
Basic Concepts of Kinematic-Wave Models

U. S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1302



Basic Concepts of Kinematic-Wave Models
#y JEFFREY E. MILLER

U. S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1302

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1984



UNITED STATES DEPARTMENT OF THE INTERIOR 

WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY 

Dallas L. Peck, Director

Library of Congress Cataloging in Publication Data

Miller, Jeffrey E.
Basic concepts of kinetic-wave models.

(Geological Survey professional paper ; 1302)
Bibliography: p.
Supt. of Docs, no.: 119.16:1302
1. Water waves Mathematical models. I. Title.

II. Series. 
TC172.M54 1983 627'.042 83-600251

For sale by the Distribution Branch, U.S. Geological Survey, 
604 South Pickett Street, Alexandria, VA 22304



PREFACE

Kinematic-wave models are used extensively by the U.S. Geological Survey. 
Both kinematic- and modified kinematic-wave models are used for channel and 
overland-flow routing in the Precipitation-Runoff Modeling system and in the 
Distributed Routing Rainfall-Runoff Model. The development of the theory 
and application of kinematic waves is complex, but it is not readily available in 
any one text. Therefore, the purpose of this report is to present the basic con­ 
cepts of the kinematic-wave approximation of one-dimensional dynamic waves. 
The report is intended for an audience of field hydrologists applying kinematic- 
wave models in practical situations such as watershed models. This report does 
not propose to assess or describe the current state of the art of approximate 
hydraulic-flow routing techniques. It is intended to be used as a basic reference 
on the theory and application of kinematic-wave models and modified 
kinematic-wave models.

The kinematic-wave model is one of a number of approximations of the 
dynamic-wave model. Because of the numerous approximations made in the 
development of the models and the difficulty involved in applying the solution 
techniques, the kinematic-wave approximation needs to be understood in rela­ 
tion to the other models. Therefore, a significant part of the report describes 
the dynamic-wave model, including a detailed development of the governing 
equations. This development is important because it shows the assumptions 
made in describing unsteady flow with the full dynamic-wave equations. These 
assumptions are inherent in any of the models that are approximations of the 
dynamic-wave model, such as the kinematic-wave model.

Because of the intended audience, the equation developments are given in 
detail so that they will be understood as easily as possible. There are many 
basic concepts involved in the application of kinematic-wave models that can 
be confusing. Instead of assuming that these concepts are obvious to the 
reader, they are included in a supplemental information section.
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discharge per unit width (can be either flow in a channel or 
lateral inflow), 
discharge,
discharge at pipe-full conditions, 
hydraulic radius = A/P, 
acceleration slope, 
energy slope = -dH/dx, 
friction slope, 
bed slope = -dz/dx, 
time,
wave period, 
flow velocity,
steady-state normal flow velocity, 
time derivative weighting factor, 
spacial derivative weighting factor, 
horizontal distance, 
vertical stream depth, 
normal depth,
height of stream bottom above datum, 
coefficient in the steady uniform flow equation approxima­ 
tion,
specific weight of water, 
angle of the channel bed with the horizontal, 
diffusion coefficient, 
density of fluid, and 
mean longitudinal shear stress.



BASIC CONCEPTS OF KINEMATIC-WAVE MODELS

By JEFFREY E. MILLER

ABSTRACT

The kinematic-wave model is one of a number of approximations of 
the dynamic-wave model. The dynamic-wave model describes one- 
dimensional shallow-water waves (unsteady, gradually varied, open- 
channel flow). This report provides a basic reference on the theory 
and applications of the kinematic-wave model and describes the limi­ 
tations of the model in relation to the other approximations of the 
dynamic-wave model. In the kinematic-wave approximation, a num­ 
ber of the terms in the equation of motion are assumed to be insignif­ 
icant. The equation of motion is replaced by an equation describing 
uniform flow. Thus, the kinematic-wave model is described by the 
continuity equation and a uniform-flow equation such as the well- 
known Chezy or Manning formulas. Kinematic-wave models are 
applicable to overland flow where lateral inflow is continuously 
added and is a large part of the total flow. For channel-routing 
applications, the kinematic-wave model always predicts a steeper 
wave with less dispersion and attenuation than actually occurs. The 
effect of the accumulation of errors in the kinematic-wave model 
shows that the approximations made in the development of the 
kinematic-wave equations are not generally justified for most 
channel-routing applications. Modified flow-routing models can be 
used which help to stop the accumulation of errors that occur when 
the kinematic-wave model is applied.

INTRODUCTION

The kinematic-wave model is one of a number of ap­ 
proximations of the dynamic-wave model. The dynamic- 
wave model describes one-dimensional shallow-water 
waves (unsteady, gradually varied, open-channel flow) 
and consists of the continuity equation and the equa­ 
tion of motion with appropriately prescribed initial 
and boundary conditions. In most approximations of 
dynamic waves, the continuity equation and an approx­ 
imation of the equation of motion are solved. In the 
kinematic-wave approximation, a number of the terms 
in the equation of motion are assumed to be insignifi­ 
cant; therefore, the equation of motion simply states 
that the friction slope is equal to the bed slope. It is 
replaced by an equation describing uniform (which also 
implies steady) flow. Thus, the kinematic-wave model 
is described by the continuity equation and a uniform- 
flow equation, such as the well-known Chezy or Mann­ 
ing formulas, plus the usually imposed initial and 
boundary conditions.

Kinematic-wave theory describes a distinctive type 
of wave motion that can occur in many one-dimen­ 
sional flow problems (Lighthill and Whitham, 1955, p. 
281). The theory is described in this report as an 
approximation of dynamic-wave theory applied to 
water-routing problems.

The purpose of this report is to provide a basic refer­ 
ence on the theory and applications of the kinematic- 
wave model and to describe the limitations of the 
model in relation to the dynamic-wave model. The 
kinematic-wave model is also described in relation to 
the other hydraulic-routing techniques that are ap­ 
proximations of the dynamic-wave model. Unless 
specifically indicated, the channels described in this 
report are prismatic, and most of the explanations of 
the behavior of the models will use examples that in­ 
clude no lateral inflow. These simplifications make the 
behavior of the models easier to illustrate because 
changes in numerically routed hydrographs are not 
masked by other influences. The development, assump­ 
tions and approximations, properties, criteria for 
application, current applications, and solution tech­ 
niques of kinematic-wave theory in water routing will 
be examined.

HISTORY OF DEVELOPMENT OF 
KINEMATIC-WAVE THEORY

The development of kinematic-wave theory occurred 
late in the history of the development of the theory of 
open-channel flow. It is based on the early develop­ 
ments in the study of steady varied flow and the later 
developments in the study of unsteady flow.

According to Bakhmeteff (1932, p. 299), the theory of 
steady varied flow is usually associated with J. M. 
Belanger. Bakhmeteff stated that Belanger, in his 
1828 paper, covers the "subject of varied flow in a 
remarkably complete and comprehensive manner." 
Bakhmeteff listed earlier references on varied flow, 
such as Dubuat in 1779, Venturoli in 1818, and par­ 
ticularly Massetti in 1827. He also stated that Poncelet 
is believed to have developed the equation of varied
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flow about the same time as Belanger and that Euler 
developed the foundations of hydromechanics in 1755. 
Bakhmeteff further stated that "while Belanger and 
his followers deducted the varied flow equation from 
the general Newtonian equation of motion," Coriolis in 
1836 "made use of the principle of conservation of 
energy and thus was the first to suggest the reasoning 
which since has been followed in textbooks on hydrau­ 
lics in establishing the so-called Bernoulli equation."

According to Yevjevich (1975, p. 2-5), the study of 
unsteady flow started with two French mathemati­ 
cians Laplace, in 1775, and Lagrange, in 1781. The 
Lagrange celerity formula was reported in 1788, pro­ 
viding impetus for further studies. Barre de Saint 
Venant presented the equation of motion and the 
water-continuity equation in 1871. These equations 
are now known as the Saint Venant partial-differential 
equations of unsteady flow. Also in 1871, Saint Venant 
attempted to integrate the continuity equation and the 
equation of motion by setting the channel slope equal 
to the energy line. This approach is similar to 
kinematic-wave theory.

Lighthill and Whitham (1955) stated that, several 
writers independently have given the theory of con­ 
tinuous kinematic waves as applied to flood movement. 
Complete treatments were given by Boussinesq in 
1877 and by Forcheimer in 1930 (in his book 
Hydraulik). These two authors referred to an unpub­ 
lished report by Kleitz in 1858, Breton in 1867, and 
Graeff in 1875 as pioneers of the theory. Lighthill and 
Whitham also stated that Seddon, in 1900 discussed 
the problem with reference to the Mississippi and its 
tributaries and that Seddon, although unaware of the 
earlier work, showed an understanding of the variety 
of mechanism that govern the relationship between 
flow area and discharge.

The principal theoretical work on kinematic waves 
was done by Lighthill and Whitham (1955). They 
named the theory "kinematic wave" and investigated 
the general properties of waves and shock waves based 
on the theory. They also provided a detailed treatment 
of the relationship between kinematic- and dynamic- 
wave movement in rivers.

Application of kinematic-wave theory to channel 
routing has been described by Weinmann and Lauren- 
son (1979), Henderson (1963), and Brakensiek (1967). 
Cunge (1969) showed that the Muskingum routing 
method can be considered.a finite-difference approxi­ 
mation of the kinematic-wave model. Thus, kinematic- 
wave theory has been widely applied to river routing 
for a number of years. The theory also has been applied 
to the problems of water routing in irrigation systems 
(see, for example, Cunge and Woolhiser, 1975) and 
storm water runoff (selected references are the Storm

Water Management Model, U.S. Environmental Pro­ 
tection Agency, 1971, and Dawdy and others, 1978).

Overland flow is viewed as wide shallow-channel 
flow and is often analyzed on a unit width basis with 
lateral inflow originating from rainfall excess. Hender­ 
son (1966, p. 394) stated that Japanese engineers 
applied kinematic-wave theory to the problem of over­ 
land runoff. Since then, a large amount of work has 
been done on the overland-flow problem. Selected ex­ 
amples are Henderson and Wooding (1964), Woolhiser 
and Liggett (1967), Kibler and Woolhiser (1970), 
Schaafce (1970), Li and others (1975), and Borah and 
others (1980).

Many numerical solution techniques have been 
developed to solve the kinematic-wave equations. 
Usually these techniques involve finite-difference (see, 
for example, Kibler and Woolhiser, 1970) or method of 
characteristics (see, for example, Borah and others, 
1980) Schemes. Cunge (1969), the U.S. Environmental 
Protection Agency (1971), and Li and others (1976) 
have applied modified kinematic-wave approximations 
in which adjusted slope terms are used or controlled 
numerical dispersion is added to the solution for 
channel-routing problems. In the time since the paper 
by Lighthill and Whitham was written, a large amount 
of work has been done in solving the kinematic-wave 
equations, applying the theory to channel and over­ 
land flow, determining when the theory is applicable, 
and describing the properties of waves based on the 
theory and solution techniques.

DEVELOPMENT OF GOVERNING EQUATIONS

The equations describing unsteady open-channel 
flow are a continuity equation and an equation of mo­ 
tion. The continuity equation is formulated based on 
the principle of conservation of mass. The principle 
states that the difference between the rates of inflow 
and outflow is equal to the rate of change in storage.

The development of the equation of motion involves 
Newton's second law and the principles of conservation 
of energy and momentum. Newton's second law is

f=ma, (1)

where
f   force,
77i = mass, 

and
a = acceleration.

The equation of motion can be derived from equation 1 
directly, or it can be derived using conservation of 
energy or momentum concepts. Hie development of the
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continuity equation and the equation of motion used in 
this report follows Henderson (1966). The treatment 
given by Henderson is developed in detail and the 
equation of motion is based directly on Newton's sec­ 
ond law instead of on the energy or momentum forms. 
It uses an orthogonal gravity-oriented coordinate sys­ 
tem. The relationship between momentum and energy 
and a description of commonly used coordinate systems 
are described in the section "Supplemental Informa­ 
tion" under "Equation Development Concepts."

The following references give equation developments 
for both the continuity equation and the equation of 
motion. Derivation of the equation of motion, based on 
the principle of conservation of energy, is given by 
Gilcrest (1950) and Chow (1959). The derivation of the 
equation of motion, based on the principle of conserva­ 
tion of momentum, is given by Liggett (1975), Theurer 
(1975), and Viessman and others (1977).

CONTINUITY EQUATION

The development of the continuity equation involves 
the following variables:

A = cross-sectional flow area,
B = water-surface width,
h = height of water surface above datum or 

piezometric head,
q = discharge per unit width,
Q = discharge,
t = time,
v = flow velocity,
x = horizontal distance, and
y = vertical stream depth.
Consider a control volume enclosed by the water sur­ 

face, the channel boundary surface, and two cross sec­ 
tions separated by a small distance, Ax, as shown in 
figure 1. Without lateral inflow or outflow.

X\\NXNSxk\\V-^ ** r 

Datum

FIGURE 1. Definition sketch for the continuity 
equation.

(2)

The right-hand side will be positive if the volume is 
decreasing. (Q may be changing with time as well as 
with x.)

Considering the change in waterrsurface level, the 
volume of water is changing at the rate of

dh 
dt (BAx). (3)

This term will be positive if the volume is increasing. 
Equations 2 and 3 must be equal in magnitude and op­ 
posite in sign. Therefore, an expression of continuity is

(4)dx dt

Dividing by Ax yields 

dQ (5)

Equation 5 is the unsteady continuity equation. A form 
of equation 5 for more general cross-section shapes

(where  57- is substituted for
dt

dQ dA-~- (6)

Two additional alternative forms are developed as 
follows. When a channel is prismatic and rectangular, 
Q=B q. Substituting into equation 5 and dividing by B, 
the first alternative form, is

(7)dx dt

The second alternative form, which is useful for 
visualizing each term, can be written by substituting
dQ d(A v) , , ., - , . ,. _ -r-i-= j.  and depth, y, for h in equation 5:

d(A v) dy ~ (8)

or

(9)
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The three terms in the form of the continuity equation 
given above are known as prism storage, wedge 
storage, and rate of rise terms. The physical meaning 
of the first two terms is shown in figure 2. Equation 9 is 
valid only for prismatic channels.

EQUATION OF MOTION

The development of the equation of motion involves 
the variables used in the continuity equation and the 
following additional variables:

a = acceleration,
C = Chezy friction coefficient,
f = force,
H = total energy head,
g = gravitational acceleration,
m = mass,
P = wetted perimeter,
R = hydraulic radius =A/P,
Sa = acceleration slope,
Se - energy slope = -dH/dx,
Sf = friction slope,
S0 = bed slope = -dz/dx,
z = height of stream bottom above datum,
7 = specific weight of water,
6   angle of the channel bed with the horizontal,
Q = density of fluid, and
TO = mean longitudinal shear stress. 

To develop the equation of motion, the forces on a fluid 
element in a channel section will be determined based 
in assumptions appropriate to one-dimensional shallow- 
water waves. Then the remaining acceleration and 
mass terms will be developed and substituted into 
Newton's second law.

Considering the channel sections shown in figure 3 
and assuming that the pressure distribution is hydro­ 
static, the total horizontal hydrostatic pressure on the 
element shown is equal to the difference in the two 
hydrostatic pressures,  7 Ah, over the area of the ele­ 
ment. The opposite sign is used because a negative Ah

Wedge storage

FIGURE 2. Longitudinal section showing prism and wedge storage.

will produce flow in the positive jc-direction. The cross- 
sectional flow area of the element is

A=ABy. (10)

There is only a small variation in area across Ax tfAh/y 
and Az/y are small. The hydrostatic force difference is 
then

-7 A A/i. (ID

This force is resisted by a shear force equal to r0 over 
the wetted perimeter along Ax at an angle 6 to the 
horizontal. The net force in the direction of the flow is

f= -7 A Ah-r0 P Ax cose. (12)

Following the assumption of small slopes, cos 0 = 1; 
therefore, equation 12 can be written

/=-7 AAh-r0 PAx. (13)

This is the force term in Newton's second law.
Again, considering the channel section in figure 3, 

the mass term in Newton's second law is

m=Q A Ax. (14)

The acceleration term in Newton's second law is devel­ 
oped as follows. Noting that a=dv/dt, from the theory of 
partial differentiation,

dv _ dx dv dv 
dt ~ dt dx dt'

(15)

Equation 15 describes the rate at which the velocity v 
will change in the eyes of an observer moving in the 
direction x with velocity dx/dt. If dv/dt is to be inter­ 
preted as a fluid acceleration, the observer must be 
moving with the fluid itself. Thus, dx/dt=v and

dv dv . dv (16)

Substituting equations 13, 14, and 16 into Newton's 
second law (eq 1) results in the following:

 7 A Ah TO P Ax= (17)

Rearranging,

T =-
PAx (18)
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FIGURE 3. Definition sketches for the equation of motion.

Setting AIP=R and taking the limit as A*-*0 so that 
A/t = dh 
Ax dx '

dv (19)

or, noting that y=Qg,

v dv . 1 dv (20)

At this point, before the equation of motion can be 
developed further, three basic relationships two for 
the friction slope and one for the longitudinal shear 
stress must be introduced. The definition of the total 
energy head is

(21)

This definition ignores the velocity distribution coeffi­ 
cient. This is often done in unsteady flow models 
because the coefficient is only of secondary importance

(see Henderson, 1966, p. 21). The velocity distribution 
coefficients for both energy and momentum are ignored 
in this report unless specifically stated otherwise. Tak­ 
ing the partial derivative with respect to the down­ 
stream direction, the definition of the friction slope is

-dH
"' dx dx 

or, by the rules of differentiation,

dH_ ,dh v dv v - (+

(22)

(23)

or

 dH_ fdh L v dv 
dx ~ ( dx

(24)

The two remaining relationships are approximations 
when applied to the unsteady nonuniform flow situa­ 
tion. The derivation of these relationships is shown in 
the section "Supplemental Information" under "Equa-
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tion Development Concepts." They are the friction 
slope based on the Chezy equation,

s,=- C*R (25)

and the longitudinal shear stress expressed using the 
Chezy equation,

(26)

Continuing the development of the equation of mo­ 
tion, equation 24 is substituted into equation 20:

dH (27)

Setting equation 26 equal to equation 27,

R_»» n,m . i dv

Rearranging,

(28)

or

gdt* C*R

se+sa+sf =o,

(29)

(30)

where Se is the energy slope, Sa is the acceleration 
slope, and Sf is the friction slope. Here, Henderson 
(1966) made a careful distinction between Se and Sf, In 
the steady flow case, Se is the same as Sf except op­ 
posite in sign. However, in the unsteady flow case, Se 
and S are defined as

S = dH 
dx (31)

and

where Se is not equal to Sf, Instead,

s+s=-s

(32)

(33)

where Sa=    TT-. Sa is a source of energy loss or gain 

due to the unsteadiness of the flow.

Setting h=z+y, equation 24 can be rewritten

dx

Substituting S0=^, ox

Finally, substituting equation 35 into equation 29 and 
rearranging, a commonly seen form of the equation of 
motion is obtained:

o _~ v* _ o dy v dv 1 dv C*R~ 0 ~dx~~j>dx~~g~di' (36)

Significant 

terms for:

steady uniform 
flow,   

steady nonuniform 
flow, ^     

unsteady nonuniform 
flow.       

The above arrangement was pointed out by Henderson 
(1966). It shows that additional terms must be evalu­ 
ated as the complexity of a given water-routing prob­ 
lem increases. Equation 36 can be rearranged into 
another commonly seen form by multiplying by g and 
using S^ instead of the Chezy equation:

:=g(S0-Sf). (37)

Equation 37 is the one-dimensional form of the equa­ 
tion of motion describing unsteady open-channel flow 
with zero lateral inflow. Other more complex applica­ 
tions may require modification of certain terms of addi­ 
tional terms to describe situations such as nonprismatic 
channels, lateral inflow, and flood-plain storage. Two- 
or three-dimensional flow requires an entirely different 
development. According to Viessman and others (1977, 
p. 562), the convective terms gdy/dx and vdv/dx in 
equation 37 describe the changes in kinetic energy and 
potential energy (also called the inertia terms), the 
term dvldt accounts for the local acceleration of the 
fluid (also called the pressure-differential term), and
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the terms g S0 and g Sf account for the component of 
gravitational force in the direction of flow and friction 
along the channel. Equations 6 and 37 are sometimes 
called the Saint Venant equations.

DEVELOPMENT OF 
KINEMATIC-WAVE APPROXIMATIONS

Kinematic-wave approximations to equation 37 were 
first named and described in detail by Lighthill and 
Whitham (1955). Waves whose motion is adequately 
described by these approximations are known as 
"kinematic waves" as opposed to dynamic waves as 
described by equation 37. The various equations and 
relationships describing kinematic waves constitute 
"kinematic-wave theory." When this theory is applied 
to channel-water routing or overland-flow routing, it is 
often called "kinematic-flood routing," "kinematic 
model," or "kinematic flow" (Miller and Gunge, 1975).

To apply kinematic-wave theory, the shallow-water 
wave is assumed to be long and flat so that the friction 
slope, Sft is nearly equal to the bed slope, S0, in equa­ 

tion 37.Thus, the remaining terms, , i, and

sometimes called the secondary terms, are assumed to 
be insignificant. This implies that there is a balance 
between the gravitational and frictional forces. The 
resulting equation becomes

0=g(S0-Sf) (38)

or

(39)

From equation 39 it is obvious that the friction slope is 
parallel to the bed slope and, therefore, does not 
change with flow conditions. Thus, it follows that q is a 
function of y or A alone and can be evaluated using any 
of the uniform-flow equations, such as the Chezy or 
Manning formulas, in which S0 is substituted for S? 
The terms neglected in the development of equation 39 
are the inertia and pressure-differential terms the 
dynamic terms. Kinematics is usually defined as the 
description of motion without considering the forces 
giving rise to motion. The kinematic-wave model is so 
named because it is based primarily on the continuity 
equation and only approximates the dynamic equation 
with a uniform-flow formula.

By defining the friction slope with a uniform-flow for­ 
mula, equation 39 can be represented for application to 
a specific channel or overland-flow plane by a general 
power relationship of the form

Q=aAm, (40)

in which a and m are coefficients defined for each chan­ 
nel cross section. Methods for estimating a and m are 
given under "Supplemental Information." Usually, in 
an application of kinematic-wave theory, equation 40 
and the unsteady continuity equation (eq. 6) are solved 
simultaneously. Equations 6 and 40 are called the 
kinematic-wave equations. 

Recalling the unsteady continuity equation (eq. 6),
dO dA =0, and noting that the kinematic-wave
dx dt

celerity, c, is equal to 

dA

and that
*J A

can be written

at

dA    " dt 

, the wave celerity can be substituted into

equation 6 to obtain what is often called the kinematic- 
wave equation,

(41)c dt dx

IMPORTANCE OF 
ASSUMPTIONS AND APPROXIMATIONS

To avoid applying the kinematic-wave theory to 
situations that it does not adequately describe, the 
assumptions and approximations made to develop the 
theory need to be understood. Because the kinematic- 
wave equations are based on the dynamic-wave equa­ 
tions, the assumptions and approximations made in 
the development of the latter need to be examined first. 
The details in the following descriptions, except as 
otherwise referenced, for dynamic waves are taken 
from Liggett (1975) and for kinematic waves are taken 
from Lighthill and Whitham (1955), Yen (1979), Miller 
and Cunge (1975), and Ponce and Simons (1977).

DYNAMIC WAVES

Slope and hydrostatic pressure approximations. In 
equation 11 the pressure distribution is assumed to be 
hydrostatic. The pressure distribution will depart from 
hydrostatic when the bed slope becomes steep. Chow 
(1959, p. 32-33) showed that for uniform flow in steep 
channels the pressure at any depth must be corrected 
by the factor cos2 6. While this factor is only approxi­ 
mate for unsteady flows, it provides an indication of 
the magnitude of errors involved. The correction 
(cos2 6) decreases the pressure by an amount less than 1 
percent until 6 is nearly 6 degrees, or a slope of about 1 
in 10. Ordinary channels usually have slopes that are
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much less than 6 degrees. Therefore, this approxima­ 
tion commonly is insignificant.

For the pressure distribution to be hydrostatic, it is 
also necessary that the vertical components of accelera­ 
tion be negligible. This is true if the flow is not rapidly 
varied and for long shallow-water waves where the 
slope of the wave front or back is small. However, this 
may not be true for shorter, deeper water waves. As the 
waves approach oscillatory waves, a correction should 
be made to the wave celerity (wave speed). In order to 
maintain a 2-percent accuracy in the wave celerity, the 
ratio of the depth of the wave to the length of the wave 
must be less than or equal to 0.055 (Liggett, 1975, 
p. 44). Because the depth of a flood wave is usually less 
than a few tens of feet and the length is usually 
measured in miles, the ratio is much less than 0.055 
and this approximation is commonly insignificant.

Friction approximations. Two friction-slope approxi­ 
mations are described in the section "Supplemental In­ 
formation" under "Equation Development Concepts." 
The first approximation is the common use of the 
Chezy and Manning formulas to estimate the friction 
slope in unsteady flow even though they were devel­ 
oped for steady uniform flow. Results of unsteady flow 
modeling indicate that they are applicable. One major 
problem is how to estimate the resistance or friction 
coefficient. An error in the estimation of the resistance 
coefficient leads to an error in the predicted velocity or 
flow of the same magnitude. The second approximation 
is the assumption of steady flow made to exprss the 
longitudinal shear stress using the Chezy formula. 
Again, the results of unsteady flow modeling indicate 
that this approximation is adequate.

KINEMATIC WAVES

The additional assumptions and approximations 
made in kinematic-wave theory can be summarized by 
noting that Q is assumed to be a function of y alone. 
This means that Sf=S0 and the other three slope terms, 
called the secondary terms, in equation 36 are negligi­ 
ble. Thus, the bed slope, S0, is assumed to be large 
enough and the water wave long and flat enough so 
that the change in depth and velocity with respect to

dv 5r?distance (-^- and -5-) and the change in velocity with dx dx

respect to time (-£) are negligible when subtracted at
from S0 in equation 36.

Henderson (1966, p. 364) pointed out that for natural 
floods in steep rivers whose slopes are of the order of 
10 feet per mile or more, the values of the secondary 
terms are small. He also provides some typical values

for the slope terms taken from an actual river in steep 
alluvial country as follows:

So, dy JLflH _L^H 
~&T' g dx ' g dt

26 0.05 0.125-0.25 0.05 
(feet per mile)

Gunaratnam and Perkins (1970, p. 45) also reported 
the following values, taken from Schaake (1965), for 
gutter and overland flow.

So, dy JL     
dx' g dx 1 g

182 9.8 4.9 4.9
212 16.4 1.64 1.64

(feet per mile)

Values for the other slope terms (secondary terms) are 
small compared to S0, which indicate the rationale 
behind the assumptions made in the development of 
kinematic-wave theory.

PROPERTIES OF KINEMATIC WAVES

The properties or behavior of kinematic waves were 
first described in detail by Lighthill and Whitham 
(1955). They were described further by Henderson 
(1963 and 1966).

Unlike dynamic waves which propagate both down­ 
stream and upstream at characteristic speeds as stated 
in the equation, c=v±^/gy (positive downstream and 
negative upstream); kinematic waves propagate down­ 
stream only. Lighthill and Whitham (1955, p. 282) 
pointed out that the continuity equation (eq 6) is of the 
first order because for kinematic waves Q is a function 
of y alone; thus, kinematic waves have only one wave 
speed.

According to Henderson (1966, p. 365-367), the wave 
speed in a prismatic channel with no lateral inflow can 
be determined as follows. If a monoclinal wave is 
brought to rest by the superposition of a velocity equal 
and opposite to the wave velocity .(or celerity), c, the, 
discharge through the now stationary wave is constant 
and equal to

(v-c)A (42)

or Q cA=constant discharge through wave. Taking 
the derivative,
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and rearranging,

dQ-cdA=0,

_dQc=
dA

(43)

(44)

This is called the Kleitz-Seddon law (Lighthill and 
Whitham, 1955, p. 282). Another form may be obtained 
by noting that dA=B dy:

1 dQ 
B dy

Setting Q=A v in equation 44,

(45)

c= dCAp) 
dA

dA j_ A dv ~dA +A~dA

or

c=v+A- dv 
dA

(46)

(47)

The wave celerity can be evaluated further for wide 
rectangular channels when using a specific uniform- 
flow equation such as the Chefzy or Manning formulas. 
For example, using the Chezy formula to describe the 
relationship between velocity and depth and substitut­ 
ing R=A/P, the following form of the equation is 
obtained:

(48)

Taking the derivative with respect to A and noting 
that for wide rectangular channels P=B and is approx­ 
imately constant,

dv 
dA

=1/2CP-1/2 S''2A-1/2 ; (49)

multiplying both sides by A,

A"2=1/2CV  S0 ; (50)
p

substituting equation 48 into 50,

(51)
U/l

and, substituting equation 51 into equation 47,

c=v+l/2v=3/2v. (52)

When the Manning formula is used, equation 52 by a 
similar procedure becomes

c=5/3i>. (53)

The relationship between the wave celerity and 
mean velocity can be evaluated when the characteris­ 
tics of specific channels are defined using equation 40. 
From equation 44 it can be seen that the wave celerity 
can be determined if equation 40 is differentiated with 
respect to A as follows:

j dA
=a m (54)

Substituting equation 40,

c=m-r-=m v. 
A (55)

Therefore, m determines the relationship between the 
wave celerity and the mean velocity. Table 1 in the 
"Supplemental Information" section shows that for 
some typical prismatic channels the wave celerity is 1 
to 1.67 times as fast as the mean velocity.

On streams where stage-discharge ratings have been 
developed at representative channel sections, the 
kinematic-wave celerity can be estimated using equa-

dQ tion 45. The slope  p- can be measured directly from

the rating curve. This often provides a useful approxi­ 
mation of wave celerities in natural channels.

Equation 44 gives the speed at which a point of con­ 
stant Q and y is moving. Since this speed depends on y 
alone, points on the wave profile at the same depth, for 
example B and B' at time, t, in figure 4, move at the 
same velocity, and at a later time, t+At, the chord 
length B B' remains constant. Thus, the wave does 
not lengthen or disperse and does not subside as it 
moves downstream (see point A in fig. 4). However, it 
does distort because dQ/dy, and thus v, increases with 
y. This was described by Henderson (1963 and 1966, 
p. 370). If the wave traveled far enough, point A would 
overtake point B' forming a vertical wall of water, or 
surge. This result of kinematic-wave theory was named 
"kinematic shock" by Lighthill and Whitham (1955). 
Before kinematic shock can be discussed, the different 
solution techniques for the kinematic-wave equations 
need to be introduced.

SOLUTION TECHNIQUES

The equations describing dynamic or kinematic 
waves are partial-differential equations for which



10 BASIC CONCEPTS OF KINEMATIC-WAVE MODELS

Water surface
profile
at time t

Water surface
profile
at time r + At

FIGURE 4. Water-surface profiles at time, t and t+At, showing distortion or steepening of the kinematic wave.

there are no analytic solutions except in a few idealized 
situations. Thus, numerical techniques such as finite- 
difference methods, the method of characteristics, or 
finite-element methods are employed. The first two are 
most commonly used and will be discussed here. The 
details involved in applying these techniques are 
described by Liggett and Cunge (1975). The application 
of numerical solution techniques to partial-differential 
equations is a complex topic. While a complete descrip­ 
tion of the concepts involved is not included in this 
report, an overview of the basic concepts is given 
because the techniques are required to use kinematic- 
wave models.

Partial-differential equations, in general, can be 
classified as elliptic, parabolic, or hyperbolic. Equilib­ 
rium or steady-state problems generally are described 
by equations that are elliptic. Propagation for march­ 
ing problems are described by parabolic and hyperbolic 
equations. The equations can be classified using the 
concept of characteristics. Elliptic equations have no 
real characteristic directions, parabolic equations have 
one characteristic direction, and hyperbolic equations 
have two real characteristic directions. The details in­ 
volved in classifying partial-differential equations are 
given by Ames (1977, p. 3-9). The equations describing 
kinematic waves behave as parabolic equations al­ 
though, since they are not of the second order they are 
not actually parabolic. The equations describing 
dynamic waves are hyperbolic. It has been noted pre­ 
viously that kinematic waves propagate in only one

characteristic direction while dynamic waves propa­ 
gate in two characteristic directions. The difference in 
the number of propagation directions is an example of 
how the solutions to the equations in different classifi­ 
cations can behave differently. This needs to be con­ 
sidered in the formulation of the solutions.

FINITE-DIFFERENCE METHODS

The basic concepts behind finite-difference approxi­ 
mations to partial-differential equations are given by 
Ames (1977). The approximations can be developed in 
the following manner. If, in the x-y plane, a Taylor 
series for an arbitrary point u(x+Ax,y) is developed 
about u(x,y), the approximation for du/dx can be 
developed.

(A*)2 d*u(x,y) 
2\ dx*

(56)

where O[ | A* |"] is read "terms on the order of Ax to the 
nth power." This is the notation for the truncation er-
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ror of this approximation. Simplifying by neglecting 
all terms of higher order than one and solving for 
du/dx.

or

du(x,y) ̂  u(x+Ax,y)- u(x,y) Q[ | Ax \ 2]
dx Ax Ax

du

(57)

dx (58)

where the notation used in equation 58 is typical for 
approximation of du/dx in space and time for marching 
problems on a fixed grid in the x-t plane. Points on the 
grid are located by multiplying the grid spacing, Ax or 
At, by the corresponding i or j terms.

Equation 58 is a one-dimensional forward difference. 
The same procedure can be repeated for u(x Ax,y) to 
determine a backward-difference approximation. If the 
backward and forward differences are written to include 
the second order terms and then one is subtracted from 
the other, a central difference of the second order, 
O[ | Ax | 2 ], is obtained. Finally, if the same procedures 
are followed except that the two differences are added, 
a second order approximation for da u/dx? is obtained. 
Following the above procedures, approximations for 
the terms in the partial-differential equations describ­ 
ing one-dimensional unsteady flow can be developed.

To apply finite-difference techniques, a fixed grid in 
the x t plane is usually employed as shown in figure 5. 
Generally, in unsteady flow problems such as river 
routing, the velocity and depth (v, y) or discharge and 
area (Q, A) are known for all grid points along the 
^-direction at the initial time, £=0. Also, the inflow 
hydrograph is known (either y or Q) and sometimes the 
outflow hydrograph is known. To solve for the points 
between, either an explicit or implicit scheme is em-

At

Ax

'-1,7 '/ 7

Initial time

FIGURE 5. Fixed grid in the x-t plane showing location of grid 
points and counters, i and j.

ployed. Generally, when an explicit scheme is used, 
the approximations are written in such a way that 
unknowns at each point in the next time step can be 
solved for individually and then the procedure is 
repeated for each succeeding row.

Explicit schemes are often subject to a certain condi­ 
tion that is expressed as a "mesh ratio" (ratio of time 
step to distant step size) to produce a stable finite- 
difference scheme (O'Brien and others, 1950). Stability 
refers to the ability of the scheme to prevent numerical 
errors from growing in an unbounded or uncontrolled 
manner. This stability condition is called the Courant 
or Courant-Friedrichs-Lewy stability condition. It 
states, for application to the equations in this report, 
that the wave celerity must be less than the ratio of 
distance step to time step in the finite-difference 
scheme. In practical applications, this condition can 
limit the size of time step that can be used.

Generally, when an implicit scheme is used, 
unknowns for more than one point or each succeeding 
row of points in time are solved for at once. Finite- 
difference equations involving more than one unknown 
point in the unknown time step are developed so that 
each grid point along the ^-direction is included. The 
scheme is designed so that, when the equations are 
written for an entire row, there are an equal number of 
unknowns and equations. Then a Gaussian elimina­ 
tion or other matrix-solver is used to solve for un­ 
knowns at all points simultaneously. One of the advan­ 
tages of implicit schemes over explicit schemes is that 
they are generally not subject to the restrictive mesh 
ratio conditions for stability.

To apply the finite-difference methods, care must be 
taken to describe the initial and boundary conditions 
properly. In the application of a kinematic-wave model 
all of the many different hydrographs and ranges of 
flow are described by the same partial-differential 
equations (eqs. 6 and 40). The many possible flows are 
distinguished only by the initial and boundary condi­ 
tions and by the channel parameters, such as the fric­ 
tion coefficient and channel shapes. In the application 
of a kinematic-wave model, initial values for the 
unknowns are required at all grid locations and values 
for the unknowns are required at the upstream boun­ 
dary of the channel for all time steps modeled. The ac­ 
tual unknowns specified depend on the formulation of 
the model but are usually some combination of velo­ 
city, depth, discharge, or area. Only one is specified for 
each initial or boundary condition. The application of a 
dynamic-wave model requires the specification of more 
complex boundary conditions because the equations 
have two characteristic directions. Therefore, initial 
conditions and both upstream and downstream boun­ 
dary conditions must be specified.
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Finite-difference approximations for the kinematic- 
wave equations have been presented by Brankensiek 
(1967), Li and others (1975), Li and others (1976), 
Dawdy and others (1978), and Kibler and Woolhiser 
(1970). As an example, the explicit scheme by Dawdy 
and others (1978) is described under "Supplemental In­ 
formation." A linear, implicit finite-difference solution 
for the full dynamic-wave equations is presented by 
Land (1978) and Reefer (1976).

It should be noted that the application of numerical 
methods to partial-differential equations is not straight­ 
forward. Finite-difference schemes are often developed 
that appear to be accurate and yet do not produce useful 
results. However, a very similar scheme may produce 
very good results (Roache, 1976, p. 3).

METHOD OF CHARACTERISTICS

The method of characteristics has been used to solve 
the equations describing dynamic and kinematic 
waves. An overview of the development of the method 
of characteristics for application to the kinematic-wave 
equations is presented here. The method applied to the 
full dynamic-wave equations is described by Abbott 
(1975) and Theurer (1975). The development given here 
is taken from Eagleson (1970) and Borah and others 
(1980). A detailed discussion of the concepts behind the 
method of characteristics is given by Crandall (1956, p. 
352-355). The method involves locating the character­ 
istic paths and then integrating the ordinary differen­ 
tial equations that apply along the characteristic 
paths. When applied to wave motions, the method 
describes the space-time locus of discontinuity in the 
partial derivatives, with respect to space and time, of 
the dependent variables (in this case, A and Q). This 
locus defines the path of wave propagation (the charac­ 
teristic path) along which the phenomenon is described 
by an integrable ordinary differential equation.

The development of the method of characteristics for 
the kinematic-wave equations involves a system of 
four equations in four unknowns written in matrix 
form. The four unknowns are the partial derivatives, 
with respect to space and time, of the dependent vari-

dA dA dQ , dQ . , ,, , , - -     ~T-, and  ?*-. After the system of 
at ox

U1 ables, , at ox
equations is written in matrix form, the remaining 
concepts in the development are based on Cramer's 
rule for solving simultaneous linear equations. 
Cramer's rule gives the solution in the form of quo­ 
tients of determinants.

The application of the method of characteristics to 
kinematic-wave equations converts the two equations, 
one of which is a partial-differential equation, to or­ 
dinary differential equations. One describes the path of

the characteristic in the x-t plane, and the other 
describes the changes in area or discharge along the 
characteristic path. The path of the characteristic is 
determined by the speed of the kinematic wave (wave 
celerity). This speed is dependent on depth only; thus, 
for prismatic channels in which there is no lateral in­ 
flow, the speed is constant and the characteristic is a 
straight line (fig. 6). For nonprismatic channels or 
situations in which there is lateral inflow, the speed 
varies due to the varying depth and the characteristic 
is not a straight line. As pointed out earlier, the 
kinematic wave does not disperse or attenuate. There­ 
fore, for the simple case of no lateral inflow, the 
metho'd of characteristics involves simply tracking 
point discharges or areas (sometimes velocity and 
depth are used) to downstream locations based on the 
wave celerity. The method is developed as follows.

When applying kinematic-wave theory to overland 
flow, where lateral inflow must be considered, the con­ 
tinuity equation (eq. 6) is written to include lateral 
inflow:

dQ , dA~-- (59)

where q is lateral inflow in the form of either rainfall 
excess or overland flow to a receiving channel. Follow­ 
ing the simplifications made in the kinematic-wave 
theory, the equation of motion (eq. 40) is written, based 
on a uniform-flow equation, as Q=aAm. dQ/dt can be 
determined from equation 40:

dt

    

dt
(60)

In addition to equations 59 and 60, two more equations 
can be added using the definition of a total differential:

dQ=-
dx dt

(61)

FIGURE 6. Schematic of x t plane showing typical characteristic 
paths for the kinematic-wave equations, with and without lateral 
inflow.
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and

dA=-^-d*+ 
dx

dA 
dt (62)

Equations 59, 60, 61, and 62 can be written in matrix 
form:

1 001
ct7n.A m~ l 0 10

dt d* 0 0
0 0 dt dx

dA/dt
dA/dx
dQ/dt
dQ/dx

=

q
0

dA
dQ (63)

The discontinuity in the four derivatives (or the path of 
the characteristic line) is determined by the indeter­ 
minacy in their solution. The derivatives in equation 
63 do not exist along the characteristic paths and, 
therefore, there is no unique solution to 63 along the 
characteristic paths. According to Cramer's rule, a 
solution to the four equations exists and is unique 
unless the determinant

1 001
am A -1 0-10

dt dx 0 0 =0
0 0 d* d

or the ordinary differential equation

A 1 rtamA dt=°'

(64)

(65)

Equation 65 has two roots for the wave speed =dx/dt=c: 

c=am Am~ 1 (54) 

and

c=0. (66)

Except for the conditions of infinite roughness zero 
slope and zero depth the root in equation 66 is trivial. 
Thus, equation 54 is used to describe the kinematic- 
wave characteristic. As shown earlier, equation 54 can 
be rewritten

c=m v (55)

Since m in the approximation to the uniform-flow equa­ 
tion is usually larger than 1, it can be seen from equa­ 
tion 55 that the wave speed is greater than the stream 
velocity and propagates in the positive or downstream 
direction only. According to Cramer's rule, when equa­ 
tion 55 holds, there is no solution at all unless the

other determinants in equation 63 also equal zero. 
Now, if the columns of the coefficient matrix are 
replaced one at a time by the column vector on the 
right-hand side of equation 63, the determinant set 
equal to zero, and solved, the following are obtained. 
Replacing the first column or third column

(67)

replacing the second column,

dA = .

and, replacing the fourth column, 

jT =qam A"1 " 1 .

(68)

(69)

Dividing equation 68 by equation 54, 

dA q
dx

(70)

Equations 67 through 70 apply only along the charac­ 
teristic path defined by equation 55.

Borah and others (1980) integrated and discretized 
these equations assuming that q remains constant over 
small time and space increments. The solution is near­ 
ly analytic and involves very little numerical disper­ 
sion. However, the discretization does introduce some 
approximations. The characteristic equations are 
solved conveniently by setting Ax or At and then com­ 
puting the corresponding At or Ax value. When lateral 
inflow is included, the characteristic equations are

(71)

or

(72)

When lateral inflow is not included, equations 71 and 
72 are not defined. The characteristic equations for 
zero lateral inflow are

(73)

or

(74)
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The equations for area or discharge along the charac­ 
teristics are

(75)

or

(76)

One possible procedure for solving the above equations 
is to determine the downstream location to which an 
upstream hydrograph is to be routed (define Ax). From 
the known Ax, At can be computed from equation 72 or 
74, the cross-sectional area of the flow at the new loca­ 
tion (x+Ax, t+At) can be computed from equation 75, 
and the discharge can be computed using equation 40. 
To follow this procedure, the upstream hydrograph 
must be known at each increment of time at the initial 
distance x. Then the hydrograph can be computed at 
the downstream distance x+Ax.

KINEMATIC SHOCK

When the kinematic-wave equations are solved using 
the method of characteristics (where numerical disper­ 
sion is not a problem), kinematic shocks do occur. Some 
investigators have attempted to determine whether 
these shocks occur physically. However, Henderson 
(1966, p. 370) pointed out that while the steepening of 
the wave front may suggest that a surge will form, as 
the wave front becomes steeper the neglected second­ 
ary slope terms in equation 37 will become significant. 
The effect of these terms is to introduce dispersion and 
attenuation that will retard the steepening of the wave 
front, probably delaying and preventing any formation 
of a surge. Henderson's point indicates that shocks are 
simply a result of the approximations made in the 
development of the theory.

In the development of the kinematic-wave equations, 
the secondary slope terms in equation 37 are assumed 
to be small enough to be neglected when the bed slope 
is large. However, even though these terms are small, 
the effect of neglecting them is cumulative. In figure 4, 
the steepening of the wave front is small because of the 
small differences in celerity at each depth in the kine­ 
matic wave. However, the steepening is continuous 
because there are no terms in the kinematic-wave 
model to prevent it. The peak always has a greater 
depth and, therefore, a faster mean velocity and wave 
celerity than a lower point on the front face of the 
hydrograph. Thus, the peak continuously overtakes 
the lower depths of the hydrograph and shock occurs, 
making the solution unreasonable. The inclusion of the

secondary slope terms in the equation of motion would 
introduce a small amount of dispersion and attenua­ 
tion that would tend to offset the tendency to steepen. 
This would slow the steepening of the wave front con­ 
tinuously, although by a very small amount. Again, if 
the wave front eventually does become steeper, the 
secondary slope terms become even more significant 
and will probably prevent the formation of a surge. 
After any significant travel distance, the kinematic- 
wave approximation will always tend to steepen the 
routed wave more than predicted by the full dynamic 
equations due to the cumulative effect of neglecting 
the secondary terms in the equation of motion.

Kibler and Woolhiser (1970) and Li and others (1976) 
describe the conditions that cause kinematic shock for­ 
mation based on the paths of the characteristics of the 
kinematic-wave equations. The equation describing 
the path of the characteristics is dx/dt=c. This is the 
path of wave propagation the path that an observer 
would follow if he was moving with the wave. When 
the channel shape remains constant and there is no 
lateral inflow, the wave celerity, c, is a constant for a 
specific depth. Therefore, the characteristic paths are 
straight lines. The slope of the lines is dependent on 
the depth of the flow. Water-surface profiles at two 
times and the characteristic paths between them are 
plotted in figure 7, showing the condition necessary for 
shock formation (adapted from Peter E. Smith, written 
commun., 1981). This condition is that the characteris­ 
tic paths must cross. The characteristic paths cross be­ 
cause a deeper and, thus, faster element of the flood 
wave overtakes a shallower and, thus, slower element 
of the wave. This causes a severe steepening of the 
wave front and results in kinematic shock.

The condition for an intersection of the characteristic 
paths is that the slope, dx/dt, of the upper characteris­ 
tic, such as path 2 in figure 7, must be greater than 
that of the lower characteristic, such as path 1 in figure 
7. This condition can occur with or without lateral in­ 
flow. Following Kibler and Woolhiser (1970, p. 8), this 
condition can be described as

where 

h and

and

(77)

= height of water above datum at a particu­ 
lar point corresponding to a time, tlt and 
a later time, t2,

q = constant lateral inflow.
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CHARACTERISTIC PATHS
I

WATER SURFACE PROFILES

FIGURE 7. Water-surface profiles at a time, t and t+At, and the characteristic paths between them showing the condition necessary for
shock formation.

An illustration of the cumulative effect of neglecting 
the secondary slope terms in the kinematic-wave ap­ 
proximation is provided Ponce, Li, and Simons (1978). 
These authors developed a criterion that determines 
when the kinematic-wave model provides an adequate 
approximation of the diffusion- and dynamic-wave 
models. If the criterion is meet, the kinematic-wave 
model will provide 95-percent accuracy in the wave 
amplitude after one propagation period. Thus, for the 
usual situation in which the wave amplitude is being 
attenuated, the amplitude predicted by the diffusion- 
or dynamic-wave models would be at least 95 percent of 
the amplitude predicted by the kinematic-wave model.

However, this is for one propagation period. After two 
propagation periods, the amplitude would be in error 
by 5 percent of a wave that was already in error by 5 
percent. This criterion again indicates that the error is 
cumulative.

Usually, kinematic shocks only occur when the 
method of characteristics is used to solve the 
kinematic-wave equations (eqs. 6 and 40) because, in 
this case, the characteristics solution is a nearly 
analytic solution that, therefore, involves very little 
numerical dispersion. When numerical solutions such 
as finite-difference methods are used, the solution 
often includes a significant amount of numerical
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dispersion. This numerical dispersion has an effect on 
the solution similar to the secondary slope terms in 
equation 37. That is, it tends to introduce attenuation 
and dispersion. Numerical dispersion generally pre­ 
vents the formation of kinematic shocks. While numer­ 
ical dispersion is similar to the actual dispersion occur­ 
ring in water waves, there is no control over how much 
dispersion and attenuation occurs. Therefore, it does 
not provide an accurate model unless the dispersion is 
controlled.

DYNAMIC VERSUS KINEMATIC WAVES

To mathematically describe dynamic waves requires 
both the continuity equation and the full equation of 
motion, whereas to describe kinematic waves requires 
the continuity equation and only a simplified form of 
the equation of motion. Dynamic waves propagate at 
two-wave celerities whereas kinematic waves pro­ 
pagate at one-wave celerity. According to Lighthill and 
Whitham (1955), the properties of both waves are 
demonstrated in flood waves but the kinematic prop­ 
erties of the waves dominate. This is indicated by the 
observed fact that the main part of the flood wave 
moves more slowly than the speed predicted for 
dynamic waves. Dynamic waves have a high rate of at­ 
tenuation; therefore, the faster wave moving down the 
river ahead of the kinematic wave attenuates quickly 
and is, therefore, less significant a short distance 
downstream. Miller and Gunge (1975, p. 196) stated 
that the largest part of the flood wave moves as a 
kinematic wave because of the domination of the bed- 
slope term in the equation of motion. Therefore, the 
speed of a flood wave may often be reliably predicted by 
the speed of a kinematic wave for wide channels, 
c=3/2u, or from equation 45.

APPROXIMATIONS OF DYNAMIC WAVES

The kinematic-wave approximation is only one of a 
number of possible approximations of dynamic waves. 
Ponce and Simons (1977) described a number of approx­ 
imations by considering the various possible combina­ 
tions of the slope terms included in the equation of mo­ 
tion (eq. 37) to be solved along with the continuity 
equation (eq. 6). They write equation 37 and number 
each term in the following form:

I II III IV 
Term
Equation 1 dv v dv dy , 0 0 N _ /P70,

» ..   r  i   -  -I- T  -K&r" o ) =0. i78iof motion g dt g dx dx ^ °

The wave models and terms included in each are as 
follows:

Model
1. Kinematic wave
2. Diffusion wave
3. Steady dynamic wave
4. Dynamic wave
5. Gravity

Terms 
IV

m + rv 
ii + in + iv

I + II + HI + IV
i + ii + m

The terms are named as follows: I is the local inertia 
term, II is the convective inertia term, III is the 
pressure-differential term, and IV is simply the bed 
and friction slopes. Ponce and Simons (1977) provided a 
detailed description of the properties of the five approx­ 
imations based on their application of the theory of 
linear stability for flow in prismatic wide channels. A 
brief review of the properties of the diffusion-, steady 
dynamic-, and gravity-wave models follows (properties 
of the kinematic-wave approximation and the dynamic- 
wave model were described previously).

Diffusion waves and kinematic waves propagate 
downstream only and at an equal celerity. However, 
unlike kinematic waves, diffusion waves attenuate as 
they propagate downstream. Steady dynamic waves also 
propagate downstream only and attenuate. However, 
the wave celerity and attenuation are not the same as 
for diffusion waves. Like dynamic waves, gravity 
wave propagate at two wave celerities, c=v+\lgy and 
c=v \]gy. However, unlike dynamic waves, they gen­ 
erally attenuate only weakly.

There are two other approximations that are of in­ 
terest. Both are based on the diffusion-wave model. 
These approximations are the Muskingum-Cunge 
model and the diffusion-analogy model.

 : 
dt

dy-^-=
dx ..   dx* (79)

d*v 
In the diffusion-analogy model, the term p-r^- is used

in which /*= diffusion coefficient. 

In the diffusion-analogy model, t 

to approximate the diffusion introduced by the term

in the diffusion-wave model. The diffusion-analogy 
model is developed under "Suplemental Information." 
The Muskingum-Cunge model is an adaptation of the 
Muskingum method in which the numerical dispersion 
is controlled based on the hydraulic characteristics of 
the channel. The Muskingum-Cunge model is described 
under "Special Topics and Applications."

The standard-step method commonly applied in step- 
backwater analysis for steady, gradually varied flow is 
also an approximation of the dynamic-wave model. The
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development of the step-backwater approximation is 
given under "Supplemental Information."

Yen (1979) compared kinematic-, diffusion-, and 
steady dynamic-wave approximations to dynamic 
waves. He stated that the kinematic model is the least 
accurate and, even though the steady dynamic wave 
includes another term over the diffusion wave, it is not 
as accurate as the latter. This, he point out, is because 
for the typical case of downstream propagation terms I 
and II are usually of about the same order of magnitude 
but have opposite signs. Thus, neglecting both of them 
is more accurate than including only one.

When balancing the computation time and complexity 
against the accuracy required for each water-routing 
application, the kinematic-wave, the diffusion-wave or 
analogy, and the dynamic-wave models appear to be 
most commonly used. The remaining approximations 
usually entail almost as much complexity in their solu­ 
tions and less accuracy when compared to the next 
more accurate model. Thus, the more accurate model 
is chosen.

CRITERIA DESCRIBING LIMITATIONS OF 
APPLICABILITY OF APPROXIMATIONS

Criteria for determining when kinematic-wave ap­ 
proximations of dynamic waves are acceptable have 
been examined by a number of authors. Miller and 
Cunge (1975, p. 197) showed the development of one 
criterion based on the Froude number (F). Setting 
dynamic- and kinematic-wave celerities equal pro­ 
duces a criterion for the condition of flow at which 
dynamic and kinematic waves are of equal importance. 
When the Froude number is equal to 2, the dynamic 
and kinematic waves have the same celerity. Accord­ 
ing to Miller and Cunge (1975), when F is less than 2, 
dynamic waves are rapidly dampened out (F is less 
than 3/2 when Manning's equation is used). Kinematic- 
wave theory does not adequately describe highly super­ 
critical flows because the dynamic-wave celerity 
diverges from the kinematic-wave celerity. This 
criterion was first pointed out by Lighthill and 
Whitham (1955, p. 294).

The applicability of the kinematic-wave model for 
the overland-flow problem of a rising hydrograph due 
to lateral inflow over one plane or channel segment 
was described by Woolhiser and Liggett (1967) using 
the kinematic-flow number, K; K was defined as:

(80)

where

y0   normal depth for the maximum steady-state 
discharge at the end of the flow plane or chan­ 
nel with a maximum rate of lateral inflow, 

F0 = Froude number for normal flow   00A/£&, 
L0 = length of overland-flow plane or channel seg­ 

ment,

and

v0 = steady-state normal flow velocity.

When K is large, the kinematic-wave theory is accurate. 
When K=W, there is approximately 10 percent error 
in the rising hydrograph from an overland-flow plane. 
It is noted that K is often much larger than 10 and, 
therefore, the kinematic-wave model is adequate for 
most overland-flow problems.

The criterion of Woolhiser and Liggett should only be 
applied to the rising hydrograph problem where no 
front face is formed. Because of the continuous lateral 
inflow in the problem discussed by the authors, the dis­ 
charge is always greatest at the downstream end of the 
overland-flow plane or channel segment; therefore, no 
front face is produced. For applications where a front 
face is formed due to a change in slope, roughness, or 
lateral inflow along the plane or channel, the criterion 
is not applicable because the criterion indicates that a 
longer channel length is a case where the kinematic- 
wave approximation gives better results. However, for 
problems that produce a hydrograph with a front face, 
the further downstream a wave propagates the more 
the wave has steepended and the less accurate it 
becomes (fig. 4).

Ponce, Li, and Simons (1978) applied the theory of 
linear stability to examine the characteristics of 
dynamic-wave approximations. Following this work, 
they developed criteria for the application of kinematic-, 
diffusion-, or dynamic-wave models. For kinematic- 
wave models, they stated that for at least 95-percent 
accuracy in wave amplitude after one propagation 
period, the following inequality should hold:

(81)

where T is the wave period or length of time required 
for one wave to pass, and v and yare the mean stream 
velocity and depth corresponding to an average dis­ 
charge computed by assuming uniform flow. The 
amplitude is measured from a mean discharge and 
after one wave period. For the diffusion-wave model to 
be an adequate approximation of dynamic waves, the 
following criterion must be met:
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(82)

If equation 82 is less than 30, then the full dynamic- 
wave model must be applied to accurately account for 
the rate of travel and amount of attenuation.

Henderson (1963) presented the following qualitative 
criterion based on the bed slope. Flood waves on inter­ 
mediate slopes are best described by the complete 
equation of motion (eq. 37 or 78), flood waves on gentle 
slopes are adequately described by the diffusion-wave 
model (excluding terms I and II in eq. 78), and flood 
waves on steep slopes are adequately described by the 
kinematic-wave model (excluding terms I, II, and III in 
eq. 78).

The criteria described here for determining the appli­ 
cability of the different models apply to different situa­ 
tions. Miller and Gunge (1975) showed that the 
kinematic-wave approximation should not be used for 
highly supercritical flows. Most overland-flow and 
channel problems involve subcritical flows and, there­ 
fore, the criterion is not generally useful. Woolhiser 
and Liggett (1967) showed when the kinematic-wave 
approximation is accurate for simple one-plane or 
channel applications. This is not a typical application 
so this criterion is not generally useful. The criteria 
presented by Ponce, Li, and Simons (1978) are useful 
for diffusion waves, but, as discussed earlier, because 
the errors are cumulative, the criterion for kinematic 
waves is not generally useful. The criteria presented 
by Henderson (1963) are not quantitative and, there­ 
fore, provide only general guidelines.

FURTHER LIMITATIONS OF APPLICABILITY

Because kinematic waves do not attenuate but 
always steepen or distort and because flood waves gen­ 
erally do attenuate and often do not steepen signifi­ 
cantly, it was suspected that the errors incurred in the 
kinematic-wave approximation may continuously accu­ 
mulate. To illustrate the cumulative effect of the errors 
in the kinematic-wave model, a comparison of solu­ 
tions using both a kinematic-wave model and a 
dynamic-wave model was developed.

The comparison was developed for a 100-feet wide 
rectangular channel with a bed slope, So, equal to 0.01 
and a Chezy friction coefficient, C, equal to 25 (which is 
approximately equivalent to a Manning roughness 
coefficient ranging from 0.060 to 0.068 depending on 
the depth of flow. A sinusoidal hydrograph was used as 
input where the wave period, T, was equal to 10,000 
seconds. The input hydrograph varied from approxi­ 
mately 250 to 700 cubic feet per second. Thus, criteria

for the kinematic-wave approximation were checked 
by the following method. Using equation 81 at a refer­ 
ence flow of 400 cubic feet per second, which results in 
a depth of 1.38 feet and a mean velocity of 2.90 feet per 
second.

T $(-44=210 ;>171; (83)

and, using equation 80 with L0 equal to the length of 
channel traversed in one wave period (wave celerity 
times wave period),

(84)

Both of the above criteria are met. The kinematic-wave 
model should be adequate to predict the propagation of 
the given wave.

The kinematic-wave model used in the comparison 
was programmed based on a method of characteristics 
solution presented by Borah and others (1980), as 
described in the previous section. However, the shock- 
fitting techniques used by the above authors were not 
included. Instead, the solution, as described by the 
kinematic-wave equations alone, was allowed to prog­ 
ress without adjustment for shock formation. If the 
author's modified technique had been used, a much 
more accurate result would have been obtained.

The dynamic-wave model programmed for this appli­ 
cation is a linear implicit finite-difference model. It is a 
simple formulation for application to prismatic chan­ 
nels only. It provides a convenient means to test 
results using different time and distance steps. To 
minimize the effects of numerical dispersion, the model 
was run using a Courant number nearly equal to 1 and 
numerous tests were run using smaller and smaller 
time and distance steps. Because the model solves a 
linearized form of the dynamic-wave equations, rela­ 
tively small time and distance steps were required to 
minimize the numerical dispersion. The model was fur­ 
ther tested by comparing results with a linear implicit 
finite-difference model developed by Keefer (1976) and 
documented by Land (1978). The results from these two 
dynamic-wave models were the same.

Because the downstream boundary condition was not 
known, an 80,000-foot channel was modeled for a 
distance of 200,000 feet. It was assumed that the solu­ 
tion at 80,000 feet would not be affected by the down­ 
stream boundary. This assumption was tested using a 
much shorter reach and only insignificant differences 
were noted.

The results of the application of kinematic and 
dynamic models are shown in figure 8. The input
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FIGURE 8. Comparison of kinematic- and dynamic-wave model results showing the upstream hydrograph and predicted hydro- 
graphs at 20,000, 40,000, 60,000, and 80,000 feet.

hydrograph is shown along with the predicted hydro- 
graphs at downstream distances of 20,000, 40,000, 
60,000, and 80,000 feet. The length of the input hydro- 
graph is 37,500 feet. The model was run using a time 
step equal to 50 seconds and a distance steep equal to 
200 feet, giving a Courant number of approximately 
1.1. (To compute the Courant number, the wave celerity 
was determined from the time of travel of the peak dis­ 
charge.) At a distance of 20,000 feet, the kinematic- 
wave solution shows significant steepening (the 
change in the discharge is more rapid on the front face 
of the hydrograph). At a distance of 40,000 feet, 
kinematic shock has already occurred (more than one 
discharge is predicted at the same point and time). As 
the wave moves farther downstream, the wave peak 
completely overtakes the front edge of the wave. The 
kinematic-wave model also failed to predict a signifi­ 
cant amount of attenuation and dispersion. The crite­ 
rion for accuracy after one wave period given by Ponce 
and others (1978) is shown to be approximately correct;

however, the errors continue to accumulate as the 
hydrograph is routed beyond one wave period until the 
solution becomes unreasonable. The criterion states 
that the wave amplitude, after one wave period, should 
be within 95 percent of the correct wave amplitude as 
compared to some average flow rate and depth. 
Although the wave meets of all criteria for application 
of the kinematic-wave model, it can be seen that the 
error resulting from the kinematic-wave approxima­ 
tions in both the steepening and the attenuation is 
cumulative as the wave moves downstream.

Li and others (1976) examined the conditions under 
which kinematic shock occurs. They showed that along 
the rising limb of a wave with small lateral inflows, 
shock will always occur. In a kinematic-wave model, 
the deeper parts of the wave have a faster wave celer­ 
ity than the shallow parts. Thus, on the front face or 
rising limb of the wave, the peak is moving faster than 
the lower face and the wave continuously steepens un­ 
til shock occurs. In a dynamic-wave model, attenuation



20 BASIC CONCEPTS OF KINEMATIC-WAVE MODELS

and dispersion, although small at each computation 
step, will generally prevent the steepening of the wave.

Henderson (1966, p. 370) stated that as the wave 
front becomes steeper, the secondary slope terms come 
into play and introduce dispersion and attenuation, 
thus delaying or preventing altogether the formation 
of a surge. However, based on the above comparison of 
kinematic- and dynamic-wave models for channel-rout­ 
ing problems, the secondary slope terms appear to be 
significant continuously, and application of a 
kinematic-wave model to channel problems always 
gives a steeper wave with less attenuation and disper­ 
sion than actually occurs. This result would not be im­ 
portant, however, in applications where there is no for­ 
mation of a wave front in the channel. An example 
would be a channel of one slope where the flow origi­ 
nates from evenly distributed lateral inflow.

If a large amount of lateral inflow or channel storage 
were included in the problem, the error involved in ap­ 
plying the kinematic-wave model would not be as 
large. Thus, in overland-flow routing where the rout­ 
ing distances are short, the slopes steep, and the 
lateral inflow large, the kinematic-wave model prob­ 
ably will produce adequate results. However, for most 
channel-routing applications where the distances are 
significant and the lateral inflow is not a large percent­ 
age of the total flow, the errors accumulate and the 
kinematic-wave approximation is not adequate. This is 
true even when the wave meets the criteria which have 
been set for application of the kinematic-wave approxi­ 
mation. Many channel-routing models are called 
kinematic-wave models even though they are modified 
models that include some adjustment to the analytic 
solution of the kinematic-wave equations, such as 
numerical dispersion, shock fitting, or adjustments to 
the bed slope. Many modified models may produce 
much more adequate results.

SPECIAL TOPICS AND APPLICATIONS

Three approaches to water routing in which the limi­ 
tations of kinematic-wave approximations are some­ 
what relaxed will be presented in this section. These 
modified kinematic-wave models include the .Storm 
Water Management Model solution, the Muskingum- 
Cunge solution, and an implicit four-point finite- 
difference method.

In the development of the Storm Water Management 
Model (U.S. Environmental Protection Agency, 1971), 
it was decided to adjust the friction slope to more ade­ 
quately describe flow in storm pipes at slopes less than 
0.001. This was done by including terms II and III in 
addition to term IV in equation 78 to adjust the value

of Sf for application of the kinematic-wave model. 
Equation 40 is written, using the Manning equation,
as

(85)

where, from equation 78,

vdv (86)

The continuity equation was solved in a normalized 
form of equation 6. The equation was normalized by 
dividing by Q at pipe-full conditions based on an ad­ 
justed friction slope. The friction slope is computed 
based on the actual flow conditions (not full). Weight­ 
ing factors Wx and Wt were used to weight the average 
of the finite differences at the i and i+1 distance steps 
and they andy'+l time steps. The resulting equation is

(87)

where

Ax Af
WW

  W

a =
^f '

Q . ^i

Af = area of flow at pipe-full conditions,

and

Qf = discharge at pipe-full conditions, computed 
from equations 85 and 86.

Combining equation 85 and 86 results in a nonlinear 
equation that must be solved using an iterative method 
(the Newton-Raphson method is suggested in the model 
documentation). The finite-difference form of equations 
85 and 86 is
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2gAx (88)

In the computation scheme, equation 88 is used to 
compute Qf based on flow conditions at the previous 
time step. Then equation 87 is solved iteratively. When 
this scheme was tested, it was found that an iterative 
procedure to correct values of velocity and depth was 
needed to prevent oscillations in the solution. Finally, 
an average value of Q was used based on the last two 
iterations, in a total of four, applied to each point. In 
the above formulation, both Wx and Wt were set equal to 
0.55 because it was found that this value provided the 
best hydrograph peak attenuation and insured stability 
of the solution. Improved results for pipes with small 
slopes were obtained with this scheme. Li and others 
(1976) have presented a similar scheme in which all 
terms in equation 78 are used to adjust the friction 
slope. The two schemes described in the Storm Water 
Management Model and by Li and others are not simply 
dynamic- or steady dynamic-wave models as the num­ 
ber of terms included in equation 78 would suggest. 
Unlike the conventional solution of routing equations 
where the continuity equation and equation of motion 
are solved simultaneously, these methods use the addi­ 
tional terms simply to adjust the friction slope used in 
the kinematic-wave approximation. Some problems 
have been noted in the application of methods in which 
Sf is adjusted. On the backface of the hydrograph, the 
additional terms can reduce Sf to such an extent that 
an unreasonable flow is predicted. Therefore, when Sf 
is predicted to be less than S0, the solution generally is 
returned to the kinematic-wave solution for these parts 
of the hydrograph.

A modified Muskingum method which attempts to 
quantify the numerical dispersion which results from 
the fact that the Muskingum method is a finite- 
difference approximation to the kinematic-wave equa­ 
tions was presented by Gunge (1969). Gunge showed

that the determination of the term D=- C Ax in the

method sets a weighting factor in the finite-difference 
approximation so that the resulting numerical disper­ 
sion approximates the dispersion predicted by the 
diffusion-wave model. The parameter, D, determines 
the weighting given to the two differences in time, one 
at the upstream point and one at a distance Ax down-

30stream, to approximate the value of  57- in equation
at

41. The larger the value of D, the greater the amount of 
dispersion in the solution. The Muskingum-Gunge

method with variable parameters is presented here as 
described by Ponce and Yevjevich (1978). The basic 
equation is

where

r _ l~ l+C-D
1+C+D '

-1+C+D 
1+C+D '

l-C+D 
l+C+D '

c At C=   -  =Courant number,

(89)

(90)

(91)

(92)

(93)

and

D=
S0 cAx (94)

where c and q are the wave celerity and unit width dis­ 
charge. These values need to be determined for each 
computation step. Usually, At is fixed and Ax and S0 are 
specified for each channel reach. The values of c and q 
are determined as follows:

dQ - (95)

and

(96)

According to the authors, Qt+u+i is computed by itera­ 
tion. After an initial gues for Q,+1 J+1 has been deter­ 
mined by a three-point average of values at grid points 
G»/)» (*+!>./)» and (i,j+l\ values for c and q are deter­ 
mined using a four-point average of values of Q and A 
at grid points (i, j), (i+l,j), (i, j+D, and (i+lj+l). This 
iteration is continued until values of c and q have been 
converged upon. The authors state that this method 
was shown to be sufficiently accurate for the simula­ 
tion of flood flows.

A modified kinematic-wave model using an implicit 
four-point finite-difference method is presented by 
Alley and Smith (1982, p. 12-15) in a documentation of 
the recently modified, distributed routing rainfall- 
runoff model. The scheme is similar to the Muskingum-
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Cunge method in that it attempts to approximate a 
diffusion-wave model by adjusting the numerical dis­ 
persion resulting from the solution technique. The 
method requires an iterative procedure to solve for the 
unknown flow area.

In the implicit method, equation 6 is represented by a 
finite-difference equation using quantities at all four 
corners of the computational box and a weighting fac­ 
tor for the space derivative. Applying the finite- 
difference method requires that each model segment be 
subdivided into distance intervals. A distance interval, 
Ax, and a time interval, At, form the computational box 
for the finite-difference method. The value of Ax varies 
for segment to segment, but the value of At is constant 
for all segments.

Four points of a computational box (part of the finite- 
difference grid in the x t plane) are represented in 
figure 9. The purpose of this finite-difference method is 
to solve A and Q at point d, given values of A and Q at 
points a, b, and c. This notation for location of points in 
the finite-difference grid in the x t plane is inconsis­

tent with the notation used in the remainder of this 
report. It is used here to be consistent with previous 
documentations of this method such as Dawdy and 
others (1978). The relationship between the two nota­ 
tions is as follows: a denotes the location i, j; b denotes 
the location i+l,j; c denotes the location (j+1; and d 
denotes the location i+1, j+l. The equation can be 
written as

Ax

.
2A* (97)

where Wx is the spatial derivative weighting factor that 
is assigned a value between 0.5 and 1.0 by the user. 
The amount of numerical dispersion to be included in 
the solution is controlled by Wx. A value of Wx near 0.5 
will include very little numerical dispersion, resulting 
in a solution similar to that of the kinematic-wave

f + Af

x - Ax 

FIGURE 9. Four-point finite-difference grid.
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equations. A value of Wx near 1.0 will result in a signif­ 
icant amount of dispersion. In this method, the user 
can control the amount of dispersion in the solution. 
Whereas no technique for predicting the correct value 
for Wx is given, the value of Wx can be determined by 
calibration or it can be determined based on the sug­ 
gestions provided in the documentation of the modified 
distributed routing rainfall-runoff model (Alley and 
Smith, 1982, p. 33).

Equation 97 has two unknowns, Qd and Ad, which are 
related by equation 40. By substituting Qd=o(Ad)m into 
equation 96, the resulting equation is nonlinear with 
one unknown, Ad, and can be rearranged into the 
following form:

where

0.5 AJC

(98)

(99) 

(100)

and

(101)

The above nonlinear equation for Ad is solved with an 
iterative procedure using Newton's second order 
method for finding the roots of an equation. The proce­ 
dure converges rapidly to a correct solution if a good 
first estimate is made for the unknown area. To speed 
convergence, the first estimate is obtained by using a 
modification of the explicit method described under 
"Supplemental Information" (Dawdy and others, 
1978).

Because of errors involved in applying the kinematic- 
wave model to channel problems, a modified scheme, 
such as one of the three described here, should be used 
instead. These schemes will help stop the accumula­ 
tion of errors that occur when the kinematic-wave 
model is applied.

SUMMARY AND CONCLUSIONS

Kinematic-wave theory is applicable to overland flow 
where lateral inflow is continuously added. Where 
relatively large lateral inflows are involved such as 
overland-flow problems, and where relatively large

overbank storage is considered, the errors resulting 
from application of the kinematic-wave model may be 
masked by the overall computational strategy. This is 
especially true when the routing distances involved 
are short. However, significant problems occur where 
the theory is applied to channel routing. In particular, 
the cumulative error caused by neglecting the second­ 
ary slope terms in the equation of motion has been 
shown.

Li and others (1976) concluded that the applicability 
of the kinematic-wave model to river flood routing is 
very limited because of shock formation. However, it 
appears that the model is limited in application to 
channel problems even before kinematic shock occurs. 
The kinematic-wave model always predicts a steeper 
wave with less dispersion and attenuation than actual­ 
ly occurs. This only applies, however, to waves that 
have front faces. The approximations made in the 
development of the kinematic-wave equations are not 
generally justified for most channel-routing applica­ 
tions. However, many modified kinematic-wave 
models can provide adequate results.
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SUPPLEMENTAL INFORMATION

EQUATION DEVELOPMENT CONCEPTS

The development of the continuity equation and the 
equation of motion requires the use of some basic con­ 
cepts. These concepts include the relationship between 
momentum and energy, the different coordinate sys­ 
tems that can be used, and some friction-slope approxi­ 
mations.

MOMENTUM VERSUS ENERGY

The development of the equation of motion can be 
based on Newton's second law (eq. 1) directly, or it can 
be based on the conservation of energy or of momentum. 
The relationship between equation 1, the concept of 
conservation of energy, and the concept of conservation 
of momentum is as follows. If both sides of equation 1 
are multiplied by a length parallel to the direction of 
the force and the acceleration, the energy equation is 
obtained. It states that the work done as a body moves 
a given length is equal to the kinetic energy acquired 
by that body. If both sides of equation 1 are multiplied 
by an elapsed time period, the momentum equation is 
obtained. It states that the impulse, or force multiplied 
by time, applied to a body is equal to the momentum, or 
mass multiplied by velocity (mass times acceleration 
multiplied by time equals mass times velocity), ac­ 
quired by it.

The equation of motion is often called the momentum 
equation. However, because it can be derived based on 
conservation of momentum or energy, it is not clearly a 
momentum equation. Chow (1959, p. 50-52) discussed 
the relationship between the energy and momentum 
equations for steady, gradually varied flow. He showed
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that the two equations can be practically the same 
when applied to certain flow problems. However, the 
equations use different velocity distribution coeffi­ 
cients, although they are nearly equal, and the equa­ 
tions involve different meanings of the frictional 
losses. In the energy equation, the frictional losses are 
determined by the internal energy dissipated in the 
whole mass of water in the reach. In the momentum 
equation, the frictional losses are determined by the 
losses due to external forces exerted on the water by 
the walls of the channel. Yen (1973) showed the rela­ 
tionship between the one-dimensional equation of mo­ 
tion described in this report (Saint Venant equation) 
and the general momentum and energy equations for 
open-channel flow. Yen derived the general equations 
from the Navier-Stokes equations. He stated that the 
Saint Venant equation is a simplification and approxi­ 
mation of the general equations. However, he also 
stated that there is no simple way to reduce the gen­ 
eral energy equation into the Saint Venant form with­ 
out making serious and questionable assumptions. 
Therefore, the equation of motion is probably more 
clearly a momentum equation than an energy equa­ 
tion. To avoid confusion on this point, the term "equa­ 
tion of motion" is used in this report to describe the 
Saint Venant equation.

COORDINATE SYSTEMS

The continuity equation and the equation of motion 
can be developed using either "gravity oriented" or 
"natural" coordinate systems. In the gravity-oriented 
system the x-axis is along the horizontal direction of 
the channel, and in the natural system the x-axis is 
along the longitudinal direction of the channel (at an 
angle to the horizontal equal to the bed slope). Both 
systems are orthogonal and are equally acceptable. 
Some authors have used nonorthogonal systems, for 
example with the x-axis horizontal and depth normal 
to the channel bed instead of vertical. However, non- 
orthogonal coordinate systems can result in flow equa­ 
tions that are rather complicated and less suitable for 
practical purposes (Yen, 1979, p. 13-3).

FRICTION-SLOPE APPROXIMATIONS

Two friction-slope relationships, which are derived 
from steady uniform and steady nonuniform flow 
assumptions, are required for the development of the 
equation of motion. Because these relationships are 
not developed based on the more general unsteady non- 
uniform flow assumptions, they are approximations. 
However, they are used in the unsteady flow equations 
so that the friciton slope and the longitudinal shear

stress can be expressed using the well-known Chezy 
formula. This approach is used because no similar rela­ 
tionship exists for unsteady flow. 

The Chezy formula is

u=C (102)

This equation was developed empirically for steady 
uniform flow. However, a relationship for Sf is devel­ 
oped for application to the unsteady nonuniform flow 
case by simply rearranging equation 101 as follows:

(25)C?R '

The acceleration term used in the development of the 
equation of motion is given in equation 16. However, for 
the steady flow situation the derivative with respect to 
time in the acceleration term is zero so that:

a=vdv dx' (103)

Substituting equations 12, 14, and 103 into equation 1,

(104)

Rearranging and assuming that 6 is small so that 
cos 6 si,

Ah (105)

Substituting R=-p and taking the limit as Ax 0 so that 

Ah dh
Ax dx

and noting that T=@g,

V dv dh. (106)

Substituting equation 24 into the previous equation,

T0=VRSf . (107) 

Rearranging, a second relationship for Sf is obtained.

S = ' (108)

Setting equation 108 equal to equation 25,

(109)
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and, rearranging, r0 is expressed using the Chezy for­ 
mula:

(26)

METHODS FOR ESTIMATING a AND m

The parameters a and m are used to define the rela­ 
tionship between flow discharge, Q, and flow area, A, 
in the kinematic-wave routing scheme. The following 
equation is used:

Q=oAm. (40)

The log form of equation 40 is log Q=loga+m logA. 
This is a linear relation in which the intercept is 
loga=logQ when A=l, and m is the slope of the rela­ 
tion. If cross-section properties and stage versus dis­ 
charge data are known for a given channel, a and m

can be determined from a log-log plot of Q and A as 
shown in figure 10. For the example data shown in 
figure 10, a=1.20 and

log 9.5-log 2.5 _ 
m~ log 5.0-log 1.8 ~ (110)

If enough channel data are available to define the 
relationship between wetted perimeter, P, and flow 
area, A, then the following procedure can be used to 
estimate a and m. A log-log plot of P and A, similar to 
that shown in figure 10, can be used to define a and b in 
the following equation:

P=oA». (Ill)

Then equations for estimating a and m can be devised, 
following the steps below:

A A

(112)P a A*'
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FIGURE 10. Use of log-log plot of discharge, Q, and flow area, A, to define the routing parameters a and m.
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where #=hydraulic radius. Substituting into Mann­ 
ing's formula,

-raAb

and, rearranging,

(113)

(114)

From equation 114 it can be seen that a and m in equa­ 
tion 40 are

a=-1.49
no 

and

m=5/3-2/36.

(115)

(116)

The distributed routing rainfall-runoff model (Dawdy 
and others, 1978, p. 14) provides some approximate 
relations for determining a and m for channel shapes 
that can be described as rectangular, trapezoidal, cir­ 
cular, or triangular cross sections. These approxima­ 
tions are given in table 1.

DEVELOPMENT OF DIFFUSION-ANALOGY MODEL

The diffusion-analogy model is based on the diffusion- 
wave approximation of the dynamic-wave model and 
the continuity equation. From equation 78 the form of 
the equation of motion used in the diffusion-wave 
model is

(117)

or

(118)

This is solved simultaneously with the continuity 
equation as follows (from eq 8):

(119)

In this development, the Chezy formula will be used to 
describe the friction slope. Therefore,

(120)

and, for wide channels, As By and R=y so that, 
following equation 120, Q=CBym S^ or v= 
Substituting equation 118 into 120,

(121)

for wide channels,

(122)

Differentiating with respect to x, equation 122 becomes

(123)

Substituting into the continuity equation (eq. 119),

(124)

Recalling that S^Sb *- and v=C(y S/P and rearrang­

ing,

TABLE 1. Relations for estimating a and m based on physical characteristics of channel segments

Type of segment Definition of channel parameter Pc

Wide rectangular or trapezoidal

Circular pipe 1.49
n

1.67 Width of conduit at about mean 
depth of flow.

1.0 Diameter of pipe. 

1.33 Width at 1-foot depth.
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dy_ (125)

Multiplying by S^ISf1*,

(126)

or, again substituting v=

(127)

It has been shown that for kinematic waves, when us­ 
ing the Chezy formula, c=3/2u, and choosing the diffu­ 
sion coefficient to be

(128)

equation 127 becomes

dt
(79)

This equation is the diffusion equation and in the ap­ 
plication to flow routing is called the diffusion analogy. 
A diffusion equation with discharge instead of depth 
has as the dependent variable also can be developed 
based on some additional assumptions.

DEVELOPMENT OF STEP-BACKWATER FROM 
DYNAMIC-WAVE MODEL

The development of the step-backwater procedure is 
given to show that it is one of the many approxima­ 
tions of the dynamic-wave model. The step-backwater 
procedure is the standard-step method of computing 
steady, gradually varied flow as described by Chow 
(1959, p. 265-268). The dynamic-wave model includes 
the continuity equation and the equation of motion as 
follows:

(119)

and

dy_v_ dv _1_ dv 
dx g dx g dt' (36)

Following the assumption of steady flow, all terms 
describing the variation with respect to time are zero. 
Thus, equations 119 and 36 can be rearranged and sim­

plified to ordinary differential equations describing 
only variation with respect to x:

dx

and

(129)

(130)

Equation 129 simply states that the discharge does not 
vary with distance. This is true within each computa­ 
tion of the step-backwater procedure. The remainder of 
the development is concerned with equation 130. 
Recalling that

dt/2
..,«<

dx
_n dv

s <  " "^l/ *  At At (131)

the first term in equation 130 can be rearranged as 
follows:

(132)v dv_ 1 dt/2 _
g dx 2g dx dx

Therefore, equation 130 becomes

(133)

Approximating the differentials with a simple finite 
difference in which the subscript 1 refers to a channel 
cross section at some distance x and subscript 2 refers 
to a section a distance Ax downstream,

(134)

Multiplying by Ax and rearranging,

The friction slope can be written as

Ax '

where Af =friction loss.
The bed slope can be written as

. (135)

(136)

Ax Ax (137)
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Substituting equations 136 and 137 into equation 135,

(138)

Rearranging,

(139)

Equation 130 is the basis of the step-backwater pro­ 
cedure. Usually, an estimate of the velocity distribu­ 
tion coefficient at both sections and an estimate of the 
eddy losses is included in a step-backwater procedure. 
However, they are missing here because they were ig­ 
nored in the development of the unsteady flow model 
and are often ignored in practical applications of un­ 
steady flow models.

KINEMATIC-WAVE MODEL USED IN THE DISTRIBUTED 
ROUTING RAINFALL-RUNOFF MODEL

The kinematic-wave equations are solved using a 
finite-difference approximation. The explicit scheme 
used is generally stable for any channel segment 
length, x, and any time step, t. There are some excep­ 
tions to this when there is a large inflow at the initial 
time.

The continuity equation to be solved using a finite- 
difference scheme is

dA
dt dx

nrq' (59)

The relationship between A and Q is approximated by

Q=aAm. (40)

The model computes a and m for channel shapes that 
can be approximated by rectangular, trapezoidal, cir­ 
cular, or triangular cross sections. These approxima­ 
tions are given in table 1.

A rectangular grid of points is used to approximate Q 
and A at the downstream end of the channel using Q 
and A at the upstream end of the channel to drive the 
computations. The notation used here is consistent with 
previous documentations of this method as described 
under "Special Topics and Applications". Figure 9 
shows the four-point finite-difference grid usod to solve 
for Q and A at point d the downstream end of the

channel segment at the next time step. Points a and b 
are the upstream and downstream ends of the channel 
segment at the present time step and point c is the up­ 
stream end of the channel at the next time step. Q and 
A are known at points a, 6, and c at every time step.

In an attempt to maintain a generally stable solu­ 
tion, the model contains two different finite-difference 
equations and selects the appropriate one at each point 
in the solution. The decision depends on the parameter.

n At Ob kinematic wave speed 8=m-r- -r£ =          *-
Ax Ab Ax/At

/nm (140)

The parameter, 6, determines whether the characteris­ 
tic path passing through point d in figure 9 passes 
above or below point a. If 0 is greater than or equal to 
unity, the water wave has traveled through the entire 
reach, Ax, during At and the finite-difference equations 
are written across time between points a and c. The 
continuity equation is approximated as

Aa A
T~.   "i

Ax

Rearranging, the equations are

Ax

and

=q. (141)

(142)

(143)

This involves only grid points a, c, and d. If 6 is less 
than unity, the water has traveled a distance less than 
the reach length, Ax, during Aland the finite-difference 
equations are written across space between points a 
and b. The continuity equation is approximated as

Ad Ab 
At Ax

-=q. (144)

Rearranging, the equation are

At,

and

(145)

(146)


