Skip to main content
Log in

GO/C2S Gate Dielectric Material for Nanoscale Devices Obtained via Pechini Method

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Some issues, such as leakage and tunneling currents, and light atom penetration through a thin gate dielectric, are threatening for silicon dioxide to be used as a suitable gate dielectric material for the next-generation metal-insulator-semiconductor-field-effect-transistor (MISFET) devices. A novel gate dielectric material for MISFET has been synthesized via the Pechini method by combining graphene oxide (GO)/dicalcium silicate (C2S) components. First, GO nanoparticles were synthesized via the Hummer method and C2S—via the Pechini method and then 0.1, 0.2, 0.4 and 0.8 the weight percentages (wt %) of GO were added into the C2S matrix. Their nanostructural properties were studied by the field emission scanning electron microscopy X-ray diffraction, Fourier transform infrared, thermo-gravimetry and differential scanning calorimetry. The electrical properties of GO/C2S nanocomposites, metal (Al)-GO/C2S insulator-Si (semiconductor) were fabricated by the physical vapor deposition technique at 10–7 Torr. The capacity, current-voltage relationship, quality factor, dissipation factor were measured with an LCR meter GPS-132A and 4-probe techniques. The frequency response of dielectric properties, dielectric constant, dielectric loss, and AC electrical conductivity, of the examined samples were studied. The electrical measurements showed that a sample with 0.4 wt % of GO nanoparticles has a higher dielectric constant at a frequency of 120 kHz (K = 62) and 1 kHz (K = 30), a lower leakage current (20 × 10–6 A/cm2), a good carrier mobility (7.62 cm2/V s), a low threshold voltage (2.9 V), a large current ION/IOFF ratio (1.25 × 103), and a higher quality factor (32.4). Therefore, C2S/GO nanocomposite with 0.4 wt % Go nanoparticles can be introduced as an alternative gate dielectric material for the next generation of MISFET devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Nishid, E., Miyaji, H., Kato, A., Takita, H., et al., Int. J. Nanomed., 2016, vol. 24, pp. 2265–2277.

    Google Scholar 

  2. Wang, H., Chen, Y., and Wei, Y., RCS Adv., 2016, vol. 41, pp. 34770–34781.

    Google Scholar 

  3. Bahari, A. and Shahbazi, M., J. Electron. Mater., 2016, vol. 45, pp. 1201–1209.

    Google Scholar 

  4. Zhao, W. and Chang, J., Mater. Sci. Eng., C, 2008, vol. 28, pp. 289–292.

    Google Scholar 

  5. Björnström, J., Martinelli, A., Matic, A., Börjesson, L., et al., Chem. Phys. Lett., 2004, vol. 392, pp. 242–248.

    Google Scholar 

  6. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, pp. 1339–1339.

    Google Scholar 

  7. Wang, H., Chen, Y., and Wei, Y., RSC Adv., 2016, vol. 6, pp. 34770–34781.

    Google Scholar 

  8. Shang, Y., Zhang, D., Yang, C., Liu, Y., et al., Constr. Build. Mater., 2015, vol. 96, pp. 20–28.

    Google Scholar 

  9. Lysenkov, E.A., Klepko, V.V., and Yakovlev, Yu.V., Surf. Eng. Appl. Electrochem., 2016, vol. 52, pp. 186–192.

    Google Scholar 

  10. Ghaharpour, F., Bahari, A., Abbasi, M., and Ashkaran, A.A., Constr. Build. Mater., 2016, vol. 113, pp. 523–535.

    Google Scholar 

  11. Bargui, M., Messaoud, M., and Elleuch, K., Surf. Eng. Appl. Electrochem., 2017, vol. 53, pp. 467–474.

    Google Scholar 

  12. Dastan, D. and Banpurkar, A., J. Mater. Sci., 2016, vol. 28, no. 4, pp. 3851–3859.

    Google Scholar 

  13. Shahbazi, M., Bahari, A., and Ghademi, Sh., Org. Electron., 2016, vol. 32, pp. 100–108.

    Google Scholar 

  14. Dastan, D., Panahi, S.L., and Chaure, N.B., J. Mater. Sci., 2016, vol. 27, no. 12, pp. 12 291–12 296.

    Google Scholar 

  15. Dastan, D., Chaure, N.B., and Kartha, M., J. Mater. Sci., 2017, vol. 28, no. 11, pp. 7784–7796.

    Google Scholar 

  16. Hoseinzadeh, S., Ghasemiasl, R., Bahari, A., and Ramezani, A.H., J. Mater. Sci. Mater. Electron., 2017, vol. 28, pp. 14 855–14 863.

    Google Scholar 

  17. Wang, J., Wu, J., Xu, W., Zhang, Q., et al., Compos. Sci. Technol., 2014, vol. 91, pp. 1–7.

    Google Scholar 

  18. Bahari, A., Babaeipour, M., and Soltani, B., J. Mater. Sci. Mater. Electron., 2016, vol. 27, pp. 2131–2137.

    Google Scholar 

  19. Bargui, M., Elleuch, K., Wery, M., and Ayedi, H.F., Surf. Eng. Appl. Electrochem., 2017, vol. 53, pp. 371–382.

    Google Scholar 

  20. Fortunato, E., Barquinha, P., and Martins, R., Adv. Mater., 2012, vol. 24, pp. 2945–2986.

    Google Scholar 

  21. Manan, A. and Hussain, I., Int. J. Mod. Phys. B, 2014, vol. 28, no. 15, pp. 1 450 092–1 450 098.

    Google Scholar 

  22. Hayati, A. and Bahari, A., Indian J. Phys., 2015, vol. 89, pp. 45–54.

    Google Scholar 

  23. Morales-Acosta, M.D., Quevedo-López, M.A., and Ramírez-Bon, R., J. Non-Cryst. Solids, 2013, vol. 362, pp. 124–135.

    Google Scholar 

  24. Morales-Acosta, M.D., Quevedo-López, M.A., and Ramírez-Bon, R., Mater. Chem. Phys., 2014, vol. 146, pp. 380–388.

    Google Scholar 

  25. Lee, S., Koo, B., Shin, J., Lee, E., et al., Appl. Phys. Lett., 2006, vol. 88, p. 162 109.

    Google Scholar 

  26. Deng, L.J., Gu, Y.Z., Xu, W.X. and Ma, Zh.Y., Chin. J. Chem. Phys., 2014, vol. 27, pp. 321–326.

    Google Scholar 

  27. Jonscher, A.K., Nature, 1977, vol. 267, pp. 673–679.

    Google Scholar 

  28. Frunză, R.C., Kmet, B., Jankovec, M., Topič M., et al., Mater. Res. Bull., 2014, vol. 50, pp. 323–328.

    Google Scholar 

  29. Selçuk, A.B., Ocak, S.B., Aras, G., and Orhan, E., Mater. Sci. Semicond. Process., 2015, vol. 38, pp. 119–125.

    Google Scholar 

  30. Gundlach, D.J., Lin, Y.Y., Jackson, T.N. and Schlom, D.G., Appl. Phys. Lett., 1997, vol. 71, no. 26, pp. 38–53.

    Google Scholar 

  31. Bahari, A., Roodbari Shahmiri, M., Derakhshi, M., and Jamali, M., J. Nanostruct., 2012, vol. 2, pp. 313–318.

    Google Scholar 

  32. Muñoz, J.R., Rivera, M.A.C., Munoz, J.L.F., Torres, M.Z., et al., Bull. Mater. Sci., 2017, vol. 40, no. 5, pp. 1043–1047.

    Google Scholar 

  33. Miao, Q., Adv. Mater., 2014, vol. 26, no. 31, pp. 5541–5549.

    Google Scholar 

  34. Naik, B.R., Avis, C., Chowdhury, M.D.H., Kim, T., et al., Jpn. J. Appl. Phys., 2016, vol. 55, no. 351, pp. 3413–3419.

    Google Scholar 

  35. Ting, G.G., Acton, O., Ma, H., Won Ka, J., et al., Langumir, 2009, vol. 25, pp. 2140–2147.

    Google Scholar 

  36. Miao, Q.I.A.N., Lefenfeld, M., Nguyen, T.Q., Siegrist, T., et al., Adv. Mater., 2011, vol. 23, no. 13, pp. 1535–1538.

    Google Scholar 

  37. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H.E., et al., J. Am. Chem. Soc., 2003, vol. 125, no. 31, pp. 9414–9423.

    Google Scholar 

  38. Facchetti, A., Yoon, M.H., Stern, C.L., Hutchison, G.R., et al., J. Am. Chem. Soc., 2004, vol. 126, no. 41, pp. 13 480–13 501.

    Google Scholar 

  39. Xu, X., Cui, Q., Jin, Y., and Guo, X., Appl. Phys. Lett., 2012, vol. 101, p. 222 114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahari.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein Salmani, Ali Bahari GO/C2S Gate Dielectric Material for Nanoscale Devices Obtained via Pechini Method. Surf. Engin. Appl.Electrochem. 55, 379–389 (2019). https://doi.org/10.3103/S1068375519040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519040136

Keywords:

Navigation