Skip to main content
Log in

Study of the mechanisms of barrier discharge development in the needle–plane system

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The dielectric barrier discharge (DBD) was studied in three experimental configurations: “needle–polymer barrier–plane”, “needle–submillimeter air gap–polymer barrier–plane,” and“needle–submillimeter air gap–metal disk–polymer barrier–plane”. In the first case, only the DBD surface phase occurred (i.e., surface discharge), in the second case both surface and volume phases took place (i.e., typical DBD), and in the third case only the volume phase occurred (i.e., air–gap breakdown). A polyethylene terephthalate film 100 μm thick was used as a barrier. The discharge voltage, the discharge current pulse, the transferred charge, and the spatial distribution of the surface charge density were measured during the experiments. It was experimentally shown that the surface phase of the DBD has a substantial impact on the whole discharge process. The data indicate that the placement of a metal disk with a floating potential on the barrier surface causes the initiation of an atmospheric pressure glow discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kogelschatz, U., Plasma Chem., Plasma Process., 2003, vol. 23, no. 1, pp. 1–46.

    Article  Google Scholar 

  2. Bruggeman, P., Czarnetzki, U., and Tachibana, K., J. Phys. D: Appl. Phys., 2013, vol. 46, no. 46, pp. 1–3.

    Google Scholar 

  3. Hanson, R.E., J. Appl. Phys., 2014, vol. 115, no. 4, pp. 1–9.

    Article  Google Scholar 

  4. Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Collins, G.J., and Lee, J.K., Plasma Sources Sci. Technol., 2012, vol. 21, no. 4, pp. 1–21.

    Article  Google Scholar 

  5. Kogelschatz, U., IEEE Trans. Plasma Sci., 2002, vol. 30, no. 4, pp. 1400–1408.

    Article  Google Scholar 

  6. Malashin, M.V., Moshkunov, S.I., Khomich, V.Y., Shershunova, E.A., and Yamshchikov, V.A., Tech. Phys. Lett., 2013, vol. 39, no. 3, pp. 252–254.

    Article  Google Scholar 

  7. Gherardi, N. and Massines, F., IEEE Trans. Plasma Sci., 2001, vol. 29, no. 3, pp. 536–544.

    Article  Google Scholar 

  8. Brandenburg, R., Maiorov, V.A., Golubovskii, Yu.B., Wagner, H.-E., Behnke, J., and Behnke, J.F., J. Phys. D: Appl. Phys., 2005, vol. 38, no. 13, pp. 2187–2197.

    Article  Google Scholar 

  9. Kogelschatz, U., Contrib. Plasma Phys., 2007, vol. 47, nos. 1–2, pp. 80–88.

    Article  Google Scholar 

  10. Bortnik, I.M., Vereshchagin, I.P., Vershinin, Yu.N., et al., Elektrofizicheskie osnovy tekhniki vysokikh napryazhenii: uchebnik dlya vuzov (Electrophysical Foundations of High-Voltages: Manual for Higher Education Institutions), Moscow: Energoatomizdat, 1993.

    Google Scholar 

  11. Bondarenko, P.N., Emel’yanov, O.A., and Shemet, M.V., Russ. J. Appl. Phys., 2014, vol. 59, no. 8, pp. 1127–1135.

    Google Scholar 

  12. Emelyanov, O.A. and Shemet, M.V. J. Phys. D: Appl. Phys., 2014, vol. 47, no. 31, pp. 1–8.

    Article  Google Scholar 

  13. Emelyanov, O.A. and Shemet, M.V., Meas. Tech., 2014, vol. 57, no. 6, pp. 690–695.

    Article  Google Scholar 

  14. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Dolgoprudnyi: Intellekt, 2009.

    Google Scholar 

  15. Kudryavtsev, A.A., Smirnov, A.S., and Tsendin, L.D., Fizika tleyushchego razryada: uchebnoe posobie (Physics of Glowing Discharge), St. Petersburg: Lan’, 2010.

    Google Scholar 

  16. Von Engel, A., Ionized Gases, Oxford: Clarendon, 1955.

    MATH  Google Scholar 

  17. Gibalov, V.I. and Pietsch, G.J., Plasma Sources Sci. Technol., 2012, vol. 21, no. 2, pp. 1–35.

    Article  Google Scholar 

  18. Astaf’ev, A.M. and Kudryavtsev, A.A., Tech. Phys. Lett., 2014, vol. 40, no. 9, pp. 816–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Emelyanov.

Additional information

Original Russian Text © O.A. Emelyanov, M.V. Shemet, 2016, published in Elektronnaya Obrabotka Materialov, 2016, No. 6, pp. 76–80.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelyanov, O.A., Shemet, M.V. Study of the mechanisms of barrier discharge development in the needle–plane system. Surf. Engin. Appl.Electrochem. 52, 579–583 (2016). https://doi.org/10.3103/S1068375516060065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516060065

Keywords

Navigation