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Abstract

We present an approach proving the integrability of the Camassa—Holm equation for
initial data of small amplitude.

1 Introduction

The Camassa—Holm equation
U — Upzr + 2wy + Ul = 2UpUspy + Ulgrs, t>0, z€R, (1.1)

in dimensionless space-time variables (x,t) is a model for the unidirectional propagation
of two-dimensional waves in shallow water with a flat bottom, w being a positive constant
related to the critical shallow water speed (see [1]), and was first derived as an abstract
equation in [8] by using the method of recursion operators. Of physical interest are solu-
tions of (1.1) which decay at infinity cf. [9]. The Camassa—Holm equation models wave
breaking [5] and admits wave solutions that exist indefinitely in time [3]. An aspect of
considerable interest is the fact that the solitary waves of (1.1) are solitons (see [2] for
numerical evidence and [10] for the complete description).

In terms of the momentum m = u — u,, the Camassa—Holm equation can be expressed
cf. [2] as the condition of compatibility between

and
(1 1 1
Py = (ﬁ - U) Y + §Ux¢- (1.3)

Equation (1.2) is the isospectral problem associated to (1.1) so that the Camassa—Holm
equation is formally integrable. In the absence of bound states for (1.2), the direct and
inverse scattering problem was discussed in [4]. Our purpose is to indicate how the scat-
tering approach can be pursued in the more general case when finitely many bound states
are present. In particular, this allows us to solve the Camassa—Holm initial-value problem
via inverse scattering for initial data of small amplitude. The importance of the scattering
problem in the case of finitely many bound states is emphasized by the fact that in the
case of one soliton there is precisely one bound state for (1.2) cf. [6] and the 2-soliton
solution corresponds to an isospectral problem (1.2) with two bound states (see [10]).
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2 Direct and inverse scattering

If the momentum m € H3(R) is such that m +w > 0 and
/(1 + [y fm(a)|dz < oo,
R

then the continuous spectrum of (1.2) is (—oo, —t] and there are at most finitely many
eigenvalues in the interval (—7-,0) cf. [4]. In absence of bound states the scattering data
consists of the transmission and reflection coefficients associated to the elements in the
continuous spectrum. More precisely, if ¢ (x,t) is an eigenfunction corresponding to some
A in the continuous spectrum of the isospectral problem (1.2), then

e kT L R(t, k) etk as x — 00,
P(t,x) ~ (2.1)

T(t, k) e~ as T — —00,

for some complex transmission coefficient ¥ and a reflection coefficient R, where k& > 0
satisfies k> = —1 — Aw > 0. The evolution of T(t, k) and R(t, k) under the Camassa-Holm
flow is given by (see [4])

Tt k) = T(0,K), R k) = RO, k) exp (% t) 40 (2.2)
Since (1.2) is the isospectral problem, the bound states are constants of motion for the
Camassa—Holm equation [1]. In order to solve the scattering problem in presence of
finitely many bound states it is necessary to find the proper normalization constants for
the eigenfunctions associated with the discrete spectrum. This question was left open
in [4], due to the fact that the choice suggested by analogy with the classical Schrodinger
equation [7] is not appropriate (the time evolution cannot be determined). A proper family
of normalization constants can be defined as follows. The Liouville transformation

$(y) = (m(@) +w)* (),

where

y:/o‘”\/m@wdg_

/OO m(§) de
0 Vw+vm(§)+w

converts (1.2) into

d%¢
- = L. 2.3
a2 Qe = ¢ (2.3)
Here
1 gy 3ak 1 .
Qly) = + — - — with q(y) = m(x) + w,
) dq(y) ~ 4aly)  16¢%(y) 4w ) =miz)
and the spectral parameter is p = — — A. If ¥, (z,t) is an eigenfunction for (1.2)
corresponding to the eigenvalue A, € (—ﬁ, 0), then

Gn(y,t) = (m(z,t) +w) "/ Yz, 1)
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is an eigenfunction for (2.3) corresponding to the eigenvalue p1, = — 4= — A, < 0. Requiring

/ Snly, ) dy =1,

R

the normalization constants ¢, (t) are determined by
¢n(y7 t) ~ Cn(t)eikny for y — oo,

with &k, = /—pn. It turns out that as m(x,t) evolves according to the Camassa—Holm
equation,

kn,
cn(t) = ¢, (0) exp (— 2)\\/(; t) , t>0,

as a rather intricate analysis shows. Therefore the evolution of the scattering data (the
reflection and transmission coefficients together with the previously defined normalization
constants) under the Camassa—Holm flow has been explicitly determined. At this point
the method presented in [4] can be implemented to solve the inverse scattering problem
for the Camassa—Holm equation.

The presented approach is best exemplified by the fact that it shows that the solitary
waves of (1.1) are solitons: the associated spectral problem is reflectionless and has a
single eigenvalue. This important feature of the Camassa—Holm equation was explained
in [6] by means of trace formulas and eigenvalue estimates for Schrédinger operators. An
application of our technique provides a simpler and more direct proof.

It is known (see [11] and [6]) that solitary wave solutions u(z,t) = ¢(z—ct) propagating
at the speed ¢ > 0 exist only for ¢ > 2w. Moreover, the function ¢, determined uniquely
up to translations (henceforth we choose ¢ with the crest positioned at x = 0), is smooth
and positive with a profile decreasing symmetrically from its crest of height (¢ — 2w). No
mathematical expression in closed form is available for ¢ so that our analysis depends on
the equations

3 1
—Cp + Cpua + 5 P + 2wp = PPy, + 5 02, (2.4)

and
Pr(c— @) = ¢*(c— 2w — ), (2.5)

which are both obtained from (1.1). For u(x,0) = ¢(x) we have

WC2

[c — o(z)]?

so that the Liouville transformation can be performed. In combination with (2.4)—(2.5),
it yields

m(z,0) +w =
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Straightforward (but long) calculations relying repeatedly on (2.4)—(2.5) show that Q(y)
satisfies the differential equation

Q§=Q2 (2Q+c—2w).

Ccw

Hence (see [7])

-2 1 -2
Qly) = - "’sech2<§ ‘ “y).

2cw cw

With the above potential it is well-known that the problem (2.3) is reflectionless and has

W= 22’6;8 as the only eigenvalue cf. [7]. While performing the Liouville transformation, let

us note that

y(x) — yJwx —0 as x — 00,

o) = Vo= [ (Vo ym@rw)de  as o— .

(2.6)

From (1.1) we infer that C = [ (f— vm(§) —|—w> d¢ is preserved under the
Camassa—Holm flow. Therefore (2.6) can be used to deduce that

e” WY L R(t, k) VY as y — 00,

. (2.7)
T(t, k) e VAY=C) as Yy — —oo.

w A (t,y) ~ {

As an outcome of (2.2) and (2.7), the solution of (1.1) with initial data u(z,0) = ¢(z) is
reflectionless at any time ¢ > 0. Hence the solitary waves of the Camassa—Holm equation
are solitons.
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