Skip to main content
Log in

Specific features of root aerenchyma formation in Sium latifoliun L. (Apiaceae)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Types of aerenchyma formation in adventive roots of wild plant S. latifolium L. have been described for the first time. Specific cell divisions and patterns of cell growth in the inner and outer root cortex at the initial stages of aerenchyma formation were highlighted in detail. Destructive processes in cells that occurred under aerenchyma formation were considered in the view of known stages of programmed cell death in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouranis, D.L., Chorianopoulou, S.N., Kollias, C., Maniou, P., Protonotarios, V.E., Siyiannis, F.V., and Hawkesford, M.J., Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize, Ann. Bot., 2006, vol. 97, no. 5, pp. 695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Muhlenbock, P., Plaszczyca, M., Plaszczyca, M., Mellerowicz, E., and Karpinskia, S., Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATINT DISEASE1, Plant Cell, 2007, vol. 19, no. 11, pp. 3819–3830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gladish, D.K., Xu, J., and Niki, T., Apoptosis-like cell programmed death occurs in procambium and ground meristem of pea (Pisum sativum) root tips exposed to sudden flooding, Ann. Bot., 2006, vol. 97, no. 5, pp. 895–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sarkar, P., Niki, T., and Gladish, D., Changes in cell wall ultrastructure induced by sudden flooding at 25°C in Pisum sativum (Fabaceae) primary roots, Am. J. Bot., 2008, vol. 95, no. 7, pp. 782–792.

    Article  PubMed  Google Scholar 

  5. Yamauchi, T., Shimamura, S., Nakazono, M., and Mochizuki, T., Aerenchyma formation in crop species: a review, Field Crops Res., 2013, vol. 152, pp. 8–16.

    Article  Google Scholar 

  6. Schussler, E.E. and Longstreth, D.J., Changes in cell structure during the formation of root aerenchyma in Sagittaria lancifolia (Alismataceae), Am. J. Bot., 2000, vol. 87, no. 1, pp. 12–19.

    Article  PubMed  CAS  Google Scholar 

  7. Webb, J. and Jackson, M.B., A transmission and cryoscanning electron microscopy study of the formation of aerenchyma (cortical gas-filled space) in adventitious roots of rice (Oryza sativa), J. Exp. Bot., 1986, vol. 37, no. 6, pp. 832–841.

    Article  Google Scholar 

  8. Kawai, M., Samarajeewa, P.K. and Barrero, R.A., Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots, Planta, 1998, vol. 204, pp. 277–287.

    Article  CAS  Google Scholar 

  9. Campbell, R. and Drew, M.C., Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage, Planta, 1983, vol. 157, pp. 350–357.

    Article  PubMed  CAS  Google Scholar 

  10. Gunawardena, A.H.L.A.N., Pearce, D.M.E., Jackson, M.B., Hawes, C.R., and Evans, E., Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene, Plant Cell Environ., 2001, vol. 24, no. 12, pp. 1369–1375.

    Article  CAS  Google Scholar 

  11. Jackson, M.B. and Colmer, T.D., Response and adaptation by plants to flooding stress, Ann. Bot., 2005, vol. 96, no. 4, pp. 501–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Seago, J.L., Marsh, L.C., Stevens, K.J., Soukup, A., Votrubová, O., and Enstone, D., A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma, Ann. Bot., 2005, vol. 96, no. 4, p. 565–579.

    Article  PubMed  Google Scholar 

  13. Van Doorn, W.G., Beers, E.P., Dangl, J.L., Franklin-Tong, V.E., Gallois, P., Hara-Nishimura, I., Jones, A.M., Kawai-Yamada, M., Lam, E., Mundy, J., Mur, L.A.J., Petersen, M. Smertenko, A., Taliansky, M., Van Breusegem, F., Wolpert, T., Woltering, E., Zhivotovsky, B., and Boshkov, P.V., Morphological classification of plant cell deaths, Cell Death Diff., 2011, vol. 18, no. 18, pp. 1241–1246.

    Article  CAS  Google Scholar 

  14. Kutik, J., Kuthanova, A., Smertenko, A., Fischer, L., and Opatrny, Z., Cadmium-induced cell death in BY-2 cell culture starts with vacuolization of cytoplasm and terminates with necrosis, Physiol. Plant., 2014, vol. 151, no. 4, pp. 423–433.

    Article  PubMed  CAS  Google Scholar 

  15. Shevchenko, G.V., Kalinina, Ya.M., Kordyum, E.L., Interrelation between microtubules and microfilaments in the elongatin zone of Arabidopsis root under clinorotation, Adv. Space Res., 2007, vol. 39, no. 7, pp. 1171–1175.

    Article  Google Scholar 

  16. Carde, J.-P., Electron microscopy of plant cell membranes, in Plant Cell Membranes, Methods in Enzymology, Packer, L. and Douce, R., Eds., San Diego: Acad. Press, 1987, vol. 148, pp. 599–622.

    Article  CAS  Google Scholar 

  17. Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, no. 1, pp. 208–212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wagner, D.B., Faurnier, G.R., Saghay-Maroof, M.A., Williams, S.M., Dancik, B.P., and Allard, R.W., Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids, Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, no. 7, pp. 2097–2100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Justin, S.H.F.W. and Armstrong, W., The anatomical characteristics of roots and plant response to soil flooding, New Phytol., 1987, vol. 106, no. 3, pp. 465–495.

    Article  Google Scholar 

  20. Clowes, F.A.L., Pattern in root meristem development in angiosperms, New Phytol., 2000, vol. 146, no. 1, pp. 83–94.

    Article  Google Scholar 

  21. Soukup, A., Votrubová, O., and Cižková, H., Development of anatomical structure of roots of Phragmites australis, New Phytol., 2002, vol. 153, no. 2, pp. 277–287.

    Article  Google Scholar 

  22. Corand, H.S., The Waterlilies: a Monograph of the Genus Nymphaea, Washington, Carnegie Institute, 1905.

    Google Scholar 

  23. Harada, I., Diaphragmaentwicklung im wurzelaerenchyma and Victoria cruziana D’Orbigny, J. Faculty Sci. Hakkaido Univ., Ser. 5. Botany, 1979, vol. 11, nos. 3/4, pp. 274–278.

    Google Scholar 

  24. Laan, P., Berrevoets, M.J., Lythe, S., Armstrong, W., and Blom, C.W.P.M., Root morphology and aerenchyma formation as indicators of the flood tolerance of Rumex species, J. Ecol., 1989, vol. 77, no. 3, pp. 693–703.

    Article  Google Scholar 

  25. Seago, J.L., Jr., Peterson, C. A., Kinsley, L.J., and Borderick, J., Development and structure of the cortex in Caltha palustris L. and Nymphaea dorata Ait., Ann. Bot., 2000, vol. 161, no. 1, pp. 35–49.

    Google Scholar 

  26. Evans, D.E., Aerenchyma formation, New Phytol., 2004, vol. 161, no. 1, pp. 35–49.

    Article  Google Scholar 

  27. Jackson, M.B. and Armstrong, W., Formation of aerenchyma and the processes of plant ventilatin in relation to soil flooding and submergence, Plant Biol., 1999, vol. 1, no. 3, pp. 274–287.

    Article  CAS  Google Scholar 

  28. Seago, J.L., Jr., Peterson, C.A., and Enstone, D.E., Cortical ontogeny in roots of the aquatic plant Hydrocharis morsus-ranae L., Can. J. Bot., 1999, vol. 77, no. 1, pp. 113–121.

    Google Scholar 

  29. Jan, N., Hussain, M., and Andrabi, K.I., Programmed cell death or apoptosis: do animals and plants share anything in common, Biotechnol. Mol. Biol. Rev., 2008, vol. 3, no. 5, pp. 111–126.

    Google Scholar 

  30. Reape, T.J., Molony, E.M., and McCabe, P.F., Programmed cell death in plants: distinguishing between different modes, J. Exp. Bot., 2008, no. 3, pp. 435–444.

    Article  CAS  Google Scholar 

  31. Reape, T. and McCabe, P.F., Apoptotic-like programmed cell death in plants, New Phytol., 2008, vol. 180, no. 1, pp. 13–26.

    Article  PubMed  CAS  Google Scholar 

  32. Bassham, D.C., Plant autophagy: more than a starvation response, Curr. Opin. Plant Biol., 2007, vol. 10, no. 6, pp. 587–593.

    Article  PubMed  CAS  Google Scholar 

  33. Thomas, C. and Staiger, C.J., A dynamic interplay between membranes and the cytoskeleton critical for cell development and signaling, Front. Plant Sci., 2014, vol. 5, p. 335.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Inada, N., Sakai, A., Kuroiwa, H., Kuroiwa, T., Threedimensional progression of programmed death in the rice coleoptile, Int. Rev. Cytol., 2002, vol. 218, pp. 221–258.

    Article  PubMed  Google Scholar 

  35. Joshi, R. and Kumar, P., Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots, Physiol. Mol. Biol. Plants, 2012, vol. 18, no. 1, pp. 1–9.

    Article  PubMed  Google Scholar 

  36. Filonova, L.H., Bozhkov, P.V., Bruklin, V.B., Daniel, G., Zhivotovsky, B., and Von Arnold, S., Two waves of programmed cell death occur during formation of development of somatic embryos in the gymnosperm, Norway spruce, J. Cell Sci., 2000, vol. 113, pp. 4399–4411.

    PubMed  CAS  Google Scholar 

  37. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S., Identification of programmed cell death in situ via specific labeling of DNA fragmentation, J. Cell Biol., 1992, vol. 119, no. 3, pp. 493–501.

    Article  PubMed  CAS  Google Scholar 

  38. Bozhkov, P. and Jansson, C., Autophagy and cell-death proteases in plants. Two wheels of a funeral cart, Autophagy, 2007, vol. 3, no. 2, pp. 136–138.

    Article  PubMed  CAS  Google Scholar 

  39. Liu, Y. and Bassham, D.C., Autophagy: pathways for self-eating in plant cells, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 215–237.

    Article  PubMed  CAS  Google Scholar 

  40. Kabbage, M., Williams, B., and Dickman, M.B., Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum, PLoS Pathog., 2013, vol. 9, no. 4, e1003287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Soltis, P.S. and Soltis, D.E., The origin and diversification of angiosperms, An. J. Bot., 2004, vol. 91, no. 10, pp. 1614–1626.

    Article  Google Scholar 

  42. Thomas, A.L., Guerreiro, S.M.C., and Sodek, L., Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean, Ann. Bot., 2005, vol. 96, no. 7, pp. 1191–1187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Shevchenko.

Additional information

Original Russian Text © G.V. Shevchenko, V.A. Brykov, G.F. Ivanenko, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 5, pp. 34–42.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, G.V., Brykov, V.A. & Ivanenko, G.F. Specific features of root aerenchyma formation in Sium latifoliun L. (Apiaceae). Cytol. Genet. 50, 293–299 (2016). https://doi.org/10.3103/S0095452716050121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716050121

Keywords

Navigation