

ポリエチレンナフタレート有機膜上の Co 強磁性薄膜における表面粗さと磁気特性* 海住 英生*^{1,*2}・阿部 太郎*¹・近藤 憲治*¹・石橋 晃*¹

Surface Roughness and Magnetic Properties of Co Ferromagnetic Thin Films on Polyethylene Naphthalate Organic Substrates

Hideo KAIJU*1,*2, Taro ABE*1, Kenji KONDO*1 and Akira ISHIBASHI*1

*1Research Institute for Electronic Science, Hokkaido University, Kita-20 Nishi-10, Sapporo, Hokkaido 001-0020, Japan *2Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received November 9, 2011, Accepted January 25, 2012)

We have investigated surface roughnesses and magnetic properties of Co ferromagnetic thin films evaporated on polyethylene naphtalate (PEN) organic substrates. As a result, the surface roughness decreases from 1.3 to 0.55 nm with increasing the Co thickness up to 55 nm, where a two-step smoothing phenomenon can be seen. As for magnetic properties, the coercive force and the squareness of the hysteresis loop show the maximum values at a Co thickness of 5.3 nm. This experimental result can be explained by the competition between the shape magnetic anisotropy and the induced magnetic anisotropy of Co ferromagnetic thin films.

1. はじめに

最近,我々は巨大磁気抵抗(GMR)効果素子やBeyond CMOS スイッチング素子の創製を目指し、強磁性薄膜のエ ッジを利用した強磁性薄膜/分子/強磁性薄膜ナノスケール接 合を提案している^{1,2)}.このナノスケール接合の電極材料に は,有機膜基板上の強磁性薄膜を使用している.現在まで, この材料探索として、ポリエチレンナフタレート (PEN) 有機膜基板上のNi,及び,NiFe 合金強磁性薄膜に注目し, その構造・磁気特性について調べてきた^{3,4)}.一方で,有機 膜基板上の磁性薄膜(あるいは、磁性複合膜)は近年、フレ キシブル磁気センサーとしても注目されている5-9). 例え ば、ポリエステル基板上のCo/Cu多層膜は、室温にて47.5 %のMR比を示す⁵⁾. また,ポリエステル基板上のCo/ Al₂O₃/Co 強磁性トンネル接合においても、4.2 K で20%、 室温で12.5%の MR 比を示す⁶⁾. このように, 有機膜基板上 の磁性薄膜に関して多方面から研究が進められてきた. そこ で、本研究では、PEN 有機膜上の Co 強磁性薄膜に注目 し、その表面状態、及び、磁化状態について調べることを目 的とした.

2. 実験方法

PEN 有機膜(帝人デュポン社製 TEONEX Q65,長さ10 mm,幅2mm,膜厚25µm)上のCo薄膜の作製には抵抗加熱式磁場中真空蒸着装置を用いた.抵抗加熱にはBN ルツボとWフィラメントを用い,CoがPEN 有機膜に均一に,かつ,ビーム状に蒸着するように,BN ルツボの形状・寸法,及び,遮熱板の開口部寸法をシュテファンボルツマンの式,及び,幾何学的シミュレーションを用いて,厳密に設計した.また,蒸着時にPEN 有機膜の温度がガラス転移温度

*1 北海道大学電子科学研究所(〒001-0020 札幌市北区北20条西 10丁目)

(=120℃)を超えないように、遮熱板、及び、冷却機構を 設置した. 蒸着パワーは400-450 W, 蒸着時の圧力は~ 10⁻³ Pa, 蒸着膜厚レートは1.5-2.5 nm/min とした. 誘導磁 気異方性を付与するための面内磁場は、360 Oe とした.こ のとき面内磁場は Co 薄膜に対して横方向に印加した. 膜厚 測定には原子間力顕微鏡(AFM;エスアイアイナノテクノ ロジー社製 NanoNavi IIs),及び,ダイオード励起固体 (DPSS;ネオアーク社製 NEO-30SG) レーザーによる透過 光強度測定法を用いた. このとき AFM では段差法を用いて 膜厚を求めた. また,透過光強度測定法では,入射光強度と 透過光強度をパワーメーター(メレスグリオ社製 13PEM001)により測定し、その強度比から膜厚を算出し た. 表面観察には上述と同じ AFM を用いた. 測定モードは Dynamic Force Mode (DFM) として, スキャン周波数は 1.08 Hz とした.磁化測定にはマイクロ磁気光学カー効果 (MOKE;ネオアーク社製 BH-PI920-HU) 測定装置を用い た.磁化測定での最大印加磁場は500 Oe とした.

3. 実験結果

Fig.1に PEN,及び,Co/PENの表面 AFM 像を示す. Coの膜厚は20 nm,及び,55 nm である.観察スケールは 500×500 nm² である.ここで,表面粗さ*R*_aを

$$R_{\rm a} = \frac{1}{L_{\rm x}L_{\rm y}} \int_{0}^{L_{\rm x}} \int_{0}^{L_{\rm y}} |h(x, y)| dxdy$$
 (1)

と定義する. h(x, y) は位置 (x, y) における高さプロファ イルで, $L_x \ge L_y$ はx方向とy方向の観察スケールである. PEN の R_a は1.3 nm, Co(20 nm)/PEN の R_a は0.79 nm, Co (55 nm)/PEN の R_a は0.56 nm となり, Co 膜厚が厚くなる に従い, R_a が小さくなることがわかる. Fig. 2 に Co/PEN における R_a の Co 膜厚依存性を示す. 比較のため, Au/ PEN における R_a の Au 膜厚依存性も示す. 観察スケール $L_x \ge L_y$ はそれぞれ500 nm である. Fig. 2 より, Au/PEN では, Au 膜厚が厚くなるに従い, R_a が大きくなるが, Co/ PEN では, Co 膜厚が厚くなるに従い, R_a が小さくなる.

^{*} 平成23年11月17日 第52回真空に関する連合講演会で発表

^{*2} 科学技術振興機構 (JST) 戦略的創造研究推進事業「さきがけ」 (〒332-0012 埼玉県川口市本町 4-1-8)

Fig. 1 AFM surface morphologies for (a) PEN, (b) Co (20 nm)/PEN and (c) Co (55 nm)/PEN, where the scanning area is 500×500 nm².

Fig. 2 Thickness dependence of surface roughnesses for Co/ PEN and Au/PEN.

また,特徴的な点は,2段階の平坦化現象が見られることで ある.すなわち,1段階目として,Co膜厚が0-10 nmにお いて平坦化し,2段階目として,Co膜厚が30-35 nmにおい て平坦化する.その結果,Co膜厚が30-35 nmにおいて, R_a が0.8 nmで一定となり,Co膜厚が35 nm以上で R_a が 0.55 nmで一定となる.現在のところ,その原因については 明らかになっていないが,Ni/PENやNi₇₅Fe₂₅/PENに関し ても,強磁性薄膜の膜厚が厚くなるに従い,表面粗さが小さ くなることから^{3,4}),磁性に起因した現象と考えられる.詳 細なメカニズム解明は今後の課題となる.

Fig. 3 (a)-(e) Co thickness dependence of magnetization curves for Co/PEN and (f) the induced magnetic anisotropy of Co/PEN and the direction of the external magnetic field.

Fig. 4 Co thickness dependences of (a) the coercive force and (b) the squareness of the hysteresis loop for Co/PEN.

Fig. 3に Co/PEN における磁化曲線の Co 膜厚依存性を 示す.ここで,外部磁場はFig. 3(f)に示すように,Co 薄膜 に対して横方向(=x方向),すなわち,誘導磁気異方性軸 と平行に印加した.Figs.3(a)-(e)より,Co 膜厚が5.3 nm 付近で保磁力が最大値を示すことがわかる.角型比に関して も,Co 膜厚が5.3 nm 付近で最大値を示す.Fig.4 に Co/ PEN における保磁力と角型比の Co 膜厚依存性を示す.Co 膜厚が 4-5 nm において,膜厚が厚くなるに従い,保磁力が 増大する.そして,Co 膜厚が 5 nm 付近で保磁力が77 Oe の 最大ピーク値を示し、Co 膜厚が 5-10 nm において、膜厚が 厚くなるに従い、保磁力が減少する. Co 膜厚が10-30 nm では,保磁力は30 Oe の一定値を示し, Co 膜厚が30-35 nm では, 膜厚が厚くなるに従い, 保磁力が下がる. そして, Co 膜厚が35 nm 以上では,保磁力は徐々に下がる.この傾 向は角型比に関しても同様である.これらの実験結果を表面 粗さ,及び,磁気異方性の観点から説明する.まず Co 膜厚 が 4 nm 以下では, PEN の表面粗さ R_a = 1.3 nm の影響を受 け、Co薄膜は膜として形成されないため強磁性を示さない. Co膜厚が 4-5 nm では、Co薄膜が形成され、磁気的な相互 作用が生じることから,誘導磁気異方性の効果が現れる.こ のとき、形状磁気異方性の効果はほぼ無視できると考えられ る. なぜなら, Co 膜厚が 4-5 nm では, Co 表面の R_a が1.0 nm, かつ, PEN 表面の R_a が1.3 nm であるため, Co 薄膜 の形状に対し表面・界面粗さの影響が強く現れるからであ る.従って、磁気異方性としては、Co薄膜の横方向(= Fig. 3(f)における x 方向) に付与している誘導磁気異方性が 支配的となり、磁化容易軸は膜の横方向となる. これによ り,保磁力,及び,角型比が上がる.なお,Co薄膜の長手 方向(=y方向)に外部磁場($H=H_v$)を印加すると, Fig. 5(a)に示すように、磁化曲線は保磁力・角型比が小さい、 ほぼ原点を通る曲線を示すことから、長手方向に磁化困難軸 が形成されていることは確認している (Fig. 5(a)の挿入図 において,実線は誘導磁気異方性 K_Iが強いことを示し,破 線は形状磁気異方性 Ks が弱いことを示す). Fig. 5(a) に は、比較のため、Co薄膜の横方向(=x方向)に外部磁場 $(H=H_x)$ を印加したときの磁化曲線も示している.次に, Co 膜厚が 5-10 nm では,誘導磁気異方性に加え,形状磁気

Fig. 5 Magnetization curves for (a) Co(5.3 nm)/PEN and (b) Co(21 nm)/PEN.

異方性の効果が現れ始めるため、磁化容易軸は Co 薄膜の長 手方向に徐々に傾くようになる.形状磁気異方性の効果が生 じる理由は、Co 膜厚が 5-10 nm では、Co 表面の Ra が0.8 nm に下がり,かつ,PEN 表面の R_a が1.3 nm であるため, Co 薄膜の形状に対し表面・界面の影響が徐々に無視できる ようになるからである.これにより,保磁力,及び,角型比 が下がる.そして、Co 膜厚が10-30 nm では、誘導磁気異 方性よりも形状磁気異方性による影響が大きくなるため、磁 化容易軸はほぼ長手方向に向く. これにより, 膜厚に依存せ ず保磁力,及び,角型比は一定値を示す.このとき,Fig.5 (b)に示すように、Co薄膜の長手方向(=y方向)に外部磁 場(H=H_v)を印加すると、磁化曲線は保磁力・角型比の大 きいヒステリシス曲線を示すことは確認している (Fig. 5(b) の挿入図において、実線は形状磁気異方性 Ks が強いことを 示し,破線は誘導磁気異方性 K_I が弱いことを示す).これ は、長手方向に磁化容易軸が形成されていることを示してい る. Fig. 5(b)には,比較のため, Co 薄膜の横方向(=x方 向)に外部磁場(H=H_x)を印加したときの磁化曲線も示し ている. 最後に, Co 膜厚が30-35 nm では, Co 表面の R_aが 0.55 nm に下がるため、これにより形状磁気異方性がさらに 強くなり,保磁力,及び,角型比が下がる.そして,Co膜 厚が35 nm 以上では、Raは一定値を示すが、膜厚が厚くな るため,形状磁気異方性がさらに強くなり,保磁力,及び, 角型比は徐々に下がる.以上のことから、PEN 有機膜上の Co 薄膜における磁化状態は、Co 薄膜の表面粗さ、及び、誘 導磁気異方性と形状磁気異方性の競合により説明できること がわかった.

4. まとめ

本研究では、PEN 有機膜上の Co 強磁性薄膜に関して、 その表面状態,及び,磁化状態を調べた.その結果,表面状 態観察からは、Co 膜厚が厚くなるに従い,表面粗さが小さ くなることがわかった.そのとき2段階の平坦化現象が見 られた.また,磁化状態測定からは、Co 膜厚が5 nm 付近 で保磁力,及び,角型比が最大ピーク値を示すことがわかっ た.これは、Co 薄膜の表面粗さ,及び,誘導磁気異方性と 形状磁気異方性の競合により説明できることがわかった.

謝辞

本研究の一部は,文部科学省特別経費「ナノマクロ物質・ デバイス・システム創製アライアンス」,科学技術振興機構 戦略的創造研究推進事業,文部科学省科学研究補助金若手研 究(B),及び,日本学術振興会科学研究補助金基盤研究(C)の支 援により行われた.また,帝人株式会社の平坂雅男博士,北 海道大学山本眞史教授,松田健一助教,神繁樹助教,武井将 志氏には本研究遂行にあたり種々の御協力・御助言を頂きま した.ここに感謝の意を表します.

〔文献〕

- 1) K. Kondo, H. Kaiju and A. Ishibashi: J. Appl. Phys., **105** (2009) 07D522.
- 2) H. Kaiju, K. Kondo, A. Ono, N. Kawaguchi, J. H. Won, A.

Hirata, M. Ishimaru, Y. Hirotsu and A. Ishibashi: Nanotechnology, **21** (2010) 015301.

- H. Kaiju, A. Ono, N. Kawaguchi, K. Kondo, A. Ishibashi, J. H. Won, A. Hirata, M. Ishimaru and Y. Hirotsu: Appl. Surf. Sci., 255 (2009) 3706.
- 4) H. Kaiju, N. Basheer, K. Kondo and A. Ishibashi: IEEE Trans. Magn., **46** (2010) 1356.
- 5) Y.-f Chen, Y. Mei, R. Kaltofen, J. I. Mönch, J. Schumann, J. Freudenberger, H.-J. Klau β and O. G. Schmidt: Adv. Mater., **20** (2008) 3224.
- C. Barraud, C. Deranlot, P. Seneor, R. Mattana, B. Dlubak, S. Fusil, K. Bouzehouane, D. Deneuve, F. Petroff and A. Fert: Appl. Phys. Lett., 96 (2010) 072502.
- 7) S. S. P. Parkin, K. P. Roche and T. Suzuki: Jpn. J. Appl. Phys., **31** (1992) 1246.
- T. Uhrmanna, L. Bär, T. Dimopoulos, N. Wiese, M. Rühriga and A. Lechner: J. Magn. Magn. Mater., 307 (2006) 209.
- 9) B. Özkaya, S. R. Saranu, S. Mohanan and U. Herr: phys. stat.sol. (a), **205** (2008) 1876.