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1. INTRODUCTION

The immunotherapy revolution in hematologic malignancies is
primarily due to the success in synthetic immunotherapy—a term
applied when an immune response is generated against new tar-
gets [1]. Immune-targeting of B-cell specific cell surface markers by
bispecific antibodies (BiTEs) or chimeric-antigen receptor express-
ing T (CAR-T) cells has resulted in high remission rates in previ-
ously heavily treated patients, leading to survival advantage, and
to FDA approval of blinatumomab, tisagenlecleucel, and axicab-
tagene ciloleucel for B-cell acute lymphoblastic leukemia (ALL)
and lymphoma [2-6]. Early clinical trials of other CAR-T tar-
gets against hematologic malignancies are promising, including
CD22 CAR-T cells for ALL [7] and BCMA CAR-T cells for mul-
tiple myeloma [8]. The common mechanism of action is based on
induction of T-cell based cytotoxicity against a predefined target
via granzyme and perforin, leading to proliferation of effector and
helper T cells, cytokine production, and target cell death [9]. Remis-
sion rates reported in ALL vary between 40% and 94% with either
blinatumomab or CAR-T cells targeting CD19 or CD22 [2-4,7,
10-15]. In non-Hodgkin’s lymphoma (NHL) and chronic lympho-
cytic leukemia (CLL) the rates are slightly lower when patients with
measurable disease are treated, and vary between 30% and 60%
[5,6,16-20]. The long-term 5+ year follow-up is still missing, espe-
cially real-life data. Nevertheless, even in ALL, the disease with
the highest response rates to CD19 CAR-T cells, less than 50%
of infused patients remain in remission more than one year after
CAR-T therapy, in the absence of additional treatment.
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Application of immunotherapeutic modalities changed paradigms in the treatment of hematologic malignancies, with regards
to drug manufacturing, treatment protocols, short- and long-term toxicities. FDA-approved therapies, including blinatumomab,
tisagenlecleucel, and axicabtagene ciloleucel, target T cells to attack healthy and malignant cells expressing CD19, leading to high
response rates in previously heavily treated patients, and to durable remissions in the absence of further therapies. Nevertheless,
despite paucity of long-term data, some patients are resistant to these agents, and many relapse. This review will discuss the
mechanisms of failure of these immune-based therapies, and offer guidelines to the practicing physician.
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Overall, resistance to targeted synthetic immunotherapy can be
divided into two major mechanism: T-cell failure, or target-antigen
modulation (Table 1).

Table 1 Resistance mechanisms to CD19 and CD22 CAR-T cells.

Proposed Mechanism Ref.

T-Cell Failure
Production failure Failure of T-cell expansion and

transduction in culture

Primary T-cell failure Low memory/stem-cell memory  [21]
T cells in the leukapheresis

Lack of multi-cytokine producing  [22]

cells
Increased exhaustion of cells [21,23-25]
Increased regulatory T cells [26]
Secondary T-cell failure ~Nature of the costimulatory [27,28]
domain
Anti-CAR immune response [10,13]
Suppressive microenvironment in ~ [15,29]

extramedullary leukemia

Target Antigen Modulation
Loss of CD19 expression Mutations in CD19 [
Splice variants of CD19 [30]
Lineage switch to myeloid leukemia [
Defective trafficking to the cell [
membrane
Leukemia transduction by CAR [37]
masking CD19 expression

CD22 down modulation Unknown posttranscriptional [7]
effects

Abbreviation: CAR-T cells: chimeric-antigen receptor expressing T cells.
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2. T-CELL FAILURE WITH CAR-T CELLS
OR BITES

The generation of CAR-T cells from patient material, namely leuka-
pheresed lymphocytes, adds new layers of complexity to medic-
inal production, and may result in failure. This occurs in upto
10% of cases, and may be related to low T-cell numbers in the
patient (after prior T-cell depleting chemotherapy), poor function-
ality of autologous T cells in heavily pre-treated patients, or through
monocyte-driven suppression during production [38]. Guidelines
recommending timing of leukapheresis in regards to recent therapy
have been developed, aiming to reduce production failure rates [39].
Several methods for T-cell selection of the initial product, start-
ing with plastic-adherence for monocyte depletion [38], but also
CD4:CD8 positive isolation of the starting material may improve
transduction and clinical outcome [12,13,40]. Also, the patient may
deteriorate during the production time required for CAR-T cells.
For example, 17 out of 92 patients enrolled on the ELIANA study
did not receive the product, due to production failure (n = 7),
clinical deterioration leading to death (n = 7) or adverse events
(n=3) [4].

More commonly, the failure is a result of either primary failure to
generate an effective immune response in vivo or failure of the T
cells to persist. The mechanisms of primary T-cell failures have not
been well studied, but are not entirely dose-dependent, as increasing
the CAR-T cell dose resulted in increased toxicity without increased
response in some studies [10,12]. The PD-1/PD-L1 axis is known to
limit response to blinatumomab [23], and may limit CAR-T cells,
more often in CD28-containing CAR-T cells [27,41]. However,
PD-1 inhibitory antibodies failed to improve expansion or per-
sistence of a third-generation GD-2 CAR-T cells [42]. Early data
in ALL show responses to PD-1 inhibition in patients with either
loss of B-cell aplasia or extramedullary (EM) relapse, but not in
patients with initial CAR-T cell failure [24]. Patients with DLBCL
who received axicabtagene ciloleucel with the PD-L1 inhibitor
atezolizumab on the ZUMA-6 trial had a similar response rate
to those treated with the CAR-T cells alone, but with improved
expansion and persistence of the CAR-T cells [43]. Genetic
engineering eliminating PD-1 via Crispr/Cas9 targeted pdcdl dis-
ruption in CAR-transduced T cells may further improve their func-
tion in vivo and prevent their loss [41]. Addition of checkpoint
inhibitors to blinatumomab may improve response rates in nonre-
sponding patients [23,25]. In CLL, where response rates are gen-
erally lower, determinants of CAR-T cell phenotype may affect
the chances of remission or primary failure. Complete responders
had higher proportion of memory CD8*CD27*CD45RO™ T cells
in the leukapheresis product, and lower percentages of exhausted
CAR*CD8*CD27*PD1" cells in the infusion product [21]. Pheno-
typic data correlated with gene expression data, where upregulation
of genes related to exhaustion, glycolysis and apoptosis was seen in
CAR-T products of non-responders [21]. Thus, improved response
may be seen if the starting material is selected for stem-cell memory
T cells [44]. Recently, using single-cell cytokine analysis, a profile of
polyfunctional T cells (producing several cytokines) was identified,
and correlated with response to CAR-T cells [22]. This may enable
prediction of response to a CAR-T cell-based product.

Secondary failure of CAR-T cells is due to poor T-cell persis-
tence. Three factors were identified so far to affect persistence. A
higher disease burden (>15% leukemic blasts) was reported to be

associated with improved persistence by the Seattle group [12].
A conditioning regimen comprised of fludarabine and cyclophos-
phamide (flu/cy) was also shown to improve efficacy and durability
of CAR-T cells by several groups [12,13,45]. Though not well stud-
ied, improved response after flu/cy conditioning may be a result of
depletion of regulatory T cells, known to limit BiTEs [26], which
are given without conditioning, or through increase in homeostatic
cytokines [46]. The most studied factor to contribute to persis-
tence is the CAR-T costimulatory chain. CAR-T cells encoding a
4-1BB costimulatory moiety are associated with longer persistence
than CAR-T cells containing a CD28 costimulatory domain [27],
as shown in elegant preclinical models [27,47,48], mostly through
effects on cell metabolism and memory subsets. Nevertheless, in
ALL, 41BB-CAR-T cells have been reported to have prolonged
persistence [4,11,12,49], more than seen with CD28-CAR-T cells
[10,15,50]. Interestingly, in DLBCL, long-term persistence was also
seen in CAR-T cells with CD28 [5,16,51]. A single small clinical
trial has compared head to head these moieties and showed simi-
lar response with different kinetics [52]. Third-generation CAR-T
cells, combining both moieties, showed better persistence when co-
infused with second-generation CD28-contaning CAR-T cells for
NHL [28]. It is unclear whether this benefit arises from combining
the two moieties, or solely from the 41BB domain.

Another mechanism to limit CAR-T cell persistence is immune
rejection of the CAR, as commercially-available CAR-T cells
include single-chain variable fractions from murine antibodies.
The immune reaction is mostly of T-cell origin (since B cells are
depleted), and may be responsible for failures in T-cell re-infusion
in patients who lost CAR persistence [10,13]. Early data from
humanized versions of CD19 CAR-T cells show success in reinfu-
sion, and may lead to less immune reaction and superior persistence
[53,54].

Importantly, long-term persistence is not a guarantee for cure
following immunotherapy in ALL. Both CD28-based CAR-T cells
and blinatumomab have shown, in patients treated with low-
burden disease, long-term survival in the absence of further therapy
[50,55,56], and the unique resistance mechanisms described below
may lead to relapse despite the presence CAR-T cells. It may be the
case that in NHL durable remissions do not require long-term per-
sistence of CAR-T cells [57].

Last, unique extramedullary relapse forms have been seen after bli-
natumomab [29]. These have been susceptible to CAR-T cells [15],
suggesting that their occurrence may be related to leukemia pro-
tection by the suppressive microenvironment, which is at least par-
tially targeted via flu/cy conditioning and inherent co-stimulation
in CAR-T cells.

3. TARGET-ANTIGEN MODULATION

Long-term persistence, though attractive, may not be sufficient
when targeting a single leukemic antigen. CD19 was thought to be
essential for B-cell precursor leukemia and lymphoma. Neverthe-
less, antigen modulation of CD19 and CD22 has been reported by
various mechanisms following targeted immunotherapy.

Initially, CD19 mutations as well as exon 2, 4, 5 or 6 alternative
splicing were observed to confer resistance, as these alter the
immunogenic part of CD19 which is targeted by the CAR and is
identified by the flow-cytometry antibodies [30,31]. Surprisingly,
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CD19 splicing variants lacking exon 2 appear in leukemia prior
to treatment, making it difficult to predict response or resistance
prior to CD19-directed therapy [58]. A recent report from Novar-
tis suggested that CD19 mutations, rarely seen before, accounted
for the majority of CD19 non-expressing cases [31]. Several groups
have reported lineage switch of leukemia to occur following CD19-
directed therapy, especially in cases where the leukemia cell of
origin is not a precursor B-cell per se (such as MLL-rearranged
leukemia) [32-35]. Unique mechanisms, such as defects in the
CD81-CD19 co-trafficking from the endoplasmic reticulum to
the cell surface [36], or co-transduction of leukemia with CAR-T
cells thereby CAR-CD19 interactions occurring in cis and masking
CD19 presentation from T cells [37], have also been reported. Of
note, CD19 loss has also been seen in NHL following CD19 CAR
therapy [59,60].

CD22 is the second molecule in ALL targeted by CAR-T cells,
showing promising remission rates in patients who have mostly
relapsed after CD19-directed therapy [7]. CD22 is a molecule
known to internalize upon stimulation, thus serving as a plat-
form for immunotoxins, some of which are FDA-approved [61,62].
CD22 is not as abundant on ALL cells as CD19 [63], and down-
modulation was seen in relapse after CD22 CAR, though in the
majority of cases this was not complete cell surface negativity, and
despite ongoing CAR-T cell persistence [7]. As shown in several
models, CAR-T cells require high antigen density on the target cell
surface, and a mere reduction in the amount of antigens per cell may
result in failure of the CAR-T cells [64].

Despite this variety of antigen loss mechanisms, these occur mostly
after prolonged immune pressure, and are thus mostly seen in
patients with long-persisting 41BB-containing CAR-T cells or
sequential antibody and CAR therapies. Still, the majority of relapse
events with blinatumomab or short-term CAR-T cells express
CD19 [65].

4. GUIDELINES TO THE CLINICIAN AND
FUTURE THOUGHTS

CAR-T cell and BiTE therapies hold many promises in contempo-
rary hematology, and are expected to become a larger part of our
practice. Through the study of mechanisms of resistance, we can
offer tools for evaluation and, hopefully, prevention of relapse, and
to improve future development.

Some measures can be taken to try to prevent primary T-cell fail-
ure (table 2). Early referral and leukapheresis before any T-cell lytic
therapy is administered will increase the likelihood of successful
CAR-T cell production. Lymphodepletion using fludarabine and
cyclophosphamide has proven itself as the best regimen to-date
prior to CAR-T cell infusion, reducing the rate of primary and sec-
ondary T-cell failure. Failure after blinatumomab may be reversed
by adding checkpoint inhibitors. Such combinations, as well as
combinations of CAR-T cells with checkpoint inhibitors, should
still be evaluated in large clinical trials. Selection of T-cell stem-cell
memory subsets for production, suggested to be an additional mea-
sure to prevent primary T-cell failure, is still complex and has yet to
be adopted in real-life clinical settings.

Early detection of CAR failure may be important. Flow-cytometry
based minimal-residual disease (MRD) detection is extremely

Table 2 Recommendations to reduce relapse following CAR-T cell
therapy.

Prior to CAR-T cell production:

* Early referral and leukapheresis

* Fludarabine/Cyclophosphamide-based lymphodepletion
Following CAR-T cell administration:

* In ALL, use of PCR or NGS-based MRD detection along with flow
cytometry

* Routine CAR persistence monitoring by flow cytometry for B-cell
recovery using both CD19 and CD20

* Inshort-term CAR-T cells, especially in transplant-naive ALL patients,
consider consolidative HSCT

Abbreviations: CAR-T: Chimeric-antigen receptor expressing T cells, ALL: Acute lym-
phoblastic leukemia, NGS: next-generation sequencing, MRD: minimal-residual disease,
HSCT: hematopoietic stem cell transplant.

valuable to guide the investigation of resistance mechanisms, as
well as for planning future potential therapies based on antigen
expression. In ALL, since CD19 expression may be lost, alternative
gating strategies not solely based on CD19 expression should be
designed, with the goal to identify resistant clones. As these clones
may be small, we routinely add VD]J-rearrangement-based MRD
techniques (polymerase chain reaction, PCR, or next-generation
sequencing, NGS), which may enable earlier detection of resistance,
and guide further therapy. In addition to MRD detection, dura-
tion of B-cell aplasia as a surrogate marker for CAR persistence can
inform on the timing for introduction of additional therapy, such
as checkpoint inhibitors or an allogeneic hematopoietic stem cell
transplant (HSCT). A consolidative allogeneic-HSCT has shown
benefit for short-term CAR-T cells in some studies [15,45], espe-
cially in transplant-naive patients [66]. When using a short-
term CAR for ALL, we routinely recommend it [15]. Since most
patients referred to CAR-T cell treatment have exhausted standard
chemotherapy options, establishing the antigen expression pattern
on leukemic blasts is crucial. If CD19 is present, another CD19-
targeting CAR may be used if it includes a different ScFv, or if the
patient has had an allogeneic HSCT following the first CART cells—
to avoid potential anti-CAR-T cells. BiTEs may also be tried. For
patients who lack CD19 expression, CD22-targeted therapy is an
option, but has so far showed limited durability [7,61].

Finally, similar to how our practice to prevent antibiotic or
chemotherapy resistance led to combination therapies, multiple
antigen targeting along with immunomodulatory strategies will
further improve current results, and several bi-specific CAR-T
cells are being tested in clinical trials. Results of these trials, as
well as trials combining synthetic immunotherapy with checkpoint
inhibitors, may shed more light on the management of relapsed and
resistant B-cell malignancies.
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