Skip to main content
Log in

Advances, Problems, and Prospects of Genetic Transformation of Fungi

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Advances, problems, and prospects of genetic transformation of fungi are described. Features distinguishing fungi from other organisms are analyzed. Those features should be taken into consideration while preparing genetic material for transformation. The ways to overcome problems associated with hyphae apical growth, cell wall thickness, the heterokaryotic life cycle stage, and mechanisms of immune defense are described. A comparative analysis of major methods for transformation of fungi at different stages of their life cycle was performed. Stability of genetically modified fungi and advances in transformation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra, N.C. and Tatum, E.L., Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, no. 12, pp. 3875–3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hinnen, A., Hicks, J.B., and Fink, G.R., Transformation of yeast, Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, no. 4, pp. 1929–1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nevalainen, H. and Peterson, R., Making recombinant proteins in filamentous fungi: are we expecting too much?, Front. Microbiol., 2014, vol. 5, no. 75, pp. 1–10.

    Google Scholar 

  4. Su, X., Schmitz, G., Zhang, M., Mackie, R.I., and Cann, I.K., Heterologous gene expression in filamentous fungi, Adv. Appl. Microbiol., 2012, vol. 81, no. 1, pp. 1–61.

    CAS  PubMed  Google Scholar 

  5. El Enshasy, H.A. and Hatti-Kaul, R., Mushroom immunomodulators: unique molecules with unlimited applications, Trend Biotechnol., 2013, vol. 31, no. 12, pp. 668–677.

    Article  CAS  Google Scholar 

  6. Wasser, S.P., Medicinal mushroom science: current perspectives, advances, evidences, and challenges, Biomed. J., 2014, vol. 37, no. 6, pp. 345–356.

    Article  PubMed  Google Scholar 

  7. Singh, S.S., Wang, H., Chan, Y.S., Pan, W., Dan, X., Yin, C.M., Akkouh, O., and Ng, T.B., Lectins from edible mushrooms, Molecules, 2014, vol. 20, no. 1, pp. 446–469.

    Article  PubMed  CAS  Google Scholar 

  8. Wösten, H.A. and Scholtmeijer, K., Applications of hydrophobins: current state and perspectives, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 4, pp. 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  9. Howard, R.J., Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution, J. Cell Sci., 1981, vol. 48, no. 1, pp. 89–103.

    CAS  PubMed  Google Scholar 

  10. Bauer, R., Mendgen, K., and Oberwinkler, F., Septal pore apparatus of the smut Ustacystis waldsteiniae, Mycologia, 1995, vol. 87, no. 1, pp. 18–24.

    Article  Google Scholar 

  11. Shepherd, V.A., Orlovich, D.A., and Ashford, A.E., Cell-to-cell transport via motile tubules in growing hyphae of a fungus, J. Cell Sci., 1993, vol. 105, no. 4, pp. 1173–1178.

    PubMed  Google Scholar 

  12. Farrag, R.M., Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt, Pol. J. Microbiol., 2009, vol. 58, no. 4, pp. 327–338.

    CAS  PubMed  Google Scholar 

  13. Muller, W.H., van Aelst, A.C., van der Krift, T.P., and Boekhout, T., Scanning electron microscopy of the septal pore cap of the basidiomycete Schizophyllum commune, Can. J. Microbiol., 1994, vol. 40, no. 10, pp. 879–883.

    Article  Google Scholar 

  14. Selitrennikoff, C.P., Antifungal proteins, Appl. Environ. Microbiol., 2001, vol. 67, no. 7, pp. 2883–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hofsten, B. and Hofsten, A., Ultrastructure of a thermotolerant basidiomycete possibly suitable for production of food protein, Appl. Microbiol., 1974, vol. 27, no. 6, pp. 1142–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nieuwenhuis, B.P., Debets, A.J., and Aanen, D.K., Sexual selection in mushroom-forming basidiomycetes, Proc. Biol. Sci., 2011, vol. 278, no. 1702, pp. 152–157.

    Article  PubMed  Google Scholar 

  17. Kothe, E., Mating-type genes for basidiomycete strain improvement in mushroom farming, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 5–6, pp. 602–612.

    Article  CAS  PubMed  Google Scholar 

  18. Griffiths, A.J., Natural plasmids of filamentous fungi, Microbiol. Rev., 1995, vol. 59, no. 4, pp. 673–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gems, D., Johnstone, I.L., and Clutterbuck, A.J., An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency, Gene, 1991, vol. 98, no. 1, pp. 61–67.

    Article  CAS  PubMed  Google Scholar 

  20. Schoberle, T.J., Nguyen-Coleman, C.K., and May, G.S., Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi, Fungal Genet. Biol., 2013, vol. 58-59, no. 1, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Alani, E., Cao, L., and Kleckner, N., A method for gene disruption that allows repeated use of ura3 selection in the construction of multiply disrupted yeast strains, Genetics, 1987, vol. 116, no. 4, pp. 541–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rothstein, R.J., One-step gene disruption in yeast, Methods Enzymol., 1983, vol. 101, pp. 202–211.

    Article  CAS  PubMed  Google Scholar 

  23. Enfert, C., Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5’-decarboxilase gene, pyrG, as a unique transformation marker, Curr. Genet., 1996, vol. 30, no. 1, pp. 76–82.

    Article  PubMed  Google Scholar 

  24. Daboussi, M.J., Djeballi, A., Gerlinger, C., Blaiseau, P.L., Bouvier, I., Cassan, M., Lebrun, M.H., Parisot, D., and Brygoo, Y., Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans, Curr. Genet., 1989, vol. 15, no. 6, pp. 453–456.

    Article  CAS  PubMed  Google Scholar 

  25. Bouxton, F.P., Gwynne, D.I., and Davies, R.W., Cloning of a new bidirectionally selectable marker for Aspergillus strain, Gene, 1989, vol. 84, no. 2, pp. 329–334.

    Article  Google Scholar 

  26. Hynes, M.J. and Pateman, J.A., The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. 2. Mutants resistant to fluoroacetamide, Mol. Gen. Genet., 1970, vol. 108, no. 2, pp. 107–116.

    Article  CAS  PubMed  Google Scholar 

  27. Debets, A.J., Swart, K., Holub, E.F., Goosen, T., and Bos, C.J., Genetic analysis of amdS transformants of Aspergillus niger and their use in chromosome mapping, Mol. Gen. Genet., 1990, vol. 222, nos. 2–3, pp. 284–290.

    Article  CAS  PubMed  Google Scholar 

  28. Gouka, R.J., van Hartingsveldt, W., Bovenberg, R.A., van Zegil, C.M., Hondel, C.A., and van Gorcom, R.F., Development of a new transformant selection system for Penicillium crysogenum: isolation and characterization of the P. crysogenum acetyl-coenzime A synthetase gene (facA) and its use as a homologous selection marker, Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 4, pp. 514–519.

    Article  CAS  PubMed  Google Scholar 

  29. Burns, C., Gregory, K.E., Kirby, M., Cheung, M.K., Riquelme, M., Elliott, T.J., Challen, M.P., Bailey, A., and Foster, G.D., Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns, Fungal Genet. Biol., 2005, vol. 42, no. 3, pp. 191–199.

    Article  CAS  PubMed  Google Scholar 

  30. Heneghan, M.N., Porta, C., Zhang, C., Burton, K.S., Challen, M.P., Bailey, A.M., and Foster, G.D., Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter, Appl. Environ. Microbiol., 2009, vol. 75, no. 3, pp. 792–801.

    Article  CAS  PubMed  Google Scholar 

  31. Binninger, D.M., Skrzynia, C., Pukkila, P.J., and Casselton, L.A., DNA-mediated transformation of the basidiomycete Coprinus cinereus, EMBO J., 1987, vol. 6, no. 4, pp. 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tilby, M.J., Tryptophan biosynthesis in Coprinus lagopus: a genetic analysis of mutants, J. Gen. Microbiol., 1976, vol. 93, no. 1, pp. 126–132.

    Article  CAS  PubMed  Google Scholar 

  33. Kiguchi, T. and Yanagi, S.O., Intraspecific heterokaryon and fruit body formation in Coprinus macrorhizus by protoplast fusion of auxotrophic mutants, Appl. Microbiol. Biotechnol., 1985, vol. 22, no. 2, pp. 121–127.

    Article  CAS  Google Scholar 

  34. Yanai, K., Yonekura, K., Usami, H., Hirayama, M., Kajiwara, S., Yamazaki, T., Shishido, K., and Adachi, T., The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 3, pp. 472–475.

    Article  CAS  PubMed  Google Scholar 

  35. Randall, T. and Reddy, C.A., An improved transformation vector for the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium, Gene, 1991, vol. 103, no. 1, pp. 125–130.

    Article  CAS  PubMed  Google Scholar 

  36. Punt, P.J., Oliver, R.P., Digemanse, M.A., Pouwels, P.H., and Hondel, C.A., Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli, Gene, 1987, vol. 56, no. 1, pp. 117–124.

    Article  CAS  PubMed  Google Scholar 

  37. Leung, H., Lethtinen, U., Karjelainen, R., Skinner, D., Tooley, P., Leong, S., and Ellingboe, A., Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance, Curr. Genet., 1990, vol. 17, no. 5, pp. 409–411.

    Article  CAS  PubMed  Google Scholar 

  38. Tunlid, A., Ahman, J., and Oliver, R.P., Transformation of the nematode-trapping fungus Arthrobotrys oligospora, FEMS Microbiol. Letts., 1999, vol. 173, no. 1, pp. 111–116.

    Article  CAS  Google Scholar 

  39. Herrera-Estrella, A., Goldman, G.H., and van Montagu, M., High-efficiency transformation system for the biocontrol agents, Trichoderma spp, Mol. Microbiol., 1990, vol. 4, no. 5, pp. 839–843.

    Article  CAS  PubMed  Google Scholar 

  40. Degefu, Y. and Hanif, M., Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus, Arch. Microbiol., 2003, vol. 180, no. 4, pp. 279–284.

    Article  CAS  PubMed  Google Scholar 

  41. Orbach, M.S., Porro, E.B., and Yanafsky, C., Cloning and characterization of the gene of β-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker, Mol. Cell. Biol., 1986, vol. 6, no. 7, pp. 2452–2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldman, G.H., Temmerman, W., Jacobs, D., Contreras, R., van Montagu, M., and Herrera-Estrella, A., A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antibiotic drug methyl benzimidazole-2-yl-carbamate, Mol. Gen. Genet., 1993, vol. 240, no. 1, pp. 73–80.

    Article  CAS  PubMed  Google Scholar 

  43. Gold, S.E., Bakkeren, G., Davies, J.E., and Kronstand, J.W., Three selectable markers for transformation of Ustilago maydis, Gene, 1994, vol. 142, no. 2, pp. 225–230.

    Article  CAS  PubMed  Google Scholar 

  44. Ward, M., Wilson, L.J., Carmona, C.L., and Turner, G., The oliC3 gene of Aspergillus niger: isolation, sequence and use as a selectable marker for transformation, Curr. Genet., 1988, vol. 14, no. 1, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  45. Bull, J.H., Smith, D.J., and Turner, G., Transformation of Penicillium chrysogenum with a dominant selectable marker, Curr. Genet., 1988, vol. 13, no. 5, pp. 377–382.

    Article  CAS  PubMed  Google Scholar 

  46. Austin, B., Hall, R.M., and Tyler, B.M., Optimized vectors and selection for transformation of Neurospora crassa and Aspergillus nidulans to bleomycin and phleomycin resistance, Gene, 1990, vol. 93, no. 1, pp. 157–162.

    Article  CAS  PubMed  Google Scholar 

  47. Kolar, M., Punt, P.J., Hondel, C.A., and Schwab, H., Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene, Gene, 1988, vol. 62, no. 1, pp. 127–134.

    Article  CAS  PubMed  Google Scholar 

  48. Carramolino, L., Lozano, M., Perez-Aranda, A., Rubio, V., and Sánchez, F., Transformation of Penicillium chrysogenum to sulfonamide resistance, Gene, 1989, vol. 77, no. 1, pp. 31–38.

    Article  CAS  PubMed  Google Scholar 

  49. Inglis, P.W., Biolistic co-transformation of Metarhizium anisopliae var. acridum strain CG423 with green fluorescent protein and resistance to glucosinate ammonium, FEMS Microbiol. Letts., 2000, vol. 191, no. 2, pp. 249–254.

    Article  CAS  Google Scholar 

  50. Avalos, J., Geever, R.F., and Case, M.E., Bialaphos resistance as a dominant selectable marker in Neurospora crassa, Curr. Genet., 1989, vol. 16, nos. 5–6, pp. 369–372.

    Article  CAS  PubMed  Google Scholar 

  51. Keon, J.P., White, G.A., and Hargreaves, J.A., Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis, Curr. Genet., 1991, vol. 19, no. 6, pp. 475–481.

    Article  CAS  PubMed  Google Scholar 

  52. Fernández-Ábalos, J.M., Fox, H., Pitt, C., Well, B., and Doonan, J.H., Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans, Mol. Microbiol., 1998, vol. 27, no. 1, pp. 121–130.

    Article  PubMed  Google Scholar 

  53. Spellig, T., Bottin, A., and Kahmann, R., Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis, Mol. Gen. Genet., 1996, vol. 252, no. 5, pp. 503–509.

    CAS  PubMed  Google Scholar 

  54. Cormack, B.P., Bertram, G., Egerton, M., Gow, N.A., Falkow, S., and Brown, A.J., Yeast-enhanced green fluorescent protein (yEGFP) a reporter of gene expression in Candida albicans, Microbiology, 1997, vol. 143, no. 2, pp. 303–311.

    Article  CAS  PubMed  Google Scholar 

  55. Olmedo-Monfil, V., Mendoza-Mendoza, A., Gomez, I., Cortes, C., and Herrera-Estrella, A., Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride, Mol. Genet. Genom., 2002, vol. 267, no. 6, pp. 703–712.

    Article  CAS  Google Scholar 

  56. Olmedo-Monfil, V., Cortés-Penagos, C., and Herrera- Estrella, A., Three decades of fungal transformation: key concepts and applications, Methods Mol. Biol., 2004, vol. 267, pp. 297–313.

    CAS  PubMed  Google Scholar 

  57. Lee, K. and Lee, S.E., Saccharomyces cerevisiae Sae2-and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining, Genetics, 2007, vol. 176, no. 4, pp. 2003–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mezard, C. and Nicolas, A., Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae, Mol. Cell Biol., 1994, vol. 14, no. 2, pp. 1278–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Symington, L.S. and Gautier, J., Double-strand break end resection and repair pathway choice, Ann. Rev. Genet., 2011, vol. 45, pp. 247–271.

    Article  CAS  PubMed  Google Scholar 

  60. Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J., Yeast transformation: a model system for the study of recombination, Proc. Natl. Acad. Sci. U. S. A., 1981, vol. 78, no. 10, pp. 6354–6358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishibashi, K., Suzuki, K., Ando, Y., Takakura, C., and Inoue, H., Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 40, pp. 14871–14876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H., Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 33, pp. 12248–12253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakazawa, T., Ando, Y., Kitaaki, K., Nakahori, K., and Kamada, T., Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea, Fungal Genet. Biol., 2011, vol. 48, no. 10, pp. 939–946.

    Article  CAS  PubMed  Google Scholar 

  64. Leem, Y.E., Kim, S.J., Ross, I.K., and Choi, H.T., Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration, FEMS Microbiol. Letts., 1999, vol. 172, no. 1, pp. 35–40.

    Article  CAS  Google Scholar 

  65. Maehara, T., Yoshida, M., Ito, Y., Tomita, S., Takabatake, K., Ichinose, H., and Kaneko, S., Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain, Biosci. Biotechnol. Biochem., 2010, vol. 74, no. 5, pp. 1126–1128.

    Article  CAS  PubMed  Google Scholar 

  66. Kim, S., Song, J., and Choi, H.T., Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration, FEMS Microbiol. Letts., 2004, vol. 233, no. 2, pp. 201–204.

    Article  CAS  Google Scholar 

  67. Hirano, T., Sato, T., Yaegashi, K., and Enei, H., Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance, Mol. Gen. Genet., 2000, vol. 263, no. 6, pp. 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  68. Nakade, K., Watanabe, H., Sakamoto, Y., and Sato, T., Gene silencing of the Lentinula edodes lcc1 gene by expression of a homologous inverted repeat sequence, Microbiol. Res., 2011, vol. 166, no. 6, pp. 484–493.

    Article  CAS  PubMed  Google Scholar 

  69. Sato, T., Yaegashi, K., Ishii, S., Hirano, T., Kajiwara, S., Shishido, K., and Enei, H., Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA, Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 12, pp. 2346–2350.

    Article  CAS  PubMed  Google Scholar 

  70. Irie, T., Sato, T., Saito, K., Honda, Y., Watanabe, T., Kuwahara, M., and Enei, H., Construction of a homologous selectable marker gene for Lentinula edodes transformation, Biosci. Biotechnol. Biochem., 2003, vol. 67, no. 9, pp. 2006–2009.

    Article  CAS  PubMed  Google Scholar 

  71. Noh, W., Kim, S.W., Bae, D.W., Kim, J.Y., and Ro, H.S., Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzyme-mediated integration, J. Microbiol., 2010, vol. 48, no. 2, pp. 253–256.

    Article  CAS  PubMed  Google Scholar 

  72. Yin, Y., Liu, Y., Jin, H., Wang, S., Zhao, S., Geng, X., Li, M., and Xu, F., Polyethylene glycol-mediated transformation of fused egfphph gene under the control of gpd promoter in Pleurotus eryngii, Biotechnol. Lett., 2012, vol. 34, no. 10, pp. 1895–1900.

    Article  PubMed  Google Scholar 

  73. Lin, J., Zheng, M., Wang, J., Shu, W., and Guo, L., Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis, Prog. Nat. Sci., 2008, vol. 18, no. 7, pp. 819–824.

    Article  CAS  Google Scholar 

  74. Irie, T., Honda, Y., Hirano, T., Sato, T., Enei, H., Watanabe, T., and Kuwahara, M., Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos 5-6, pp. 707–709.

    Article  CAS  PubMed  Google Scholar 

  75. Irie, T., Honda, Y., Watanabe, T., and Kuwahara, M., Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA, Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 5, pp. 563–565.

    Article  CAS  PubMed  Google Scholar 

  76. Joh, J.H., Kim, B.G., Chu, K.S., Kong, W.S., Yoo, Y.B., and Lee, C.S., The efficient transformation of Pleurotus ostreatus using REMI method, Mycobiology, 2003, vol. 31, no. 1, 32–35.

    Article  CAS  Google Scholar 

  77. Peng, M., Singh, N.K., and Lemke, P.A., Recovery of recombinant plasmids from Pleurotus ostreatus transformants, Curr. Genet., 1992, vol. 22, no. 1, pp. 53–59.

    Article  CAS  PubMed  Google Scholar 

  78. Li, G., Li, R., Liu, Q., Wang, Q., Chen, M., and Li, B., A highly efficient polyethylene glycol-mediated transformation method for mushrooms, FEMS Microbiol. Letts., 2006, vol. 256, no. 2, pp. 203–208.

    Article  CAS  Google Scholar 

  79. Kim, K., Leem, Y., Kim, K., Kim, K., and Choi, H.T., Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration, FEMS Microbiol. Letts., 2002, vol. 209, no. 2, pp. 273–276.

    Article  CAS  Google Scholar 

  80. Kitamura, K., Kaneko, T., and Yamamoto, Y., Lysis of viable yeast cells by enzymes of Arthrobacter luteus, Arch. Biochem. Biophys., 1971, vol. 145, no. 1, pp. 402–404.

    Article  CAS  PubMed  Google Scholar 

  81. Peterson, E.M., Hawley, R.J., and Calderone, R.A., An ultrastructural analysis of protoplast-spheroplast induction in Cryptoccocus neoformans, Can. J. Microbiol., 1976, vol. 22, no. 10, pp. 1518–1521.

    Article  CAS  PubMed  Google Scholar 

  82. Case, M.E., Schweizer, M., Kushner, S.R., and Giles, N.H., Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5259–5263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Evans, C.T. and Conrad, D., An improved method for protoplast formation and its application in the fusion of Rhodotorula rubra with Saccharomyces cerevisiae, Arch. Microbiol., 1987, vol. 148, no. 1, pp. 77–82.

    Article  CAS  PubMed  Google Scholar 

  84. Bailey, A.M., Mena, G.L., and Herrera-Estrella, L., Genetic transformation of the plant pathogens Phytophtora capsici and Phytophtora parasitica, Nucleic Acids Res., 1991, vol. 19, no. 15, pp. 4273–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rhodes, J.C. and Kwon-Chung, K.J., Production and regeneration of protoplast from Cryptococcus, Sabouraudia, 1985, vol. 23, no. 1, pp. 77–80.

    Article  CAS  PubMed  Google Scholar 

  86. May, G.S., Fungal Technology, Applied Molecular Genetics of Filamentous Fungi, Kinghorn, J.R. and Turner, G., Eds., Glasgow, 1992, pp. 1–27.

  87. Finchman, J.R., Transformation in fungi, Microbiol. Rev., 1989, vol. 53, no. 1, pp. 148–170.

    Google Scholar 

  88. Hashizaki, K., Taguchi, H., Itoh, C., Sakai, H., Abe, M., Saito, Y., and Ogawa, N., Effects of poly(ethylene glycol) (PEG) chain length of PEGlipid on the permeability of liposomal bilayer membranes, Chem. Pharm. Bull. (Tokyo), 2003, vol. 51, no. 7, pp. 815–820.

    Article  CAS  Google Scholar 

  89. Timberlake, W.E. and Marshall, M.A., Genetic engineering of filamentous fungi, Science, 1989, vol. 244, no. 4910, pp. 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  90. He, L., Feng, J., Lu, S., Chen, Z., Chen, C., He, Y., Yi, X., and Xi, L., Genetic transformation of fungi, Int. J. Dev. Biol., 2017, vol. 61, nos. 6–7, pp. 375–381.

    Article  PubMed  Google Scholar 

  91. Kojima, R., Arai, T., Kasumi, T., and Ogihara, J., Construction of transformation system in Penicillium purpurogenum, J. Biosci. Bioeng., 2015, vol. 119, no. 3, pp. 314–316.

    Article  CAS  PubMed  Google Scholar 

  92. Yao, Y.R., Tian, X.L., Shen, B.M., Mao, Z.C., Chen, G.H., and Xie, B.Y., Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita, World J. Microbiol. Biotechnol., 2015, vol. 31, no. 4, pp. 549–556.

    Article  CAS  PubMed  Google Scholar 

  93. Ito, H., Fukuda, Y., Murata, K., and Kimura, A., Transformation of intact yeast cells treated with alkali cations, J. Bacteriol., 1983, vol. 153, no. 1, pp. 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gietz, R.D., Schiestl, R.H., Willems, A.R., and Woods, R.A., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast, 1995, vol. 11, no. 4, pp. 355–360.

    Article  CAS  PubMed  Google Scholar 

  95. Dhawale, S.S., Paietta, J.V., and Marzluf, G.A., A new, rapid and efficient transformation procedure for Neurospora, Curr. Genet., 1984, vol. 8, no. 1, pp. 77–79.

    Article  CAS  PubMed  Google Scholar 

  96. Bej, A.K. and Perlin, M.G., A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment, Gene, 1989, vol. 80, no. 1, pp. 171–176.

    Article  CAS  PubMed  Google Scholar 

  97. Brzobohatý, B. and Kovác, L., Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity, J. Gen. Microbiol., 1986, vol. 132, no. 11, pp. 3089–3093.

    PubMed  Google Scholar 

  98. Pham, T.A., Kawai, S., and Murata, K., Visualization of the synergistic effect of lithium acetate and singlestranded carrier DNA on Saccharomyces cerevisiae transformation, Curr. Genet., 2011, vol. 57, no. 4, pp. 233–239.

    Article  CAS  PubMed  Google Scholar 

  99. Shigekawa, K. and Dower, W.J., Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells, BioTechniques, 1988, vol. 6, no. 8, pp. 742–751.

    CAS  PubMed  Google Scholar 

  100. Ward, M., Kodama, K.H., and Wilson, L.J., Transformation of Aspergillus awamori and A. niger by electroporation, Exp. Mycol., 1989, vol. 13, no. 3, pp. 289–293.

    Article  Google Scholar 

  101. Goldman, G.H., van Montagu, M., and Herrera-Estrella, A., Transformation of Trichoderma harzianum by high-voltage electric pulse, Curr. Genet., 1990, vol. 17, no. 2, pp. 169–174.

    Article  CAS  Google Scholar 

  102. Chakraborty, B.N., Patterson, N.A., and Kapoor, M., An electroporation-based system for high efficiency transformation of germinated conidia of filamentous fungi, Can. J. Microbiol., 1991, vol. 37, no. 11, pp. 858–863.

    Article  CAS  PubMed  Google Scholar 

  103. Edman, J.C. and Kwon-Chung, K.J., Isolation of the URA5 gene from Cryptococcus neoformans and its use as a selective marker for transformation, Mol. Cell. Biol., 1990, vol. 10, no. 9, pp. 4538–4544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van de Rhee, M.D., Graca, P.M., Huizing, H.J., and Mooibroek, H., Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance, Mol. Gen. Genet., 1996, vol. 250, no. 3, pp. 252–258.

    PubMed  Google Scholar 

  105. Kuo, C.Y., Chou, S.Y., Hseu, R.S., and Huang, C.T., Heterologous expression of EGFP in enoki mushroom Flammulina velutipes, Bot. Stud., 2010, vol. 51, no. 3, pp. 303–309.

    CAS  Google Scholar 

  106. Sun, L., Cai, H., Xu, W., Hu, Y., Gao, Y., and Lin, Z., Efficient transformation of the medicinal mushroom Ganoderma lucidum, Plant Mol. Biol. Rep., 2001, vol. 19, no. 4, pp. 383–384.

    Article  Google Scholar 

  107. Sun, L., Cai, H., Xu, W., Hu, Y., and Lin, Z., CaMV 35s promoter directs β-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus, Mol. Biotechnol., 2002, vol. 20, no. 3, pp. 239–244.

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J.K., Park, Y.J., Kong, W.S., and Kang, H.W., Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes, Mycobiology, 2010, vol. 38, no. 4, pp. 331–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kuo, C.Y. and Huang, C.T., A reliable transformation method and heterologous expression of β-glucuronidase in Lentinula edodes, J. Microbiol. Methods, 2008, vol. 72, no. 2, pp. 111–115.

    Article  CAS  PubMed  Google Scholar 

  110. Simonis, P., Kersulis, S., Stankevich, V., Kaseta, V., Lastauskiene, E., and Stirke, A., Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields, Bioelectrochemistry, 2017, vol. 115, pp. 19–25.

    Article  CAS  PubMed  Google Scholar 

  111. Miklenić, M., Žunar, B., Štafa, A., and Svetec, I., Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis, FEMS Yeast Res., 2015, vol. 15, no. 8, fov096.

    Article  PubMed  CAS  Google Scholar 

  112. Rocha-Ramirez, V., Omero, C., Chet, I., Horwitz, B.A., and Herrera-Estrella, A., Trichoderma atroviride Gprotein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation, Eukaryot. Cell, 2002, vol. 1, no. 4, pp. 594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sunagawa, M. and Magae, Y., Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment, FEMS Microbiol. Letts., 2002, vol. 211, no. 2, pp. 143–146.

    Article  CAS  Google Scholar 

  114. Sunagawa, M., Murata, H., Miyazaki, Y., and Nakamura, M., Transformation of Lyophyllum decastes by particle bombardment, Mycoscience, 2007, vol. 48, no. 3, pp. 195–197.

    Article  CAS  Google Scholar 

  115. Schiestl, R.H. and Petes, T.D., Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, no. 17, pp. 7585–7589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kuspa, A. and Loomis, W.F., Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 18, pp. 8803–8807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dynes, J.L., Clark, A.M., Shaulsky, G., Kuspa, A., Loomis, W.F., and Firtel, R.A., LagC is required for cell–cell interactions that are essential for cell-type differentiation in Dictyostelium, Genes Dev., 1994, vol. 8, no. 8, pp. 948–958.

    Article  CAS  PubMed  Google Scholar 

  118. Lu, S., Lyngholm, L., Yan, G., Bronson, C., Yoder, O.C., and Turgeon, B.G., Tagged mutation at the tox1 locus of Cochliobolus heterostrophus by restriction enzymemediated integration, Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 26, pp. 12649–12653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bölker, M., Böhnert, H.U., Braun, K.H., Görl, J., and Kahmann, R., Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI), Mol. Gen. Genet., 1995, vol. 248, no. 5, pp. 547–552.

    Article  PubMed  Google Scholar 

  120. Sweigard, J.A., Carroll, A.M., Farral, L., Chumley, F.G., and Valent, B., Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis, Mol. Plant–Microbe Interact., 1998, vol. 11, no. 5, pp. 404–412.

    Article  CAS  PubMed  Google Scholar 

  121. Thon, M.R., Nuckles, E.M., and Vaillancourt, L.J., Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola, Mol. Plant–Microbe Interact., 2000, vol. 13, no. 12, pp. 1356–1365.

    Article  CAS  PubMed  Google Scholar 

  122. Bundock, P., de Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J., Trans-kingdom t-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae, EMBO J., 1995, vol. 14, no. 13, pp. 3206–3214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G., Agrobacterium tumefaciens-mediated transformation of filamentous fungi, Nat. Biotechnol., 1998, vol. 16, no. 9, pp. 839–842.

    Article  PubMed  Google Scholar 

  124. Frandsen, R.J., A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation, J. Microbiol. Methods, 2011, vol. 87, no. 3, pp. 247–262.

    Article  CAS  PubMed  Google Scholar 

  125. Wang, D., He, D., Li, G., Gao, S., Lv, H., Shan, Q., and Wang, L., An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus, J. Microbiol. Methods, 2014, vol. 98, pp. 114–118.

    Article  CAS  PubMed  Google Scholar 

  126. Crespo-Sempere, A., Lopez-Perez, M., Martinez-Culebras, P.V., and Gonzalez-Candelas, L., Development of a green fluorescent tagged strain of Aspergillus carbonarius to monitor fungal colonization in grapes, Int. J. Food Microbiol., 2011, vol. 148, no. 2, pp. 135–140.

    Article  CAS  PubMed  Google Scholar 

  127. Mora-Lugo, R., Zimmermann, J., Rizk, A.M., and Fernandez-Lahore, M., Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach, BMC Microbiol., 2014, vol. 14, p. 247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J., Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination, Nat. Biotechnol., 1999, vol. 17, no. 6, pp. 598–601.

    Article  CAS  PubMed  Google Scholar 

  129. Cardoza, R.L., Vizcaino, J.A., Hermosa, M.R., Monte, E., and Gutierrez, S., A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast-and Agrobacterium-mediated transformation, J. Microbiol., 2006, vol. 44, no. 4, pp. 383–395.

    CAS  PubMed  Google Scholar 

  130. Michielse, C.B., Ram, A.F., Hooykaas, P.J., and Hodel, C.A., Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori, Fungal Genet. Biol., 2004, vol. 41, no. 5, pp. 571–578.

    Article  CAS  PubMed  Google Scholar 

  131. Mullins, E., Romaine, C.P., Chen, X., Geiser, D., Raina, R., and Kang, S., Agrobacterium tumefaciensmediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer, Phytopathology, 2001, vol. 91, no. 2, pp. 173–180.

    Article  CAS  PubMed  Google Scholar 

  132. Ruiz-Diez, B., Strategies for the transformation of filamentous fungi, J. Appl. Microbiol., 2002, vol. 92, no. 2, pp. 189–195.

    Article  CAS  PubMed  Google Scholar 

  133. Mikosch, T.S., Lavrijssen, B., Sonnenberg, A.S., and van Griensven, L.J., Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens, Curr. Genet., 2001, vol. 39, no. 1, pp. 35–39.

    Article  CAS  PubMed  Google Scholar 

  134. Wang, K., Methods in Molecular Biology, New York: Humana Press, 2006, vol. 344, pp. 395–475.

    Google Scholar 

  135. Wang, J., Guo, L., Zhang, K., Wu, Q., and Lin, J., Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea, Bioresour. Technol., 2008, vol. 99, no. 17, pp. 8524–8527.

    Article  CAS  PubMed  Google Scholar 

  136. Sun, W., Liu, L., Hu, X., Tang, J., Liu, P., Chen, J., and Chen, Y., Generation and identification of DNA sequence flanking T-DNA integration site of Trichoderma atroviride mutants with high dichlorvos-degrading capacity, Bioresour. Technol., 2009, vol. 100, no. 23, pp. 5941–5946.

    Article  CAS  PubMed  Google Scholar 

  137. Duarte, R.T., Staats, C.C., Fungaro, M.H., Schrank, A., Vainsten, M.H., Furlaneto-Maia, L., Nakamura, C.V., de Souza, W., and Furlaneto, M.C., Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum, Lett. Appl. Microbiol., 2007, vol. 44, no. 3, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  138. Rho, H., Kang, S., and Lee, Y., Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Magnaporthe grisea, Mol. Cells, 2001, vol. 12, no. 3, pp. 407–411.

    CAS  PubMed  Google Scholar 

  139. Dobinson, K.F., Grant, S.J., and Kang, S., Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahlia, Curr. Genet., 2004, vol. 45, no. 2, pp. 104–110.

    Article  CAS  PubMed  Google Scholar 

  140. Zwiers, L.-H. and De Waard, M.A., Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola, Curr. Genet., 2001, vol. 39, nos. 5–6, pp. 388–393.

    Article  CAS  PubMed  Google Scholar 

  141. Bundock, P., Mroczek, K., Winkler, A.A., Steensma, H.Y., and Hooykaas, P.J., T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis, Mol. Gen. Genet., 1999, vol. 261, no. 1, pp. 115–121.

    Article  CAS  PubMed  Google Scholar 

  142. Sullivan, T.D., Rooney, P.J., and Klein, B.S., Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast, Eukaryot. Cell, 2002, vol. 1, no. 6, pp. 895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C.P., A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus, Appl. Environ. Microbiol., 2000, vol. 66, no. 10, pp. 4510–4513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lu, Z., Kong, X., Lu, Z., Xiao, M., Chen, M., Zhu, L., Shen, Y., Hu, X., and Song, S., Paraaminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus, PLoS One, 2014, vol. 9, no. 3, p. e91298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Zheng, Z., Huang, C., Cao, L., Xie, C., and Han, R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris, Fungal Biol., 2011, vol. 115, no. 3, pp. 265–274.

    Article  CAS  PubMed  Google Scholar 

  146. Cho, J.H., Lee, S.E., Chang, W.B., and Cha, J.S., Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes, Mycobiology, 2006, vol. 34, no. 2, pp. 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Park, S.Y., van Peer, A.F., Jang, K.Y., Shin, P.G., Park, Y., Yoo, Y.B., Park, K.M., and Kong, W.S., Agrobacterium-mediated transformation using gill tissue of Flammulina velutipes, Korean J. Mycol., 2010, vol. 38, no. 1, pp. 48–53.

    Article  Google Scholar 

  148. Okamoto, T., Yamada, M., Sekiya, S., Okuhara, T., Taguchi, G., Inatomi, S., and Shimosaka, M., Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes, Biosci. Biotechnol. Biochem., 2010, vol. 74, no. 11, pp. 2327–2329.

    Article  CAS  PubMed  Google Scholar 

  149. Shi, L., Fang, X., Li, M., Mu, D., Ren, A., Tan, Q., and Zhao, M., Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum, J. Microbiol. Biotechnol., 2012, vol. 28, no. 1, pp. 283–291.

    Article  Google Scholar 

  150. Hatoh, K., Izumitsu, K., Morita, A., Shimizu, K., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., and Tanaka, C., Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid, Mycoscience, 2013, vol. 54, no. 1, pp. 8–12.

    Article  CAS  Google Scholar 

  151. Zhang, J.J., Shi, L., Chen, H., Sun, Y.Q., Zhao, M.W., Ren, A., Chen, M.J., Wang, H., and Feng, Z.Y., An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus, Microbiol. Res., 2014, vol. 169, nos 9-10, pp. 741–748.

    Article  CAS  PubMed  Google Scholar 

  152. Zubieta, M.P., Silva, CoelhoI., de Queiroz, M.V., and de Araujo, E.F., Agrobacterium tumefaciens-mediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata, Ann. Microbiol., 2014, vol. 64, no. 4, pp. 1875–1878.

    Article  CAS  Google Scholar 

  153. Chung, S.J., Kim, S., Sapkota, K., Choi, B.S., Shin, C., and Kim, S.J., Expression of recombinant human interleukin-32 in Pleurotus eryngii, Ann. Microbiol., 2011, vol. 61, no. 2, pp. 331–338.

    Article  CAS  Google Scholar 

  154. Kim, K.H., Kang, Y.M., Im, C.H., Ali, A., Kim, S.Y., Je, H.J., Kim, M.K., Rho, H.S., Lee, H.S., Kong, W.S., and Ryu, J.S., Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii, PLoS One, 2014, vol. 9, no. 8, p. e104693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Ding, Y., Liang, S., Lei, J., Chen, L., Kothe, E., and Ma, A., Agrobacterium tumefaciens-mediated fused egfp–hph gene expression under the control of gpd promoter in Pleurotus ostreatus, Microbiol. Res., 2011, vol. 166, no. 4, pp. 314–322.

    Article  CAS  PubMed  Google Scholar 

  156. Pardo, A.G., Hanif, M., Raudaskoski, M., and Gorfer, M., Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens, Mycol. Res., 2002, vol. 106, no. 2, pp. 132–137.

    Article  CAS  Google Scholar 

  157. Godio, R.P., Fouces, R., Gudina, E.J., and Martin, J.F., Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium, Curr. Genet., 2004, vol. 46, no. 5, pp. 287–294.

    Article  CAS  PubMed  Google Scholar 

  158. Murata, H., Igasaki, T., Shishido, K., and Sunagawa, M., Agrobacterium-mediated transformation of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces commercially valuable fruit bodies, matsutake, Mycoscience, 2006, vol. 47, no. 4, pp. 228–231.

    Article  CAS  Google Scholar 

  159. Murata, H., Sunagawa, M., Yamada, T., Shishido, K., and Igasaki, T., Expression of the autofluorescent protein, DsRed2, in the recombinants of the ectomycorrhizal basidiomycete, Suillus grevillei, generated by Agrobacterium mediated transformation, Mycorrhiza, 2006, vol. 16, no. 6, pp. 407–412.

    Article  CAS  PubMed  Google Scholar 

  160. Kim, S., Ha, B.-S., and Ro, H.-S., Current technologies and related issues for mushroom transformation, Mycobiology, 2015, vol. 43, no. 1, pp. 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Challen, M., Gregorg, K., Sreenivasaprasad, S., Rogers, C.C., Cutler, S.B., Diaper, D.C., Elliott, T.J., and Foster, G.D., Transformation technologies for mushrooms, Mushroom Sci., 2000, vol. 15, pp. 165–172.

    CAS  Google Scholar 

  162. Leach, K., Odon, V., Zhang, C., Kim, H.K., Henderson, J., Warner, P., Challen, M., and Elliott, T., Progress in Agaricus bisporus transformation: Agrobacterium methodologies and development of novel marker genes, Mushroom Sci., 2004, vol. 16, pp. 93–102.

    CAS  Google Scholar 

  163. Romaine, C.P. and Schlagnhaufer, C., Mushroom (Agaricus bisporus), in Agrobacterium Protocols, Totowa, New Jersey: Humana Press, 2006, vol. 2, pp. 453–463.

  164. Ando, A., Sumida, Y., Negoro, H., Suroto, D.A., Ogawa, J., Sakuradani, E., and Shimizu, S., Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding, Appl. Environ. Microbiol., 2009, vol. 75, no. 17, pp. 5529–5535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, E.C., Su, Y.H., Kanagarajan, S., Agrawal, D.C., and Tsay, H.S., Development of an activation tagging system for the basidiomycetous medicinal fungus Antrodia cinnamomea, Mycol. Res., 2009, vol. 113, pp. 290–297.

    Article  CAS  PubMed  Google Scholar 

  166. Covert, S.F., Kapoor, P., Lee, M.-H., Briley, A., and Nairn, C.J., Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum, Mycol. Res., 2001, vol. 105, no. 3, pp. 259–264.

    Article  CAS  Google Scholar 

  167. Combier, J.P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R., Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum, FEMS Microbiol. Letts., 2003, vol. 220, no. 1, pp. 141–148.

    Article  CAS  Google Scholar 

  168. Stachel, S.E., Nester, E.W., and Zambryski, P.C., A plant cell factor induces Agrobacterium tumefaciens vir gene expression, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, no. 2.

    Google Scholar 

  169. Reis, M.C., Pelegrinelli Fungaro, M.H., Delgado Duarte, R.T., Furlaneto, L., and Furlaneto, M.C., Agrobacterium tumefaciens mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana, J. Microbiol. Methods, 2004, vol. 58, no. 2, pp. 197–202.

    Article  PubMed  CAS  Google Scholar 

  170. Michielse, C.B., Hooykaas, P.J., Hondel, C.A., and Ram, A.F., Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori, Nature Prot., 2008, vol. 3, no. 10, pp. 1671–1678.

    Article  Google Scholar 

  171. Kostetsky, I.E. and Kordyum, V.A., Liposome-mediated delivery of DNA to Saccharomyces cerevisiae protoplasts, Biopolym. Cell, 1987, vol. 3, no. 1, pp. 35–40.

    Article  Google Scholar 

  172. Ain, Q.U., Chung, J.Y., and Kim, Y.H., Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN, J. Control. Release, 2015, vol. 205, pp. 120–127.

    Article  CAS  Google Scholar 

  173. Doudna, J.F. and Charpentier, E., The new frontier of genome engineering with CRISPR-Cas9, Science, 2014, vol. 346, no. 6213, art. 1258096.

    Google Scholar 

  174. Carroll, D., Genome engineering with targetable nucleases, Annu. Rev. Biochem., 2014, vol. 83, pp. 409–439.

    Article  CAS  PubMed  Google Scholar 

  175. DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., and Church, G.M., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res., 2013, vol. 41, no. 7, pp. 4336–4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arazoe, T., Miyoshi, K., Yamato, T., Ogawa, T., Ohsato, S., Arie, T., and Kuwata, S., Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus, Biotechnol. Bioeng., 2015, vol. 112, no. 12, pp. 2543–2549.

    Article  CAS  PubMed  Google Scholar 

  177. Katayama, T., Tanaka, Y., Okabe, T., Nakamura, H., Fujii, W., Kitamoto, K., and Maruyama, J., Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae, Biotechnol. Lett., 2016, vol. 38, no. 4, pp. 637–642.

    Article  CAS  PubMed  Google Scholar 

  178. Liu, R., Chen, L., Jiang, Y., Zhou, Z., and Zou, G., Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system, Cell Discov., 2015, vol. 1, Art. 15007.

    Google Scholar 

  179. Nødvig, C.S., Nielsen, J.B., Kogle, M.E., and Mortensen, U.H., A CRISPR/Cas9 system for genetic engineering of filamentous fungi, PLoS One, 2015, vol. 10, no. 7.

    Article  CAS  Google Scholar 

  180. Fuller, K., Chen, S., Loros, J.J., and Dunlap, J.C., Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigates, Eukaryot. Cell, 2015, vol. 14, no. 11, pp. 1073–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Matsuura, T., Baek, M., Kwon, J., and Hong, C., Efficient gene editing in Neurospora crassa with CRISPR technology, Fungal Biol. Biotechnol., 2015, vol. 2, Art. 4.

  182. Pohl, C., Kiel, J.A., Driessen, A.J., Bovenberg, R.A., and Nygard, Y., CRISPR/Cas9 based genome editing of Penicillium chrysogenum, ACS Synth. Biol., 2016, vol. 5, no. 7, pp. 754–764.

    Article  CAS  PubMed  Google Scholar 

  183. Schuster, M., Schweizer, G., Reissmann, S., and Kahmann, R., Genome editing in Ustilago maydis using the Crispr–Cas system, Fungal Genet. Biol., 2016, vol. 89, pp. 3–9.

    Article  CAS  PubMed  Google Scholar 

  184. Goldman, G.H., van Montagu, M., and Herrera-Estrella, A., Filamentous fungi, in Transformation of Plants and Soil Microorganisms, New York, Cambridge: Univ. Press, 1995, pp. 34–49.

    Book  Google Scholar 

  185. Stahl, U., Tudzynski, P., Kück, U., and Esser, K., Replication and expression of a bacterial-mitochondrial hybrid plasmid in the fungus Podospora anserine, Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, no. 11, pp. 3641–3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Stohl, L.L. and Lambowitz, A.M., Construction of a shuttle vector for the filamentous fungus Neurospora crassa, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, no. 4, pp. 1058–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Esser, K., Kuck, U., Stahl, U., and Tudzynski, P., Cloning vectors of mitochondrial origin for eukaryotes: a new concept in genetic engineering, Curr. Genet., 1983, vol. 7, no. 4, pp. 239–243.

    Article  CAS  PubMed  Google Scholar 

  188. Balance, D.J. and Turner, G., Development of a high frequency transforming vector for Aspergillus nidulans, Gene, 1985, vol. 36, no. 3, pp. 321–331.

    Article  Google Scholar 

  189. Tusukuda, T., Carleton, S., Fotheringham, S., and Holloman, W.K., Isolation and characterization of an autonomously replicating sequence from Ustilago maydis, Mol. Cell. Biol., 1988, vol. 8, no. 9, pp. 3703–3709.

    Article  Google Scholar 

  190. Van Heeswijck, R., Autonomous replication of plasmids in Mucor transformants, Carlsber Res. Commun., 1986, vol. 51, no. 6, pp. 433–443.

    Article  Google Scholar 

  191. Roncero, M.I.G., Jepsen, L.P., Stroman, P., and van Heeswijck, R., Characterization of a leuA gene and an ARS element from Mucor circinelloides, Gene, 1989, vol. 84, no. 2, pp. 335–343.

    Article  CAS  PubMed  Google Scholar 

  192. Fierro, F., Kosalkova, K., Gutierrez, S., and Martin, J.F., Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum, Curr. Genet., 1996, vol. 29, no. 5, pp. 482–489.

    Article  CAS  PubMed  Google Scholar 

  193. Bowyer, P., Osbourn, A.E., and Daniels, M.J., An “instant gene bank” method for heterologous gene cloning: complementation of two Aspergillus nidulans mutants with Gaeumannomyces graminis DNA, Mol. Gen. Genet., 1994, vol. 242, no. 4, pp. 448–454.

    CAS  PubMed  Google Scholar 

  194. Powell, W.A. and Kistler, H.C., In vivo rearrangement of foreign DNA by Fusarium oxysporum produces lineal self-replicating plasmids, J. Bacteriol., 1990, vol. 172, no. 6, pp. 3163–3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Long, D.M., Smidansky, E.D., Archer, A.J., and Strobel, G.A., In vivo addition of telomeric repeats to foreign DNA generates extrachromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspore, Fungal Genet. Biol., 1998, vol. 24, no. 3, pp. 335–344.

    Article  CAS  PubMed  Google Scholar 

  196. Selker, E.U., Cambareri, E.B., Jensen, B.C., and Haak, K.R., Rearrangement of duplicated DNA in specialized cells of Neurospora, Cell, 1987, vol. 51, no. 5, pp. 741–752.

    Article  CAS  PubMed  Google Scholar 

  197. Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., and Davies, R.W., Transformation by integration in Aspergillus nidulans, Gene, 1983, vol. 26, nos. 2–3, pp. 205–221.

    Article  CAS  PubMed  Google Scholar 

  198. Suzuki, K., Imai, Y., Yamashita, I., and Fukui, S., In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae, J. Bacteriol., 1983, vol. 155, no. 2, pp. 747–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, J., Holden, D.W., and Leong, S.A., Gene transfer system for the phytopathogenic fungus Ustilago maydis, Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, no. 3, pp. 865–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Huiet, L. and Case, M., Molecular biology of the qa gene cluster in Neurospora crassa, in Gene Manipulations in Fungi, Bennett, J.W. and Lasure, L.L., Eds., Orlando, FL: Acad. Press, 1985, pp. 229–244.

    Chapter  Google Scholar 

  201. Boylan, M.T., Mirabito, P.M., Wilett, C.E., Zimmerman, C.R., and Timberlake, W.E., Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans, Mol. Cell. Biol., 1987, vol. 7, no. 9, pp. 3113–3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Aramayo, R., Adams, T.H., and Timberlake, W.E., A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans, Genetics, 1989, vol. 122, no. 1, pp. 65–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Ballinger, D.G. and Benzer, S., Targeted gene mutations in Drosophila, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, no. 23, pp. 9402–9406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, Nestri., Nicosia, M.G., Brocard-Masson, C., Demais, S., Hua, Van A., Daboussi, M.J., and Scazzochio, C., Heterologous transposition in Aspergillus nidulans, Mol. Microbiol., 2001, vol. 39, no. 5, pp. 1330–1344.

    Article  Google Scholar 

  205. Dmytruk, K.V. and Sibirny, A.A., Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi, Genetika, 2007, vol. 43, no. 8, pp. 1013–1025.

    Google Scholar 

  206. DeBacker, M.D., Nelissen, B., Logghe, M., Viaene, J., Loonen, I., Vandoninck, S., de Hoogt, R., Dewaele, S., Simons, F.A., Verhasselt, P., Vanhoof, G., Contreras, R., and Luyten, W.H., An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans, Nat. Biotechnol., 2001, vol. 19, no. 3, pp. 235–241.

    Article  CAS  Google Scholar 

  207. Gorlach, J.M., McDade, H.C., Perfect, J.R., and Cox, G.M., Antisense repression in Cryptoccocus neoformans as a laboratory tool and potential antifungal strategy, Microbiology, 2002, vol. 148, no. 1, pp. 213–219.

    Article  CAS  PubMed  Google Scholar 

  208. Bautista, L.F., Aleksenko, A., Hentzer, M., Santerre-Henriksen, A., and Nielsen, J., Antisense silencing of the creA gene in Aspergillus nidulans, Appl. Environ. Microbiol., 2000, vol. 66, no. 10, pp. 4579–4581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, vol. 391, no. 6669, pp. 806–811.

    Article  CAS  PubMed  Google Scholar 

  210. Liu, H., Cottrell, T.R., Pierini, L.M., Goldman, W.E., and Doering, T.L., RNA interference in the pathogenic fungus Cryptoccocus neoformans, Genetics, 2002, vol. 160, no. 2, pp. 463–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Casadaban, M.J. and Cohen, S.N., Lactose genes fused to exogenous promoters in one step using a Mulac bacteriophage: in vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 9, pp. 4530–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ilmen, M., Onnela, M.L., Klemsdal, S., Keranen, S., and Penttila, M., Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei, Mol. Gen. Genet., 1996, vol. 253, no. 3, pp. 303–314.

    CAS  PubMed  Google Scholar 

  213. Hynes, M.J., Draht, O.W., and Davis, M.A., Regulation of the acuF gene, encoding phosphoenol pyruvate carboxyl kinase in the filamentous fungus Aspergillus nidulans, J. Bacteriol., 2002, vol. 184, no. 1, pp. 183–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Roberts, I.N., Oliver, R.P., Punt, J.P., and Hondel, C.A., Expression of the Escherichia coli beta-glucuronidase gene in industrial and phytopathogenic filamentous fungi, Curr. Genet., 1989, vol. 15, no. 3, pp. 177–180.

    Article  CAS  PubMed  Google Scholar 

  215. Snoeijers, S.S., Vossen, P., Goosen, T., Broek, H.W., and De Witt, P.J., Transcription of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by a GATA-type transcription factor in Aspergillus nidulans, Mol. Gen. Genet., 1999, vol. 261, nos. 4–5, pp. 653–659.

    Article  CAS  PubMed  Google Scholar 

  216. Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S., Zeilinger, S., Kullning, C.M., Lorito, M., and Kubicek, C., Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals, Appl. Environ. Microbiol., 1999, vol. 65, no. 5, pp. 1858–1863.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Harkki, A., Uusitalo, J., Bailey, M., Pentilla, M., and Knowles, J.K.C., A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei, Nature Biotechnol., 1989, vol. 7, no. 6, pp. 596–603.

    Article  CAS  Google Scholar 

  218. Penalva, M.A., Rowlands, R.T., and Turner, G., The optimization of penicillin biosynthesis in fungi, Trends Biotechnol., 1998, vol. 16, no. 11, pp. 483–489.

    Article  CAS  PubMed  Google Scholar 

  219. Orejas, M., Tamayo, E.N., Villanueva, A., and Ramon, D.J., Improving extracellular production of food-use enzymes from Aspergillus nidulans, Biotechnology, 2002, vol. 96, no. 1, pp. 43–54.

    Google Scholar 

  220. Holz, C., Hesse, O., Bolotina, N., Stahl, U., and Lang, C., A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae, Protein Exp. Purif., 2002, vol. 25, no. 3, pp. 372–378.

    Article  CAS  Google Scholar 

  221. Punt, P.J., van Biezen, N., Conesa, A., Albers, A., Magnus, J., and Hondel, C., Filamentous fungi as cell factories for heterologous protein production, Trends Biotechnol., 2002, vol. 20, no. 5, pp. 200–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Poyedinok.

Additional information

Original Russian Text © N.L. Poyedinok, Ya.B. Blume, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 2, pp. 67–87.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poyedinok, N.L., Blume, Y.B. Advances, Problems, and Prospects of Genetic Transformation of Fungi. Cytol. Genet. 52, 139–154 (2018). https://doi.org/10.3103/S009545271802007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271802007X

Keywords

Navigation