Skip to main content
Log in

On the mechanism of detonation nanodiamond synthesis

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The paper reviews all the currently available theories of detonation nanodiamond synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babushkin, Yu.A., Lyamkin, A.I., Chiganova, G.A., and Staver, A.M., A Numerical Study of Evolution of Detonation Products Composition in the Process of Detonation Diamond Synthesis, Mezhregional’naya konferentsiya s mezhdunarodnym uchastiem “Ul’tradispersnye poroshki, nanostruktury”, Sbornik materialov (Proc. Interegional Conference with International Participation “Ultradispersed Powders, Nanostructures”), Krasnoyarsk: KGTU, 1996, pp. 9–13.

    Google Scholar 

  2. Babushkin, A.Yu. and Lyamkin, A.I., On the Mechanism of Ultradispersed Diamond Formation in Detonation Synthesis and the Dependence of Diamond Yield on Ambient Conditions, IV Vserossiiskaya konferentsiya “Fizikokhimiya ul’tradispersnykh sistem”, Sbornik nauchnykh trudov (Proc. 4th All-Russia Conference “Physicochemistry of Ultradispersed Systems”), Moscow: MIFI, 1999, p. 125–128.

    Google Scholar 

  3. Pershin, S.V. and Tsaplin, D.N., A Dynamic Study of Detonation Synthesis of Dense Phases of Substances, 5 Vsesoyuznoe soveshchanie po detonatsii, Sbornik dokladov (Proc. 5th All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Chernogolovka: MP Imtekh, 1991, vol. 2, p. 237–244.

    Google Scholar 

  4. Staver, A.M., Ershov, A.P., and Lyamkin, A.I., A Study of Detonation Transformation of Condensed Explosives by the Electrical Conduction Method, Fizika Gorenia i Vzryva, 1984, vol. 20, no. 3, pp. 79–86.

    CAS  Google Scholar 

  5. Lin, E.E., A Stochastic Model of Shock-Induced Growth of Crystalline Mesosystems in Condensed Media, IV Vserossiiskaya konferentsiya “Fizikokhimiya ul’tradispersnykh sistem”, Sbornik nauchnykh trudov (Proc. IV All-Russia Conference “Physicochemistry of Ultradispersed Systems”), Moscow: MIFI, 1999, pp. 40–50.

    Google Scholar 

  6. Anisichkin, V.F., Derendyaev, B.G., Koptyug, V.A., et al., A Study of Decomposition Process in Detonation Wave by Isotopic Method, Fizika Gorenia i Vzryva, 1988, vol. 24, no. 3, pp. 121–122.

    CAS  Google Scholar 

  7. Kozyrev, N.V., Sakovich, G.V., Sen Chel Su, and Shtein, M.S., Investigation of the Process of Ultradispersed Diamond Synthesis by the Tracer Atom Method, 5 Vsesoyuznoe soveshchanie po detonatsii, Sbornik dokladov (Proc. 5 All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Chernogolovka: MP Imtekh, 1991, vol. 1, p. 176–179.

    Google Scholar 

  8. Kozyrev, N.V., Brylyakov, P.M., Sen Chel Su, and Shtein, M.S., Investigation of the Process of Ultradispersed Diamond Synthesis by the Tracer Atom Method, Dokl. AN SSSR, 1990, vol. 314, no. 4, pp. 889–891.

    CAS  Google Scholar 

  9. Kozyrev, N.V. and Golubeva, E.S., A Study of Ultradispersed Diamond Synthesis from TNT Mixtures with Hexogen, Octogen, and TEN, Fizika Gorenia i Vzryva, 1992, vol. 28, no. 5, p. 119.

    CAS  Google Scholar 

  10. Vereshchagin, A.L., Detonatsionnye nanoalmazy (Detonation Nanodiamonds), Barnaul: Izdatel’stvo AGTU, 2001.

    Google Scholar 

  11. Mal’kov, I.Yu., The Formation of Ultradispersed Diamond Phase of Carbon by Detonation of Heterogeneous Explosive Mixtures, Fizika Gorenia i Vzryva, 1991, vol. 27, no. 5, p. 136–140.

    CAS  Google Scholar 

  12. Anisichkin, V.F., On the Mechanism of Carbon Release in Detonation Decomposition of Substances, Fizika Gorenia i Vzryva, 1994, vol. 30, no. 5, pp. 100–106.

    CAS  Google Scholar 

  13. Loboiko, B.G. and Lyubyatinskii, S.N., Reaction Zones for Detonating Solid Explosives, Fizika Gorenia i Vzryva, 2000, vol. 36, no. 6, p. 45.

    CAS  Google Scholar 

  14. Danilenko, V.V., Sintez i spekanie almaza vzryvom (Diamond Synthesis and Sintering by Explosion), Moscow: Energoatomizdat, 2003.

    Google Scholar 

  15. Vyskubenko, B.A., Danilenko, V.V., Lin, E.E., et al., The Influence of Scale Factors on the Diamond Particle Size and Yield in Detonation Synthesis, Fizika Gorenia i Vzryva, 1992, vol. 28, no. 2, p. 108.

    CAS  Google Scholar 

  16. Danilenko, V.V., Special Features of Detonation Nanodiamond Synthesis, Fizika Gorenia i Vzryva, 2005, vol. 41, no. 5, p. 104–116.

    CAS  Google Scholar 

  17. Danilenko, V.V., Phase Diagram of Nanocarbon, Fizika Gorenia i Vzryva, 2005, vol. 41, no. 4, p. 110–116.

    CAS  Google Scholar 

  18. Titov, V.M., Anisichkin, V.F., and Mal’kov, I.Yu., A Study of the Ultradispersed Diamond Synthesis in Detonation Waves, Fizika Gorenia i Vzryva, 1989, vol. 25, no. 3, p. 117–125.

    CAS  Google Scholar 

  19. Akimova, L.N., Gubin, S.A., Odintsov, V.V., and Pepekin, V.I., Explosive Detonation to Produce Diamond, 5 Vsesoyuznoe soveshchanie po detonatsii, Sbornik dokladov (Proc. 5th All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Chernogolovka: MP Imtekh, 1991, vol. 1, p. 14–19.

    Google Scholar 

  20. Staver, A.M. and Lyamkin, A.I. Synthesis of Ultradispersed Diamonds from Explosives, in Ul’tradispersnye materialy. Poluchenie i svoistva, Mezhvuz. sbornik trudov (Ultradispersed Materials. Production and Properties, Collected Papers), Krasnoyarsk, 1990, pp. 3–22.

  21. Gubin, S.A., Odintsov, V.V., Pepekin, V.I., and Sergeev, S.S., The Influence of Shape and Size of Graphirte and Diamond Crystals on the Phase Equilibrium and Explosive Detonation Parameters, Khim. Fizika, 1990, vol. 9, no. 3, pp. 401–417.

    CAS  Google Scholar 

  22. Dremin, A.N., Pershin, S.V., Pyaternev, S.V., and Tsaplin, D.N., On the Break in the Diagram of Detonation Velocity vs. TNT Initial Density, Fizika Gorenia i Vzryva, 1989, vol. 25, no. 5, pp. 141–143.

    CAS  Google Scholar 

  23. Mader, C.L., Numerical Modeling of Explosives and Propellants, New York: CRC Press, 1998.

    Google Scholar 

  24. Pershin, S.V., Tsaplin, D.N., and Antipenko, A.G., On the Feasibility of Diamond Synthesis by Tetryl Detonation, V Vsesoyuznoe soveshchanie po detonatsii, Sbornik dokladov (Proc. 5th All-Union Meeting on Detonation), Krasnoyarsk, 5–12 August, 1991, Chernogolovka: MP Imtekh, 1991, vol. 2, p. 233–236.

    Google Scholar 

  25. Morokhov, I.D., Trusov, L.I., and Chizhik, S.P., Ul’tradispersnye metallicheskie sredy (Ultradispersed Metallic Media) Moscow: Atomizdat, 1977.

    Google Scholar 

  26. Petrov, Yu.I., Fizika malykh chastits (SmallParticle Physics), Moscow: Nauka, 1982.

    Google Scholar 

  27. Huang Fenglei, Tong Yi, Yun Shourong, Synthesis Mechanism and Technology of Ultrafine Diamond from Detonation, Fizika Tverdogo Tela, 2004, vol. 46,issue 4, pp. 601–604.

    Google Scholar 

  28. Vereshchagin, A.L., On the Phase Diagram of Ultradispersed Carbon, Fizika Tverdogo Tela, 2002, vol. 38, no. 3, pp. 119–120.

    CAS  Google Scholar 

  29. Aleksenskiy, A.E., Baidakova, M.V., Vul’, A.Ya., and Siklitskiy, V.I., Structure of Diamond Nanocluster, Fizika Tverdogo Tela, 1999, vol. 41, issue 4, pp. 740–743.

    Google Scholar 

  30. Malkov, Yu. and Titov, V.M., Structure and Properties of Detonation Soot Particles, in Proc.Conf. of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Seattle, 13–18 August, 1995, AIR Press, 1995, Part 2, pp. 783–786.

  31. Breusov, O.N., On the Mechanism of Dynamic Diamond Synthesis from Organic Substances, Khim. Fizika, 2002, vol. 21, no. 11, pp. 110–112.

    CAS  Google Scholar 

  32. Dubnov, L.V., Bakharevich, N.S., and Romanov, A.N., Promyshlennye vzryvchatye veshchestva (Industrial Explosives), Moscow: Nedra, 1973.

    Google Scholar 

  33. Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Fundamentals of Organic Chemistry), Moscow: Khimiya, 1969, vol. 1.

    Google Scholar 

  34. Lyamkin, A.I., Formation of Nanodiamonds by Dynamic Action on Carbon-Containing Compounds, Doctoral (Phys. Math.) Dissertation, Krasnoyarsk, 2004.

  35. Bundy, F.P. and Wentorf, R.N., Direct Transformation of Hexagonal Boron Nitride to Denser Forms, J. Chem. Phys., 1963, vol. 38, no. 2, pp. 1144–1149.

    Article  CAS  Google Scholar 

  36. Tolochko, B.P., Titov, V.M., Chernyshev, A.P., et al., Phisical-chemical Model of Processes at Detonation Synthesis of Nanodiamonds, Diamond Relat. Mater., 2007, vol. 16, no. 12, pp. 1997–2150.

    Article  Google Scholar 

  37. Bachmann, P.K., Leers, D., and Lydtin, N., Towards a General Concept of Diamond Chemical Vapour Deposition, Diamond Relat. Mater., 1991, vol. 1, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  38. Petherbridge, J.R., May, P.W., Pearce, S.R.J., et al., Low Temperature Diamond Growth Using CO2/CH4 Plasmas: Molecular Beam Mass Spectrometry and Computer Simulation Investigation, J. Appl. Phys., 2001, vol. 89, pp. 1484–1492.

    Article  CAS  Google Scholar 

  39. Ashfold, M.N.R, May, P.W., Petherbridge, J.R. et al., Unravelling Aspects of the Gas Phase Chemistry Involved in Diamond Chemical Vapour Deposition, Phys. Chem. Chem. Phys., 2001, vol. 3, no. 17, pp. 3471–3485.

    Article  CAS  Google Scholar 

  40. Mironov, E.V., Petrov, E.A., Korets, A.Ya., From Analysis of the Structure of Ultrafine Diamond to the Problem of Its Formation Kinetics, Comb. Expl. Shock Waves, 2004, vol. 40, no. 4, pp. 473–476.

    Article  Google Scholar 

  41. Korets, A.Y., Mironov, E.V., and Petrov, E.A., IR Spectroscopic Study of the Organic Component of Ultrafine Diamond Produced by Detonation, Comb. Expl. Shock Waves, 2003, vol. 39, no. 4, pp. 464–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Dolmatov, 2008, published in Sverkhtverdye Materialy, 2008, Vol. 30, No. 4, pp. 25–34.

About this article

Cite this article

Dolmatov, V.Y. On the mechanism of detonation nanodiamond synthesis. J. Superhard Mater. 30, 233–240 (2008). https://doi.org/10.3103/S1063457608040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457608040023

Keywords

Navigation