Skip to main content
Log in

Calculation of design relative density for rational sandwich structure with truss core

  • Aircraft and Rocket Engine Design and Development
  • Published:
Russian Aeronautics (Iz VUZ) Aims and scope Submit manuscript

Abstract

A technique of design analysis of the relative density of core and face sheets (skin) for rational sandwich structure with truss core is proposed. The examples of calculating the rational angle of truss core slope and design values of sandwich structure density are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sypeck, D.J. and Wadley, H.N.G., Cellular Metal Truss Core Sandwich Structures, Advanced Engineering Materials, 2002, vol. 4, no. 10, pp. 759–764.

    Article  Google Scholar 

  2. Wadley, H.N.G., Multifunctional Periodic Cellular Metals, Philosophical Transactions of the Royal Society, 2006, vol. 364, no. 1838, pp. 31–68.

    Article  Google Scholar 

  3. Lu, T.J., Valdevit, L., and Evans, A.G., Active Cooling by Metallic Sandwich Structures with Periodic Cores, Progress in Materials Science, 2005, vol. 50, no. 7, pp. 789–815.

    Article  Google Scholar 

  4. Wallach, J.C. and Gibson, L.J., Defect Sensitivity of a 3D Truss Material, Scripta Materialia, 2001, vol. 45, no. 6, pp. 639–644.

    Article  Google Scholar 

  5. Menges, A., Integral Computational Design for Composite Spacer Fabric Structures, Proc. of the 27th eCAADe, 2009, pp. 289–297.

    Google Scholar 

  6. Hutchinson, R.G., Wicks, N., Evans, A.G., et. al., Kagome Plate Structures for Actuation, International Journal of Solids and Structures, 2003, vol. 40, no. 25, pp. 6969–6980.

    Article  MathSciNet  MATH  Google Scholar 

  7. Wicks, N. and Hutchinson, J.W., Sandwich Plates Actuated by a Kagome Planar Truss, Journal of Applied Mechanics, 2004, vol. 71, no. 5, pp. 652–662.

    Article  MATH  Google Scholar 

  8. El-Raheb, M., Frequency Response of a Two-Dimensional Trusslike Periodic Panel, Journal of the Acoustical Society of America, 1997, vol. 101, no. 6, pp. 3457–3465.

    Article  Google Scholar 

  9. Franco, F., Cunefare, K.A., and Ruzzene, M., Structural-acoustic Optimization of Sandwich Panels, Journal of Vibration and Acoustics, 2007, vol. 129, pp. 330–340.

    Article  Google Scholar 

  10. Franco F., De Rosa, S., and Polito, T., Finite Element Investigations on the Vibroacoustic Performance of Plane Plates with Random Stiffness, Mechanics of Advanced Materials and Structures, 2011, vol. 18, no. 7, pp. 484–497.

    Article  Google Scholar 

  11. Wallach, J.C. and Gibson, L.J., Mechanical Behavior of a Three-Dimensional Truss Material, International Journal of Solids and Structures, 2001, vol. 38, nos. 40–41, pp. 7181–7196.

    Article  MATH  Google Scholar 

  12. Queheillalt, D.T., Murty, Y., and Wadley, H.N.G., Mechanical Properties of an Extruded Pyramidal Lattice Truss Sandwich Structure, Scripta Materialia, 2008, vol. 58, pp. 76–79.

    Article  Google Scholar 

  13. Queheillalt, D.T. and Wadley, H.N.G., US Patent 20120285114, 2012.

    Google Scholar 

  14. Kooistra, G.W., Deshpande, V.S., and Wadley, H.N.G., Compressive Behavior of Age Hardenable Tetrahedral Lattice Truss Structures Made from Aluminum, Acta Materialia, 2004, vol. 52, no. 134, pp. 4229–4237.

    Article  Google Scholar 

  15. Joo, J.-H. and Kang, K.-J., Modified Metallic Octet Truss Cellular Cores for Sandwich Structures Fabricated by an Expanded Metal Forming Process, Journal of Sandwich Structures and Materials, 2010, vol. 12, no. 3, pp. 327–349.

    Article  MathSciNet  Google Scholar 

  16. Queheillalt, D.T. and Wadley, H.N.G., Pyramidal Lattice Truss Structures with Hollow Trusses, Materials Science and Engineering, 2005, vol. 397, nos. 1–2, pp. 132–137.

    Article  Google Scholar 

  17. Lim, J.-H. and Kang, K.-J., Mechanical Behavior of Sandwich Panels with Tetrahedral and Kagome Truss Cores Fabricated from Wires, International Journal of Solids and Structures, 2006, vol. 43, no. 17, pp. 5228–5246.

    Article  MATH  Google Scholar 

  18. Queheillalt, D.T. and Wadley, H.N.G., Cellular Metal Lattices with Hollow Trusses, Acta Materialia, 2005, vol. 53, no. 2, pp. 303–313.

    Article  Google Scholar 

  19. Lee, Y.-H., Lee, B.-K., Jeon, I., et al., Wire-Woven Bulk Kagome Truss Cores, Acta Materialia, 2007, vol. 55, no. 18, pp. 6084–6094.

    Article  Google Scholar 

  20. Kim, H., Kang, K.-J., and Joo, J.-H., A Zigzag-Formed Truss Core and its Mechanical Properties, Journal of Sandwich Structures and Materials, 2010, vol. 12, no. 3, pp. 351–368.

    Article  MathSciNet  Google Scholar 

  21. Queheillalt, D.T. and Wadley, H.N.G., Titanium Alloy Lattice Truss Structures, Materials & Design, 2009, vol. 30, no. 6, pp. 1966–1975.

    Article  Google Scholar 

  22. Deshpande, V.S. and Fleck, N.A., Collapse of Truss Core Sandwich Beams in 3-Point Bending, International Journal of Solids and Structures, 2001, vol. 38, nos. 36–37, pp. 6275–6305.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Gainutdinov.

Additional information

Original Russian Text © V.G. Gainutdinov, I.N. Abdullin, S.M. Musavy-Safavy, 2016, published in Izvestiya VUZ, Aviatsionnaya Tekhnika, 2016, No. 1, pp. 59—63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainutdinov, V.G., Abdullin, I.N. & Musavy-Safavy, S.M. Calculation of design relative density for rational sandwich structure with truss core. Russ. Aeronaut. 59, 64–68 (2016). https://doi.org/10.3103/S1068799816010104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799816010104

Keywords

Navigation