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Abstract 

Most bacteriophages encode two types of cell wall lytic proteins: endolysins 

(lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability 

to degrade the peptidoglycan of Gram positive bacteria resulting in cell lysis when they 

are applied externally. Bacteriophage lytic proteins have a demonstrated potential in 

treating animal models of infectious diseases. There has also been an increase in the 

study of these lytic proteins for their application in areas such as food safety, pathogen 

detection/diagnosis, surfaces disinfection, vaccine development and nanotechnology. 

This review summarizes the more recent developments, outlines the full potential of 

these proteins to develop new biotechnological tools and discusses the feasibility of 

these proposals.   
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Introduction 

Bacteriophages (phages) are viruses that infect bacteria and thus have co-

evolved with their bacterial hosts, optimizing their propagation within the cell and the 

mechanism of their release from within the cell to the environment. Double-stranded 

DNA phages express  virion-associated peptidoglycan hydrolase (VAPGH) proteins that  

bind to cell surface antigens with high specificity, and disrupt the bacterial cell wall, 

allowing the phage to inject its DNA into the host cell (Fig. 1) (Moak and Molineux, 

2004; Rodríguez-Rubio et al., 2013a). VAPGHs are generally attached to the viral 

particle contacting the bacterial surface in the first step of the infection process. During 

the late stages of infection, phage-encoded endolysins (or lysins) accumulate in the 

bacterial cytoplasm until the assembly of the viral particles is complete. Other 

bacteriophage-encoded proteins, holins, form pores in the cytoplasmic membrane 

permitting the translocation of endolysins across the cytoplasmic membrane which 

degrade the extracellular peptidoglycan (Wang et al., 2000) allowing the cell to 

osmolyse (holin-endolysin lysis system). Some endolysins have been reported to be 

secreted by the general bacterial secretion system and remain inactive, membrane-

anchored until the membrane potential collapses. This process is triggered by a type of 

holins, the pinholins, that accumulate in the membrane and form small pores that 

dissipate the membrane potential (Park et al., 2007). 

Despite the fact that the natural mode of action of endolysins is from within, 

both VAPGHs and endolysins are able to degrade the peptidoglycan of Gram positive 

bacteria when applied exogenously and hence the interest in their use as alternative 

antimicrobials (also named enzybiotics) (Nelson et al., 2012; Rodríguez-Rubio et al., 

2013a). Actually, the increasing incidence of antibiotic resistant bacteria registered in 

the past two decades has renewed the interest in the use of phages (phage therapy) and 
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phage-derived proteins to fight “superbugs” (Sulakvelidze et al., 2001; O’Flaherty et al., 

2009). Phage lytic proteins offer some advantages over phage therapy: a wider host 

spectrum, generally including multiple species from the genus; no potential to transmit 

virulence factors (e.g. antibiotic resistance genes) and lack of resistance development to 

phage lysins (Fischetti, 2008; Rodríguez-Rubio et al., 2013b). In fact, since these lytic 

enzymes encoded by bacteriophages were proposed as new alternatives in the control 

(Nelson et al., 2012; Shen et al., 2012; Rodríguez-Rubio et al., 2013a), and detection of 

pathogenic bacteria (Schmelcher and Loessner, 2014) a remarkable number of papers 

providing information about mode of action, three-dimensional structure, safety, 

specificity, resistance, immunogenicity, synergy and domain shuffling of phage lytic 

proteins have been published (reviewed in Schmelcher et al., 2012). For instance, 

special attention was paid to understand the mode of action and how the presence of 

more than one catalytic domain could be responsible for the low probability of 

resistance development (Schuch et al., 2002; Rodríguez-Rubio et al., 2013b).  

 

Structure and enzymatic activity of endolysins and VAPGHs 

Depending on their origin, the structure of phage lytic proteins can vary. Most 

endolysins from phages infecting Gram-positive bacteria have a modular structure with 

a cell wall binding domain (CBD), usually at the C-terminus and one or two catalytic 

domains, usually at the N-terminus separated by a short linker (Nelson et al., 2012, 

Shen et al., 2012). A novel phage lysin, PlySK1249 encoded by a prophage of 

Streptococcus dysgalactiae subsp. equisimilis SK1249, has recently been reported to 

harbor a central CBD surrounded by an N-terminal catalytic domain and a C-terminal 

catalytic domain (Oechslin et al., 2013). An exception to this modular organization is 

the structurally unique streptococcal PlyC endolysin, composed of two different gene 
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products, PlyCA and PlyCB, with a ratio of eight PlyCB subunits for each PlyCA in its 

active heteromonomer conformation (McGowan et al., 2012). PlyCA subunit harbors 

the enzymatic activity while the eight PlyCB subunits constitute the CBD for the 

complete PlyC protein (Nelson et al., 2006). By contrast, most Gram negative phage 

endolysins have a globular organization with a single catalytic domain (Callewaert et 

al., 2011) and only some reports indicate a modular organization with one or two CBDs 

at the N-terminus and one catalytic domain at the C-terminus (Oliveira et al., 2012), 

which means an inverted molecular orientation compared to endolysins from Gram 

positive phages. 

The Gram negative phage VAPGHs have one catalytic domain, while Gram 

positive phage VAPGHs have two catalytic domains without a recognizable CBD 

(Rodríguez -Rubio et al., 2013a).  

Catalytic domains are responsible for the cleavage of specific bonds within the 

bacterial peptidoglycan. The peptidoglycan backbone is a copolymer formed by an 

alternating sequence of N-acetylmuramic acid (MurNAc) and N-acetylglucosamine 

(GlcNAc) linked by β-1,4 bonds. This sugar backbone can have small variations among 

bacterial species (Schleifer and Kandler, 1972) and is covalently attached to short stem 

peptides, by an amide bond between the MurNAc and the first amino acid in the chain. 

The stem peptide is short and formed by an alternating sequence of L and D form amino 

acids, it is highly conserved in all Gram-negative species but can be highly variable in 

Gram positive species. In many Gram positive species, the third amino acid residue of 

the chain is L-lysine. This amino acid attaches via an interpeptide bridge to a terminal 

D-alanine of another stem peptide. The composition of the interpeptide bridge varies 

between species. In Staphylococcus aureus, for example, the interpeptide bridge is 

formed by 5 glycines (Navarre et al., 1999) and in Streptococcus pyogenes by 2 alanines 
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(Muñoz et al., 1967). Gram negative species and some Gram positive bacteria, such as 

Bacillus and Listeria, have meso-diaminopimelic acid (mDAP) at the third position of 

the peptide instead of L-lysine. This mDAP residue can directly crosslink to the 

terminal D-alanine of an opposing stem peptide without forming an interpeptide bridge. 

Overall, there are six enzymatic activities associated with phage lytic proteins, 

grouped into 3 classes: 

1. Glycosidases. Include the N-acetyl-β-D-glucosaminidase activity, which hydrolyzes 

the β-1,4 bond between the GlcNAc and the MurNAc of the bacterial peptidoglycan; the 

N-acetyl-β-D-muramidase activity which hydrolyzes the β-1,4 bond between the 

MurNAc and the GlcNAc and the lytic transglycosylases. By definition, these latter 

enzymes are not true hydrolase since they do not require water to catalyze the reaction. 

They are very similar to muramidases as they cleave the β-1,4 bond between the 

MurNAc and GlcNAc but involving an intramolecular reaction that results in the 

formation of a 1,6-anhydro ring at the MurNAc residue (Holtje et al., 1975). 

2. Amidases. The N-acetylmuramoyl-L-alanine amidase activity catalyzes the 

hydrolysis of the amide bond between MurNAc and the first amino acid of the stem 

peptide. 

3. Endopeptidases. The endopeptidases hydrolyze the bond between two amino acids 

and include the activities that cleave within the stem peptide of the peptidoglycan, those 

that cleave bonds within the interpeptide bridge and those that cleave between the stem 

peptide and the interpeptide bridge. 

CBD binds to peptidoglycan ligands or secondary cell-wall polymers like 

teichoic acids and neutral polysaccharides (Schmelcher et al., 2012; Ganguly et al., 

2013) found in the cell wall of the host bacterium. They are involved in positioning the 

catalytic domain for efficient cleavage of the peptidoglycan and confer some degree of 
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specificity to the enzyme (Loessner et al., 2002). Listeria spp. bacteriophages 

endolysins are the best studied regarding the binding ligands and specificity of their 

CBDs (reviewed in Schmelcher et al., 2012). Although CBDs have been shown to be 

necessary for accurate cell wall recognition and subsequent lytic activity in some 

peptidoglycan hydrolases, such as lysostaphin (Baba et al., 1996), ALE-1 (Lu et al., 

2006), Listeria monocytogenes endolysins Ply118 and Ply500 (Loessner et al., 2002) 

and Streptococcus pneumoniae CPL-1 (Pérez-Dorado et al., 2007), there are also 

numerous reports of C-terminally deleted lysin constructs where the N-terminal lytic 

domain maintains its activity or it is even higher in the absence of the CBD (Donovan et 

al., 2006, Cheng et al., 2007, Sass and Bierbaum, 2007, Horgan et al., 2009, Mayer et 

al., 2011). Net charge of catalytic domains influences on protein activity, thus, catalytic 

domains with a positive net charge seem to work independently of the presence of a 

CBD (Low et al., 2011). 

The CBDs of some endolysins are directed towards species- or strain-specific 

cell-wall components that are often essential for viability. For example, amidases PlyG 

and PlyL selectively bind to secondary cell wall polysaccharides of the bacilli cell wall 

(Mo et al., 2012; Ganguly et al., 2013), and amidase Pal contains a choline binding 

module that attaches the enzyme to choline residues present in pneumococcal envelope 

(García et al., 1988). These conserved catalytic and binding targets have been suggested 

to contribute to the lack of bacterial resistance development against phage lytic proteins 

(Fischetti, 2005; Rodriguez-Rubio et al., 2013). 

In contrast to endolysins, VAPGHs do not have a recognizable CBD; however 

the addition of the lysostaphin CBD to the staphylococcal VAPGH HydH5 not only 

enhanced the staphylolytic activity of the protein but also broadened its host range to 

different S. aureus strains and some Staphylococcus epidermidis strains (Rodriguez-



8 
 

Rubio et al., 2012). HydH5, as a structural protein, is carried to its substrate in the 

peptidoglycan by the viral particle, which might justify the absence of a CBD. As a 

soluble protein the scenario is quite different and a CBD was necessary for HydH5 to 

properly recognize the host and its targeted bond (Rodriguez-Rubio et al., 2012). 

There are key differences in protein structure between endolysins and VAPGHs 

(e.g. the lack of CBD in VAPGHs); however, they are quite similar at the amino acid 

level suggesting a similar mode of action in their peptidoglycan cleavage mechanisms. 

Both kinds of proteins hydrolyse specific and highly conserved bonds in the 

peptidoglycan structure. 

As mentioned before, phage lytic proteins are highly refractory to resistant 

development due to having co-evolved with the host to target conserved bonds in the 

peptidoglycan (Rodriguez-Rubio et al., 2013). In addition, their modular structure with 

two catalytic domains could also contribute to the lack of resistance observed since two 

lytic domains are expected to be higher refractory to resistance development than one 

domain (Schmelcher et al., 2012; Rodriguez-Rubio et al., 2013b). 

 

State-of-the-art of clinical uses of endolysins 

The use of bacteriophage-encoded peptidoglycan hydrolases as new 

antimicrobials with clinical applications is a promising approach for infectious disease 

therapy (Table 1). Many studies have been carried out in the past decade to apply lysins 

to control pathogens systemically and topically on mucosal surfaces and biofilms 

(Pastagia et al., 2013). The potential of phage lytic enzymes was tested for the first time 

in 2001 to prevent and treat upper respiratory colonization in mice by group A 

streptococci (Nelson et al., 2001). After 2 h of the administration of 500 U of lysin PlyC 

to colonized animals, no remaining bacteria were detected. Subsequent to this work, 
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multiple studies have demonstrated the efficacy of phage lytic enzymes to control 

different pneumococcal infections such as pneumonia (Loeffler et al., 2001; Jado et al., 

2003; Witzenrath et al., 2009; Doehn et al., 2013), endocarditis (Entenza et al., 2005), 

otitis media (McCullers et al., 2007), meningitis (Grandgirard et al., 2008), bacteremia 

(Loeffler et al., 2003) and mucous membranes colonization (Cheng et al., 2005) using 

murine models of infection. Bactericidal synergism between streptococcal endolysins 

and antibiotics has also been reported in a murine model of pneumococcal bacteremia. 

Combination of subtherapeutic doses of Cpl-1, the pneumococcal Cp-1 bacteriophage 

lysin, with daptomycin significantly increased mice survival (80%) compared with the 

untreated control (0%) and daptomycin (35%) or Cpl-1 monotherapy (0%) after 7 days 

of infection (Vouillamoz et al., 2013).  

The ability of streptococcal lysins to fight infections has also been tested with 

other species, e.g., PlyPy, derived from a prophage infecting S. pyogenes, was recently 

reported to rescue mice from systemic bacteremia caused by that pathogen (Lood et al., 

2014) and repeated injections within 24h of PlySK1249 lysin significantly protected 

mice from Streptococcus agalactiae bacteremia (Oechslin et al., 2013). Noteworthy is 

the novel streptococcal lysin with broad lytic activity PlySs2, derived from a 

Streptococcus suis phage, which has been reported to protect mice from a mixed 

methicillin-resistant S. aureus (MRSA) and S. pyogenes infection (Gilmer et al., 2013). 

 Remarkable results have also been achieved in the treatment of Bacillus 

anthracis infections. This pathogen is highly toxic to humans and thus a potential bio-

warfare or terrorist agent. Two lysins, PlyG and PlyPH protect mice from death after the 

infection with Bacillus cells (Schuch et al., 2002; Yoong et al., 2006). 

Other threatening infections are those caused by MRSA strains against which, 

bacteriophage-encoded lytic proteins have also been proven effective. In 2007, the 
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intraperitoneal administration of the endolysin MV-L from phage phiMR11 protected 

mice against MRSA septic death up to 60 days post infection (Rashel et al., 2007). 

Similar results were obtained with LysGH15 since an intraperitoneal injection of 50 µg 

of the protein administered 1 h after MRSA infection was sufficient to protect mice 

from death (Gu et al., 2011). Recently, an intravenous injection of a pre-formulation 

containing recombinant endolysin SAL-1 prolonged the viability of mice and 

significantly reduced MRSA counts in the bloodstream and splenic tissue (Jun et al., 

2013). Another staphylococcal endolysin able to protect mice from a staphylococcal 

bacteremia is endolysin P-27/HP which is able to reduce by 99.9% the presence of S. 

aureus in mice spleens (Gupta and Prasad, 2011). Chimeric proteins have also been 

tested against staphylococcal infections. The chimeric lysin, ClyS, was able to reduce 

by 2-log the MRSA numbers after the administration of one dose in a mouse nasal 

colonization model, to protect animals against death by MRSA in a mouse septicemia 

model and to eradicate skin infections more efficiently than the standard topical 

antibiotic mupirocin (Daniel et al., 2010; Pastagia et al., 2011). Another bacteriophage-

derived chimeric protein, P128, was able to reduce by 2-log an initial MRSA 

colonization of ~10
9
 CFU using 100 μg of the protein twice a day for 3 days in a rat 

nasal colonization model (Paul et al., 2011). Truncated endolysins are also potential 

antistaphylococcal agents as proved by the peptidase domain from endolysin LysK 

(CHAPk) which is effective in the elimination of S. aureus from mice nares as well as a 

decolonization agent for the removal of this pathogen from the surface of mammalian 

skin (Fenton et al., 2010; Fenton et al., 2013). The application of CHAPk as a spray 

removed 99% of S. aureus from porcine skin in 30 min (Fenton et al., 2013). Anti-

staphylococcal endolysins have been combined with antibiotics to treat MRSA 

bacteremia showing superior efficacy to antibiotic therapy alone. This is the case of 
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endolysin CF‐301, also referred to as PlySs2 (Gilmer et al., 2013), which was combined 

with vancomycin or daptomycin increasing mice survival significantly (P<0.0001) 

when compared to antibiotics alone (Schuch et al., 2014). 

Endolysins are largely ineffective against Gram negative bacteria, the primary 

hurdle being the inability of these proteins to cross the bacterial outer membrane. To 

solve this problem several approaches have been reported including the use of 

membrane-disaggregate agents (Callewaert et al., 2011) and fusion of lysins to protein 

domains able to cross the outer membrane (Lukacik et al., 2012). More recently Briers 

and colleagues have developed new endolysin-based antibacterials, named artilysins, 

which combine a phage endolysin with a targeting peptide that transports the endolysin 

through the outer membrane of Gram negative bacteria (Briers et al., 2014a). Thus, Art-

175 is able to pass the outer membrane and kill Pseudomonas aeruginosa, including 

multidrug-resistant strains and persisters, in a rapid and efficient fashion (Briers et al., 

2014b). Despite the fact that a notable number of endolysins against Gram negative 

bacteria have been studied no clinical assays in animals or in humans have been 

reported. 

Overall, bacteriophage-encoded lytic proteins appear to be useful and effective 

as therapeutics against multi-drug resistant Gram positive pathogens. These phage-

encoded lytic enzymes could also be used as disinfectants of medical devices 

(orthopaedic prostheses, indwelling catheters, etc.) to prevent colonization and avoid 

post-surgery infections. However, before extending their use in human therapy it is 

necessary to perform clinical trials to study the effects of these proteins on human 

systems, including a determination of the immune response to these protein agents.  

 

Main biotechnological applications 
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Phage lytic protein applications in different areas are outlined below and summarized in 

Figure 2. 

1. Food safety. The continuous increase in foodborne diseases caused by pathogens 

such as Salmonella, Campylobacter, Escherichia coli and Listeria (EFSA Journal, 

2012) has promoted the research of new technologies to inactivate bacteria in food. An 

essential requirement that should be met by any of these new approaches is that it must 

be safe for humans, animals and the environment while keeping the nutritional value 

and the organoleptic properties of the final product undisturbed. Moreover, 

contaminating bacteria can gain access to food during all stages of production 

(slaughtering, milking, fermentation, processing, storage, packaging) and these new 

technologies have to be applied throughout the complete food chain (“farm to fork”). 

Bacteriophages have been proposed as alternatives to antibiotics in animal health, as 

biopreservatives in food and as tools for detecting pathogenic bacteria throughout the 

food chain (García et al., 2008). The approval of bacteriophages as food processing aid 

in USA [LISTEX
TM

 and SALMONELEX
TM

, Micreos Food Safety 

(http://www.micreos.com); ListShield
TM

, EcoShield
TM

, SalmoFresh
TM

, Intralytix 

(http://www.intralytix.com)] confirms the feasibility of this application. In this context, 

phage lytic proteins have remarkable advantages for food preservation; their narrow 

spectrum of activity allows them to target pathogenic or spoilage bacteria without 

disturbing the commensal microbiota when they are used to reduce colonization in 

livestock. Moreover, they are not active against starter cultures when they are applied as 

preservatives to extend the shelf life of fermented products (García et al., 2010). 

However, their inefficiency against Gram negative bacteria is a disadvantage for the use 

of phage-encoded lytic proteins as biopreservatives against those pathogens.  



13 
 

In agriculture, protection against the phytopathogen Erwinia amylovora was 

obtained in transgenic potatoes synthesizing the endolysin from the Escherichia coli 

phage T4 (Düring et al., 1993). Moreover, direct application of the recombinant 

endolysin from E. amylovora phage Ea1h on surfaces of immature pears resulted in a 

delay of necrosis produced by this pathogen (Kim et al., 2004). Other endolysins like 

CMP1 and CN77, from Clavibacter michiganensis phages, have been proposed to 

control this plant pathogen without affecting other bacteria in the soil (Wittmann et al., 

2010). Regarding animal production, transgenic cows expressing endolysins have been 

proposed to reduce mastitis and S. aureus milk contamination (Donovan et al., 2006). In 

fact, chimeric phage lysins were tested in combination with lysostaphin in a mouse 

model of mastitis where they reduced S. aureus counts, gland weights and 

intramammary tumor necrosis factor alpha (Schmelcher et al., 2012). In food 

processing, pathogen biocontrol by endolysins has been approached by addition of these 

proteins as biopreservatives and by expressing endolysin genes in starter or protective 

cultures. The purified staphylococcal endolysin LysH5 killed S. aureus in pasteurized 

milk within 4 h (Obeso et al., 2008) and its activity was enhanced by a synergistic effect 

with nisin (García et al., 2010). Furthermore, the VAPGH-derived fusion protein 

CHAPSH3 (CHAP domain from Hyd5 fused to the SH3 domain from lysostaphin), 

from staphylococcal phage vB_SauS-phiIPLA88, was shown to be active in raw milk 

and retain staphylolytic activity after pasteurization and cold-storage, which could be 

useful in dairy product manufacturing (Rodríguez-Rubio et al., 2013c). In soya milk, 

Listeria monocytogenes contamination was reduced at refrigeration temperature by 

addition of endolysin LysZ5 (Zhang et al., 2012). Other lysins such as the streptococcal 

lysins B30 (Donovan et al., 2006) and Ply700 (Celia et al., 2008) and the chimeric 

streptococcal–staphylococcal constructs λSA2E-Lyso-SH3b and λSA2E-LysK-SH3b 
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(endopeptidase domain from streptococcal LambdaSa2 endolysin fused to lysostaphin 

or LysK SH3b domain, respectively)  have also been reported to be active in milk 

(Schmelcher et al., 2012). In addition, endolysin ctp1l was proposed as an alternative to 

avoid late blowing in cheese production by Clostridium tyrobutyricum (Mayer et al., 

2010). It is tantalizing to consider that recombinant bacteria expressing endolysins 

might exert protective effects in food fermentations (Gaeng et al., 2000). However, the 

listerial phage endolysin Ply511 expressed in an active form in lactic acid bacteria was 

unable to significantly inhibit L. monocytogenes growth (Turner et al., 2007).  The 

staphylolytic endolysin LysH5 that is active in milk (Obeso et al., 2008) was expressed 

and secreted from L. lactis using the signal peptide of bacteriocin lactococcin 972 but 

the protective activity in milk has not yet been assessed (Rodríguez-Rubio et al., 2012). 

Although it is known that endolysins are active in different food matrices, additional 

information is needed as to the effectiveness of these proteins after oral administration 

in humans.    

2. Pathogen detection. Rapid and effective detection of pathogens is very important for 

the proper treatment and prevention of disease. Regarding the use of phage proteins to 

detect pathogens, most of studies have focused on the detection of foodborne bacteria. 

In 2007, Kretzer et al. developed a system to detect and immobilize cells of L. 

monocytogenes on magnetic beads coated with CBDs from different Listeria phages 

endolysins, enabling detection rates of >90% which is superior to the standard plating 

procedure in terms of both sensitivity and time required. Subsequently, Schmelcher et 

al. (2010) used this method to recover Listeria cells from inoculated milk and cheese, 

and were able to differentiate serotypes after incubation with CBDs fused to different 

fluorescent proteins. Tolba et al. (2012) also developed a biosensor for a rapid and 

specific detection of Listeria cells using endolysins CBDs immobilized on a gold screen 



15 
 

printed electrode and subsequent electrochemical impedance spectroscopy. The limit of 

detection was 1.1 × 10
4
 and 10

5
 CFU/ml in pure culture of Listeria innocua serovar 6b 

and 2% artificially contaminated milk, respectively (Tolba et al., 2012). Other methods 

based on endolysins have been developed to detect B. anthracis (Fujinami et al., 2007, 

Sainathrao et al., 2009). Using the C-terminal region of γ-phage lysin protein (PlyG), 

Fujinamii et al., (2007) developed a bioprobe to detect B. anthracis with a membrane 

direct blot assay which turned out to be simpler and less expensive than other genetic 

tools such as PCR, or immunological methods using specific antibodies. Later, 

Sainathrao et al. (2009) demonstrated that a 10-amino acids motif from the C-terminal 

region of PlyG coupled with fluorescent Qdot-nanocrystals is sufficient to specifically 

detect B. anthracis. 

3. Surface disinfection. One of the most important challenges in clinical environments 

and in food industry is the presence of bacterial biofilms on medical devices and 

industry surfaces (Otto, 2008; Gutiérrez et al., 2012). Bacteria embedded in biofilms are 

considerably less susceptible to antibiotics and disinfectants than their planktonic 

counterparts, due to both a reduced growth rate and limited access of those compounds 

to bacteria in a biofilm (Davies, 2003). Reduced susceptibility to antibiotics of some 

bacteria within the biofilm which showed a more recalcitrant phenotypic state (persister 

cells) have been also implicated in recurrent infections (Lewis, 2007). Problems 

associated with biofilms could be overcome by using endolysins and VAPGHs and they 

have been tested in both clinical and food production environments. Staphylococcal 

phage endolysins and truncated derivative proteins have been tested against S. aureus 

and S. epidermidis biofilms. The recombinant endolysins of phages phi11 and SAP-2 

were able to remove S. aureus biofilms formed on polystyrene surfaces (Sass and 

Bierbaum, 2007; Son et al., 2010). In addition, bacteriophage K derived peptidase, 



16 
 

CHAPk, successfully prevented and removed S. aureus biofilms formed on artificial 

surfaces (Fenton et al., 2013). Furthermore, endolysin LysH5 was almost as effective 

against S. aureus as S. epidermidis biofilms and no resistant cells were observed after 

treatment with this protein (Gutiérrez et al., unpublished). S. suis is an important animal 

pathogen that is also a zoonotic agent infecting humans. A phage endolysin, LysSMP 

led to more than 80% reduction of biofilms formed by these bacteria (Meng et al., 

2011). Moreover, other phage endolysins, Cpl-1 and Cpl-7, were very efficient in 

destroying biofilms formed by S. pneumoniae and the closely related species 

Streptococcus pseudoneumoniae and Streptococcus oralis (Domenech et al., 2011). 

Recently, Shen et al., (2013) demonstrated that endolysin PlyC directly lyses S. 

pyogenes cells within the biofilm matrix due to its ability to diffuse through the 

extracellular material.  

4. Vaccine development. Vaccination, stimulating the immune system to increase the 

adaptive immunity to a pathogen by the administration of antigenic material, represents 

one of the greatest public health triumphs. Viral nanoparticles (VNPs) have been an 

active area of research as delivery platforms for protein and peptide-based vaccines. 

Bacteriophage-derived nanoparticles, however, have attracted much interest since 

foreign peptides or proteins can be displayed on the surface of phages as fusion 

proteins. Thus, phage-displayed peptides or proteins have been shown to be functionally 

and immunologically active, what makes them suitable for vaccine development 

(Hamzeh-Mivehroud et al., 2013). In the search of live vaccine delivery systems, lysins 

can also be used as anchor to display heterologous proteins on the surfaces of bacteria. 

For example, CBDs can be fuse to other proteins (such as antigens) in order to display 

them at the bacterial surface, conserving both their conformation and activity (Loessner 

et al., 2002). Lactic acid bacteria (LAB) have been used to develop surface display 
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systems based on phage endolysins (Hu et al., 2010, Ribelles et al., 2013) in large part 

due to their GRAS status (generally recognized as safe), which makes them more 

readily accepted in medical and food applications than other bacteria. Regarding the 

application of these systems, recently, Ribelles et al. (2013) demonstrated that the 

exogenous addition of the E7 antigen, from human papillomavirus type-16 (HPV-16), 

when anchored on the surface of LAB by the CBD of Lactobacillus casei A2 phage 

endolysin, protected mice against a HPV-16-challenge and the resultant tumors. Over 

60% of the mice remained tumor-free throughout the test period (35 days) after being 

immunized via intranasal vaccination with LAB displaying E7 antigen; the rest of mice 

presented tumors 10-fold smaller than the ones measured in non-treated mice. Thus, 

surface display of endolysins CBDs is an interesting system to further direct therapeutic 

proteins to the surface of otherwise non-genetically modified bacteria in a safe and low-

cost way.  

Endolysins have also been used to produce empty ‘ghost’ bacteria to be 

developed into vaccines. These bacterial ‘ghosts’ are produced by the controlled 

expression of phage PhiX174 lysis gene E. E-mediated lysis of bacteria outcomes in the 

formation of empty bacterial cell envelopes with essentially the same cell surface 

composition as their living counterparts (Eko et al., 1999; Haidinger et al., 2003). These 

ghost bacteria are able to induce a strong immune response and to protect against 

infection. Thus, mucosal immunization with ‘ghost’ cells protects over 93% of mice 

against E. coli O157:H7 and Helicobacter pylori (Mayr et al., 2005; Panthel et al., 

2003). Ghost-bacteria oral vaccines have also been used with promising results to 

prevent the infection of fish with Aeromonas hydrophila and Flavobacterium 

columnare (Tu et al., 2010; Zhu et al., 2012) and protected chicken against Salmonella 

Enteritidis (Peng et al., 2011). However, the development of genetically inactivated 
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bacterial vaccines often requires the use of plasmid encoded antibiotic resistance gene 

markers, whose presence can increase the risk of horizontal spread of those resistance 

genes. In this context, Jawale and Lee (2013) developed an immunogenic Salmonella 

Enteritidis ghost using an antibiotic resistance marker free plasmid carrying the 

bacteriophage PhiX174 lysis system. This S. Enteritidis ghost was evaluated in chickens 

by prime-boost vaccination using a combination of oral and intramuscular routes. After 

a S. Enteritidis challenge, all immunized animals showed fewer gross lesions and 

decreased bacterial recovery from organs in comparison with the non-immunized 

control group (Jawale and Lee, 2013). 

5. Nanotechnology. Among all the fields that enclose the nanotechnology, its relevance 

in the food sector is a relatively recent event compared with its use in medicine and 

pharmaceutics. In fact, many researchers in bionanoscience and bionanotechnology 

were conducted, and phage-based nanomaterials have been described for biomedical 

applications (Farr et al., 2013). Phage lytic enzyme Ply500 was used for surface-based 

applications to prevent contact-based bacterial infections. For biotechnological 

processes, endolysins should be immobilized onto surfaces, with long shelf-lives and 

activity. The immobilization of Ply500 onto FDA approved nanoscale silica particles 

(Ply500-SNP), improved its stability at both 4ºC and 25ºC, and a step forward was 

achieved when incorporating this Ply500-SNP to a poly-hydroxyethyl methacrylate film 

which was able to completely remove listeria cells on contact at 4ºC (Solanki et al., 

2013). This might find application for endolysins as potential anti-bacteria coatings of 

cold storage or food processing equipment. Moreover, starch conjugates with 

endolysins may find further application in antimicrobial packaging systems like 

spraying/coating on food before packaging or incorporation into packaging materials 



19 
 

(Solanki et al., 2013). Nanotechnology opens new avenues for the application of 

endolysins and VAPGHs in different sectors to improve human health, and food safety. 

 

Other applications 

Bacteriophage-encoded lytic proteins can also have other biotechnological 

applications different from those mentioned above. Phage lysins can also be useful to 

identify novel targets for antimicrobials development. This is the case of B. anthracis-

specific endolysin PlyG which was used to identify an enzyme involved in the synthesis 

of its receptor and bacterial growth (Schuch et al., 2013). By synthesizing a specific 

inhibitor of this enzyme, named epimerox, authors were able to obtain a potent inhibitor 

of B. anthracis growth in vitro and in vivo in mice challenged with lethal doses of the 

pathogen (Schuch et al., 2013). 

The phage holin–endolysin lysis system can be used in the microbial production 

of bio-based chemicals to disrupt cells and facilitated downstream processing. This 

approach is economically more feasible and easier to control than traditional methods of 

cell disruption (reviewed by Gao et al., 2013). Furthermore, phage endolysins have been 

used for DNA, RNA and protein release from Gram-positive bacteria such as Listeria 

(Loessner et al., 1995) or S. pyogenes (Köller et al., 2008) and for the development of 

auto-inducible or heat-inducible E. coli lysis system to facilitate protein expression 

(Zhang et al., 2009; Carnes et al., 2009). 

Two recent applications of bacteriophage-encoded lytic enzymes is the control 

of bacterial growth in biofermentation and in diagnostic testing. Contamination of 

fermentation cultures by LAB reduces yields of ethanol, weakening the economics of 

biofuel production. Roach et al. (2013) demonstrated that the streptococcal phage 

LambdaSa2 endolysin and several Lactobacillus bacteriophage endolysins were able to 
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lyse lactobacilli, staphylococci or streptococci strains under fermentation conditions. In 

addition, LambdaSa2 endolysin and one of the Lactobacillus bacteriophage endolysins 

were able to reduce both L. fermentum and L. reuteri contaminants in mock 

fermentations of corn fiber hydrolysates (Roach et al., 2013). Another example of the 

control of bacterial growth using phage endolysins was proposed by Subramanyam et 

al. (2013). These authors used a pool of three endolysins to control the overgrowth of 

the normal microbiota in processed sputum samples in order to properly detect 

Mycobacterium tuberculosis. The rate of growth of normal microbiota for the detection 

method using the phage lysin pool was 9.3% compared with untreated samples 

(Subramanyam et al., 2013). Similar results were obtained when antibiotics were used 

to decontaminate sputum samples (Subramanyam et al., 2011); however, antibiotics also 

reduce the growth rate of mycobacteria. In this context, endolysins demonstrated to be 

as effective as antibiotics without inhibiting M. tuberculosis growth (Subramanyam et 

al., 2013). 

 

Perspectives and conclusions 

Endolysins and VAPGHs have repeatedly shown their antimicrobial potential to 

fight against numerous pathogens, being a feasible alternative to antibiotics in the 

treatment of infectious diseases. Results are so promising that new approaches are being 

investigated to exploit this antimicrobial potential in other fields such as food safety, 

surface decontamination and nanotechnology. However, not only their antimicrobial 

activities make these proteins attractive but also the specificity of their CBDs can be 

exploited as powerful tools for bacterial detection and antigen presentation. Considering 

that bacteriophages are the most abundant live entities, phage lytic proteins are 

structurally and functionally diverse which along with current protein engineering tools 
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opens a promising future with broad potential for these proteins. Nevertheless, the 

prospects of phage lytic proteins as biotechnological tools have several hurdles to 

overcome. For instance, in a food safety context, the approval of phage-derived proteins 

as authorized biopreservatives, the production costs and consumer acceptance seem to 

be the primary obstacles. Although no adverse effects were observed after mucosal or 

systemic administration of phage lytic proteins (Fischetti, 2008), further research is 

needed on their cytotoxicity and immunogenicity in order to confirm their safety for 

oral administration as food additives. It is known that endolysins are able to generate an 

antibody response but neutralization of the protein was not observed (Jado et al., 2003). 

Another issue to overcome for the pharmacological or biotechnological use of 

endolysins, especially for disinfection of food industry or healthcare environments, is 

the thermolabile nature of these enzymes. For example, it has been reported that S. 

aureus endolysin LysK, S. pneumoniae endolysins Cpl-1 and Pal and S. pyogenes 

endolysin PlyC lose activity at 42°C, 43.5°C, 50.2°C and 45ºC respectively (Filatova et 

al., 2010; Sanz et al., 1993; Varea et al., 2004; Heselpoth et al., 2012). Another example 

is S. aureus endolysin LysH5 which is active in milk but has no activity after 30 min at 

63ºC (Obeso et al., 2008) conditions used in milk pasteurization. Thus, increase 

thermostability of phage endolysins by protein engineering can be an important 

approach for future applications of these enzymes. Regarding nanotechnological 

applications, phage lytic proteins have a great potential for development of new 

materials because they provide a non-toxic approach to eliminate pathogens through 

bactericidal surfaces in food and healthcare environments. In addition, the very strong 

binding affinity of their CBDs for the bacterial cell wall ligands makes these domains a 

perfect alternative to antibodies, which are more laborious to obtain, for biosensor 

development. 
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The potential of phage lytic proteins is diverse.  There are several companies 

working on phage therapy (Ampliphi, Phage Biotech, Intralytix, Gangagen), who have 

paved the way for phage applications in both human and animal health, and food safety. 

It is a natural progression to expect that the similarly diverse properties and high 

potential of phage lytic proteins as antimicrobials and biotechnological tools will 

encourage the exploitation of these unique proteins. In fact, nowadays Micreos Human 

Health already has on the market several endolysin-based products under the 

GLADSKIN
TM

 brand (www.gladskin.com) for people with acne, eczema and rosacea, 

and ContraFect Corporation (Schuch et al., 2014) is testing, in Phase I clinical trials, 

phage lytic proteins for treatment of life-threatening, drug-resistant infectious diseases.  
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Tables 

Table 1. Potential clinical uses of bacteriophage-encoded peptidoglycan hydrolases 

ENDOLYSIN TREAT OR PREVENT CAUSED BY REFERENCE 

PlyC Upper respiratory colonization  Group A streptococci  Nelson et al., 2001 

Pal Nasopharyngeal colonization and 

bacteraemia 

S. pneumoniae Loeffler et al., 2001, Jado 

et al., 2003 

Cpl-1  Bacteremia, endocarditis, meningitis, 

pneumonia, otitis media 

S. pneumoniae Jado et al., 2003, Loeffler 

et al., 2003, Entenza et al., 

2005, McCullers et al., 

2007,  

Grandgirard et al., 2008; 

Witzenrath et al., 2009,  

Doehn et al., 2013, 

Vouillamoz et al., 2013 

PlyPy Bacteremia S. pyogenes Lood et al., 2014 

PlySK1249 Bacteremia S. agalactiae Oechslin et al., 2013 

PlySs2 (CF-301) Mixed infections and bacteremia MRSA, S. pyogenes Gilmer et al., 2013, Schuch 

et al., 2014 

PlyGBS Vagina and oropharynx colonization Group B streptococci  Cheng et al., 2005 

PlyG Infections B. anthracis Schuch et al., 2002 

PlyPH Infections B. anthracis Yoong et al., 2006 

MV-L  Septic death MRSA Rashel et al., 2007 

LysGH15 Septic death MRSA Gu et al., 2011 

SAL-1  Septic death MRSA Jun et al., 2013 

P-27/HP  Bacteremia  S. aureus Gupta and Prasad, 2011 

ClyS Nasal colonization, skin infections 

and septicemia 

MRSA Daniel et al., 2010; 

Pastagia et al., 2011 

P128 Nasal colonization MRSA Paul et al., 2011 

CHAPk Nasal and skin colonization S. aureus Fenton et al., 2010, 2013 
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Figures 

Figure 1. Mode of action of phage lytic proteins. A) Location of VAPGH protein at the 

phage particle and its role in the infection process. B) Structure of Gram positive 

bacteria cell wall and role of the endolysin protein.  Light grey hexagon: N-

acetylglucosamine (GlcNAc); Dark grey hexagon: N-acetylmuramic acid (MurNAc). 

 

Figure 2. Main biotechnological applications of phage lytic proteins. Modular structure 

of these proteins (EAD= enzymatically active domain, CBD= cell binding domain) is 

indicated. Pathogen detection and vaccines development have been mainly developed 

by using the CBD of lytic proteins, while for food safety, surface disinfection and 

nanotechnology purposes complete proteins were used. LAB: lactic acid bacteria.    
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