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Abstract

We shall give a definite and good application of the theory of reproducing kernels

to the Tikhonov regularization that is powerful in best approximation problems in

numerical analysis.

1. Introduction

At first, we recall a fundamental theorem for the best approximation by the
functions in a reproducing kernel Hilbert space (RKHS) based on [1, 3].

Let E be an arbitrary set, and let HK be the RKHS admitting a reproducing
kernel Kðp; qÞ on E. For any Hilbert space H we consider a bounded linear
operator L from HK into H. Then, we shall consider the best approximate
problem

inf
f AHK

kLf � dkHð1:1Þ

for a member d of H. Then, we have

Proposition 1.1. For a member d of H, there exists a function ~ff in HK such
that

inf
f AHK

kLf � dkH ¼ kL~ff � dkHð1:2Þ

if and only if, for the RKHS Hk defined by

kðp; qÞ ¼ ðL�LKð� ; qÞ;L�LKð� ; pÞÞHK
;ð1:3Þ
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L� is the adjoint of L,

L�d A Hk:ð1:4Þ
Furthermore, if the existence of the best approximation ~ff satisfying (1.2) is ensured,
then there exists a unique extremal function f �

d with the minimum norm in HK , and
the function f �

d is expressible in the form

f �
d ðpÞ ¼ ðL�d;L�LKð� ; pÞÞHk

on E:ð1:5Þ

In Proposition 1.1, note that

ðL�dÞðpÞ ¼ ðL�d;Kð� ; pÞÞHK
¼ ðd;LKð� ; pÞÞH;ð1:6Þ

that is, L�d is expressible in terms of the known d, L, Kðp; qÞ and H.
In Proposition 1.1, when L�d does not belong to Hk, the function

f ��d ðpÞ ¼ ðd;LL�LKð� ; pÞÞHð1:7Þ
is still well-defined and the function is the extremal function in the best ap-
proximate problem

inf
f AHK

kL�Lf � L�dkHK
;ð1:8Þ

as we see from Proposition 1.1, directly.
Let P be the projection map of H to RðLÞ (closure). Then, there exists ~ff

in HK satisfying (1.2) if and only if Pd A RðLÞ. This condition is equivalent to

d ¼ Pdþ ðI � PÞd A RðLÞ þRðLÞ?:
Further, this condition is equivalent to

Lf � d A RðLÞ? ¼ NðL�Þ
for some f A HK ; that is, for some f A HK ,

L�Lf ¼ L�d:

f �
d in (1.5) is the Moore-Penrose generalized inverse of the equation

Lf ¼ d:

In particular, if the Moore-Penrose generalized inverse f �
d exists, it coincides with

f ��d in (1.7).
Proposition 1.1 is rigid and is not practical in practical applications, because,

practical data contain noises or errors and the criteria (1.4) is not suitable.
Meanwhile, the representation (1.7) is convenient in these senses. However,

the function f ��d ðpÞ is, in general, not suitable for the problem (1.1). Indeed, we
can see an estimate of kL f ��d � dkH as follows:

For the best approximate function f ��d ðpÞ, we have

f ��d ðpÞ ¼ ðL�d;L�LKð� ; pÞÞHK

¼ ðL�LL�dÞðpÞ
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and so for the image of f ��d ðpÞ, we thus obtain the estimate

kL f ��d � dkH a kLL�LL� � Ik kdkH:

We shall establish good relationship between the Tikhonov regularization and
the theory of reproducing kernels. For the Tikhonov regularization, see, for
example, [2].

2. Tikhonov regularization

We shall introduce the Tikhonov regularization in the framework of the
theory of reproducing kernels based on ([1], [3, pp. 50–53]). However, from the
viewpoint of Tikhonov regularization we shall give a further result constructing
the associated reproducing kernels and a new viewpoint for the previous results.

Let L be a bounded linear operator from a reproducing kernel Hilbert space
HK admitting a reproducing kernel Kðp; qÞ on a set E into a Hilbert space H.
Then, by introducing the inner product, for any fixed positive l > 0

ð f ; gÞHK ðL;lÞ ¼ lð f ; gÞHK
þ ðLf ;LgÞH;ð2:9Þ

we shall construct the Hilbert space HKðL; lÞ comprising functions of HK .
This space, of course, admits a reproducing kernel and we shall denote it by
KLðp; q; lÞ. Then, we first have the elementary properties:

Lemma 2.1. For the linear mapping from H into the RKHS HK defined by

f ðpÞ ¼ ðd;LKpÞH for d A H;ð2:10Þ
Kp :¼ Kð� ; pÞ;

we have

f ¼ L�dð2:11Þ
and

k f k2HK
¼ ðd;Lðd;LKpÞHÞH:ð2:12Þ

Lemma 2.2. The following items are equivalent:

ðiÞ Kðp; qÞg ðLKq;LKpÞH;

that is, Kðp; qÞ � ðLKq;LKpÞH is a positive matrix on E,

ðiiÞ kLka 1;
and

ðiiiÞ k f kHK
a kdkH in ð2:10Þ:

Lemma 2.3. The reproducing kernel KLðp; q; lÞ is determined as the unique
solution ~KKðp; q; lÞ of the equation:

~KKðp; q; lÞ þ 1

l
ðL ~KKq;LKpÞH ¼ 1

l
Kðp; qÞð2:13Þ
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with

~KKq ¼ ~KKð� ; q; lÞ A HK for q A E:ð2:14Þ

Note here, in general, that the norm of the RKHS HlK admitting the reproducing
kernel lKðp; qÞ ðl > 0Þ is given by

k f k2HlK
¼ 1

l
k f k2HK

ð2:15Þ

and the members of functions of HlK are the same of those of HK .
We shall consider that the reproducing kernel Kðp; qÞ is known and we

wish to construct the reproducing kernel KLðp; q; lÞ. For this construction we
can obtain a very e¤ective method by using the Neumann series. We define the
bounded linear operator ~LL from HK into HK defined by

ð~LLf ÞðpÞ ¼ ðLf ;LKpÞH ¼ ðL�Lf ÞðpÞ:

Then, from (2.13) we obtain directly

Theorem 2.4. If k~LLk < l, then KLðp; q; lÞ is expressible in terms of Kðp; qÞ
by the Neumann series:

KLðp; q; lÞ ¼ I þ
~LL

l

� ��1
1

l
Kðp; qÞ ¼

Xy
n¼0

�
~LL

l

� �n
1

l
Kðp; qÞ;ð2:16Þ

where I þ
~LL

l

� ��1

is a bounded linear operator from HK into HK satisfying

1

I þ
~LL

l

��������

��������
a

1

1�
~LL

l

����
����
:

Of course, if the operator ~LL is compact, then we can apply the spectral theory
to the equation (2.13) without the restriction k~LLk < l. In particular, then

I þ
~LL

l

� ��1

is a bounded linear operator and

KLðp; q; lÞ ¼ I þ
~LL

l

� ��1
1

l
Kðp; qÞ:

We shall consider the best approximation problem, for any given f0 A HK and
d A H:

inf
f AHK

flk f0 � f k2HK
þ kd� Lf k2Hg;ð2:17Þ

in connection with the Tikhonov regularization for the equation Lf ¼ d.
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We shall introduce the direct sum space

ĤHl ¼
ffiffiffi
l

p
HK lHð2:18Þ

and the bounded linear operator L̂Ll from HKðL; lÞ into ĤHl defined by

L̂Ll f ¼
ffiffiffi
l

p
f lLf A ĤHlð2:19Þ

and the adjoint operator L̂L�
l of L̂Ll defined by, for f A HK and for d A H

L̂L�
lf f ; dg ¼

ffiffiffi
l

p
f þ L�d A HKðL; lÞ:ð2:20Þ

Then, by Proposition 1.1 we see that in (2.17) the best approximation
f � A HKðL; lÞ ¼ HK (as sets of functions) in the sense

inf
f AHK

flk f0 � f k2HK
þ kd� Lf k2Hg ¼ lk f0 � f �k2HK

þ kd� Lf �k2Hð2:21Þ

exists if and only if, for f0 A HK and d A H

L̂L�
lf f0; dg A Hkl ;ð2:22Þ

where Hkl is the RKHS admitting the reproducing kernel

klðp; qÞ ¼ ðL̂L�
l L̂LlKLð� ; q; lÞ; L̂L�

l L̂LlKLð� ; p; lÞÞHK ðL;lÞ:

In the present case, L̂Ll is an isometric operator from HKðL; lÞ into ĤHl and so,
L̂L�
l L̂Ll is the identity on HKðL; lÞ. Therefore, we have the simple identity

klðp; qÞ ¼ KLðp; q; lÞ:ð2:23Þ
Therefore, the best approximation f � exists always in (2.21). Furthermore, since
NðL̂L�

l L̂LlÞ ¼ f0g, it is uniquely determined. Again, note that as members of
functions

HKðL; lÞ ¼ HK :

We thus obtain, from Proposition 1.1:

Theorem 2.5. In our situation, the generalized solution f � of the equations

f0 ¼ f in HK

and

d ¼ Lf in H

in the sense (2.21) exists uniquely and it is represented by

f �ðpÞ ¼ lð f0ð�Þ;KLð� ; p; lÞÞHK
þ ðd;LKLð� ; p; lÞÞH:ð2:24Þ

In Theorem 2.5, in particular, we shall consider the best approximate function,
for f0 ¼ 0

f �
l;dðpÞ ¼ ðd;LKLð� ; p; lÞÞH;ð2:25Þ

which is the extremal function in the Tikhonov regularization (2.21) for f0 ¼ 0.
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In general, in the Tikhonov regularization, the operator L is compact and
the extremal functions are represented by using the singular values and singular
functions of the selfadjoint operator L�L. So, the representations are, in a sense,
abstract. And the behaviour of the extremal functions as l tends to zero is an
important problem, because the limit function may be expected as a solution of
the equation Lf ¼ d as in the Moore-Penrose generalized inverse.

From many examples in our situation ([4, 5, 6]), however we see that

lim
l!0

KLðp; q; lÞð2:26Þ

and

lim
l!0

ðd;LKLðp; q; lÞÞHð2:27Þ

do, in general, not exist.

3. Main results

We now give our main results in this paper:

Theorem 3.1. For any d A H and for the two best approximate functions
f �
l;dðpÞ in (2.25) satisfying

inf
f AHK

flk f k2HK
þ kd� Lf k2Hg ¼ lk f �

l;dk
2
HK

þ kd� Lf �
l;dk

2
H

and f ��d ðpÞ in (1.7) satisfying

inf
f AHK

kL�Lf � L�dkHK
¼ kL�Lf ��d � L�dkHK

;

we have the estimate

j f �
l;dðpÞ � f ��d ðpÞja lkLk þ kLL�LL� � Ik 1ffiffiffiffiffi

2l
p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp; pÞ

p
kdkH:ð3:28Þ

Proof. From (2.13), we have

lKLðp; q; lÞ þ L�LKLðp; q; lÞ ¼ Kðp; qÞ:ð3:29Þ

Hence,

klKLðp; q; lÞk2HK
þ kL�LKLðp; q; lÞk2HK

þ 2lkLKLðp; q; lÞk2H ¼ Kðq; qÞ
and so, in particular,

kL�LKLðp; q; lÞk2HK
aKðq; qÞð3:30Þ

and

2lkLKLðp; q; lÞk2H aKðq; qÞ:ð3:31Þ
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Hence, from (3.29)

LL�LKð� ; pÞ � LKLð� ; p; lÞ
¼ lLL�LKLð� ; p; lÞ þ LL�LL�LKLð� ; p; lÞ � LKLð� ; p; lÞ:

From (2.25) and (1.7), we have the desired result

j f �
l;dðpÞ � f ��d ðpÞjð3:32Þ

a kdkHkLL�LKð� ; pÞ � LKLð� ; p; lÞkH
a lkdkHkLL�LKLð� ; p; lÞkH þ kdkHkLL�LL� � Ik kLKLð� ; p; lÞkH

a lkdkHkLk kL�LKLð� ; p; lÞkHK
þ kdkHkLL�LL� � Ik 1ffiffiffiffiffi

2l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp; pÞ

p

a lkdkHkLk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp; pÞ

p
þ kdkHkLL�LL� � Ik 1ffiffiffiffiffi

2l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp; pÞ

p
:

Corollary 3.2. If LL� is unitary, then we have for the two best ap-
proximate functions f �

l;dðpÞ in (2.25) and f ��d ðpÞ in (1.7) we have the estimate

j f �
l;dðpÞ � f ��d ðpÞja lkLk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp; pÞ

p
kdkHð3:33Þ

which shows that as l tends to zero, f �
l;dðpÞ tends to f ��d ðpÞ with the order l and

the convergence is uniform on any subset E0 of E satisfying supp AE0
Kðp; pÞ < y.

Theorem 3.3. If L is a compact operator, then for the Moore-Penrose
generalized inverse f �

d ,

lim
l!0

f �
l;dðpÞ ¼ f �

d ðpÞ;ð3:34Þ

uniformly on any subset E0 of E satisfying supp AE0
Kðp; pÞ < y.

Proof. Since L is compact, we have, from (2.13)

KLðp; q; lÞ ¼
1

lI þ L�L
Kðp; qÞ:

Then,

f �
l;dðpÞ ¼ ðd;LKLð� ; p; lÞÞH

¼ ðL�d;KLð� ; p; lÞÞH

¼ 1

lI þ L�L
L�d;Kð� ; pÞ

� �
HK

:

As we see by using the singular value decomposition of L, for the Moore-Penrose
generalized inverse f �

d , as l ! 0,
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1

lI þ L�L
L�d ! f �

d ; in HK

(see Section 5.1 in [2]). Hence, from the identity

f �
l;dðpÞ � f �

d ðpÞ ¼
1

lI þ L�L
L�d� f �

d ;Kð� ; pÞ
� �

HK

;

we have the desired result.

The result in Theorem 3.3 is very reasonable and good, because in the Tikhonov
regularization, if the Moore-Penrose generalized inverse exits and if l tends
to zero, then (3.34) is valid. Of course, here we need to consider a reproducing
kernel Hilbert space as the function space. However, the convergence rate in
(3.34) or the error estimate in the form

j f �
l;dðpÞ � f �d ðpÞj

will be derived by case by case arguments depending on concrete problems. See,
for example, [7].

In Corollary 3.2, the result (3.33) will be fresh, because f �
l;d and f ��d are, in

general, di¤erent, however, if l tends to zero, then f �
l;dðpÞ tends to f ��d ðpÞ with

the l order, under the unitarieness of LL�. However, at this moment, the author
does not see the precise meanings of this result.

Theorem 3.1 is a much more delicate result in the general situation that
the extremal functions f �

l;d and f ��d exist, when we consider their di¤erence in
connection with the parameter l, involving the unitarieness of LL�. Indeed, the
quantity kLL�LL� � Ik may be understood as a distance of the operator LL�

from being unitary.

4. Acknowledgements

The author wishes to express his deep thanks the referee for his/her careful
readings the paper and valuable suggestions for the paper.

References

[ 1 ] D.-W. Byun and S. Saitoh, Best approximation in reproducing kernel Hilbert spaces, Proc.

of the 2nd International Colloquium on Numerical Analysis, VSP-Holland, 1994, 55–61.

[ 2 ] C. W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg & Sohn Ver-

lagsgesellschaft mbH, Braunschweig/Wiesbaden, 1993.

[ 3 ] S. Saitoh, Integral Transforms, Reproducing Kernels and their Applications, Pitman Res.

Notes in Math. Series 369, Addison Wesley Longman Ltd., UK, 1997.

[ 4 ] S. Saitoh, Approximate Real Inversion Formulas of the Gaussian Convolution, Applicable

Analysis 83 (2004), 727–733.

[ 5 ] S. Saitoh, T. Matsuura and M. Asaduzzaman, Operator Equations and Best Approximation

Problems in Reproducing Kernel Hilbert Spaces, J. of Analysis and Applications 1 (2003),

131–142.

366 saburou saitoh



[ 6 ] S. Saitoh, Constructions by Reproducing Kernels of Approximate Solutions for Linear

Di¤erential Equations with L2 Integrable Coe‰cients, International J. of Math. Sci. 2

(2003), 261–273.

[ 7 ] T. Matsuura, S. Saitoh and D. D. Trong, Approximate and analytical inversion formulas

in heat conduction on mutidimensional spaces, J. of Inverse and Ill-posed Problems (to

appear).

Department of Mathematics

Faculty of Engineering

Gunma University

Kiryu 376-8515

Japan

e-mail address: ssaitoh@math.sci.gunma-u.ac.jp

367best approximation, tikhonov regularization


