Skip to main content
Log in

Low-Temperature Synthesis of Boron Carbide Ceramics

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

This study has been the first to demonstrate the possibility of producing boron carbide ceramics from coarse (D = 25–150 μm) B4C powder (which is impossible to sinter by conventional methods) through infiltration with molten silicon and subsequent treatment within the field of the controlled temperature gradient. This produces yields a composite ceramics B4C–SiC–Si with a hardness of 26 to 35 GPa and a splitting tensile strength of 110 to 170 MPa. The influence of the velocity of movement of the temperature gradient on the structure, phase composition, and properties of the prepared composites has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suri, A.K., Subramanian, C., Sonber, J.K., and Murthy, T.S.R., Synthesis and consolidation of boron carbide: a review, Int. Mater. Rev., 2010, vol. 55, pp. 4–40.

    Article  CAS  Google Scholar 

  2. Thevenot, F., Boron carbide—a comprehensive review, J. Eur. Ceram. Soc., 1990, vol. 6, pp. 205–225.

    Article  CAS  Google Scholar 

  3. Walley, S.M., Historical review on high strain rate and shock properties of ceramics relevant to their application in armor, Adv. Appl. Ceram., 2010, vol. 9, pp. 446–466.

    Article  CAS  Google Scholar 

  4. Lee, H., Speyer, R.F., and Hackenberger, W.S., Sintering of boron carbide heat-treated with hydrogen, J. Am. Ceram. Soc., 2002, vol. 85, no. 8, pp. 2131–2133.

    Article  CAS  Google Scholar 

  5. Chen, M.W., McCauley, J.W., LaSalvia, J.C., and Hemker, K.J., Microstructural characterization of commercial hot-pressed boron carbide ceramics, J. Am. Ceram. Soc., 2002, vol. 88, no. 7, pp. 1935–1942.

    Article  CAS  Google Scholar 

  6. Cho, N., Bao, Z., and Speyer, R.F., Density and hardness optimized pressureless sintered and post-hot isostatic pressed B4C, J. Mater. Res., 2005, vol. 20, no. 8, pp. 2110–2116.

    Article  CAS  Google Scholar 

  7. Vasylkiv, O., Demirskyi, D., Badica, P., Nishimura, T., Tok, A.I.Y., Sakka, Y., and Borodianska, H., Room and high temperature flexural failure of spark plasma sintered boron carbide, Ceram. Int., 2016, vol. 42, pp. 7001–7013.

    Article  CAS  Google Scholar 

  8. Badica, P., Borodianska, H., Xie, S., Zhao, T., Demirskyi, D., Li, P.F., Tok, A.I.Y., Sakka, Y., and Vasylkiv, O., Toughness control of boron carbide obtained by spark plasma sintering in nitrogen atmosphere, Ceram. Int., 2014, vol. 40, pp. 3053–3061.

    Article  CAS  Google Scholar 

  9. Kisly, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Nauk. Dumka, 1988.

    Google Scholar 

  10. Taylor, K.M. and Palicka, R.J., US Patent 3 765 300, 1973.

    Google Scholar 

  11. Hayun, S., Frage, N., and Dariel, M.P., The morphology of ceramic phases in BxC–SiC–Si infiltrated composites, J. Solid State Chem., 2006, vol. 179, pp. 2875–2879.

    Article  CAS  Google Scholar 

  12. Hayun, S., Frage, N., Dilman, H., Tourbabin, V., and Dariel, M.P., Synthesis of dense B4C–SiC–TiB2 composites, in Medvedovski, E. (Ed.), Ceramic Armor and Armor Systems II, Baltimore, MD, USA: American Ceramic Society, 2006, pp. 37–44.

  13. Han, I.S., Lee, K.S., Seo, D.W., and Woo, S.K., A comparative study on SiC–B4C–Si cermet prepared by pressureless sintering and spark plasma sintering methods, J. Mater. Sci. Lett., 2002, vol. 21, pp. 703–706.

    Article  CAS  Google Scholar 

  14. Pfann, W.G. Zone Melting, New York: John Wiley & Sons, 1966.

    Google Scholar 

  15. Bogomol, I., Nishimura, T., Vasylkiv, O., Sakka, Y., and Loboda, P., Micro-structure and high-temperature strength of B4C–TiB2 composite prepared by a crucibleless zone melting method, J. Alloy. Comp., 2009, vol. 485, pp. 677–681.

    Article  CAS  Google Scholar 

  16. Bogomol, I., Badica, P., Shen, Y.Q., Nishimura, T., Loboda, P., and Vasylkiv, O., Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping, J. Alloy. Comp., 2013, vol. 570, pp. 94–99.

    Article  CAS  Google Scholar 

  17. Bogomol, I., Nishimura, T., Nesterenko, Yu., Vasylkiv, O., Sakka, Y., and Loboda, P., The bending strength temperature dependence of the directionally solidified eutectic LaB6–ZrB2 composite, J. Alloy. Comp., 2011, vol. 509, pp. 6123–6129.

    Article  CAS  Google Scholar 

  18. Hayun, S., Weizmann, A., Dariel, M.P., and Frage, N., Microstructural evolution during the infiltration of boron carbide with molten silicon, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 1007–1014.

    Article  CAS  Google Scholar 

  19. Morosin, B., Aselage, T.L., and Feigelson, R.S., Crystal structure refinements of rhombohedral symmetry materials containing boron-rich icosahedra, Mater. Res. Symp. Proc., 1987, vol. 97, pp. 145–149.

    Article  CAS  Google Scholar 

  20. Ashbrook, R.L., Directionally solidified ceramic eutectics, J. Am. Ceram. Soc., 1977, vol. 60, pp. 428–435.

    Article  CAS  Google Scholar 

  21. Chalmers, B., Principles of Solidification, New York: Wiley & Sons, 1964.

    Google Scholar 

  22. Hayun, S., Paris, V., Dariel, M.P., Frage, N., and Zaretzky, E., The morphology of ceramic phases in BxC–SiC–Si infiltrated composites, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 3395–3400.

    Article  CAS  Google Scholar 

  23. Xu, C., Cai, Y., Flodström, K., Li, Z., Esmaeilzadeh, S., and Zhang, G.-J., Spark plasma sintering of B4C ceramics: The effects of milling medium and TiB2 addition, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, pp. 139–144.

    Article  CAS  Google Scholar 

  24. Wang, N., Wang, Z., Aust, K.T., and Erb, U., Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metall. Mater., 1995, vol. 43, pp. 519–528.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Solodkyi.

Additional information

Original Ukrainian Text © I.V. Solodkyi, I.I. Bogomol, M.Ya. Vterkovs’kyi, P.I. Loboda, 2018, published in Sverkhtverdye Materialy, 2018, Vol. 40, No. 4, pp. 11–19.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodkyi, I.V., Bogomol, I.I., Vterkovs’kyi, M.Y. et al. Low-Temperature Synthesis of Boron Carbide Ceramics. J. Superhard Mater. 40, 236–242 (2018). https://doi.org/10.3103/S1063457618040020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457618040020

Keywords

Navigation