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Abstract: We review the potential that brain oscillations have for improving our 7 

understanding of the processing, evolution and development of natural language. The 8 

different ‘grammars’ of brain rhythms can account for different perceptual and cognitive 9 

functions, and we argue that this includes language. We aim to address six distinct 10 

questions – the What, How, Where, Who, Why, and When questions – pertaining to 11 

oscillatory investigations of language. We review how language deficits found in clinical 12 

conditions like autism, schizophrenia and dyslexia can be satisfactorily construed in terms 13 

of an abnormal, disorder-specific pattern of brain rhythmicity. Lastly, we argue that an 14 

eco-evo-devo approach to language is compulsory. 15 
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1. Introduction 20 
 21 
During the last 150 years, neurolinguistic research has mostly focused on mapping 22 

language to the brain. The advent of various neuroimaging facilities (MRI, EEG/MEG, 23 
PET) has allowed neurolinguists to draw very precise maps of the ‘language-ready’ brain 24 

(that is, our species-specific brain configuration that allows us to learn and use language), 25 
both in pathological and neurotypical populations. It is now evident that language results 26 
from the coordinated activity of several widespread brain networks, encompassing 27 

different areas of both hemispheres (e.g. Poeppel et al., 2012; Chai et al., 2016, among 28 
many others). Nonetheless, as Poeppel (2012) has often stated, “mapping is not 29 

explaining”.  30 

 31 

Research into neural oscillations can allow us to circumvent this crucial limitation of 32 
neurolinguistics and provide robust, motivated explanations of how the brain processes 33 
language. Oscillations enable the construction of coherently organised neuronal 34 
assemblies through establishing transitory temporal correlations. They reflect 35 
synchronised fluctuations in neuronal excitability and are grouped by frequency, with the 36 
most common rhythms being delta (δ: ~0.5-4Hz), theta (θ: ~4-8Hz), alpha (α: ~8-12Hz), 37 
beta (β: ~10-30Hz) and gamma (γ: ~30-150Hz). These are generated by various cortical 38 
and subcortical structures, and form a hierarchical structure since slow rhythms phase-39 
modulate the power of faster rhythms (see Buzsáki and Draguhn, 2004; Buzsáki and 40 
Watson, 2012).  41 

 42 

There are many reasons why oscillations are a promising candidate in this respect; for 43 

instance, they are primitive components of brain function and appear to be both domain-44 
general (that is, individual oscillations intervene in different cognitive and perceptual 45 
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functions) and domain-specific (that is, there exists a specific pattern of coupling between 46 
oscillations related to, and explaining, each cognitive function) (Hancock et al. 2017, 47 
Murphy 2018). Importantly, too, the different “grammars” of brain rhythms accounting 48 

for different perceptual and cognitive functions are believed to be species-specific, but 49 
the atoms encompassing these grammars (that is, the individual rhythms) are shared 50 
across many species (Buzsáki et al., 2013; Brincat and Miller 2015; Esghaei et al. 2015; 51 
Kikuchi et al. 2017; Murphy and Benítez-Burraco, 2018). This circumstance grants a 52 
noteworthy evolutionary continuity to cognitive functions, which is particularly important 53 

in the case of language; meaning, certain elementary computational processes seem to 54 
have oscillatory implementations, and as such small tweaks to their phasal and coupling 55 
properties can yield modifications to their scope and format (Figure 1). 56 
 57 

 58 
 59 
Figure 1: The ‘What’ Question: Different types of brain oscillations account for the 60 
activity of cortical and subcortical structures. Each mammalian species makes use of a 61 
different combination (or ‘grammar’) of a common set of brain oscillations (reproduced 62 

from Buzsáki et al. 2013; Figure 2B).  63 
 64 
 65 

2. Brain Oscillations and the Linguistic Brain 66 
 67 
As also discussed extensively by Poeppel (e.g. Poeppel and Embick 2005), current 68 
neurolinguistic studies suffer from two crucial shortcomings. On the one hand, they rely 69 
on broad distinctions between components of language (syntax vs. semantics, 70 

morphology vs. syntax, etc.), which actually involve multiple neural components, 71 
computations, and representations. On the other hand, the core elements of linguistic 72 
theory (like parts of speech, syntactic operations and the like) do not map onto the core 73 

biological elements identified by neuroscience (neurons, columns, and the like). It is 74 
consequently urgent for us to present a model of language in computational terms that 75 
can be processed by specific parts of the brain in real time. 76 
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 77 
Distilling language into a specific pattern of coupling between different brain oscillations 78 
appears feasible. Importantly, this approach satisfactorily accounts for core facets of 79 

language according to consolidated linguistic theories. For instance, the combinatorial 80 
power of merge (the basic operation in the modern generative approach to language, 81 
which combines two syntactic objects to form a new syntactic unit) and the cyclic power 82 
of phrasal labeling (the operation which chooses the lexical features to be assigned to the 83 
merged syntactic unit) are able to be implemented via various oscillatory interactions such 84 

as forms of cross-frequency coupling (Murphy 2015, 2018, Meyer 2018). In the most 85 
recent and comprehensive oscillatory model of language comprehension defended in 86 
Murphy (2016, 2018) (which goes considerably beyond the discussion of combinatorics, 87 
representational accommodation, and prediction presented in Meyer 2018), empirical and 88 

conceptual motivations are presented to defend the idea that δ-θ phase-amplitude 89 
coupling constructs multiple sets of linguistic syntactic and semantic features, with 90 
distinct β and γ sources also being embedded within θ for, respectively, syntactic 91 

prediction and conceptual binding. This provides a specific neural code for recursive 92 
hierarchical phrase structure, the core distinctive feature of human language (reapplying 93 
the set-forming operation to its own output), with α also being involved in the early stages 94 
of binding (Pina et al. 2018) to synchronize distant cross-cortical γ sites required for the 95 

‘θ-γ code’ of working memory and to modulate attentional resources (Figure 2).  96 
 97 

 98 
 99 
Figure 2: The ‘How’ Question: A neural code for language, representing the various 100 
cross-frequency coupling interactions proposed to implement hierarchical phrase 101 
structure building. 102 
 103 

Importantly, Murphy (2018) also discusses the high likelihood that travelling oscillations 104 
are involved in language comprehension. These are oscillations which move across the 105 

brain; meaning, the spiking of neural clusters is coordinated not just across two fixed 106 
points (e.g. hippocampus-and left inferior frontal cortex phase-amplitude coupling) but 107 
across a particular extended path. These travelling oscillations have recently proven to 108 

coordinate neural activity across widespread brain networks and across different temporal 109 

windows, and ultimately, to support brain connectivity and function (Zhang et al., 2018). 110 

Accordingly, δ waves could cycle across the cortex, building up the syntactic 111 
representation phrase-by-phrase and potentially being endogenously reset by a newly 112 
constructed phrase, and being coupled to traveling θ waves which perform the same 113 
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function. Traveling δ waves could be responsible for patterning spiking from single- to 114 
multi-unit lexical structures in each δ cycle. As such, δ would coordinate the phrasal 115 
construction while θ-γ interactions would support the representational construction of 116 

linguistic feature-sets. Lastly, as Gągol et al. (2018) reveal, δ-γ coupling is involved in 117 
fluid intelligence (solving problems using a range of cognitive faculties on the fly, 118 
spontaneously), whereby δ embeds cross-cortical γ rhythms depending on the cortical 119 
areas needed for the particular task, i.e. geometric reasoning, visual processing etc. 120 
Murphy (2018) proposes that δ-γ coupling may be a generic combinatorial process, 121 

combining representations from within and across domains (Figure 3 contrasts the 122 
classical ‘language areas’ with the model we are proposing, revealing a considerably 123 
greater degree of complexity). 124 
 125 

 126 
 127 
Figure 3: The ‘Where’ Question: A cartographic map of where the neural code for 128 

language is hypothesized to be implemented. Additional features not discussed in the 129 
main text: Prefrontal predictions facilitate δ-entrained speech tracking in anterior 130 

superior temporal gyrus, while the cerebellum contributes to rhythmic perceptions and 131 
hence aids phrasal processing in frontotemporal regions. 132 

 133 
Although we refer the reader to Murphy (2018) for the further discussion of the empirical 134 
details, we should briefly mention that there is increasing support for this model. For 135 
instance, Brennan and Martin (2019) analysed a naturalistic story-listening EEG dataset 136 
and showed that δ-γ coupling increases with the number of predicates bound on a given 137 

word (the authors only analysed the central Cz electrode, so further analysis is required 138 
to flesh out the picture). They also discovered an increasing scale of δ-θ coupling 139 
beginning at the point of a word completing a single phrase, through to words completing 140 
two and three phrases. As such, δ-γ and δ-θ coupling increases with predication. Overall, 141 
these observations illustrate how the presently defended analysis of travelling waves can 142 

help explain how such a complex thing as a fragment of discourse, which entails both 143 
linguistic and extralinguistic (i.e. encyclopaedic) knowledge, is processed by the brain.  144 

 145 
 146 
3. Brain Oscillations and a Systems-Biology Approach to Language 147 
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 148 
Mastering a language and being able to use it, in the way we have sketched in the previous 149 
section, depends on having received the proper triggering environmental stimuli during 150 

development. But this is only possible because of complex biological processes, which 151 
are assembled mostly under genetic guidance. Thousands of biological factors interact to 152 
regulate language development and processing. Nevertheless, for many years it was not 153 
clear where the specificity of language resides – and if there is much biologically specific 154 
at all. Accordingly, although language seems to be a very specialized, human-specific 155 

faculty, it undoubtedly relies on biological components, such as its genetic basis, which 156 
may not be specific to language since ‘language genes’ contribute to a range of biological 157 
functions.  158 
 159 

Brain oscillations are highly heritable traits (van Beijsterveldt et al. 1996; Linkenkaer-160 
Hansen et al. 2007, Müller et al. 2017), including oscillations related to language (Araki 161 
et al. 2016). Oscillations are both more proximal to gene function (in particular, 162 

regulatory function) and less complex than standard cognitive labels. Accordingly, we 163 
should expect that gene-oscillations-language links are more robust and explanatory than 164 
genes-neuroanatomy-language links (Figure 4). As we have shown in a recent paper 165 
(Murphy and Benítez-Burraco 2018), the basic aspects of the language oscillome (that is, 166 

the particular phasal and cross-frequency coupling properties of neural oscillations 167 
involved in, and accounting for, language) result from genetic guidance, and a confident 168 

list of candidate genes for this guidance can be posited. Moreover, a number of linking 169 
hypotheses between particular genes and particular oscillatory brain activity implicated 170 
in language processing can be posited, suggesting that much of the oscillome is likely 171 

genetically-directed; the set of genes implicated here is termed the oscillogenome. 172 
Importantly, these candidate genes map on to specific aspects of brain function, 173 

particularly on to neurotransmitter function, and particularly through dopaminergic, 174 
GABAergic and glutamatergic synapses.  175 

 176 
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 177 
Figure 4. The ‘Who’ Question. A systems biology approach to language, focused on the 178 
dynamics of cellular and organismal function and on the (emergent) properties of the 179 
whole system, is compulsory if one wants to understand how language emerges from these 180 

complex interactions (Benítez-Burraco, 2019). It seems that the biological specificity of 181 
language may emerge at the oscillomic level (reproduced from Murphy and Benítez-182 
Burraco, 2017; Figure 8) 183 

 184 
 185 

4. Brain Oscillations and Language Disorders 186 
 187 

Most cognitive disorders entail problems with language. Whereas each disorder can be 188 
said to exhibit a disorder-specific abnormal language profile (with deficits in the domains 189 
of phonology, grammar, semantics, or language use), each particular deficit are 190 

commonly found in several disorders, to the extent that most of them are shared by 191 
different disorders with different symptomatology and aetiology. This accounts for the 192 

frequent comorbidity of disorders. Moreover, these deficits are only indirectly related to 193 
(broad) cognitive deficits at the bottom. Finally, although most of these conditions have 194 
a genetic basis, the same gene can contribute to more than one cognitive disorder (see 195 

Benítez-Burraco, 2019 for an ample discussion of these problems for clinical linguistics). 196 

This circumstance seemingly explains why the divide between the genetics and 197 

pathophysiology of prevalent cognitive/language disorders like autism spectrum disorder 198 
(ASD), schizophrenia (SZ) or developmental dyslexia (DD) remains open. In recent 199 
years, a number of promising directions have opened up for investigating the neural and 200 
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genetic basis of these disorders. Due to an emerging body of work concerning the 201 
oscillatory dynamics of language processing, it has become possible to associate certain 202 
features of the ASD, SZ or the DD neurobiological profile, particularly, language deficits, 203 

to abnormal patterns of brain oscillations. Likewise, contemporary developments have 204 
allowed researchers to explore the genetic basis of particular oscillatory rhythms in 205 
distinct brain regions (e.g. Hancock et al. 2017), as well as the genetic signature of these 206 
disorders. All of these developments have allowed us to make promising and insightful 207 
linking hypotheses between seemingly unrelated domains in the life and cognitive 208 

sciences, to the extent that we can begin to map particular gene mutations to specific 209 
abnormal oscillatory profiles which can in turn be used to explain the existence of 210 
impairments in language processing in selected cognitive conditions. 211 
 212 

In a series of related papers (Benítez-Burraco and Murphy 2016; Murphy and Benítez-213 
Burraco 2016; Jiménez-Bravo et al., 2017; Murphy and Benítez-Burraco, 2018a, 214 
Wilkinson and Murphy, 2016) we have shown that the distinctive language deficits found 215 

in clinical conditions like ASD, SZ, and DD can be satisfactorily construed in terms of 216 
an abnormal, disorder-specific pattern of brain rhythmicity. Interestingly, we have also 217 
shown that selected candidate genes for the language oscillogenome exhibit a distinctive, 218 
disorder-specific pattern of up- and downregulation in the brain of patients. In other 219 

words, the molecular signature of each disorder from this oscillogenomic perspective 220 
mostly relies not on the set of genes involved, which are essentially the same, but on their 221 

expression patterns in each brain region, which is different in each condition (Figure 5). 222 
This contributes to bridging genes (with their disorder-specific expression profile) and 223 
oscillations (with their disorder-specific profile too) and language (which is also impaired 224 

in a disorder-specific way).  225 
 226 

 227 
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Figure 5. The ‘Why’ Question. Genes involved in brain rhythmicity exhibit a disorder-228 
specific expression profile in the brain of affected people. The figure shows the expression 229 
grids generated with Enrichr (amp.pharm.mssm.edu/enrichr). Brain regions where genes 230 

of interest are most upregulated are displayed in red, whereas regions in which genes are 231 
most downregulated are shown in green (the lighter the colour, the more up- or 232 
downregulated a gene is) (adapted from Murphy and Benítez-Burraco, 2018; Figure 2). 233 
 234 
Just to give a flavour of this systems-biology approach to language disorders that heavily 235 

relying on brain oscillations, we discuss the case of ASD. Both structural and functional 236 
aspects of language are impaired in ASD. Approximately one third of children with ASD 237 
exhibit difficulties with morphosyntax (Tager-Flusberg and Joseph 2003) and both adults 238 
and children with ASD typically use a low number of functional words (Tager-Flusberg 239 

et al. 1990). This population also integrates and consolidates semantic information 240 
differently from neurotypicals when processing sentences (Eigsti et al. 2011). More 241 
specific impairments include problems with relative clauses, wh-questions, raising and 242 

passives (Perovic and Janke 2013). These difficulties all speak to a more general deficit 243 
in procedural memory. Concerning the oscillatory basis of these deficits, increased γ 244 
power has been documented for individuals with ASD (e.g. Kikuchi et al. 2013), and 245 
since this rhythm is involved in the binding of semantic features this finding can likely 246 

contribute to a causal-explanatory oscillatory model of language deficits. Kikuchi et al. 247 
(2013) additionally found reduced cross-cortical θ, α and β in the ASD brain, while 248 

Bangel et al. (2014) documented lower β power during a number estimation task. Given 249 
the role of these slower rhythms in cross-cortical information integration, and the major 250 
role β likely plays in syntactic processing (Murphy 2018), problems with executing 251 

complex syntactic operations like passivization and interpreting wh-dependencies seems 252 
not too surprising. At the same time, many of the differences in cognition and behaviour 253 

found in ASD are seemingly explained by differences in oscillatory activity resulting 254 
from pathogenic genetic diversity, mostly in genes indirectly or directly related to 255 

GABAergic activity, like MECP2 (Liao et al., 2012), the genes encoding some of the 256 
GABAA-receptor subunits (particularly of β2 and β3) (Porjesz et al., 2002; Heistek et al., 257 
2010), or PDGFRB (Nguyen et al., 2011; Nakmura et al., 2015).  258 

 259 

Eventually, these oscillatory anomalies found in cognitive disorders in tandem with an 260 
increasingly sophisticated oscillatory model of language (see Section 2 above) can yield 261 
predictions about the cortical profile of an individual exhibiting them. Specifically, 262 

considering language disorders as ‘oscillopathic’ traits (that is, involving abnormal 263 
patterns of brain rhythmicity) is a productive way to generate endophenotypes of the 264 
disorders and ultimately, achieving earlier and more accurate diagnoses.  265 
 266 

 267 
5. Brain Oscillations and Language Evolution 268 
 269 
As discussed above, language is a complex system. Accordingly, we should expect that 270 
specific evolutionary changes in specific components of this complex system prompted 271 

the transition from an ape-like cognition to human-cognition, and ultimately resulted in 272 
our language-readiness. At present, we have precise characterizations of the recent 273 
evolutionary changes in our brain and in our genomic endowment that seemingly account 274 

for our language-readiness (see Boeckx and Benítez-Burraco, 2014; Neubauer et al., 275 
2018; Gunz et al., 2019). Nonetheless, as we noted earlier, brain anatomy and brain maps 276 
can only provide indirect and rough accounts of how the brain process language. 277 
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Moreover, because, as we also noted earlier, the specificity of language is seemingly born 278 
at the oscillomic level, and because each species-specific pattern of brain coupling builds 279 
on a shared set of basic rhythms, we should expect as well that the human-specific pattern 280 

of coupling accounting for our language-readiness resulted from selected changes in the 281 
oscillatory signature of the hominin brain. These modifications can be traced via 282 
comparative studies, with humans exhibiting a species-specific richness in possible cross-283 
frequency couplings (see Murphy 2018 for references and discussion). Regarding extinct 284 
hominins, such as Neanderthals or Denisovans, it is evident that we cannot track the 285 

oscillatory activity of their brains. However, it is possible to rely on available (although 286 
still scarce) information from genes encompassing the language oscillogenome – as 287 
characterised above – to infer the particular changes in phasal and cross-frequency 288 
coupling properties of neural oscillations that resulted in the emergence of core features 289 

of language. Accordingly, several candidates for the language oscillogenome show 290 
differences in their methylation patterns (and hence, in their expression levels) between 291 
Neanderthals and anatomically-modern humans (Table 1). These differences can be 292 

informative of differences in cognitive functions important for language (Murphy and 293 
Benítez-Burraco 2018a); for instance, we can infer that the working memory capacity of 294 
Neanderthals likely differed from that of modern humans due to the differences in θ and 295 
γ expression. 296 

 297 

  298 
 299 
Table 1. The ‘When’ Question. Selected genes encompassing the language oscillogenome 300 

exhibit fixed derived changes in modern humans compared to extinct Neanderthals, either 301 
in their regulatory or coding regions, or in their methylation patterns (suggestive of 302 
differences in their expression levels) (reproduced from Murphy and Benítez-Burraco, 303 
2018b; Table 1). 304 
 305 

 306 
6. Brain Oscillations and an Eco-Evo-Devo Approach to Language 307 

 308 
A growing body of evidence suggests that genomic regions showing signals of positive 309 
selection in our species are enriched in candidates for cognitive conditions entailing 310 
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problems with language, like ASD (Polimanti and Gelernter, 2017) or SZ (Srinivasan et 311 
al., 2016; 2017). These findings are suggestive that these conditions may have mainly 312 
developed recently in our evolutionary history. This is seemingly due to the circumstance 313 

that the most recently evolved components of human cognition are more sensitive to the 314 
deleterious effect of developmental perturbations resulting from factors either internal to 315 
the organism or external to it, because of the lack of robust compensatory mechanisms to 316 
damage, which are typically found in more ancient biological functions which have been 317 
shaped by stronger selective pressures (see Toro et al., 2010 for discussion). In a similar 318 

vein, when searching for the basis for genomic trade-offs potentially involved in the 319 
evolution of the human brain, Sikela and Searles Quick (2018) have concluded that 320 
changes in the genome producing beneficial results might persist despite their ability to 321 
also produce diseases and that “the same genes that were responsible for the evolution of 322 

the human brain are also a significant cause of autism and schizophrenia” (2018: 2). This 323 
is in line with current views of complex diseases as the consequence of the uncovering of 324 
cryptic variation resulting from the assorted changes (genomic, demographic, 325 

behavioural) promoting the transition from an ape-like biology to a human-specific 326 
biology (see Gibson 2009 for details).  327 
 328 
As noted in Section 3 above, a systems biology approach to language is compulsory in 329 

order to understand how it emerges from the complex interactions among thousands of 330 
biological factors, most notably brain oscillations. It is now clear that because language 331 

evolved mostly as a result of specific changes in the developmental path of the hominin 332 
brain in response to changes in the environment in which our ancestors lived (the latter 333 
encompassing both physical and cultural factors), we need to pay attention to 334 

developmental, evolutionary, and ecological aspects. Putting it differently, an eco-evo-335 
devo approach to language is compulsory. This approach should enable us to understand 336 

better how language is implemented in the brain, how it evolved, and how it is disrupted 337 
in language disorders. What’s more, the evidence we have reviewed suggests that this can 338 

be ideally achieved if we focus on brain rhythms. Specifically, brain rhythms might be a 339 
better (or perhaps, the optimum) candidate for properly defining the morphospace or 340 
adaptive landscape of language growth in the species, either pathological or neurotypical; 341 

that is, defining the limited set of language faculties available during development. 342 

 343 
 344 
7. Conclusions 345 

 346 
Overall, the evidence reviewed in this paper suggests that brain oscillations can be the 347 
most fruitful approach for understanding how language is implemented in our brain as a 348 
result of our evolutionary history. This is not just because they are both domain-general 349 

and domain-specific, but because they help explain why and how processing, evolution 350 
and development are closely interwoven. Still, although new avenues for research are 351 
rapidly opening up, there remain a large number of unanswered questions: Which sub-352 
domains of linguistics have the potential to make greater contact with the life sciences 353 
(e.g. pragmatics)? What are the anatomical similarities and differences regarding human 354 

and nonhuman temporal processing networks? How does the notion of a travelling 355 
oscillator tie in with existing findings concerning the supposedly fixed, regionalised 356 
oscillatory activity found in existing EEG and MEG experiments of language processing? 357 

How might one test the hypothesis that nonhuman primates exhibit a differently organised 358 
array of cortical cross-frequency couplings? Solving these and others complex questions 359 
will help refine our oscillatory view of human language. 360 
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