to estimate that the mass of hydrous ferric oxides was 30 g/L. The specific

r\

surface area was assumed to be 600 m /g.

The brine that initially fills the aquifer was taken from Parkhurst, Christenson, and Breit (1993) and is given 
as solution 1 in the input data set for this example (table 18). The pure-phase assemblage containing calcite and 
dolomite is defined with the EQUILIBRIUM_PHASES 1 keyword. The number of cation exchange sites is 
defined with EXCHANGE 1 keyword and the number of surface sites are defined with SURFACE 1 keyword. 
Both the initial exchange and the initial surface composition are determined by equilibrium with the brine. The 
concentration of arsenic in the brine was determined by trial and error to give a total of approximately 2 mmol 
arsenic on the surface complexer, which is consistent with the sequential extraction data. The default data base, 
wateq4f.dat, was used for all thermodynamic data, with the exception of two surface reactions. After initial runs it 
was determined that much better results were obtained for arsenic concentrations if the calcium and magnesium 
surface complexation reactions were removed. The SURFACE_SPECIES data block was used to decrease the 
equilibrium constant for each of these two reactions by about 10 orders of magnitude. This effectively eliminated 
surface complexation reactions for calcium and magnesium. (Alternatively, these reactions could be removed from 
the default data base.) This is justified if cations and anions do not actually compete for the same sites.
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Table 18. Input data set for example 10

TITLE Example 10.--Transport with equilibrium_phases
exchange, and surface reactions 

SOLUTION 1 Brine 
pH

02 (g) -0.7

charge

1.6 
0.1

600.

5.713
pe 4.0
temp 25.
units mol/kgw
Ca .4655
Mg .1609
Na 5.402
Cl 6.642
C .00396
S .004725
As .05 umol/kgw 

EQUILIBRIUM_PHASES 1
Dolomite 0.0
Calcite 0.0 

EXCHANGE 1
-equil with solution 1 
X 1.0 

SURFACE 1
-equil solution 1

# assumes 1/10 of iron is HFO
Hfo_w 0.07 

END 
SOLUTION 0 20 x precipitation

pH 4.6
pe 4.0 02(g) -0.7
temp 25.
units mmol/kgw
Ca .191625
Mg .035797
Na .122668
Cl .133704
C .01096
S .235153 charge 

EQUILIBRIUM_PHASES 0
Dolomite 0.0 1.6
Calcite 0.0 0.1
C02(g) -1.5 10. 

SAVE solution 0 
END 
SURFACE_SPECIES

Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+
# log_k -4.6 

log_k -15. 
Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+

# log_k -5.85
log_k -15. 

TRANSPORT
-cells 1
-shifts 200 

SELECTED_OUTPUT
-file exlO.pun
-totals Ca Mg Na Cl C S As 

END

30.
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Recharge water

The water entering the saturated zone of the aquifer was assumed to be in equilibrium with calcite and dolo­ 
mite at a vadose-zone f Cn °f 10   The second simulation in the input set generates this water composition and

stores it as solution 0 (table 18).

Transport calculations

The TRANSPORT keyword (table 18) provides the necessary information to advect the recharge water into 
the cell representing the saturated zone. A total of 200 shifts is specified, which is equivalent to 200 pore volumes 
because there is only a single cell in this calculation.

The results of the calculations are plotted on figure 6. During the initial 5 pore volumes, the large concentra­ 
tions of sodium, calcium, and magnesium decrease such that sodium is the dominant cation and calcium and mag­ 
nesium concentrations are small. The pH increases to more than 9.0 and arsenic concentrations increase to more 
than 5 |imol/kg water. Over the next 45 pore volumes the pH gradually decreases and the arsenic concentrations 
decrease to negligible concentrations. At about 100 pore volumes, the calcium and magnesium become the domi­ 
nant cations and the pH stabilizes at the pH of the infilling recharge water.

-1 I 1 I- -i  i  i  r ~i  i  i  r ~i  i  r -i  i  i  r

o 
o

-4

-6

~i  i  i  r

CALCIUM
    MAGNESIUM
    SODIUM

I I   I   U I I I I

o 25 50 150 175 20075 100 125 

PORE VOLUME OR SHIFT NUMBER

Figure 6. Transport simulation of the chemical evolution of ground water due to calcium magnesium bicarbonate water inflow 
to an aquifer initially containing a brine, calcite and dolomite, a cation exchanger, and a surface complexer containing arsenic. 
Middle plot shows arsenic concentration in micromoles per kilogram of water.
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The transport calculations produce three types of water in the aquifer, the initial brine, a sodium bicarbonate 
water, and a calcium and magnesium bicarbonate water, which are similar to the observed water types in the aqui­ 
fer. The pH values are also consistent with the observations, although the peak near pH 9.5 is slightly too high. 
Sensitivity calculations indicate that the maximum pH depends on the amount of exchanger present. Decreasing 
the number of cation exchange sites decreases the maximum pH. Arsenic concentrations are also higher than the 
maximum values observed in the aquifer, which are in the range of 1 to 2 (imol/kg water. Lower maximum pH 
values would produce lower maximum arsenic concentrations. The stability constant for the surface complexation 
reactions have been taken directly from the literature; a minor decrease in the log K for the predominant arsenic 
complexation reaction would tend to decrease the maximum arsenic concentration as well. In conclusion, the 
model results, which were based largely on measured values and literature thermodynamic data provide a satisfac­ 
tory explanation of the variation in major ion chemistry, pH, and arsenic concentrations within the aquifer.

Example 11.-Inverse Modeling

NETPATH (Plummer and others 1991, 1994) and PHREEQC are both capable of performing inverse-mod­ 
eling calculations. NETPATH has two advantages relative to PHREEQC: (1) NETPATH provides a thorough treat­ 
ment of isotopes, including isotopic mole balance, isotope fractionation, and carbon-14 dating, whereas 
PHREEQC has no built-in isotope-modeling capabilities, and (2) NETPATH provides a completely interactive 
environment for data entry and model development, whereas PHREEQC is a batch-oriented program. The major 
advantage of PHREEQC relative to NETPATH is the capability to include uncertainties in the analytical data that 
are used in the calculation of inverse models. This capability produces more robust inverse models that are less 
susceptible to large differences in results due to small changes in input data. Another advantage of PHREEQC is 
that any set of elements may be included in the inverse-modeling calculations, whereas NETPATH is limited to a 
selected, though relatively comprehensive, set of elements.

This example repeats the inverse modeling calculations of the chemical evolution of spring-water composi­ 
tions in the Sierra Nevada that are described in a classic paper by Garrels and Mackenzie (1967). The same exam­ 
ple is described in the manual for the inverse-modeling program NETPATH (Plummer and others, 1991 and 1994). 
The example uses two spring-water compositions, one from an ephemeral spring, which is assumed to be less 
chemically evolved, and one from a perennial spring, which is assumed to be more chemically evolved. The dif­ 
ferences in composition between the ephemeral and perennial spring are assumed to be due to reactions between 
the water and the minerals and gases it contacts. The object of inverse modeling in this example is to find sets of 
minerals and gases that, when reacted in appropriate amounts, quantitatively account for the differences in com­ 
position between the solutions.

The analytical data for the two springs are given below:

[Analyses in millimoles per liter from Garrels and Mackenzie (1967)]

Ephemeral spring

Perennial spring

PH

6.2

6.8

SiO2

0.273

.410

Ca2+

0.078

.260

Mg2+

0.029

.071

Na+

0.134

.259

K+

0.028

.040

HCO3-

0.328

.895

so42-

0.010

.025

cr

0.014

.030
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The chemical compositions of minerals and gases postulated to react by Garrels and Mackenzie (1967) are 
as follows:

[Mole transfer in millimoles per kilogram water, positive numbers indicate dissolution and negative numbers indicate precipitation]

Phase

"Halite"

"Gypsum"

Kaolinite

Ca-Montmorillonite

CO2gas

Calcite

Silica

Biotite

Plagioclase

Composition

NaCl

CaSO4 2H2O

Al2 Si2O5(OH)4

Ca0. 17Al2 . 33 Si3.67010(OH)2

CO2

CaCO3

SiO2

KMg3AlSi 3O 10(OH)2

Nao.62Cao.38A1 1.38Si2.62°8

Mole transfer

0.016

.015

-.033

-.081

.427

.115

.0

.014

.175

The keyword INVERSE_MODELING is used to define all of the characteristics of the inverse-modeling 
calculations, including the solutions and phases to be used, the mole-balance equations to be included, the uncer­ 
tainties to be used, whether all or only "minimal" models will be printed, and whether ranges of mole transfer that 
are consistent with the uncertainties will be calculated. A series of identifiers (sub-keywords preceded by a hyphen) 
are used to specify the characteristics of the inverse model. The input data set for this example is given in table 19.

The identifier -solutions selects the solutions to be used by solution number. Two or more solution numbers 
must be listed after the identifier. If only two solution numbers are given, the second solution is assumed to evolve 
from the first solution. If more than two solution numbers are given, the last solution listed is assumed to evolve 
from a mixture of the preceding solutions. The solutions to be used in inverse modeling are defined in the same 
way as any solutions used in PHREEQC models. Usually the analytical data are entered in a SOLUTION keyword 
data block, but solutions defined by reaction calculation in the current or previous simulations may also be used.

The -uncertainty identifier sets the default uncertainty for each analytical datum. In this example a frac­ 
tional uncertainty of 0.025 (2.5 percent) is assumed for all of the analytical data except pH. By default, the uncer­ 
tainty in pH is 0.05 unit. The uncertainty for pH and any datum for any of the solutions can be set explicitly to a 
fractional value or an absolute value (in moles; equivalents for alkalinity) using the -balances identifier.

The phases to be used in the inverse-modeling calculations are defined with the -phases identifier. In addi­ 
tion, this identifier can be used to specify any phases that only dissolve or only precipitate. In this example, kaolin- 
ite, montmorillonite, and chalcedony (SiC^) are required to precipitate only. This means that kaolinite will be 
precipitating (negative mole transfer) in any model that contains the phase kaolinite; likewise for montmorillonite 
and chalcedony. Similarly, biotite and plagioclase are required to dissolve (positive mole transfer) if they are 
present in an inverse model.

All of the phases used in inverse modeling must be defined in PHASES or EXCHANGE_SPECIES key­ 
word data blocks, either in the database file or the input file. Thus, all phases defined in the default database file, 
phreeqc.dat or \vateq4f.dat, are available for use in inverse modeling. Halite, biotite, and plagioclase are not in the 
default database file phreeqc.dat and so they are defined explicitly in the PHASES data block in the input data set. 
For simplicity, the log K's are set to zero for these phases, which does not affect inverse modeling; however, the 
saturation indices calculated for these phases will be spurious. The formula for plagioclase has been altered slightly 
from that in the previous table to achieve an exactly charge-balanced reaction. All phases used in inverse modeling 
must have a charge-balanced reaction. This requirement is due to the inclusion of a charge balance constraint for 
each solution. Each solution is adjusted to charge balance for each model by adjusting the concentrations of the 
elements within their uncertainty limits. (If a solution can not be adjusted to charge balance using the given uncer­ 
tainties, the solution will be noted in the output and no models will be found.) Because all of the solutions are
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Table 19. Input data set for example 11

TITLE Example 11. --Inverse modeling of Sierra springs 
SOLUTION 1

-units mmol/1
pH 6.2
Si 0.273
Ca 0.078
Mg 0.029
Na 0.134
K 0.028
Alkalinity 0.328
S(6)
Cl

SOLUTION 2
-units
PH
Si
Ca
Mg
Na
K

0.010
0.014

mmol/1
6.8
0.41
0.26
0.071
0.259
0.04

Alkalinity
S(6)
Cl

0.895
0.025
0.03

INVERSE_MODELING 1
-solutions 1 2
-uncertainty 0.025
-range
-phases

Halite
Gypsum
Kaolinite
Ca-montmorillonite
C02(g)
Calcite
Chalcedony
Biotite
Plagioclase

-balance
Ca 0.05

precip 
precip

precip
dissolve
dissolve

0.025
PHASES 

Halite

Biotite

NaCl = Na+ + Cl- 
log_k 0 . 0

KMg3AlSi3010(OH)2 
log_k 0.0

6H+ 4H20 = K+ + 3Mg+2 + Al(OH)4- 3H4Si04

Plagioclase
Na0.62Ca0.37All.38Si2 .62508 + 5.5 H+ + 2.5H20 = \

0.62Na+ + 0.37Ca+2 + 1.38A1+3 + 2.625H4Si04
log_k 0 . 0 

END
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charge balanced in the modeling process, phases must also be charge balanced or they will not be included in any 
models. Note that the reaction for plagioclase (table 19) is on two lines, but the program interprets the two lines to 
be a single logical line because of the backslash "\" at the end of the first of these two lines.

The -range identifier indicates that, in addition to finding all of the inverse models, each model that is found 
will be subjected to additional calculations to determine the range of values that each mole transfer may have, 
within the constraints of the uncertainties.

By default, every inverse model includes mole-balance equations for every element in any of the phases 
included in -phases (except hydrogen and oxygen). If mole-balance equations are needed for elements not 
included in the phases, that is for elements with no source or sink (conservative mixing for example), the -balances 
identifier can be used to include those elements in the formulation of the inverse-modeling equations (see example 
12). In addition, the -balances identifier can be used to specify uncertainties for an element in each solution. For 
demonstration purposes in the example, the uncertainty for calcium is set to 0.05 (5 percent) in solution 1 and 0.025 
(2.5 percent) in solution 2. In addition to the mole-balance equations, the following equations are included for 
every inverse model: charge balance for each solution, electron balance for the system, and water balance for the 
system.

The unknowns in these equations include the mole transfers for each phase, the mole transfers of redox reac­ 
tions, and the uncertainty unknowns for each element in each solution (excluding hydrogen and oxygen). An 
uncertainty unknown is included for each solution for alkalinity. Finally, an uncertainty unknown is included for 
pH for each solution containing carbon(+4).

Results for the two inverse models found in this example are shown in table 20. The results begin with a 
listing of three columns for each solution that is part of the model. All columns are values in mol/kg water. The 
first column contains the original analytical data for the solution. The second column contains any adjustments to 
the analytical data calculated for the model. These adjustments must be within the specified uncertainties. The third 
column contains the revised analytical data for the solution, which is equal to the original data plus any adjustment.

After the listing of the solutions, the relative fractions of each solution in the inverse model are printed. With 
only two solutions in the model, normally the fraction for each solution will be 1 .0. If more than two solutions are 
included in the inverse model, normally the sum of the fractions of the solutions, excluding the last solution, will 
equal 1 .0. The fractions are actually derived from a mole-balance on water, so if hydrated minerals consume or 
produce significant amounts of water or evaporation is modeled (see example 12), the numbers may not sum to 
1 .0. The second and third column for the block giving solution fractions are the minimum and maximum fractional 
values that can be attained within the specified uncertainties. These two columns are nonzero only if the -range 
identifier is used. In this example, all fractions are identically 1 .0; the amount of water from gypsum dissolution 
is too small to affect the four significant figures of the mixing fractions.

The next block of data in the listing contains three columns describing the mole transfers for the phases. The 
first column contains the inverse model that is consistent with the adjustments printed in the listing of the solutions. 
In this example, the adjusted solution 1 plus the mole transfers in the first column exactly equal the adjusted solu­ 
tion 2. Mole transfers that are positive indicate dissolution; mole transfers that are negative indicate precipitation. 
(Note that mole transfers of phases in reaction calculations are relative to the phase, not relative to solution: posi­ 
tive values mean an increase in the phase; negative values mean a decrease in the phase.) The second and third 
columns of mole transfers are the minimum and maximum mole transfers of each phase that are consistent with 
the specified uncertainties. These two columns are nonzero only if the -range identifier is used. These minima and 
maxima are not independent, that is, obtaining a maximum mole transfer of one phase places very strong con­ 
straints on the mole transfers for the other phases. However, the output does not show any linkages between the 
maximum value for one phase with maximum or minimum values for other phases.

No redox reactions occurred in this inverse model. If they had, the number of moles transferred between 
valence states of each element would be printed under the heading "Redox mole transfers".

m Next, the sum of each uncertainty unknown divided by its uncertainty (^^ m' q , a standardized sum of
q mm,q

residuals) and the maximum percentage adjustment to any element in any solution are printed; these two values 
apply to the model printed in the left-hand column. Finally, if no inverse model can be found with any proper subset 
of the phases, the statement "Model contains minimum number of phases" is printed.

After all models are printed, a short summary of the calculations is printed, which lists the number of models 
found, the number of minimal models found (models with a minimum number of phases), the number of infeasible
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sets of phases for which inverse models were attempted but failed, and the number of calls to the inequality equa­ 
tions solver, ell (calculation time is generally proportional to the number of calls to ell).

The results of the example show that inverse models exist using the phases suggested by Garrels and Mack­ 
enzie (1967). The main reaction is dissolution of biotite, calcite, and plagioclase, which consumes carbon dioxide; 
kaolinite and montmorillonite or kaolinite and chalcedony precipitate. The results of Garrels and Mackenzie 
(1967) fall within the range of mole transfers calculated in the first model of PHREEQC for all phases except car­ 
bon dioxide. This discrepancy is due to the fact that Garrels and Mackenzie (1967) did not account for the dissolved 
carbon dioxide in the spring waters. Garrels and Mackenzie (1967) also ignored a small discrepancy in the mole 
balance for potassium. PHREEQC accounts for this discrepancy in the adjustments to the concentrations of the 
elements. PHREEQC shows that by altering the concentrations within the specified uncertainty (2.5 percent) an 
inverse model can be found. Without making the calculations with PHREEQC including uncertainties, it is not 
obvious whether the discrepancy in potassium is significant. The results of PHREEQC are concordant with the 
results of NETPATH, except that NETPATH also must ignore the discrepancy in the potassium mole balance.

Table 21. Input data set for example 12

TITLE
Example 12.--Inverse modeling of Black Sea water evaporation
SOLUTION 1 Black Sea water

units mg/L
density 1.014
pH 8.0 # estimated
Ca 233
Mg 679
Na 5820
K 193
S(6) 1460
Cl 10340
Br 35 

SOLUTION 2 Composition during halite precipitation
units mg/L
density 1.271
pH 5.0 # estimated
Ca 0.0
Mg 50500
Na 55200
K 15800
S(6) 76200
Cl 187900
Br 2670 

INVERSE_MODELING
-solution 1 2
-uncertainties .025
-balances

Alkalinity 1.
Br
K
Mg

-phases
H2O pre 
gypsum pre 
halite pre 

PHASES 
H2O

H2O = H2O 
log_k 0.0 

Halite
NaCl = Na+ + Cl- 
log_k 1.582 

END
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Example 12.--Inverse Modeling with Evaporation

Evaporation is handled in the same manner as other heterogeneous reactions for inverse modeling. To model 
evaporation (or dilution) it is necessary to include a phase with the composition H2O. The important concept in 
modeling evaporation is the water mole-balance equation that is included in every inverse problem formulation 
(see Equations and Numerical Method for Inverse Modeling). The moles of water in the initial solutions times their 
mixing fractions plus water gained or lost by dissolution or precipitation of phases plus water gained or lost 
through redox reactions must equal the moles of water in the final solution. The equation is approximate because 
it does not include the moles of water gained or lost in homogeneous hydrolysis and complexation reactions.

This example uses data for the evaporation of Black Sea water that is presented in Carpenter (1978). Two 
analyses are selected, the initial Black Sea water and a water composition during the stage of evaporation in which 
halite precipitates. The hypothesis is that evaporation and precipitation of gypsum and halite are sufficient to 
account for the changes in water composition of all of the major ions and bromide. The input data set (table 21) 
contains the solution compositions in the SOLUTION keyword data blocks.

The INVERSEJMODELING keyword defines the inverse model for this example. Solution 2, the solution 
during halite precipitation, is to be made from solution 1, Black Sea water. Uncertainties of 2.5 percent are applied 
to all data. Water, gypsum, and halite are specified to be the potential reactants (-phases). Each of these phases 
must precipitate, that is, must be removed from the aqueous phase in any valid inverse model.

By default, mole-balance equations for water, alkalinity, and electrons are included in the inverse formula­ 
tion. In addition, mole-balance equations are included by default for all elements in the specified phases. In this 
case, calcium, sulfur, sodium, and chloride mole-balance equations are included by the default. The -balances 
identifier is used to specify additional mole-balance equations for bromide, magnesium, and potassium and to 
change the uncertainty on alkalinity to 100 percent. In the absence of alkalinity data, the calculated alkalinity of 
these solutions is controlled entirely by the choice of pH. No pH values were given and thus the alkalinities are 
unknown. For reasonable values of pH, alkalinity is a minor contributor to charge balance and no alkalinity is con­ 
tributed by the reactive phases. Thus, setting the uncertainties to 100 percent allows the alkalinity balance equation 
effectively to be ignored.

Only one model is found in the inverse calculation. This model indicates that Black Sea water (solution 1) 
must be concentrated 62 fold to produce solution 2, as shown by the fractions of the two solutions in the 
inverse-model output (table 22). Thus approximately 62 kg of water in Black Sea water is reduced to 1 kg of water 
in solution 2. Halite precipitates (13.7 mol) and gypsum precipitates (.35 mol) during the evaporation process. 
Note that these numbers of moles are relative to 62 kg of water. To find the loss per kilogram of water in Black Sea 
water, it is necessary to divide by the mixing fraction of solution 1. The result is that 54.6 mol of water, 0.0056 mol 
of gypsum, and 0.22 mol of halite have been removed per kilogram of water. (This calculation could be accom­ 
plished by making solution 1 from solution 2, taking care to reverse the constraints on minerals from precipitation 
to dissolution.) All other ions are conservative within the 2.5-percent uncertainty that was specified. The inverse 
modeling shows that evaporation and halite and gypsum precipitation are sufficient to account for all of the 
changes in major ion composition between the two solutions.
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Table 22. Selected output for example 12

Beginning of inverse modeling calculations.

Solution 1: Black Sea water
Alkalinity

Br
Ca
Cl

H(0)
K

Mg
Na

0(0)
S(-2)
S(6)

5.
4.
5.
2.
0.
4.
2.
2.
0.
0.
1.

Solution 2: Composition
Alkalinity

Br
Ca
Cl

H(0)
K

Mg
Na

0(0)
S(-2)
S(6)

Solution fractions :
Solution 1
Solution 2

Phase mole transfers:
H2O

Gypsum
Halite

1.
2.
0.
4.
0.
3.
1.
1.
0.
0.
6.

6.
1.

3.
3.
1.

280e-06
320e-04
733e-03
876e-01
OOOe+00
868e-03
754e-02
497e-01
OOOe+00
OOOe+00
499e-02

during
770e-04
629e-02
OOOe+00
170e+00
OOOe+00
179e-01
634e+00
889e+00
OOOe+00
OOOe+00
241e-01

238e+01
OOOe+00

406e+03
498e-01
372e+01

+ 0
+ 0
+ -1
+ 7
+ 0
+ 1
+ -6
+ 0
+ 0
+ 0
+ 3

halite
+ 1
+ 6
+ 0
+ 1
+ 0
+ -7
+ 4
+ -3
+ 0
+ 0
+ -1

0
0

0
0
0

.OOOe+00 =

.OOOe+00 =

.249e-04 =

.646e-04 =

.OOOe+00 =

.015e-04 =

.886e-04 =

.OOOe+00 =

.OOOe+00 =

.OOOe+00 =

.747e-04 =

precipitation
.523e-04 =
.556e-04 =
.OOOe+00 =
.042e-01 =
.OOOe+00 =
.948e-03 =
.086e-02 =
.092e-02 =
.OOOe+00 =
.OOOe+00 =
.560e-02 =

Minimum
.OOOe+00
.OOOe+00

Minimum
.OOOe+00
.OOOe+00
. OOOe+00

5
4
5
2
0
4
2
2
0
0
1

3
2
0
4
0
3
1
1
0
0
6

0
0

0
0
0

.280e-06

.320e-04

.608e-03

.884e-01

.OOOe+00

.969e-03

.685e-02

.497e-01

. OOOe+00

.OOOe+00

.536e-02

.294e-04

.695e-02

.OOOe+00

.274e+00

. OOOe+00

.100e-01

.675e+00

.858e+00

.OOOe+00

.OOOe+00

.085e-01

Maximum
.OOOe+00
.OOOe+00

Maximum
.OOOe+00
.OOOe+00
.OOOe+00

Redox mole transfers:

Sum of residuals:
Maximum fractional error in element concentration:

Model contains minimum number of phases.

H2O
CaSO4:2H2O
NaCl

2.443e+02 
8.605e-01

Summary of inverse modeling:

Number of models found: 1
Number of minimal models found: 1
Number of infeasible sets of phases saved: 4
Number of calls to ell: 8
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Attachment A--Usting of Notation

A Temperature dependent constant in the activity coefficient equation.
As Specific surface area of surface s, m2/g.
A Ik Alkalinity contribution of master species m, eq/mol.

a Temperature dependent constant for diffuse layer surface model, 0.02931 [(L/mol) 1/2 C m"2] at 25°C. 
a Mole transfer of phase/? into (positive) or out of (negative) solution, mol.

a Mixing fraction for aqueous phase q.

a Aqueous transfer of an element between valence states, mol.

aAlk Activity of the master species for alkalinity.

a £ Activity of the master species for exchanger e.

ai Ion size parameter for aqueous species / for extended Debye-Huckel equation or simply a fitted parameter

for WATEQ Debye-Hiickel equation. 
a. Activity of aqueous species /.

a i Activity of exchange species i£ . 

a . Activity of surface species iy .

am> Activity of an aqueous master species, but excluding aAlk , a + , a ., and aH o .
Me 2

a Activity of a master species, including all aqueous, exchange, and surface master species. 

a Activity of the master species for surface s.

a^ Master unknown for the surface potential of surface s, a^, =
e

B Temperature dependent constant in the activity coefficient equation. 
^Alk i Number °f equivalents of alkalinity per mole of aqueous species /.

b . Number of exchange sites of exchanger e occupied by exchange species ie .
' e

bj Debye-Hiickel fitting parameter for aqueous species /.
b Number of moles of element m in gas component g.

b . Number of moles of element m in aqueous species i.

b , . Number of moles of element m' in aqueous species /.

b . Number of moles of element m in exchange species ie .
' e

b . Number of moles of element m in surface species L.m, i s r a

bm P Number of moles of element m in phase p.
b . Number of sites of surface s occupied by surface species is .

' s
r\

P. Surface excess of aqueous species i for surface s, mol m .

y. Activity coefficient of aqueous species /, kg H^O/mol.

c. Concentration of aqueous species i used in derivation of excess quantities for diffuse-layer model, mol
m-3 . 

cm Stoichiometric coefficient of master species m in the dissolution reaction for gas component g.
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c . Stoichiometric coefficient of master species m in the association reaction for aqueous species i, 

cm i Stoichiometric coefficient of master species m in the association reaction for exchange species ie .

c   Stoichiometric coefficient of master species m in the association reaction for surface species is .
' s

cm>p Stoichiometric coefficient of master species m in the dissolution reaction for phase p.
cmr Stoichiometric coefficient of secondary master species m in redox reaction r.
&m Estimate of the error in the number of moles of an element or element valence state m in solution q

calculated in inverse modeling, mol. 
E Number of exchangers. 
e Index number for exchangers. 
8 dielectric constant for water, 78.5, unitless.

8Q dielectric permittivity of a vacuum, 8.854xlO" 12 C V" 1 m" 1 .

F Faraday constant, 96,485 Coulomb/mol. 
fAlk Alkalinity balance equation.

/ Mole-balance equation for exchanger e.

f Equation relating aqueous and gas-phase partial pressures for gas component, g.
o

fH Mole-balance equation for hydrogen.

fH Q Equation for activity of water in an aqueous solution.

/ Mole-balance equation for element or element valence state, exchanger, or surface, m.

f , Mole-balance equation for element or element valence state m, excluding alkalinity, hydrogen, and

oxygen. 
fo Mole-balance equation for oxygen.

fp Equation that sums the partial pressures of all gas components, as calculated from aqueous species.
total

f Saturation index equation for phase p. 

f Mole-balance equation for surface s.

/ Charge-balance equation for aqueous solution.

/ Charge-balance equation for surface s, used in explicit diffuse layer calculation.

/ Equation for ionic strength in an aqueous solution.

/XT, Charge-potential equation for surface s, used when diffuse layer composition is not explicitly calculated.
s

g. Ratio of concentration of aqueous species i in surface excess for surface s to concentration in the bulk

solution.
7 Total number of aqueous species. 
Ie Total number of exchange species for exchanger e.

th/ Identifies the r aqueous species.
ie Identifies the *th exchange species for exchanger e.

is Identifies the / surface species for surface s.
Kg Equilibrium constant for gas component g.
KJ Equilibrium constant for aqueous species i.
Kp Equilibrium constant for phase p.

K. Intrinsic equilibrium constant for association reaction for surface species is .
s
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|i Ionic strength.
M Total number of aqueous master species.
m Index number for master species.

m' Index number for aqueous master species, excluding H , e , H^O , and the alkalinity master species.

mj Molality of the aqueous species i, mol/kg I^O.
m^ s Surface excess of aqueous species /, mol/kg H2O.

v valence of a symmetric electrolyte.
N Number of aqueous species.

N e Number of exchange species for exchanger e.

N Number of gas components in the gas phase.
o

N Total number of moles of gas in the gas phase.

N Number of phases in the phase assemblage.

NS Number of surface species for surface s.

n Number of moles of gas component g in the gas phase.
o

n . Number of moles of aqueous species / in the system.

n . Number of moles of aqueous species i the diffuse layer of surface s.
l<) S

n Number of moles of exchange species i in the system.

n. Number of moles of surface species is in the system.

n Number of moles of phase p in the phase assemblage. 

P Partial pressure of gas component g, atm.
o

^ total Total pressure in the gas phase, atm.

p Index number for phases in phase assemblage.
*¥s Surface potential for surface s, V.
Q Number of aqueous solutions.
q Index number for an aqueous solution in a set of aqueous solutions.
R Gas constant, kJ mol" * °K~ * .

r\

Gs Surface charge density for surface s, C/m .
S Number of surfaces.
s Index number for surfaces.
Ss Mass of surface s, g.
SIp Saturation index for phase p.
SI Specified target saturation index for phase p.

T Temperature, °K.
T^ik Total number of equivalents of alkalinity in solution.
Te Total number of equivalents of exchange sites for exchanger e.
Tm Total quantity of m, an element, element valence, exchanger site, surface site, or alkalinity, mol or for

alkalinity, eq. 
T , Total quantity of a dissolved element or element valence state excluding alkalinity, hydrogen, oxygen, and

electrons, mol. 
Tm q Total number of moles of an element, element valences, or alkalinity, m, in solution q, mol or for

alkalinity, eq. 
Ts Total number of equivalents of surface sites for surface s.
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Tz Charge imbalance for the system during reaction and transport calculations, eq.
Tz <e Charge imbalance for the exchanger e, eq.
Tzq Charge imbalance for the aqueous phase q, eq.
Tz s Charge imbalance for the surface s, eq.
ts thickness of diffuse layer for surface s, m.
u Uncertainty assigned to element m in solution q, mol.

Waq Mass of water in the aqueous phase, excluding any water in diffuse layer of surfaces, kg.
^bulk Total mass of water in the system, includes aqueous phase and water in the diffuse layer of surfaces, kg.
Ws Mass of water in the diffuse layer of surface s, kg.
Zq Charge imbalance in solution q in inverse modeling, eq.
Zi Charge on aqueous species /.
z- Charge on exchange species ie . (Normally equal to zero).

e

z   Charge on surface species is .

z Charge on aqueous master species minus alkalinity assigned to the master species.
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Attachment B Description of Database Files and Listing

Two database files are distributed with the program. Each of these database files contains 
SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES, PHASES, 
EXCHANGE_MASTER_SPECIES, EXCHANGE SPECIES, SURFACE_MASTER_SPECIES, and SUR­ 
FACE SPECIES keyword data blocks. The file namQdphreeqc.dat contains the thermodynamic data for aqueous 
species and gas and mineral phases that are essentially the same as those found in the latest release of the program 
PHREEQE (Parkhurst and others, 1980). Only minor modifications have been made to make the data consistent 
with the tabulations in Nordstrom and others (1990) and WATEQ4F (Ball and Nordstrom, 1991). The database file 
contains data for the following elements: aluminum, barium, boron, bromide, cadmium, calcium, carbon, chloride, 
copper, fluoride, hydrogen, iron, lead, lithium, magnesium, manganese, nitrogen, oxygen, phosphorous, potas­ 
sium, silica, sodium, strontium, sulfur, and zinc. The thermodynamic data for cation exchange are taken from 
Appelo and Postma (1993, p. 160) and converted to log K, accounting for valence of the exchanging species. The 
thermodynamic data for surface species are taken from Dzombak and Morel (1990); acid base surface reactions 
are taken from table 5.7 and other cation and anion reactions are taken from tables in chapter 10.

The file named \vateq4f.dat contains thermodynamic data for the aqueous species and gas and mineral 
phases that are essentially the same as WATEQ4F (Ball and Nordstrom, 1991). In addition to data for the elements 
in the database file, phreeqc.dat, the database file \vateq4f.dat contains data for the elements: arsenic, cesium, 
iodine, nickel, rubidium, selenium, silver, and uranium. The WATEQ4F-derived database file also includes com- 
plexation constants for two generalized organic ligands, fulvate and humate. Some additional gases are included; 
some carbonate reactions retain the chemical equations used in PHREEQE. Cation exchange data from Appelo 
and Postma (1993) as well as surface complexation reactions from Dzombak and Morel (1990) have been 
included.

A listing of the file, phreeqc.dat follows. In the interest of space, the file \vateq4f.dat is not included in this 
attachment, but is included with the program distribution.
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Ô
0) n 
4J C 
 H S
C

1
W-j
id
a

o
f") rH
o id  u
rH \.
^D

O

^D

O
O
rH

r]

,* Id
I4J

DlrH
O 0)

rH T) 0)
4J
 H
c
id
Dl
c
id
S

o
CN 

CN

CN

C 0
S'*

II  
in

1 CN
0)

+
+
a

+
a x
O 1
O Dl 
C 0
SrH

2 H20 

5 0.01985076 -6919.53 -40.45154

+ ID
O CO co

CN O ID  
+ CN  *
^ ' ' rH 00

rH 1 U ,_,
II X

+ ^D

a t-c-
CN

^1*

+ CN 1 U
O -H

CN O J3 4J
~ 1 >,
X X II X Id rH
01 |4J Id

0)    Dl CN DlrH C
4J C O O O CD id
 H S rH 0 rH T) |
O 0

J3 ~ m
U Dl U3
0   n
^ CN m
SO U3

EL, O ID

O
U)

  id
CN U

I \

*f

00

rH
1

CN J3
0 1x id
II 1 4->

DlrH 
CN O 0) 
O rHT3

.   .

Dl

CN
O

O
in
rH rH  id
m u

i y.

&\
inc-

rH
1

CN r]

,* Id
II 1 4->

DlrH 
CN O 0) 
X rH T3

.   .

Dl

CN

a

o
ID
CN rH  id
m u

i y.

CO
in
n
rH

1

CN J3

S *!d'

II 1 4->
DlrH 

CN O 0)

.   .

Dl

CN
Z

C-
ty\
O\ rH

  id
0 U

i y

o
c-
in
^i*

W 1
CN
a J3
n ^! id

|4J
W DlrH 
CN O 0) 
X rH T)

^
Dl

W
CN
a

o
U)
00 rH  id
CN U

1 X

f")

c-
f")

f")

au x:
n x id

|4J
^1* Dl rH
X O 0)
0 rH T)

_
Dl

^j
a
0

o
C- rH
c- id

  U
rH \.

O
C-

rH

CO

a
Z .0

ii ,!<; id
|4J

r^l DlrHa o cu
S rH T3

^
Dl

po
aZ

CN

O 
W

CN

0)
PL,

O
CN
a
c-

II
o
CN
ac-4'
o

0) W 
4J CD

^
0) 
4J
c
id

rH
0)

S

rH
id 
u

cn
o
CN

CN
1

o
rH
ty\

C*,

x id
|4->

DlrH 
O 0) 

rH T)

H
id
u

ij
TI
XI

n
N

cj
id
-U
H
0)
d

2+2 A1(OH)4- + 2 H4S104

+ 
id
0

11

o
CN
X

CO

+

CO

O
CN
 H

w
CN
rH

0) O
4J
 H

4J

0
C

^Ji

rH

CTl rH
rH Id

1 U

O

in
rH
rH

r]

x id
l-u

DlrH
O 0)

Al(OH)4- + 3 H4S104

+
+

n

O
CN
X

CO

+

O
 H
W
H

ilSS
a

T3
rH
0)

M-)
i

n[-^
in

  rH

o id
CN U

1 ,Y

o
CN

o
f")

r]

^ id
|4J

DlrH
O 0)

rH T3

O
 H 
W

X

rH

+
X

o

+

CNx"
o
o
rH
O

 H

W

,_)

g

id
u

e

n
o
t- rH

  id
CN U
rH X

r-

a\
in

*!
x id

|4J
DlrH
O 0) 

rH T5

O 
CN

O 
 H 

W

X

rH 

CN

CN

rt

in 

n

X
rH CO rH

n id
+   U

CO X
CO ID
-     ^1*

X CTi
O  f
   

O rH
rH LO
O rH

 H

W J3
CN |

~rH^ Id
<; <; i 4J
 <j| in DlrH
rH Dl O 0) 
-^ S rH T3
0)
4J
 H

0
rH

0

O

rH

CN 

CN

id
O
in

o
II 
O
CN

X

CN 
rH

CN

X
2 P.
0  
rH °_J
O   rH
p; m id
G  * "
 

w <->
m t^

<U ro CO

4J rH ^

C y-J X3

rH , + X Id

rH . X 1 4J
 H o Dl rH
^ ;i o) o cu
O rj rH T3
6 +
4J

0 0

1 U)
id -a1 
0 X

0
 H 
W

X

CN

Dl

II 

X

+

O
CN
X
^Jl

+

CN
.   .

Xo
o
rH
O

 H
W
n

§
u

rH
id

a\
a\
n rH 

  id
rH U
CN X

CN
in
n
^D
^Ji

1

"^l

1 J-*
DlrH
O 0) 

rH T3

O

rH

in 

o

o

II
o
CN
X
CN

rH 
rH

CNx" 
o
0 g

0 «

"] drH
n "* *
 n ' H
w  *

. ^J1
CN g

<±  
in X ^f
tN M ^

O r~ ' X*

v + x id
S 1 -i-1

.  ** DlrH
o O O 0)

CO

0) 3;
-LJ in
 H
rH CO

H +

CN

Dl

o
 H
w 

X
CN

o
CN
X

II

X

^D

^Jl
.   .

Xo  '
in
O
CN

W
n

0) Dl
rH S
 H
4-)
O
W

^

0

rH 

ID

rH

rH 
CN 
O
rH

O 

O

O CO
O 'J
CN rH CN 

  Id  
CN U n
f") X rH

O
O
00

U)
^i1

1 U

J3 4J

X Id rH
I 4J Id

DlrH C
O 0) Id 

rH T5 1

O 
 H 

W

X 

CN

Dl

CN

II

O
CN

in 
o

X
^j.

+

O
CN

X

X
O
in

c-
O
 H
W
CN

US
4J
 H

rH
O

 H

a
0) 
W

O
U)
f- rH  id
in u
rH X

O
O
C-

O
rH

1

"^l

|4J
DlrH
O 0)

O

W 

X

CN

CN

II

O 
CN

in 
o

X
o

^J* kD

+ ^

00
O rH
CN

X
n

X
O
in
c-
O
 H X

- W |
T3 CN Dl
  Dl O
<U S rH
4J
 H

rH
O

D,
0)
w

o
CN
X

+

n
+ 
0)

PL,

CN

II

+
X

U)

+
r1")
O
CN
0) 
PL,

0)
4J

4J
id

I

CO
O
O rH

  id
^J< U

1 X

in̂j.
CO

o
f")

1

j3

X id
|4J

DlrH
O 0) 

rH T3

O 
CN

X

CN
O

+ O
O

+ rH
0) 1
fe­

ll

+
X
f")

+

X X
O 1
O Dl
0) O
PL, rH

0)
4J
 H
r]
4J
0)

3

O 
CN

a
ro

+

rO rH
+ O^ 
0) CO

PL,  
^f

II

+

a
r*")
+
rn

a .^
0 I  Dl

~ 0) O
Id PL, rH
   

.   .

ao
0)
PL,

W 

CN

CN

0)
EL,

II

1
0)

CN

+

H-

X

CN

CN
W
0) 

PL,

0)
-U

^

EL,

m
c^-
^j.

00 rH
rH Id

1 U
X

O
O
f")

rH
rH

x:
^ id

1 4J
DlrH
O 0) 

rH T3

iw 
a
+

CN
+
0)
fe­
ll

a
+
w
0) 

EL,
.   .
4J

a

W
0) 
PL,

Attachment B Description of Database Files and Listing 141



£
 

A
tt

ac
h

m
en

t 
B

. 
P

H
R

E
E

Q
C

.D
A

T
: 

D
at

ab
as

e 
fil

e 
de

riv
ed

 fr
om

 P
H

R
E

E
Q

E
--

C
on

tin
ue

d

O c t o  o I
 

30 m
 
m
 
O
 
O

-
a
n
a
l
y
t
i
c

-
0
.
0
0
4
1
5
3

-
2
1
4
9
4
9
.
C

A
l
u
n
i
t
e

K
A
1
3
(
S
0
4
)
2
(
O
H
)
6
 
+ 

6 
H
+
 
= 

K
+
 
+ 

3 
A
l
+
3
 
+ 

2 
S
O
4
-
2
 
+ 

6
H
2
0

l
o
g
_
k
 

-
1
.
4
0
0

d
e
l
t
a
_
h
 
-
5
0
.
2
5
0
 
k
c
a
l

J
a
r
o
s
i
t
e
-
K
K
F
e
3
(
S
0
4
)
2
(
O
H
)
6
 
+ 

6 
H
+
 
= 

3 
F
e
+
3
 
+ 

6 
H
2
O
 
+ 

K
+
 
+ 

2 
S
O
4
-
2
 

l
o
g
_
k
 

-
9
.
2
1
0
 

d
e
l
t
a
_
h
 
-
3
1
.
2
8
0
 
k
c
a
l

Z
n
(
O
H
)
2
(
e
) Z
n
(
O
H
)
2
 
+ 

2 
H
+
 
= 

Z
n
+
2
 
+ 

2 
H
2
O
 

l
o
g
_
k
 

1
1
.
5
0

S
m
i
t
h
s
o
n
i
t
e

Z
n
C
O
3
 
= 

Z
n
+
2
 
+ 

C
O
3
-
2
 

l
o
g
_
k
 

-
1
0
.
0
0
0
 

d
e
l
t
a
_
h
 
-
4
.
3
6
 

k
c
a
l

S
p
h
a
l
e
r
i
t
e
Z
n
S
 
+ 

H
+
 
= 

Z
n
+
2
 
+ 

H
S
-
 

l
o
g
_
k
 

-
1
1
.
6
1
8
 

d
e
l
t
a
_
h
 
8
.
2
5
0
 

k
c
a
l

W
i
l
l
e
m
i
t
e
 

2
8
9

Z
n
2
S
i
O
4
 
+ 

4
H
+
 
= 

2
Z
n
+
2
 
+ 
H
4
S
i
O
4

l
o
g
_
k
 

1
5
.
3
3

d
e
l
t
a
_
h
 
-
3
3
.
3
7
 

k
c
a
l

C
d
(
O
H
)
2

C
d
(
O
H
)
2
 
+ 

2 
H
+
 
= 

C
d
+
2
 
+ 

2 
H
2
0
 

l
o
g
_
k
 

1
3
.
6
5
0

O
t
a
v
i
t
e
 

3
1
5

C
d
C
0
3
 
= 

C
d
+
2
 
+ 

C
0
3
-
2
 

l
o
g
_
k
 

-
1
2
.
1
 

d
e
l
t
a
_
h
 
-
0
.
0
1
9
 

k
c
a
l

C
d
S
i
O
3
 

3
2
8

C
d
S
i
O
3
 
+ 
H
2
O
 
+ 

2
H
+
 
= 

C
d
+
2
 
+ 
H
4
S
i
O
4
 

l
o
g
_
k
 

9
.
0
6
 

d
e
l
t
a
_
h
 
-
1
6
.
6
3
 

k
c
a
l

C
d
S
0
4
 

3
2
9

C
d
S
O
4
 
= 

C
d
+
2
 
+ 

S
O
4
-
2
 

l
o
g
_
k
 

-
0
.
1
 

d
e
l
t
a
_
h
 
-
1
4
.
7
4
 

k
c
a
l

C
e
r
r
u
s
i
t
e
 

3
6
5

P
b
C
O
3
 
= 

P
b
+
2
 
+ 

C
O
3
-
2
 

l
o
g
_
k
 

-
1
3
.
1
3
 

d
e
l
t
a
_
h
 
4
.
8
6
 

k
c
a
l

A
n
g
l
e
s
i
t
e
 

3
8
4

P
b
S
O
4
 
= 

P
b
+
2
 
+ 

S
O
4
-
2
 

l
o
g
_
k
 

-
7
.
7
9
 

d
e
l
t
a
_
h
 
2
.
1
5
 

k
c
a
l

P
b
(
O
H
)
2
 

3
8
9

P
b
(
O
H
)
2
 
+ 

2
H
+
 
= 

P
b
+
2
 
+ 

2
H
2
O

l
o
g
_
k
 

8
.
1
5

d
e
l
t
a
_
h
 
-
1
3
.
9
9
 

k
c
a
l

E
X
C
H
A
N
G
E
_
M
A
S
T
E
R
_
S
P
E
C
I
E
S

X
 

X
-
 

E
X
C
H
A
N
G
E
_
S
P
E
C
I
E
S

X
-
 
= 

X
-

l
o
g
_
k
 

0 
. 0

N
a
+
 
+ 

X
-
 
= 
N
a
X

l
o
g
_
k
 

_
_
_
_
_
_
_
_
0
 . 
0
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

K
+
 
+ 

X
-
 
= 

K
X

l
o
g
_
k
 

0
.
7

L
i
+
 
+ 

X
-
 
= 

L
i
X

l
o
g
_
k
 

-0
.0
8

H
+
 
+ 

X
-
 
= 

H
X

l
o
g
_
k
 

1
.
0

N
H
4
+
 
+ 

X
-
 
= 
N
H
4
X
 

l
o
g
_
k
 

0
.
6

C
a
+
2
 
+ 

2
X
-
 
= 

C
a
X
2
 

l
o
g
_
k
 

0 
.8

M
g
+
2
 
+ 

2
X
-
 
= 
M
g
X
2
 

l
o
g
_
k
 

0
.
6

S
r
+
2
 
+ 

2
X
-
 
= 

S
r
X
2
 

l
o
g
_
k
 

0
.
9
1

Ba
+2
 
+ 

2X
- 

= 
Ba

X2
 

l
o
g
_
k
 

0.
91

M
n
+
2
 
+ 

2
X
-
 
= 

M
n
X
2
 

l
o
g
_
k
 

0
.
5
2

Fe
+2
 
+ 

2X
- 

= 
Fe

X2
 

l
o
g
_
k
 

0.
44

Cu
+2
 
+ 

2X
- 

= 
Cu

X2
 

l
o
g
_
k
 

0.
6

Z
n
+
2
 
+ 

2
X
-
 
=
 
Z
n
X
2
 

l
o
g
_
k
 

0
.
8

C
d
+
2
 
+ 

2
X
-
 
= 

C
d
X
2
 

l
o
g
_
k
 

0
.
8

Pb
+2
 
+ 

2X
- 

= 
Pb
X2
 

l
o
g
_
k
 

1.
05

Al
+3
 
+ 

3X
- 

= 
A1
X3
 

l
o
g
_
k
 

0 
.6
7

S
U
R
F
A
C
E
_
M
A
S
T
E
R
_
S
P
E
C
I
E
S

H
f
o
_
s
 

H
f
o
_
s
O
H

H
f
o
_
w
 

H
f
o
_
w
O
H
 

S
U
R
F
A
C
E
_
S
P
E
C
I
E
S

# 
A
l
l
 
s
u
r
f
a
c
e
 
d
a
t
a
 
f
r
o
m

# 
D
z
o
m
b
a
k
 
a
n
d
 
Mo
re
l,
 
19
90

# # # 
A
c
i
d
-
b
a
s
e
 
d
a
t
a
 
fr
om
 
t
a
b
l
e
 
5.

7
# # 

s
t
r
o
n
g
 
b
i
n
d
i
n
g
 
s
i
t
e
-
-
H
f
o
_
s
,

H
f
o
_
s
O
H
 
= 
H
f
o
_
s
O
H
 

l
o
g
_
k
 

0
.
0

H
f
o
_
s
O
H
 

+ 
H
+
 
= 

H
f
o
_
s
O
H
2
+
 

l
o
g
_
k
 

7
.
2
9
 

# 
= 
p
K
a
l
,
i
n
t

H
f
o
_
s
O
H
 
= 

H
f
o
_
s
O
-
 
+ 

H
+
 

l
o
g
_
k
 

-
8
.
9
3
 

# 
= 

-
p
K
a
2
,
i
n
t

# 
w
e
a
k
 
b
i
n
d
i
n
g
 
s
i
t
e
-
-
H
f
o
_
w

H
f
o
_
w
O
H
 
= 

H
f
o
_
w
O
H
 

l
o
g
_
k
 

0
.
0

H
f
o
 
W
O
H
 

+ 
H
+
 
= 

H
f
o
 
W
O
H
2
+



A
tt

ac
h

m
en

t 
B

. 
P

H
R

E
E

Q
C

.D
A

T
: 

D
at

ab
as

e 
fil

e 
de

riv
ed

 f
ro

m
 P

H
R

E
E

Q
E

-C
on

tin
ue

d

CO

l
o
g
_
k
7
.
2
9
#
 
= 
p
K
a
l
,
i
n
t

H
f
o
_
w
O
H
 
= 
H
f
o
_
w
O
-
 
+ 

H
+
 

l
o
g
_
k
 

-
8
.
9
3
 

# 
= 

-
p
K
a
2
,
i
n
t

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

# 
C
A
T
I
O
N
S
 

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

# # 
C
a
t
i
o
n
s
 
f
r
o
m
 
t
a
b
l
e
 
1
0
.
1
 
o
r
 
1
0
.
5

# # 
C
a
l
c
i
u
m

H
f
o
_
s
O
H
 
+ 

C
a
+
2
 
= 

H
f
o
_
s
O
H
C
a
+
2
 

l
o
g
_
k
 

4
.
9
7

H
f
o
_
w
O
H
 
+ 

C
a
+
2
 
= 

H
f
o
_
w
O
C
a
+
 
+ 

H+
 

l
o
g
_
k
 
-
5
.
8
5

# 
S
t
r
o
n
t
i
u
m

H
f
o
_
s
O
H
 
+ 

S
r
+
2
 
= 
H
f
o
_
s
O
H
S
r
+
2
 

l
o
g
_
k
 

5
.
0
1

H
f
o
_
w
O
H
 
+ 

S
r
+
2
 
= 
H
f
o
_
w
O
S
r
+
 
+ 

H
+
 

l
o
g
_
k
 
-
6
.
5
8

H
f
o
_
w
O
H
 
+ 

S
r
+
2
 
+ 
H
2
O
 
= 
H
f
o
_
w
O
S
r
O
H
 
+ 

2
H
+
 

l
o
g
_
k
 
-
1
7
.
6
0

# 
B
a
r
i
u
m
H
f
o
_
s
O
H
 
+ 
B
a
+
2
 
= 
H
f
o
_
s
O
H
B
a
+
2
 

l
o
g
_
k
 

5
.
4
6

H
f
o
_
w
O
H
 
+ 
B
a
+
2
 
= 

H
f
o
_
w
O
B
a
+
 
+ 

H
+

l
o
g
_
k
 

-
7
.
2
 

# 
t
a
b
l
e
 
1
0
.
5

# # 
C
a
t
i
o
n
s
 
f
r
o
m
 
t
a
b
l
e
 
1
0
.
2

# # 
C
a
d
m
i
u
m

H
f
o
_
s
O
H
 
+ 

C
d
+
2
 
= 

H
f
o
_
S
O
C
d
+
 
+ 

H
+
 

l
o
g
_
k
 

0
.
4
7

H
f
o
_
w
O
H
 
+ 
C
d
+
2
 
= 
H
f
o
_
w
O
C
d
+
 
+ 

H
+
 

l
o
g
_
k
 

-
2
.
9
1

H
f
o
_
s
O
H
 
+ 

Z
n
+
2
 
= 
H
f
o
_
s
O
Z
n
+
 
+ 

H
+
 

l
o
g
_
k
 

0
.
9
9

H
f
o
_
w
O
H
 
+ 

Z
n
+
2
 
= 
H
f
o
_
w
O
Z
n
+
 
+ 

H
+
 

l
o
g
_
k
 

-
1
.
9
9
 

C
o
p
p
e
r
H
f
o
_
s
O
H
 
+ 

C
u
+
2
 
= 
H
f
o
_
s
O
C
u
+
 
+ 

H
+
 

l
o
g
_
k
 

2
.
8
9

H
f
o
_
w
O
H
 
+ 

C
u
+
2
 
= 
H
f
o
_
w
O
C
u
+
 
+ 

H
+
 

l
o
g
_
k
 

0
.
6
 

# 
t
a
b
l
e
 
1
0
.
5
 

5 H
f
o
_
s
O
H
 
+ 

P
b
+
2
 
= 
H
f
o
_
s
O
P
b
+
 
+ 

H
+
 

l
o
g
_
k
 

4
.
6
5

H
f
o
_
w
O
H
 
+ 

P
b
+
2
 
= 

H
f
o
_
w
O
P
b
+
 
+ 

H
+

l
o
g
_
k
 

0.
3 

# 
t
a
b
l
e
 
1
0
.
5

D
e
r
i
v
e
d
 
c
o
n
s
t
a
n
t
s
 
t
a
b
l
e
 
1
0
.
5

M
a
g
n
e
s
i
u
m

H
f
o
_
w
O
H
 
+ 
M
g
+
2
 
= 
H
f
o
_
w
O
M
g
+
 
+ 

H
+

l
o
g
_
k
 
-
4
.
6
 

M
a
n
g
a
n
e
s
e

H
f
o
_
s
O
H
 
+ 
M
n
+
2
 
= 

H
f
o
_
s
O
H
M
n
+
2

l
o
g
j
c
 

-
0
.
4
 

# 
t
a
b
l
e
 
1
0
.
5

H
f
o
_
w
O
H
 
+ 
M
n
+
2
 
= 
H
f
o
_
w
O
M
n
+
 
+ 

H
+

l
o
g
_
k
 
-
3
.
5
 

# 
t
a
b
l
e
 
1
0
.
5

Z
i
n
c

L
e
a
d

#
*
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
»
*
#
#
#
#
#
*
#
f
f
t
#
#
#
#
#
#
#
#
#
*
#
*
#
t
t
#
#
#

# 
A
N
I
O
N
S
 

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

# # 
A
n
i
o
n
s
 
f
r
o
m
 
t
a
b
l
e
 
1
0
.
6

# # 
P
h
o
s
p
h
a
t
e

H
f
o
_
w
O
H
 
+ 

P
O
4
-
3
 
+ 

3
H
+
 
= 
H
f
o
_
w
H
2
P
O
4
 
+ 

H
2
O
 

l
o
g
_
k
 

3
1
.
2
9

H
f
o
_
w
O
H
 
+ 

P
O
4
-
3
 
+ 

2
H
+
 
= 
H
f
o
_
w
H
P
O
4
-
 
+ 
H
2
O
 

l
o
g
_
k
 

2
5
.
3
9

H
f
o
_
w
O
H
 
+ 

P
O
4
-
3
 
+ 

H
+
 
= 
H
f
o
_
w
P
O
4
-
2
 
+ 

H
2
O
 

l
o
g
_
k
 

1
7
.
7
2

# # 
A
n
i
o
n
s
 
f
r
o
m
 
t
a
b
l
e
 
1
0
.
7

# # 
B
o
r
a
t
e
H
f
o
_
w
O
H
 
+ 

H
3
B
O
3
 
= 
H
f
o
_
w
H
2
B
O
3
 
+ 

H
2
O
 

l
o
g
_
k
 

0
.
6
2

A
n
i
o
n
s
 
f
r
o
m
 
t
a
b
l
e
 
1
0
.
8

S
u
l
f
a
t
e

H
f
o
_
w
O
H
 
+ 

S
O
4
-
2
 
+ 

H
+
 
= 
H
f
o
_
w
S
O
4
-
 
+ 
H
2
O
 

l
o
g
_
k
 

7
.
7
8

H
f
o
_
w
O
H
 
+ 

S
O
4
-
2
 
= 

H
f
o
_
w
O
H
S
O
4
-
2
 

l
o
g
_
k
 

0
.
7
9

D
e
r
i
v
e
d
 
c
o
n
s
t
a
n
t
s
 
t
a
b
l
e
 
1
0
.
1
0

H
f
o
_
w
O
H
 
+ 

F
-
 
+ 

H
+
 
= 
H
f
o
_
w
F
 
+ 
H
2
O
 

l
o
g
_
k
 

8
.
7

H
f
o
_
w
O
H
 
+ 

F
-
 
= 
H
f
o
_
w
O
H
F
-
 

l
o
g
_
k
 

1
.
6


