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Abstract 

According to the American Cancer Center, cancer causes about 1 in 6 deaths worldwide, more than AIDS, tuberculosis 
and malaria taken together, it is the second leading cause of death, after cardiovascular disease. Imaging examinations 
to examine the abdomen and pelvis are the methods of choice in detecting neoplastic formations with the provision of 
information that is essential for the subsequent management of these patients. 

From the PubMed databases and the Google Scholar search engine, the articles published during 2010-2020 were 
selected, according to the keywords: oncology statistics, oncology imaging, computed tomography, abdominal 
neoplasms, pelvic neoplasms, oncology staging, post-processing programs in computed tomography, follow-up of 
cancer patients, diagnostic algorithms. Information on international scientific studies on oncological pathology statistics 
has been selected and processed globally, according to data from the American Cancer Center and the International 
Agency for Research on Cancer, innovative methods for assessing the staging of patients with abdominal and pelvic 
neoplasms, and modern post processing in the case of examination by computed tomography of abdominal and pelvic 
neoplasms patients. 

After processing the information in the Google Scholar and PubMed database, according to the search criteria, 346 
articles on the proposed topic were found. The final bibliography contains 176 relevant sources, of which 77 were 
considered representative for the elaboration of this synthesis article. 

We must aim to justify, optimize and customize each imaging procedure for patients with neoplasms, as they are 
frequently exposed to imaging examinations. 

Keywords:  Oncology statistics; Computed tomography; Abdominal neoplasms; Pelvic neoplasms; Staging in oncology; 
Post-processing programs. 

1. Introduction

Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. Although the 
causes of cancer remain largely unknown, many risk factors are known. Some of these are modifiable, such as tobacco 
use and excess body weight, while others are generally unchangeable, such as inherited genetic mutations, hormones, 
and immune disorders. These risk factors may act simultaneously or in succession to initiate and / or promote cancer 
growth. 
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Cancer causes about 1 in 6 deaths worldwide, more than AIDS, tuberculosis and malaria taken together [1]. Today, it is 
the second leading cause of death, after cardiovascular disease, worldwide (Table 1). 

Table 1 Main causes of death worldwide, 2016 (millions)  

  Worldwide  

 Rank Death % 

Cardiovascular diseases 1 17,9 31 

Malignant neoplasms 2 9,0 16 

Infectious and parasitic diseases 3 5,5 10 

Respiratory diseases 4 3,8 7 

Unintentional injuries 5 3,4 6 

Respiratory infections 6 3,0 5 

Neurological conditions 7 2,5 4 

Digestive diseases 8 2,5 4 

Neonatal conditions 9 2,2 4 

Diabetes mellitus 10 1,6 3 

Intentional injuries 11 1,5 3 

Genitourinary diseases 12 1,4 3 

Congenital anomalies 13 0,6 1 

Nutritional deficiencies 14 0,5 1 

Endocrine, blood, immune disorders 15 0,4 1 

All cases  56,9  

Source: American Cancer Society 

Imaging examinations are the methods of choice in the detection of neoplastic formations that provide essential 
information for the diagnosis, treatment evaluation and subsequent management of these patients. Currently, the issue 
of developing standardized imaging techniques, identifying the correct methods for measuring tumor size, data 
processing and analysis, data collection and image interpretation, in order to make decisions in the strategy of applying 
appropriate treatment, remains open. Thus in the context of optimizing treatment, identifying and minimizing adverse 
effects we must adhere to the principle "as low as reasonably achievable" - ALARA, using methods and techniques aimed 
at optimizing imaging data, minimizing risks and providing the best care clinic of cancer patients. 

The researchers contributed to the choice of the effective way of forming protocols and proper image design, they 
proposed that imaging examinations be performed in stages, each stage having a specific purpose [2]. Imaging 
monitoring of cancer patients is the basic goal in the evolution of the disease undergoing anticancer treatment for 
several years after the end of treatment [3, 4, 5]. The Society of Radiologists of North America (RSNA) [6] and the 
American College of Radiology (ACR) [7] have developed techniques and methods that contain strategic details for 
assessing the disease's response to therapy and include: ways to determine tumor size measurements, plans in which 
tumor dimensions measurements are performed, the actual measurement method and the sequences used. All these 
were designed and executed due to the collaboration and communication between oncologists and radiologists-
imagers. Thus, the need for personalization and dynamic imaging evaluation of neoplastic processes response to the 
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administered therapy are directly proportional to imaging protocols design and the interpretation of their results. Thus, 
we can contribute to the study of models aimed at minimizing adverse effects, secondary to imaging diagnosis in the 
dynamic evaluation of the treatment of cancer patients, which may compromise the quality of life and longevity of these 
patients. 

2. Material and methods 

In order to achieve the established goal and objectives, a search was performed for the specialized scientific literature, 
identified by the Google Scholar search engine and from the PubMed database. The articles published during 2010-2020 
were selected according to the keywords: statistics in oncology, imaging in oncology, computed tomography (CT), 
abdominal neoplasms, pelvic neoplasms, staging in oncology, postprocessing programs in computed tomography, 
follow-up of cancer patients, diagnostic algorithm. Information on international scientific studies on oncological 
pathology statistics has been selected and processed globally, according to data from the American Cancer Center and 
the International Agency for Research on Cancer, innovative methods for assessing the staging of patients with 
abdominal and pelvic neoplasms, and modern postprocessing in the case of examination by CT of patients with 
abdominal and pelvic neoplasms. 

For the advanced search of the desired bibliographic sources, the following filters were applied: articles in English, 
articles with full text, articles published during the years 2010-2020. 

The information in the publications generated by the search engine was classified, synthesized and evaluated. 
Additional sources of information were consulted to clarify ambiguous notions. Publications and articles that did not 
correspond to the purpose and objectives of the paper, but also those that could not be accessed for full view, were 
excluded from the list of publications generated by the search engine. 

3. Results  

According to the International Agency for Research on Cancer (IARC), in 2018, 17.0 million cancer new cases were 
identified, of which 657,000 in countries with low HDI, 2.8 million in countries with medium HDI , 6.4 million in 
countries with high HDI and 7.2 million in countries with high level of HDI. 

Factors contributing to the incidence of cancer and mortality between countries include variations in age structure, 
prevalence of risk factors, and availability and use of prevention services, early detection tests, and high-quality 
treatment (mortality). Many of these factors are strongly influenced by the level of development of the country where 
these patients live. 

The cancer risk  increases with age; about 80% of all cancers in the world are diagnosed in people over the age of 50 
[8]. Cancer survival in a population is affected by a number of factors, including the cancer types that occur, the stages 
in which they are diagnosed, the prevalence of early detection / screening services and whether treatment is available 
or not. 

Substantial evidence supports the causal links between excess body weight and many types of cancer. IARC 
(International Agency for Research on Cancer) in 2016 concluded that there is sufficient evidence for a causal 
association between excess body weight and cancer risk of anatomical regions such as: mammary gland 
(postmenopause), colorectum, uterine body (endometrium), bladder biliary, kidney, liver, multiple myeloma, ovary, 
pancreas, stomach (cardia) and thyroid gland [9]. 

According to IARC (International Agency for Research on Cancer), in 2018 in the Republic of Moldova, at a number of 
4,041,068 of the population, 15,284 cancer new cases were registered (in 2013 - 8,441 new cases) which represents an 
rate incidence of 254.3. The number of cases prevalent over the 5 years-period constitutes, in 2018,  32,220 cases. 
Mortality from malignant tumors in 2018 - 8,508 deaths (in 2013 - 5,835 deaths) representing a mortality rate of 137.1 
(Table 2). The risk of developing cancer by the age of 75 is 32.2% for men and 22.2% for women, with an average of 
25.5% for both sexes (Table 2). 
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Table 2 Summary statistics in the Republic of Moldova, 2018 

 Males Females Both sexes 

Population  1.937.429 2.103.639 4.041.068 

Number of new cases 7.979 7.305 15.284 

Age-standardized incidence rate (world) 310,5 216,6 254,3 

Risk of development cancer before the age 
of 75 years (%) 

32,2 22,2 26,5 

Number of cancer deaths 4.973 3.535 8.508 

Age-standardized mortality rate (world) 191,8 97,7 137,1 

Risk of dying from cancer before the age of 
75 years (%) 

21,6 11,1 15,7 

5-year prelevant cases 14.589 17.631 32.220 

Top 5 most frecquent cancer excluding non-
melanoma skin cancer (ranked by cases) 

Lung  

Colorectum 

Prostate  

Liver 

Stomach 

Breast  

Colorectum  

Cervix uteri 

Corpus uteri 

Lung 

Colorectum  

Lung  

Breast                     
Liver                    
Prostate                    

Source: International Agency for Research on Cancer 

In the malignant tumors morbidity-due structure , by location, in 2018, in the Republic of Moldova on the first place is 
the colorectal cancer with 2,171 new cases, representing 14.2% (in 2013 - 12.3%), on the second place is lung cancer 
with 1,707 new cases, representing 11.2% (in 2013 - 10.5%), on the third place is the cancer of the mammary gland 
with 1,646 new cases, representing 10.8% (in 2013 - 11.8% ) (Figure 2). 

 

Figure 2 Number of new cases in the Republic of Moldova, 2018, both sexes 

Source: International Agency for Research on Cancer 
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In men in 2018, lung cancer with 1,323 new cases prevails, representing 16.6% (in 2013 - 16.1%), colorectal cancer 
with 1,241 new cases, representing 15.6% (in 2013 - 13.0%) and cancer prostate with 833 new cases, representing 
10.4% (in 2013 - 9.6%) (Figure 3). 

 

Figure 3 Number of new cases, 2018, men 

Source: International Agency for Research on Cancer 

In women, in the top of malignant tumor locations in 2018, breast cancer prevails with 1,646 new cases, representing 
22.5% (in 2013 - 21.8%), colorectal cancer with 930 new cases, representing 12.7% (in 2013 - 11.3%), cervical cancer 
with 639 new cases, representing 8.7% (in 2013 - 7.3%) (Figure 4). 

 

Figure 4 Number of new cases in the Republic of Moldova, 2018, women  

Source: International Agency for Research on Cancer 

The highest mortality rate for 2018 has lung cancer with 21.2 per 100,000 inhabitants, mammary gland cancer with 
19.7 per 100,000 inhabitants and colorectal cancer with 18.7 per 100,000 inhabitants. (Figure 5). 
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Figure 5 Incidence and mortality, top 10 cancers, 2018, Moldova 

Source: International Agency for Research on Cancer 

3.1. Methods for evaluating the staging of patients with abdominal neoplasms 

The exact cancer stage is of fundamental importance for the selection and planning of treatment. Current staging 
paradigms focus primarily on a detailed delineation of the primary tumor in order to determine its resection capacity, 
and subsequently on assessing the presence of metastatic spread that would alter the surgical approach, or the mandate 
of non-surgical therapy. This approach is based on the assumption that the best, and sometimes the only, way to cure a 
cancer patient is surgical resection. Unfortunately, not all non-invasive techniques have the perfect ability to identify 
those primary tumors that are capable of being completely excised, nor the degree of their metastatic dissemination. 
However, due to relatively low costs and widespread availability, CT is the preferred scanning methodology for 
identifying tumors, local metastases, and spreading them remotely [10]. 

This technique is often complemented by other examinations that have improved their performance in staging areas. 
For example, magnetic resonance imaging (MRI), mammography, or ultrasound can be used as complementary T-stage 
examinations; surgical sampling of lymph nodes - for N-stage; bone scanning, MRI or ultrasound examination - for M-
stage. Consequently, many patients undergoing a set of investigations are incorrectly organized based on the results 
obtained. Even for those who have resorted to surgery, only loco-regional metastases can be identified in resection 
specimens without the ability to detect distant metastases. As a result, many patients undergo unnecessary operations 
for pathologies that could never have been cured by surgery. In the case of restadialization, the situation is even more 
complicated. The sequelae of previous treatment can be difficult to differentiate from a residual cancer and the 
likelihood of patient rescue therapy is decreasing. 

The definition of the malignant involvement degree is the foundation on which current oncological practice is based. 
This information defines applicable therapeutic strategies and provides a guide to the patient's prognosis. Diagnostic 
imaging methods, especially CT, are the primary techniques that are used to detect the cancer stage . These ways play a 
key role in cancer management. 

Each of the different methodologies used to determine the cancer stage has inaccuracies. Due to its relatively low cost, 
widespread availability, and ability to define primary tumor relationships, lymph node drainage, and detect metastatic 
deposits in disparate tissues, CT scanning with contrast is administered the preferred methodology for the initial staging 
of the majority TNM [11]. Like other anatomical imaging techniques, diagnostic CT is generally good enough to 
demonstrate anatomical relationships of the primary tumor and, variably, whether it has traversed important tissue 
planes. However, normal anatomical distortion through local scarring, mechanical side effects of the primary tumor, 
such as obstructive atelectasis, or reactive changes in adjacent tissues, such as edema, can significantly compromise T-
stage assessment. Moreover, lack of sufficient contrast between the tumor and many normal tissues makes it impossible 
for the CT to detect cases in which the primary tumor may cross a critical boundary that prevents it from being resected. 
Consequently, additional anatomical imaging studies such as MRI, mammography, and ultrasound may be used in 
combination with CT for staging of T. Even after such combinations of examinations, some patients cannot avoid 
operative evaluation to determine if resection is possible. 
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As a result, additional diagnostic tests are often performed to assess certain sites of potential metastases in certain high-
risk individuals. These tests may include liver ultrasound, brain MRI and bone scan. Thus, due to the limitations of 
diagnostic CT for TNM staging, many patients undergo a set of diagnostic examinations, each adding inconveniences, 
delays, costs and morbidity to the staging process. Even then, it was found that many patients were inadequately staged 
based on the results received. 

From an imaging perspective, tumor progression is generally defined as an increase in tumor load (measured on 
imaging studies) or the detection of new lesions seen in imaging studies, and the tumor response refers to tumors that 
become smaller or disappear [12 ]. 

During the cytotoxic chemotherapy period , which began in the late 1940s-1950s, the "response rate" (RR), i.e. the 
proportion of tumors that decreased, was the main goal for clinical trials of anticancer therapies. Measurements of solid 
tumors were generally determined by imaging studies, and therefore guidelines, criteria, and classifications were given 
based on measurements from imaging studies developed in the 1980s and 1990s [13, 14]. These guidelines and 
classifications reflect the emphasis on the overall response rate, which was the norm at the time. 

3D CT and MRI imaging has replaced standard radiography. Anatomical measurements can now be made much more 
accurately, and early metastatic lesions can be detected with much greater confidence in earlier stages than was the 
case even a decade ago. 

Therefore, the measurements obtained from image scans must be as reproducible as possible. It should not matter what 
hospital a patient goes to or on what day, or on which manufacturer's scanner is scanned, the result should be the same. 
To achieve this, there must be a rigorous standardization and attention to detail on all hardware, software parameters, 
as well as the responsibility of human resources, which can introduce variability. 

Many factors affect the target lesions measurement and the new lesions detection, ranging from the choice of imaging 
modalities, imaging acquisition techniques and image reconstruction parameters, to the variability related to the 
expertise and different measurement methods of physicians interpreting images [12]. 

Improper use of imaging, imaging technique and/or imaging reconstruction parameters in oncology clinical trials can 
lead to loss or delay in the detection of new (metastatic) lesions and thus misinterpretation of when a disease 
progresses. 

Technical factors in the image acquisition process that are known to influence the measurement of the size of the lesion 
and therefore the evaluation of the anatomical response include differences in the technical parameters of the scanner, 
intravenous contrast, type of contrast, volume of contrast, timing , injection rate and CT scan beam settings [15 - 23]. 
During the scan acquisition the factors associated with the patient also play an important role, such as the respiration 
phase during which the image is acquired and whether or not the patient can suspend breathing. If the patient is unable 
to hold his breath for the entire scan (<30 seconds), normal and abnormal structures may fade. This will generally cause 
the lesions to be measured larger than they really are and may result in complete loss of the small lesions. 

Thus, in order to reduce the measurements variability , it is important that the CT scan images be reconstructed with 
the same slice thickness for a given patient. 

Factors related to the radiologist interpreting the images are another significant source of variability in the 
interpretation and measurement of target lesions [24 - 29]. These factors include the expertise and ability of the 
radiologist in the quantitative and qualitative evaluation of the therapy response, measurement biases due to the 
systematic excess of the radiologist or under interpretation of tumor contraction, biases due to the radiologist's 
knowledge of treatment, discrepancies in measurements due to different patient descriptions by radiologists and 
human errors that can be caused by tracking different target lesions over time and overlooking the development of a 
new lesion. Furthermore, the measurement technique choice (e.g., one-dimensional, two-dimensional, volumetric), the 
measurement method used to determine tumor measurements (e.g., automated techniques), and the measurement 
environment (e.g., workstation display settings) may affect also the accuracy and reproducibility of a radiologist's 
measurements [30]. Difficult to measure lesions (for example, due to indistinct or obscure lesion edges, or lesions with 
heterogeneous densities) can further aggravate the lesion measurements accuracy and reproducibility . 

Recent studies have begun to systematically assess the relative contribution of sources of variability to a better 
understanding of where corrective efforts should be directed to have the greatest impact. A prominent study is the 
same-day repeated CT examination, designed to investigate the minimal changes that could be detected by modern CT 
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scanners using advanced measurement methods [19,22]. The study showed levels of measurement errors or variability 
in one-dimensional, two-dimensional and volumetric techniques. The smaller the lesion, the greater the measurement 
variability [22]. The results of these studies on sources of variability can not only help to determine the appropriate 
threshold values to distinguish real (biological) tumor changes from measurement errors (inherent variability of the 
technique), but also to identify and suggest the most appropriate acquisitions and reconstructions. imaging, parameters, 
and measurement techniques (e.g., one-dimensional, two-dimensional, or volumetric) to optimally monitor tumor 
response or progression. 

In order to reduce the variability in the target lesions measurement and to improve the detectability of new lesions, 
continuous efforts are made for the continuous education of radiologists, standardization of image interpretation 
workflow, harmonization of imaging techniques and reconstruction parameters, improvement of visual capacity image, 
optimization of tumor measurement methods. 

Methods for assessing tumor response to treatment have changed and continue to evolve [31 - 36]. The North American 
Radiology Society (RSNA) supports the Quantum Imaging Biomarkers Alliance (QIBA), which has published documents 
to standardize imaging acquisition for volumetric CT examination, FDG-PET, and contrast-enhanced dynamic MRI [37]. 

More consistent imaging strategies for tumor response include: 

 Implement a scanner calibration program and evaluate the quality for each patient. Two such accreditation 
programs that can be used are the Centered Quantitative Imaging Excellence (CQIE) programs and the clinical 
trial network site qualification programs supported by SNMMI and scanner validation. 

 The same radiologist evaluates the complete set of examinations for the same patient. 
 The radiologist evaluates the images in the order in which they were obtained clinically (providing sets of 

images in an orderly manner over time). 
 The same representative target lesions are measured at each scan [12]. 

The American Cancer Society (ACS) has recommended a screening of cancer patients every three years for people 
between the ages of 20 and 39, and annually for men and women between the ages of 40 and over [38]. However, as the 
routine controls intervals have been replaced by recommendations that apply to specific conditions and populations, 
the periodicity of a general health check when these case examinations could be performed has become less clear. 

Contrast-enhanced CT or MRI examination plays a central role in long-term postoperative evaluation. The follow-up 
protocol includes imaging studies every 6 months for the first year and then at one-year intervals in negative cases. The 
monitoring interval is shorter (3 months) for intermediate lesions [39] and in patients undergoing chemotherapy [40]. 

Another source recommends evaluating the initial response at 4 weeks after surgery, with early detection of recurrence 
of recurrence by CT or MRI studies, every 3 months in the first 2 years and surveillance every 6 months later [41]. In 
case of tumor recurrence after curative treatments, re-evaluation of the patient should be performed using the staging 
system and treatment review [42]. 

3.2. Post-processing programs in abdominal neoplasms 

As CT use has increased, concerns about the dose of the population by CT have begun to be expressed in the literature 
[43-46], making it clear that the responsible use of CT requires an adjustment of technical factors based on the size 
patient [44,47,48]. In response to these concerns, the radiology community (radiologists, medical physicists, equipment 
manufacturers) has implemented CT dose management procedures that correspond to the ALARA principle (As Low As 
Reasonably Achievable) [45, 49]. The basic principle in selecting the right dose for a CT scan is that the attenuation of a 
particular patient and the specific diagnostic task must be considered. For large patients, the dose is higher than for 
small patients, which is in accordance with the ALARA principle. 

In 1981, Haaga et al [50] published the concept of using the radiological tube current variation to reduce the radiation 
dose while maintaining image quality. 

In 1994, GE Medical Systems put on sale the first radiological tube current modulation system, with which the dose was 
reduced by up to 20% [51]. In 1993 and 1994, Calendar et al [52, 53] reported dose reductions of up to 40% in elliptical 
regions of the body, reductions achieved through the use of anatomical modulation of radiological tube current, which 
became available only at the end of 2001, when due to public concerns about the irradiation dose, its reduction has 
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become a marketing tool. This development has forced the radiology community to define a variety of dose reduction 
products. 

Another aspect would be that dose reduction strategies should be based not only on the use of dose optimization 
technology, but on the appropriate use of imaging [54]. A considerable part of CT scans could be replaced by alternative 
practical methods, or they could simply be eliminated. There is a possibility of reducing the use of many routine CT 
scans in favor of other diagnostic methods. 

Here are some questions that every doctor should answer before recommending a radiological examination: What 
diagnostic procedure is most appropriate for a particular pathology in a particular patient? It is a clinically justified 
radiological procedure [55]. If so, which radiological procedure is most appropriate? 

Optimizing the use of radiological examinations with the help of clinical decision guidelines is essential [55]. Once it has 
been established that an imaging procedure is clinically justified, the physician (and the entire imaging team) has the 
responsibility to optimize the patient's individual radiation exposure, which must be a continuous and regularly 
updated process. 

Despite the extraordinary contributions of the CT scan to modern healthcare, special attention must be paid to the risk 
associated with ionizing radiation received during a CT scan. 

In addition, each CT exam must be customized for each patient. Justification is a common responsibility between 
applicant clinicians and radiologists. Therefore, for medical exposures, the main tasks of the radiology community are 
to work with the team of clinicians to direct patients to the most appropriate imaging modality for the required 
diagnostic task, and to ensure that all technical aspects of the examination are optimized, so that the required level of 
image quality can be achieved while keeping the doses as low as possible. The American College of Radiology provides 
evidence-based guidance and appropriate criteria to assist physicians in recommending a necessary examination [56]. 
The European Commission and the Royal College of Great Britain presented a document with a detailed presentation of 
the clinical indications for imaging examinations, including the CT “Reference Guide for Radiologists” [57]. Thus, a CT 
scan should be performed only if the radiation dose is considered to be justified by the potential clinical benefit to the 
patient. 

Since the cancer risk associated with radiation dose in CT is not zero is, it is clear that reducing the dose of radiation in 
CT examination must continue to be one of the main priorities of the radiological community, especially in light of the 
continuous increase in CT examinations performed annually [58]. 

The radiation dose in the CT scan can be quantified in a variety of ways. Output of radiation from the scanner, dose per 
organ and effective dose are the most common dose values [58]. 

The effective dose [59,60], usually expressed in the unit of measurement mSv, is a unit that represents a "whole body 
equivalent" of a dose that would have a similar health risk to that due to partial body irradiation. The actual dose allows 
for a rough comparison of risk-induced radiation between different types of examinations [62]. 

The actual dose is not a quantity that measures the radiation dose, but a concept that reflects the radiation risk stored 
in a particular patient. It should be emphasized that the current concept of effective dose is based on a mathematical 
model for a "standard" body [65], without age and sex specificity [66]. 

The irradiation dose is one of the most important determinants of the image quality of the CT examination and, 
therefore, the accuracy of the diagnosis and the result of a CT examination. The irradiation dose should be reduced only 
if the diagnostic image quality is not sacrificed. Therefore, in order to understand how the radiation dose in the CT scan 
can be reduced, it is necessary to become familiar with the relationship between image quality and radiation dose. 

The dose reduction goal can be approached from the following two perspectives. The first perspective is to properly 
define the quality of the target image for each specific diagnostic task, which does not require low noise or higher spatial 
resolution than necessary. 

The second perspective of dose reduction is to improve some aspects of image quality, such as image noise reduction, 
which can then be implemented in order to allow radiation dose reduction. This task can be accomplished by optimizing 
the techniques of the CT scanning system and improving the reconstructions processing . 
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A huge effort has been made to improve the effective dose on CT systems, which is related to several components of this 
system, including detector, collimator and beam filter modeling. 

A common method to optimize the radiation dose is to adapt the tube to the radiological current, using protocols based 
on weight or size [67 - 72]. A more advanced technique is Automatic Exposure Control (AEC), which aims at 
automatically modulating the current of the radiological tube to adjust for attenuation differences due to the patient's 
anatomy, shape, and size [73 - 77]. 

The intention of the AEC is to use the optimal level of radiation for each patient in order to obtain an adequate image 
quality related to a given diagnostic task. For smaller patients, less tube current, and therefore lower irradiation dose, 
is sufficient to achieve the desired image quality. For older patients, the radiation dose must be increased to ensure 
proper image quality. 

Automatic exposure control systems are now available on major scanners. Although the basic principle of the ACS is the 
same, each is implemented somewhat differently in terms of the strategy for target image quality defining . CT users 
should be familiar with these techniques to ensure proper use. Improper use can lead to an increase in the patient's 
dose or a sacrifice in image quality. 

4. Conclusion 

The collective dose of the population resulting from medical imaging has increased sixfold in the last quarter of a 
century, so our goals should be to use imaging only when the potential clinical benefit outweighs the potential risk and 
strive for a imaging examination that provides the lowest dose required to obtain the desired information: we must aim 
at justifying and optimizing each imaging procedure. 

The risks of exposure to iatrogenic radiation are often overlooked, and patients are rarely aware of these risks. 

It is estimated that 30% of CT exams are unnecessary. The doctor requesting the examination must balance the risks 
and benefits, and the difficult cases should be discussed in a multidisciplinary clinical-radiological meeting for 
personalization of the radiological examination of cancer patients.  
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