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SCHATTEN CLASS TOEPLITZ OPERATORS ON
THE PARABOLIC BERGMAN SPACE 1I

MASAHARU NIisHIO, NORIAKI SUZUKI AND MASAHIRO YAMADA

Abstract

Let 0 <a <1 and let bf be a Hilbert space of all square integrable solutions of a
parabolic equation (d; + (—A)*)u = 0 on the upper half space. We study the Toeplitz
operators on bf, which we characterize to be of Schatten class whose exponent is smaller
than 1. For the proof, we use an atomic decomposition theorem of parabolic Bergman
functions. Generalizations to Schatten class operators for Orlicz type and Herz type are
also discussed.

1. Introduction

Following the previous paper [11], we study the Schatten class Toeplitz
operators on parabolic Bergman spaces. Let 0 < <1 and let V be the (n+ 1)-
dimensional Lebesgue measure on Rj’_“ =R"x (0,00). We denote by b? the
Hilbert space

b := {ue L*(R", V); L™ -harmonic on R"*'},
where L(®) := 9, + (—A)*. The orthogonal projection from L(V) := L*(R"™", V)
to bi is represented as an integral operator by a kernel R,, which is called
the a-parabolic Bergman kernel. Let x4 be a positive Radon measure on Rf’]
satisfying
(1) J(l + 14 X)) du(x, 1) < o

for some 7€ R. The Toeplitz operator with symbol x is an operator defined by

(1)) i= [ R ¥)ulY) duY)
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for ueb?. As for the compactness of 7}, : b2 — b2, it is known that its neces-
sary and sufficient condition is that limy_. ., ﬂ(“)(Y) =0, where ./ is the infinite
point of the one point compactification of Rj’r“. Also it is equivalent to
limy_,, @4(Y) =0 (see [8]). Here a4 and ¥ are the averaging function and
the Berezin transformation of u, respectively, which are defined by

A(Y) = w(QW(Y)/V(QW(Y))

and

AY) = | ROV dut) / [ R avx,

where Q(Y) is an a-parabolic Carleson box (see §2.2). These functions are
very useful for the study of Toeplitz operators (cf. [7], [8], [11] and [12]).

Let 0 < ¢ < 0. A compact operator 7, is said to be of Schatten o-class if
the sequence of all its eigenvalues belongs to the sequence space /. We have
already shown in [11] that when ¢ > 1, T, is of Schatten o-class if and only if the
averaging function #* is in L?(V*) or equivalently the Berezin transformation
A is in L°(V*), where

AV (X) = 24D gy (X)), (X = (x,1)).

In the present paper, we study the remainder case 0 < g < 1, and we have
THEOREM 1. Let 0 <o < 1. For a Radon measure u >0 on RT‘ satis-
Sfving (1), the Toeplitz operator T, on bi is of Schatten o-class if and only if
A e Lo(V*).

We remark here that when « = 1/2, our Bergman space b7, coincides with
the usual harmonic Bergman space (see [6]), and the related result for space of
holomorphic or harmonic functions has already studied (e.g. [1], [2], [5] and [13]).

This paper will be organized as follows: We make some preparations in
section 2. In §2.1 we recall the fundamental estimates of parabolic Bergman
kernels. An atomic decomposition theorem is given in §2.2, which plays an
important role in the proof of Theorem 1. In §2.3 we recall some definitions
of compact operators of Schatten class. The proof of Theorem 1 is given in
section 3. We make some related remarks in section 4. In §4.1, we study the
Carleson inclusion of Schatten class. A norm relation between averaging func-
tions and Berezin transformations in the context of L space is given in §4.2.
A generarlzation to the Orlicz type class for concave functions is considered in
§4.3. Contrary to the convex case, the assertion of Theorem 1 does not hold for
concave functions. In fact, we give an exapmle of i such that 4® e L¥(V*) but
T, is not of Schatten y-class. In §4.4, we discuss the Herz type class of Toeplitz
operators.

Throughout this paper, C will denote a positive constant whose value is not
necessarily the same at each occurrence; it may vary even within a line.
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2. Preliminaries

2.1.  L™-harmonic functions and reproducing kernels. Throughout this paper,
we denote by X = (x,7), ¥ = (y,5) and Z = (z,r) points in R”"" = R" x (0, o0).

Let 0 <a<1. A continuous function u on Rj_“ is said to be L(®-
harmonic, if L®u =0 in the sense of distribution, ie., [[u-(L®)"pdV =0
for every g e CF(R"™™"), where |x| = (x} +--- 4+ x2)'/,

* 6 . —Nn—20
(L) gl t) = = Soler) = e T | (ot 0) = gl Dol " dy
ot 610 J|)150
and
enu = —4%n " ((n+22)/2) /T (~a) > 0.
In this paper, we use a fundamental solution W® of L® given by

W (x,t) = {(27[)” Jer exp(—1lE]* + V=1x-&) dé >0

0 1 <0.
It has the following homogeneity:
(2) Pk W ) (122 x st) = s~ BN/ 20 (P ok () (x ),
where f=(f,...,p,) € Ny is a multi-index and k>0 is an integer. Here

No = NU{0} denotes the set of all nonnegative integers. The following estimate
is fundamental. There exists a constant C > 0 such that

(3) |08k W) (x,1)| < C(t+ x| 2~ 181)/22+)

for all (x,1) eR_'frl (see [6]). For 1 < p < oo, we denote by b? the p-th order
parabolic Bergman space, i.e., the set of all p-th integrable L(*-harmonic func-
tions on R

Next we list some properties of a-parabolic Bergman kernels R, and R’ for
me Ny. Recall that

R,(x,t; y,5) := —20W (x =y, 1+ s)
and
(_2)171+1

m
RI'(x,t; y,5) == ( m') "0V R, (x,t; y,5) = Ts'"@{”“ W@ (x -y, t+s).

They have the following reproducing property: Let m >0 and 1 < p < oo. For
every ueb?, u= R[], ie.,

) u(X) = R'ul(X) := JRZ’(X, Y)u(Y) dV(Y).

By (3), there exists a constant C > 0 such that
(5) Ry (x, 85 y,8)] < CRY(x, 15 ,9),
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where B 5 -
Ry (x, 1 y,s) o= " (1 5 4 [x = y| ) 7020
We consider the corresponding integral operator, which we also denote by R’.
These kernels have the following homogeneity property: For any Z = (z,r) €
Rn+l
+

(6) R (®z(X), Dz(Y)) = ">HIRI(X, Y)
and

(7) R (®2(X), Dz(Y)) = r "> VRI(X, V),
where

Dy(x,1) := (r'/*x + z,r1)

is the a-parabolic similarity on Rf’jl with respect to Z = (z,r) (see [10] and [11]).
Thus by [11, Proposition 2], we have the following boundedness.

~ Lemma 1. Let 1<p<oo and m=1. Then the integral operator
R LP(V) — LP(V) is bounded.

We shall frequently use the following integrable estimate.

LeMMA 2. Let i,teR. If_l</1<r_<2r;+1>,then
Y J[Z(l LX) TV (x,1) < o0
and
) Jﬂ(s +14+|x— y|2“)—f 4V (1) = Coetes)

with some constant C > 0.
1
This lemma and the homogeneity (2) show that, if m > (%-i— 1> (1; - 1),
(10) IR (-, Y)ll () = Cs/B =D

with some constant C > 0 independent of Y = (y,s) e R"™.

2.2. Representation of parabolic Bergman functions. We shall show an
atomic decomposition theorem for parabolic Bergman spaces b7 for 1 < p < oo.
We use this result for p =2 in the proof of our main theorem.

For >0 and Y = (y,s) e R, we put

51/21
Qé(a)(Y):{(I)y(xl,...,xn,t);l§t§1+5,|xj|§ 3 (J=1,...,n) .
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Note that when 6 =1, 0\*(Y) = Q®(Y), where

1/2a
Q(“) Y) =< (x1,..., %, 0);8 <t <28, |x; — y; Ss , j=1,....n
J J 2

is the a-parabolic Carleson box which was used in our previous papers.
Now for x = (my,...,m,, k) e Z"", we put

X = (X, 1) == (my 821 +8) > im0 (1 40)7 (14 0)F)
and
0, = 0, (X.).
We call {X,} and {Q,} the standard J-lattice on Rf'l and the standard J-

decomposition of Rf”l, respectively. Then O, = @y, 0o, where Qy = Q....0,0)
and V(Q.) = (5t,)"***1.
Let m>1 and 1 <p<oo. Let I?=1[7(Z""). Consider the mappings
B,5: b, — I? and U} : 17 — b} defined by
By slu] := (1" Pu(X,)),

for ueb?, and

Ups[() J(X) = Y 2R (X, X o010
xeZ"!
for (A.), €17, respectively. It is known that both operators are bounded ([9,
Theorem 1 and Lemma 5]). Our atomic decomposition theorem is to assure that
U,’s has a bounded right-inverse. Then UJ"; would be surjective, and hence
every element u € b? can be represented by an (infinite) linear combination of
atoms {R!'(-, Xi)},.-
For our purpose, we consider the composition of two operators. Let

AP(X) = Y V(Q)RIMX, Xou(X,)

xkeZ"!
for ueb. Then
A{gn _ 5(n/2c<+1) Up’?{)‘Bpﬁa
so that Aj": b7 — b is bounded. Further we obtain

ProPOSITION 1. Let 1 < p < oo and m > 1. Then there exists 69 > 0 such
that AJ' is invertible for any 0 <6 < dy.

Proof. First we recall Lipschitz estimates of parabolic Bergman kernels (cf.
[12, Proposition 3.2]). There exist constants J; >0 and C > 0 such that for
every 0 <J <y and for all X,Y,Z ¢ Rfl with Y e Q(g“)(Z), we have

(11) IR (X,Y) = R}'(X,Z)| < C(6+6")R) (X, Y)
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and

(12) RI(Y,X) - RJ'(Z.X)| < C(0 +8")R)(Y, X).
These inequalities bring us

(13) |IR(X,X,)| < CRMX,Y) and |RI(X,,X) <CR'(Y,X)

for every X e R and Y € Oy, where (X,), is the standard &-lattice and (Q,), is
the standard ¢- decomposmon of R”+ , respectlvely

Now we shall estimate the operator norm of I — A" for 0 < < Jy, where /
is the identity on 2. By the reproducing property of u € b?, we have

> JQ R™X,Y)u(Y)dV(Y),

KEZ’HI

u(X) = JR;”(X, Y)u(Y) dv(Y) =

so that (11) gives

ux)— 3 JQ RI(X, Xu(Y) dV(Y)

KEZIH»I

< > JQA |RY (X, Y) = RP(X, X[ |[u(Y)| dV(Y)

KEZ"+1

<C@E+0"7) > J R™X, Y)|u(Y)| dV(Y)

KeZ"! Ox
= C(6+0"*) Ry Jul] (X).
Similarly, for any Y € Q,, (12) gives

|u(Y) U R}(Y,Z)— R} (X, Z))u(Z) dV(Z)‘

< C(B+06'7 JI_QZZ(Y,Z)|u(Z)| dv(Z)

C@+0") Ry [lull(Y),
and hence by (13) we get

> JQA R} (X, X Ju(Y) dV(Y) — AS”M(X)’

ke Z™!

<O Y | RROn X —uo v

KGZ”H

< C(6+06%) JR;“(X, Y)RM|ul|(Y) dV(Y)

= C(O+0"*)RY[RY ul]](X).
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Therefore

u(X) = A7u(X)| < C@ + 3"V {R)[|uf)(X) + Ry[R Jul]}(X)}.
By the L? boundedness of R” in Lemma I, we obtain

lu — Af"ullyy < €@ +6"2)Jul

P
bz

Hence |[I — Aj'|| <1 for sufficiently small 6 >0, which implies that Aj" is
invertible. |

Our atomic decomposition theorem is stated as follows.

THEOREM 2. Let 1 < p < oo and m > 1. Then there exists 9 > 0 such that
U,"s has a bounded right-inverse for every 0 <d <do. In particular U5 : " — b?
is bounded and surjective.

Proof. Let Jp>0 be taken in Proposition 1. Since A" =
oW ymB, 5 b — bY is invertible for 0 <& <do, US> VB, 5(4l)")
is the identity on &7. ' O

Remark 1. (1) Let g, :=t"'/*|dx|* + r2dr® be an invariant Riemannian
metric under o-parabolic similarities {®y; X eRﬁ“}. We denote by d, the
distance induced by g, and by B,(,“)(X ) the geodesic ball with center X € RTI and
redius p > 0. We can obtain the following generalization of Theorem 2. Let

l<p<o and m>1. For a sequence (X;); = ((x;,4)); in Rﬁ“, we set

P J

U)X o= > AR (X, X DU (g e 1p),

If there exists a constant p, > 0 such that

sup(#{k; Xi € BV (X))}) < o0,
J

where #A4 denotes the number of elements of a set A, then the operator
U)" - 17 — b} is bounded. Furthermore, if p, is sufficiently small and

U BO(x) = R,
J

then U)" has a bounded right-inverse.
(2) In the above argument, we can take m =0 when 1 < p < o0.

2.3. Schatten class. We recall some necessary properties of compact oper-
ators of Schatten class. Let 7 be a compact operator from a Hilbert space

to #5. Then there exists a nonincreasing sequence of nonnegative numbers (4;) ;
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tending to 0 and there exist orthonormal systems (4;); in /i and (f;); in /> such
that 7' can be represented '

(14) T =Y 4l hf;
J

as a singular decomposition. Here /; is the j-th singular value of T, which is
defined to be the j-th eigenvalue of the positive operator |T|:=+T*T on .
Note that our Toeplitz operator T, on b2 is positive, so that |T,| = T, holds.

Let ¢ : [0,00) — [0,00) be an increasing homeomorphism. For a compact
operator 7' represented as above, T is said to be of Schatten y-class, if (ij)j el’,
i.e., there exits a constant 7 > 0 such that

D (/1) < 0.
7

Then we denote T € &V = 9V (A, #3). When (1) = 17, we write &7 simply.
For every r > 0, we define

T, v == 1)1y, 0+
where

[EhRE= inf{r >0 Wy/) < r}.

In particular, when r = 1, we write | T ,» = | 7], v and [(4);l;s = ()] 1o-
Although ||T|[, ,» is not a norm in general (see Remark 2 (1) below), we
sometimes call it Schatten norm (with respect to ¥ and r > 0) for convenience’
sake.

Note that by definition, T e &Y if and only if ||T ll, v < co for some
r > 0. However, since

lim > " y(4;/7) =0,
T
|7, v < oo holds for every r>0. We now make two remarks.

Remark 2. Let :[0,00) — [0,00) be an increasing homeomorphism.
Then there exist two positive constants ¢ and b such that

Y1 +s) < a(y(br) + (b))

holds. In fact, we may take « =1 and » =2 in general. Moreover if  is
convex, we can take « = 1/2, b =2, and if \ is concave, we can take a = b =1
(see Lemma 3 below). Let &V = 9V (#,#5). By the same argument as in
[11, Appendix] (see also [3]), we have:

(1) For r >0 and Ty, T, € %V, we have

IT1 + Tallagr, v < OUITil v + T2l o0);

so that %V is a vector space.
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(2) ¥ is complete in the following sense: If (%), is a sequence in &V
such that

(15) lim |7} — Tyl ov =0
k,{—o0 ’

for every r > 0, then there exists T € &V such that limy_o, || Tk — T||, 4v = 0 for
any r > 0. '

(3) &V is a both side ideal in the space of all bounded linear operators, i.e.,
if Te SV (M, H), Ae L(H, ) and Be L (Hr, #3), then BTA € 5V (Hy, A53)
and ||BTA|, v < ||B| - || T|l, 4v - ||4]| holds for every r > 0, where ¥ denotes the
space of all bounded linear operators.

(4) Let T e &V, The min-max principle shows that the operator norm of T
is equal to Ay (see [11, Appendix]), and hence ||T| < x//_l(r)||THr7yw holds.

Remark 3. In general, Schatten norms | - ||, ,v are not comparable with
respect to r > 0. However, when (¢) =t (¢ > 0) we have

1
1l gre = a7z - Ny

for r>0. Hence in the case Y(¢) =t°, we only consider the simple one

Il Mlgee-
Let @ be the set of all concave and strictly increasing functions  : [0, 00) —

[0, 00) such that ¢(0) =0 and lim,.. () = co. In this paper, we mainly treat
the Schatten class operators for y € ®. A typical example is ¥(¢) =° with
0 <o <1 We recall a fundamental property of functions in ®.

LEMMA 3. Let Yy € ®. Then for any sequence (aj), of positive numbers, we
have ‘

(16) lﬁ(Z“/) <> ¥(@).
7 7
Moreover we have

(17) Y (sot) < soy(t)

for every so =1 and t > 0.

Proof. It is sufficient to show that (¢t +s) < y(t) + (s) for z,s > 0. Since
Y is concave and ¥/(0) =0, we see

L+ <y and  ——y(i+s) < y(s),

t+s t+s

from which the claim (¢ +s) < y(¢) + y¥(s) follows. O
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LemMA 4. Let T be a linear operator from i to #, (e¥). a complete
orthonormal system on #; where k= 1,2 and y(t) = ¢§(t*) for some e ®. If
(<Tej1,e,%>)jkel‘p, then T € 9V and

||T||r,¢9’” = ||(<Te_/'17e/3>)jk||r,l‘/‘

for every r > 0. Moreover, the infimum of the right hand side over all complete
orthonormal systems is equal to the left hand side.

Proof. Let r >0 be fixed and take v > 0 arbitrary such that

ZlP(KT ek>|>

Since (3, ; [<Te},eP>*/7?) < 33, #([<Te},e>|* /1) <r, we have
Z |<Tej1,e,%>|2 =727 (r) < .
Jk

This means that 7" is a Hilbert-Schmidt operator, so it is compact. Using the
singular decomposition

T=> )k,
J

KTe! e[\
S

k

we have
2
Te /1

Am , 1
<ej s Ttm
T T -

=2

m

2
>|<e},hm>|%

Am
><17hm>| Z¢< >22w<7)

Thus we find that 7 e ¥ and ||T ll, 4v < 7. For the last claim, we have only to
choose complete orthonormal systems which contain (4;); and (fj);. O

Since -, [<e}, hy, >*<1 and ¢ is concave,

Te! -
¢ ZZ¢<)T

T

¢

which implies

r>= ZZ¢

m

) ITI

A

When y(¢) = t°, we have the following.

COROLLARY 1. Let 0 <o <2. Let T be a linear operator on a Hilbert
space A and (ej)j be a complete orthonormal system on H. If Z/’k [{Te;,ex>|”

< oo, then T € &¥° and )
1/o
IT]y0 < (Z |<Tej,ek>|”> .
Jk
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LEMMA 5. Let Yy e ® and T be a positive operator on a Hilbert space. If
((Tej,e); € IV for some complete orthonormal system (¢j); then TesV and

1T, v < [1(<Tejs €)1, 10

for every r > 0. Moreover, the infimum of the right hand side over all complete
orthonormal systems is equal to the left hand side.

Proof- Let r >0 be fixed and take v > 0 arbitrary such that

Zw(—ge’; ej>) <r
7

By using the spectral decomposition of T

T = J: A dE(2)

and the Jensen inequality, we have

Te;, e; ) T
o(T22) > (2 arengl = (v(5)enq)
and hence,

T T Te;, e;
]S = () 1<

where tr[(7T/7))] denotes the trace of an operator y(7'/7). This shows that
W(T /7) is compact, so that T = 7y~ (Y(T /7)) is also compact. Let (4;); be the
sequence of all singular values (= eigenvalues) of 7. Then

Su(¥)s u(F27)

When we consider the case that (e;); is the normalized eigenvectors of (4;);,
the last claim follows. O

COROLLARY 2. Let T and S be positive operators on a Hilbert space with
S<Tand ye®. If TeSV, then Se¢ SV and

1S1ly, 0 < 1T, o0

for every r > 0.

In fact, for any complete orthonormal system (e,)j, we have {Sej,e;) <
(Tej,e;», so that the assertion follows from Lemma 5 immediately.
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3. Proof of Theorem 1

In this section, we shall prove our main theorem. First, we introduce
auxiliary functions. Let d > 0 and let £ > 0 be a Radon measure on RTI. For
Y e R™, we put

0y . M ()
0P

This function is closely related to the original averaging function 4(* (= ﬂf“>). In
fact, the following assertion holds.

LEMMA 6. Let 0 >0 and 0 <o < 1. For a Radon measure it >0 on Rf’jl,
the following three conditions are equivalent:

el ), el (V) and (i (X)) €l
where (Xy), is the standard S-lattice on R""'. To be accurate, the values

|arcomavco. [arcoraro, Y o

ICEZ'HI
are comparable to one another.
Proof. The equivalence a® e Lo(V*) @ﬂ(g“) € L?(V*) can be shown sim-
ilarly to [11, Lemma 1].

To show the implication (ﬂ§“>(XK))K el°’ ;s;z;” e L°(V*), let (Qx), be the
standard J-decomposition of R’fl. We remark that

Ny :=sup #{ve Z"";3X € Q, such that Q"' (X)N O, # 0} < .

For each ve Z"!, we put

and set K, :={xe Z":Q0,N Q. #0}. Since for every X € Q,,

w0 (X)) < S (00, e, @X)7<C A7 (X)",

xeKk, kek,

we have

(o) g ~(or) a
o] jQ‘ A7 V00 < € 3 a7
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which implies

Jﬂé“’(XVdV*(X): > JQ Ax)dr(x <c Y Y a7

vezn+1 VEZIHI kek,
NE) a
< CN,; E s (Xh) .
KEZ”+1

To show the opposite implication, let 6’ > max{d + d(1 +6),d + d(1 +6)/**}.
Then for any x, there exists v such that

Occ () O(X),

XeO,

and hence we have

A7 (60" < i JQ AS(X)" V(X ><CJ Al (xX)7 dve(x).

V(Q)) \
Since

Ny :=sup #{x e Z"";0,N O} < o0,

v

we obtain

Z A (X7 < CNZJ;;&, (X)? dv*(X),

heZn+1

which completes the proof. O

By the similar argument, we have the above assertion for general yy which
is an increasing homeomorphism on [0, c0). Here we recall the definition of the
Orlicz space LY(V,). For neR", we set dV,(X)="dV(X). A Borel mea-
surable function f on R"*! belongs to LV (V, y), if there exists 7> 0 such that

Jl//(%) dV, < ©

For feL%(V,) and r> 0, we set

1l o0y = inf{r > o;jw('f '(X>) 4V, (x) < }

T

Note that V* = V_(,p,11) and if (1) =17 (¢ > 0), then L" (V) is nothing but
the usual L°(V,) and

11, sy = (U a <X>)W

holds.
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Remark 4. If g e LY(V*), then u satisfies the growth condition (1) with

> %—i— 1. Moreover, if y =1 (0<o<1), we can choose 7= %—&— 1. In
fact, from the above lemma, if 4 e L?(V*), then (,li(g‘")()(,‘-)),c el ie.,

> ([ o aun) <
QK

KEZ’H]

which implies

(J(l + 14 |x*)7" dy(X)>a < Z (JQK ~(1/20+1) d/,l(X))U < o0,

ke Z"!

if0<o<1and > 2%+ 1. For general y, the condition 4® e L¥(V*) yields
the boundedness of the following sequence

<J [(n/20<+1)dlu(X)> ,
O .

K

which gives the inequality

Ju o ) du(x f) < CJ(I b+ )T AV (1),

n

The integral of the right hand side is finite if 7 > P

+1 by Lemma 2.

Proof of Theorem 1. Let 0 <o <1 and take m > 1 such that

(18) mo—f—(;—a—l—l) (%—1)>—1.

For 6 > 0, let (Qy), be the standard J-decomposition and (X,), be the standard
J-lattice of R"™ and put

ge(X) == R}(X, XK)tr(cl/z)(n/gg_H).

Now suppose i® e L?(V*). First we shall show

(19) > KTugpal” < C > ii(X)°

JkeZ™! leZ™!

Note that the right hand side is finite by Lemma 6. The condition (1) guarantees

[<Tugj, gi>| = Ugjgk du‘ < Jlgjgkl du.
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To show (19), it is sufficient to prove

= (fonta] =€ i

jikezm! le Z"!
By (13) we have

1/2 204+1) ,(1/2 2041
Jlg,-gu dp= Y JQ |RI(X, X R (X, X)) /202l U202 ) gy
1

IGZ”JFI
<C Z ]—i,;n(Xl’/Yj)]—e;n(X[’Xk)l;l/Z)(n/2a+l)Z}({l/z)(n/ZaJrl)ﬂ(Ql).
lezn+l

Hence u(Q)) = Cz,"/Z“H)ﬂ(;(X;) implies

5 (Jouis)

jkez"!

<C Z Z Ef(XhA,})G'R;I1<Xl,Xk)atj(a/Z)(n/ZoHrl)l]((ﬂ/2)<n/2a+l>'u(Ql)a
j,kEZ”+l [EZW+1
2

C Z Z RZI(XI;A?)GZ}(G/ZXH/ZWH) ,U(Ql)a

leZnH _/GZ'[H

<C Y a(x),
IGZ'HI

because

Z Rm Xla UZ]<O'/2 (n/2041)
jezn+l

—-C Z li;na+(n/2oc+l)(a/2—l)(tl 1+ |xl _x/|21)7(n/2a+1+m)(7V(Qj)
jezm

< CJ mao+(n/2u+1)(a/2— 1)(Z]+S+|X] y| —(n/20+1+m)c dV(y, )
_ 20 (e/2)
-l

by Lemma 2. In fact, by (18), /“L::ma—i—(zn—a+l) (g-l) and 7:=

%4— 1 +m)a satisfy the integrability conditions in Lemma 2. Hence (19) is

estabilshed.

Let ¢; €/? be the j-th unit element, where /> = /*(Z"*'). Then (¢); is a
complete orthonormal system of /2. Considering the operator U = Uy : > — b2
we can write

<71,ugj7gk> = <TﬂU[e]]7 U[ek]> = <U*T,uU[ejLek>7
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so that an operator U*T,U on [? belongs to Schatten g-class by Corollary 1 and
(19). Hence if 0 > 0 is taken small enough, Theorem 2 ensures us that U has a
bounded right-inverse, which we denote by B. Then we have
T,=B'U'T,UBe%".
Next, we assume 7,€.°. For >0, let (Q), be the standard

o-decomposition and (X,), be the standard J-lattice in RTI again. For a given

M >0, we divide Z”+1 = {«} into a finite union {x} =), {xy,;}; such that
ot(Qm_/v Ql(‘\k) >M

whenever j # k. Here d, is the distance we used in Remark 1. We denote by
B,(Xp) the geodesic ball with center Xy = (0,1) and radius p > 0. Now take v
arbitrarily and fix a positive number p. Writing g, := yo u, where y, is the
characteristic function, we set

=t

JEF,,

where F, , == {je Z""; X,,, € B,(Xo)}. Then T, € 77 and ||T,,|lo- < || Tyl e
by Corollary 2, because

(T uuy = J|u|2 du, < J|u|2 dp = {Tyu,u)

for every ueb?.
Since the operator U = U : ? — bi is bounded, the matrix

T, = (KT,95:9) 5 = KU T, Ulej) )

defines an operator U*T, U on ¥?(I?), where g,(X) := RI'(X, X, )t/ P02 g
above. We divide 7, into two parts, the diagonal part D, of T, and the off-
diagonal part E, :=T, — D,.

First we estimate the norm of D, from below. If we take ¢ > 0 small
enough, then |R}'(X,X,)| = CR}'(X., X,) for X € Q.. We fix such a J > 0.
Then

g a 2 7
DG = 3 KTt M7= 3 (j|gm_,| duv)

jEFv.p jEF\‘./)

=3 ( , RI(X, Xy, ) /24D dm)
*y, j

J€F,,

>C Y (R(Xe, X, ) 102 (0, )
JjeF,,

= CRI (X0, X0) > i (X, )
JjeFR,,
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Next we estimate the norm of E, from above. We have

”EvH:;’”(lZ) = Z KT G ir G 01" = Z

k#ikeF,, k#ikeF,,

<C Z Z QK\/ Rm X"\J’XKW)

k#l.keF, ,jeF,,

a

J i, G, AHy

x R (X, ), X, )1 (1/2)(n/2a+1) ((1/2)0n/2041)]

M/

<C Y (w0, x ” R X, Y)'RM(Xy, ,, 2)°
jeF., ‘ d,(Y,Z)>M ‘
XS(a/Zfl)(n/ZoHrl)r(a/Zfl)(n/ZotH) dV(Y) dV(Z)]
Here changing variables ¥ = @y, (f’) and Z = d)XK”_(Z), we have
JJ I_zm(XK‘ , Y)URm(XA ,Z) (0‘/2—1)(1’1/2(X+1)r((T/Z—l)(n/ZO(+l) dV( Y) dV(Z)
da( ] v, J

_ CM[_J(,,/21+]) _ 5a(n/2a+1)cM V(QK )70
L " ’

VS ” . RMX, Y)’RI'(X0,2)°
dy(¥,2)>M
§lo2-D 024 ) o/ 2D/ 250) gy (FY Gy (Z).

By (18) and Lemma 2, we have

JJR;”(X(% Y)JR;n(XO’Z) a(o/2—1)(n/2a+1) 5 (0/2 1)(n/20+1) dV( )dV( )

2
= <JR§1(XO, Y)75lo/2m /2o ) dV(ff)> < o0,

so that the constant c¢js can be taken arbitrarily small, if we choose M > 0 large
enough. In this way, we have

a(n/2u 1
HEVH,(;”(P) = E |<Tvgm,kvg’€v./>|a < cot/P Z ﬂa m, ©,
k#l,keF,, jek,,

which shows

(C— oo ey, Z ﬂ,s X)) < ADllGe2y = IEMN G2y < N T0ll 5o g2y
JjeFk,,



SCHATTEN CLASS TOEPLITZ OPERATORS 69

Since || 70|| ey = U T Ull oy < NUIPN Tullgos e, 257 (X )7 < CITl1 50
holds. Hence lettlng p— 0 and taking the finite summation over v, we have

S AP X7 < AT

Ke Zn+1

o

Lemma 6 shows * e L?(V*), which completes the proof. O

4. Remarks

4.1. Carleson inclusion of Schatten class. We discuss the Carleson inclu-
sions on b Let ,u be a posmve Radon maesure on R”+1 satisfying (1). The
inclusion map i, : b2 — L*(p) is called a Carleson 1nclu51on It was shown in [8]
that i, is compact 1f and only if 7, b — b is comapct. Moreover, in this case,

Ty=iy iy
holds, where i; DL (p) — bi is the adjoint of i,. On the other hand, by defin-
tion, the Schatten norm of i, is that of /i -i,. Hence

. 1/2
liallsre = 1Tl /7

This gives us the following consequence.

COROLLARY 3. Let 0> 0. For a Radon measure u >0 on R"+1 satisfying
(1), the Carleson inclusion i, on b? into L*(y) is of Schatten a-class lfand only if
G e Lol2(y
f ().

4.2. Relation between averaging functions and Berezin transformations. As
for a relation between averaging functions and Berezin transformations, we shall
show the following.

PROPOSITION 2. Let ¢ >n/(n+2a). Then ™ e L°(V*) if and only if
A e Lo(V*).

We showed this equivalence in [11, Theorem 1] for ¢ > 1. Proposition 2
will be proved along the almost similar way to the case ¢ > 1, but some modifica-
tions are necessary.

First, we recall weighted averaging functions and Berezin transformations,
introduced in [11]. We put

A ul(X) = jw) s dutx) | L)X(K) & v (X)

By pu(X) = J|R;"<Y, X)|7s* du(Y) / J R7(Y, X)|’s* dV(Y).

and
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Note that Ape(x,) ot = A and By ou= i and we also define

By p (X)) == J|R;“(Y, X)|Ps* dﬂ(Y)/JU_?;”(Y, X)[Ps* dv(Y).

It is not difficult to verify that
(20) By p,itt(X) < CByyp 1p0(X).

If we use a-parabolic similarities instead of [11, Proposition 1], the proof of
[11, Lemma 3] also gives us the following.

Lemma 7. Let 0 <o < o0, me Ny, 0< p < oo and A,t,ne R We assume

n

(21) “1<i< <2a

+1)(p—1)+mp

For a compact set K of positive Lebesgue measure and a positive Radon measure u
on RTI, we have

”AK,r/‘”L”(Vn) = C”Bm,p,/l/‘”L"(V,,)

with some constant C > 0 independent of u. More generally, for any ri > 0, there
exist r >0 and C > 0 such that

HAK,T:u”th'ﬂ(V,,) < C||Bp,p, 21t |r,Lw(V,,)v

where  : [0, 00) — [0, 00) is a strictly increasing continuous function with y(0) =0
and limg_, o, Y(s) = oo.

The opposite inequality is much restricted.

LeEmMaA 8 (cf. [11, Lemma 4]). Let 0 <o <1. Let me Ny, 0< p < o0 and

A, t,n € R, and put ic:= (p—1) (2i + 1) — A Take a relatively compact open set
U#0in R If *

n
77+(—+1>
n+l 206<H<n+1>,
o g 20

||Bm.,p,2ﬂ||u(vq) = C”AU,rﬂHL"(V,,)
with some constant C > 0.
Proof. Let (X,), and (Q), be the standard o-lattice and J-decomposition

of Rj’r+1 for 6 = 1. Then in a similar manner to the proof of [9, Proposition 2],
we have
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By (V) = [(57(0 5+ o= o) D) )

— gitpm Z J (tJrSJr |x | ) p(n/20+1) pmt d,u( )
VEZ’HI Q
< Cgktpm Z tj'ﬂ(Qv)([v‘i’S‘i’ |xv | ) p(n/20+1)—p
VEZn+1
— Cgktpm Z [‘/}l+(n/20c+l)ﬂ(a)(Xv)(tv+S+ |xv | ) p(n/20+1) —pm
veZzZ"!

Hence Lemma 4 gives us

Bm,p,lﬂ( Y) ’
< Cgortopm Z t;nl+a(n/2a+l)ﬂ(a)(XV)U(IV +s+ |xv _y|2a)—ap(n/2a+l)—apm
veZ"!
< CSUKJFGPmJ/:l(a)(X)JZG;'+(071>(n/2a+l)([—|—S—|— |X | ) op(n/20+1)—apm dV(X),

and Lemma 2 yields
| B vy aviv)
< C Ia(g()(X)O'to').+(0'71)(n/21+1)
x | s7Erormin(p g 4 |x — | v (n/20+1)—apm dv(Y) dV(X)

<C Ia(a)(X)Jto).+(ofl)(n/29£+1)ta}(+apm+iy*ap(n/2x+1)7opm+(n/21+1) dV(X)

= ¢ [ (x)" av,(x),

because x = (p — 1)(2]1a+ 1> — A. Note that Lemma 2 requires the following

integrability condition
n n
—l<ox+opm+yn<op|—+1)+opm—|—+1],
20 20

which follows from (21). Thus we get ||By,p iutll o ) < Clla™ ||L . By the
o-parabolic similarity, we also see

AM(X) = Aginxy).0(X) < CAp.(X),

which completes the proof. O
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Proof of Proposition 2. let p=2, m=0, 1=0 and 5= — (2”_0{_,_ 1)_

Then they satisfy the conditions (21) and (22). Hence if we take K =U =
0™ (Xp), then two lemmas and (20) show our assertion. O

4.3. A remark on Orlicz type class. Recall that @ is the set of all concave
and strictly increasing functions ¥ :[0,00) — [0,00) such that y(0) =0 and
lim,,,, Y(¢) = oo. In this section, we remark that the equivalence relation
T,e % < 4™ e L7(V*) does not hold for a general y € ®. In fact we will
give an example of iy € ® and a Radom measure u such that 4 e LY (V*) but
T, ¢ 5"

We use the following.

LEMMA 9. There exists a positive measure [ on R”+1 with compact support
such that the corresponding Toeplitz operator T, on b2 is not of finite rank.

Proof. We shall show that the one dimensional Lebesgue measure u on the

x1-axis, ie., u= 1l p1dx; @(x2) ® - ®(x,) ®J.(f) is a required measure.
To see this let R := R,(-,Y) for Y e R"™" and put

FOXY) = T,(RN(X) = | RA(X.Z)R(Y.2) du(2).

By the direct computation, the Fourier transform F in the space variables of F is
given by

F(E ts) = ”em(é'”””F(% b, y.s) ddy = G(E, )G, )/ (& + ),

where

evflblw _ evflalw
v—=1lw

Now we assume that the rank of T}, is finite. Then the singular decom-
position theorem implies

(23)  G(&, 1) = 2(2m) e[ Pe T and  f(w) =

k
Tu= Z /1,(14, ¢J>¢,
=0

with some integer k, where (¢;); is an orthonormal system of b2. Then

ZMR BHX) =D did, (V) (X)
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and hence

k
F(& 1n,5) Z ,08;(1,9).
Thus we have
él +771 Z;”] é t /G >>(¢~j(777s)/G(777S))

Considering the right hand side is only the function of & and #,, differentiating
in #, within (k + 1)-times and putting #; = 0, we have a non-trivial linear rela-

tion between f,f’,..., %, ie., an ordinary differential equation with constant
coefficients. However this solution does not have a form in (23). This con-
tradiction shows that 7, is of infinite rank. O

Example. Let p be as in Lemma 9 and let (/; ) —, be a strictly decreasing
subsequence of eigenvalues of 7, We now construct a € ® such that 7, ¢ & v
Take the convex hull K of the set

(0006100 (1. )cse ).

and define ¥ on [0,4;] by ¥(7) :=sup{y;(z,y) € K}. Then lim, o y(r)=
(see Remark 5 below), so that iy can be prolonged to [0,00) as a concave
and increasing homeomorphism. Since >, ¥/(4 )> > 1/ji=00 and ¥(4/7) =

(47)/t for > 1 by (17), we find that T, ¢ 7V(b?). On the other hand, it is
0bv10us that 4 e LY(V*) because 4 is bounded and supported by a compact
set.

Remark 5. Let (A])/ o and (aj) be strictly deceasing sequences in R
convergent to 0. We define a sequence (b; )_/:0 inductively by by := ay and

bj —4a; _ bj,1 —a;

Aj Aj1
for j > 1 and let K, and K, be convex hulls of the sets
{(0’0)7(;“070)}U {(iﬁaj);j GNO} and {(070)7(/107 )} U {( ) ) J ENO}

respectively. Then we have (i) ¢; < b; for j > 1, (ii) (b;)2, is strictly decreasing

and convergent to 0 and (iii) K, < Kj, and (4;,b;) is an extremal point of K for
every j > 1. In particular, y(7) := sup{y;(z, ») € K,} < b; whenever 0 < 7 < 4;
so that lim,o ¥(f) = 0.

As for the converse implication T, € ¥V = i® e L¥(V*), we do not know
whether this is true or not in general. A related result is the following.
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PrOPOSITION 3. Let Y € ® and let du( )=f(X)dV (V) =0 be an abso-
lutely continuous Radon measure on R’ "1 satisfying (1).  Then T,e¥ Y implies
feLV¥(V*) and

(24) AW oy < N Tl 0

holds for any r >0, where ry = Ry(Xo, Xo) with Xp = (0,1).

Proof.  Let (¢;); be a complete orthonormal system of b2 which consists of
eigenvectors of T, and put 2 == {e;, Tue;> = [ flej|* dV. Let 7> 0, and take
any 7 > 0 with Z Y(4;/t) < rrg. Since Y~ I is convex, by the Jensen inequality
we have

v (Jo(PE) oo avn ) < M8 g0 avon - 2.

Remarking 37, |ej(X)|2 dV(X) = R,(X,X) dV(X) = R,(Xo, Xo) dV*(X) (see [11,
Remark 1]), we have

)< )
which shows f e LY(V*) and (24). O

4.4. Herz type class. In this section, we consider the Herz type Toeplitz
operators connected with the Schatten class ones. Herz introduced in [4] a kind
of mixed norm spaces. First, we modify the definition of the Lebesgue-Herz
spaces.

Let 6 >0, 0 <o < oo and 0 < p < oo. For the standard d-decomposition
(), of R™!, we set

p/o\/P
77 =3 fillf o ::( 3 (J |f|“dV*> ) <o
K‘EZ”JA QK

Note that LJ” does not depend on J > 0, because

(25) {sup,( #{re 2" 0.0 #0} < o
sup, #{x e Z""; 0. N Q] # 0} < w0,

where (Q,), and (Q!), are J- and &'-decompositions of R""', respectively.

Now we give the definition of the Schatten-Herz class operators.

DeriNITION 1. Let 0 >0 and take the standard J-lattice (X,‘) and J-
decomposition (Qy), of RTI. For a Radon measure 4 >0 on R"™', T, is said
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to be of Schatten-Herz class if

1/p
||T/t||yé'”~ﬂ 12( Z ||Tﬂ|QN||f}a> < 0.

KEZ'HH

Then we denote by 7, € %7".

The purpose of this section is to characterize for the Toeplitz operator to be
of Schatten-Herz class by using the averaging function of the given symbol
Radon measure. We see the following.

THEOREM 3. Let 6 >0, 0 < g < o0 and 0 < p < oo. For a Radon measure
p=0 on R™ T,es" if and only if g e L]". Moreover, both norms
| T ||fnp and H,u(”)HLrp are comparable.

Proof.  First, we assume that 4* € L], For each k € Z”+1 ,u| @ < @)
and the number of sets O, which intersect the support of ,u| @ s bounded by a
constant independent of x so that there exists a constant C > 0 such that

g, N ooy < €S NAD g N oy,

K!

Here taking the summation over x, we have

D oMy <€ D0 D ME g, Iy <€ D2 1A g, ey

ICEZ'1+1 hEZ"+1 K’/ K eZn+1

because for k', the number of indices x such that the support of @(“) intersects

O, is also bounded by a constant independent of x’. Since ||/7|; “)| Loy and
1T, || = are comparable by Theorem 1 for 0 <o <1 and [11, Theorem 2] for
o> 1 we have ||T), ||(/«p < C||a* ||Lrp

Next, we assume that 7, € %’ ?. Since aw =3 ,u|Q, , by the similar
argument to the above, we have

AP o 17 0oy < €D Mg, 1170

and
Do APy <€ D0 D Mg, PN ey <€ Y2 N, e
KGZ"H KGZ"H K! K/eZnH

which shows the theorem. O

Remark 6. The above space ;" does not depend on ¢ and also 0. In
fact, by (25), it is independent of 6. To show the independence of o, let
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0 <o) <y < oo be arbitrarily and g > 0 be a measure on RT‘. Then since
> (2/0)7 <1 implies 37,(4/7)” <1, which shows [T, [lg» <[|Ty, 4~ for
any Q.. On the other hand, since V*(Q,) is independent of x, the Holder
inequality gives us

I

with some constant C > 0 independent of x. As a consequence, [|7}, ||~ and
| Ty, |l#= are comparable, which shows independence of o.
Ox

ollLorey = |l

O lIL7 (V™)

The Toeplitz operator whose symbol has compact support is always compact
(see [8]). Hence Remark 2 (4) implies the following.

PROPOSITION 4. Let > 0 be a Radon measure on R"™'. If T, € 97, then
T, is compact.

Schatten-Herz class Toeplitz operators for the harmonic Bergman space are
discussed in [2], where the cutting process is different from ours. We mention
that ours is more natural, because they cut the upper half space into (non
compact) strips, but we cut it into compact sets. The above assertion is an
advantage of our cutting.
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