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Abstract. We shall study special properties of solutions to the
IVP associated to the Camassa-Holm equation on the line related
to the regularity and the decay of solutions. The first aim is to
show how the regularity on the initial data is transferred to the
corresponding solution in a class containing the “peakon solutions".
In particular, we shall show that the local regularity is similar to
that exhibited by the solution of the inviscid Burger’s equation
with the same initial datum. The second goal is to prove that
the decay results obtained in [17] extend to the class of solutions
considered here.

1. Introduction

This work is concerned with the non-periodic Camassa-Holm (CH)
equation

∂tu+ κ∂xu+ 3u∂xu− ∂t∂2
xu = 2∂xu∂

2
xu+ u∂3

xu, t, x, κ ∈ R. (1.1)

The CH equation (1.1) was first noted by Fuchssteiner and Fokas
[13] in their work on hereditary symmetries. Later, it was written
explicitly and derived physically as a model for shallow water waves
(κ > 0) by Camassa and Holm [5], who also studied its solutions.
The CH equation (1.1) has received considerable attention due to its
remarkable properties, among them the fact that it is a bi-Hamiltonian
completely integrable model for all values of k ∈ R, (see [1], [5], [8],
[24], [25], [26] and references therein).

By omitting the right hand side in (1.1), the CH equation reduces
to the so called Benjamin-Bona-Mahony equation [2], also deduced in
the context of water waves.
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The case κ = 0 in (1.1), called the reduced Camassa-Holm RCH (see
[26]),

∂tu+ 3u∂xu− ∂t∂2
xu = 2∂xu∂

2
xu+ u∂3

xu, t, x ∈ R, (1.2)
has motivated a great deal of research. It appears as a model in non-
linear dispersive waves in hyperelastic rods [10]. The RCH equation
possesses “peakon” solutions [5]. In the case of a single peakon this
solitary wave solution can be written as

uc(x, t) = c e−|x−ct|, c > 0. (1.3)

The multi-peakon solutions display the “elastic” collision property that
reflect their soliton character. Thus, the CH equation and the Korteweg-
de Vries equation

∂tu+ u∂xu+ ∂3
xu = 0, t, x ∈ R. (1.4)

exhibit many features in common.
The initial value problem (IVP) as well as the periodic boundary

value problem associated to the equation (1.1) has been extensively
examined. In particular, in [22] and [27] the local well-posedness (LWP)
of the IVP was established in the Sobolev space

Hs(R) = (1− ∂2
x)
−s/2L2(R),

for s > 3/2. The peakon solutions do not belong to these spaces, see
Corollary 2.17. However,

φ(x) = e−|x| ∈ W 1,∞(R),

where W 1,∞(R) denotes the space of Lipschitz functions.
In [6] Constantin and Escher proved that if u0 ∈ H1(R) with u0 −

∂2
xu0 ∈M+(R), where M+(R) denotes the set of positive Randon mea-

sures with bounded total variation, then the IVP for the RCH equation
(1.2) has a global weak solution u ∈ L∞((0,∞) : H1(R)).

In [9] Constantin and Molinet improved the previous result by show-
ing that if u0 ∈ H1(R) with u0 − ∂2

xu0 ∈M+(R), then the IVP for the
RCH equation (1.2) has a unique solution

u ∈ C([0,∞) : H1(R)) ∩ C1((0,∞) : L2(R))

satisfying that y(t) ≡ u(·, t)− ∂2
xu(·, t) ∈M+(R) is uniformly bounded

in [0,∞).
In [29] Xi and Zhong proved the existence of a H1-global weak solu-

tion for the IVP for the RCH equation (1.2) for data u0 ∈ H1(R).
More recently, Bressan and Constantin [3] and Bressan-Chen-Zhang

[4] established the existence and uniqueness, respectively, of aH1 global
solution for the RCH equation (1.2). More precisely, this solution u =
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u(x, t) is a Hölder continuous function defined in R × [0, T ] for any
T > 0 such that:

(i) for any t ∈ [0, T ], u(·, t) ∈ H1(R),
(ii) the map t→ u(·, t) is Lipschitz continuous from [0, T ] to L2(R),

and
(iii) it satisfies the equation (1.2) in L2(R) for a.e. t ∈ [0, T ].

For other well-posedness results see also [14], [15] and reference therein.

In the periodic case, de Lellis, Kappeler, and Topalov [11] obtained
existence, uniqueness and continuous dependence results analogous to
what we shall prove here for the case of real line, in Theorem 1.1. Both
proofs rely on the formulation of the IVP as an ordinary differential
equation in H1(R)∩W 1,∞(R), although our formulation also allows us
to examine propagation of regularity, in Theorem 1.8.

The CH equation (1.1) does not have the finite propagation speed
property. In fact, if a non-trivial datum u0 ∈ Hs(R), s > 3/2, has
compact support, then the corresponding solution u(·, t) of the RCH
equation (1.2) cannot have compact support any other time t 6= 0. An
even sharper result in this direction is given in Theorem 1.10 of [17].
However, one has that formally the RCH equation (1.2) for u = u(x, t)
can be rewritten in terms of

m = m(x, t) = (1− ∂2
x)u(x, t),

as
∂tm+ u ∂xm+ 2∂xum = 0, t, x ∈ R. (1.5)

Therefore, if the data u0 ∈ Hs(R), s ≥ 2, has compact support, then
m(·, t) = (1 − ∂2

x)u(·, t), which satisfies the equation (1.5), will have
compact support on the time interval of existence of the H2-solution.
This is similar to the case of the incompressible Euler equation, and
the relation between the velocity and the vorticity.

Our first goal here is to establish the local well-posedness of the IVP
associated to the CH equation (1.1), for a data class which includes the
peakon solutions:

Theorem 1.1. Given u0 ∈ X ≡ H1(R) ∩ W 1,∞(R), there exist a
nonincreasing function T = T (‖u0‖X) > 0 and a unique solution u =
u(x, t) of the IVP associated to the CH equation (1.1) such that

u ∈ ZT ≡ C([−T, T ] :H1(R)) ∩ L∞([−T, T ] :W 1,∞(R))

∩ C1((−T, T ) :L2(R)), (1.6)
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with

sup
[−T,T ]

‖u(·, t)‖X = sup
[−T,T ]

(‖u(·, t)‖1,2 + ‖u(·, t)‖1,∞) ≤ c‖u0‖X ,

for some universal constant c > 0. Moreover, given B > 0, the map
u0 7→ u, taking the data to the solution, is continuous from the ball
{u0 ∈ X : ‖u0‖X ≤ B} into ZT (B).

Remark 1.2. This result shows that, for data in the space X, the so-
lution of the CH equation is as regular as the corresponding solution
associated to the IVP for the inviscid Burgers’ equation

∂tu+ u∂xu = 0, t, x ∈ R.

It will be established in Theorem 1.8 hat that this still holds for “local
regularity”.

Remark 1.3. The strong notion of local well-posedness commonly used
(see [19]) does not hold in this case. In addition to existence and
uniqueness, this notion of LWP requires that the solution satisfy the so
called persistence property, namely that if u0 ∈ Y , then u ∈ C([0, T ] :
Y ) and that the map taking data to the solution is locally continuous
from Y to C([0, T ] : Y ). In particular, this strong version of LWP
guarantees that the solution flow defines a dynamical system in Y . In
our case, by assuming that u0 ∈ X = H1(R)∩W 1,∞(R), we prove that
the solution flow defines a dynamical system only in H1(R).

This is necessary if one wants to have a class of solutions which
includes the peakon solutions (1.3). To see this, observe that if

uc0(x) = ce−|x| ∈ X = H1(R) ∩W 1,∞(R), c > 0,

then the corresponding solution uc(x, t) = c e|x−ct| ∈ ZT , characterized
in (1.6), has the property that

uc /∈ C([0, T ∗] : W 1,∞(R)), for any T ∗ > 0. (1.7)

This follows by noticing that for any h > 0

‖∂xuc(·, h)− ∂xuc(·, 0+)‖∞ > c.

Similarly, for initial data

u
cj
0 (x) = cje

−|x| ∈ X = H1(R) ∩W 1,∞(R), j = 1, 2, c1 > c2 > 0,

one has solutions ucj(x, t) = cje
|x−cjt|, j = 1, 2. It is easy to check that

‖uc10 − uc20 ‖1,∞ = c1 − c2,
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and that for any h > 0

‖∂xuc1(·, h)− ∂xuc2(·, h)‖∞
≥ |∂xuc1((c1h)−, h)− ∂xuc2((c1h)−, h)| > c1. (1.8)

Hence, the continuous dependence in W 1,∞(R), that is, the continuity
of the map from W 1,∞(R) into C([−T, T ] : W 1,∞(R)), fails in any time
interval [0, T ] for any T > 0.

Remark 1.4. The proof of Therorem 1.1 is based on a contraction prin-
ciple argument for a system written in Lagrangian coordinates. The
loss of the persistence and the continuous dependence in W 1,∞(R) de-
scribed in (1.7) and (1.8) is a consequence of the return to the original
unknowns in Eulerian coordinates.

Remark 1.5. An examination of the proof shows that if ‖u0‖X+|κ| ≤ B,
then the existence time can be taken as a nonincreasing function T (B)
and the solution depends continuously both on the initial data u0 and
the parameter κ.

Remark 1.6. From the continuous dependence in Theorem 1.1, one
has that the solution deduced in that theorem is the limit in the
L∞([−T, T ] : H1(R))-topology of solutions corresponding to u0 ∈ Hs(R),
s > 3/2. This is consistent with the comments in [10] and [26] con-
cerning the realization of the peakon as a limit of smooth solutions.

Remark 1.7. As in [11], Theorem 1.1 is valid in the spaces

Hs,p(R) ∩W 1,∞(R), s ∈ [1, 1 + 1/p) p ∈ (1,∞),

see the definition in (2.1) and [20]. As mentioned above, these spaces
also contain the peakons (see Corollary 2.17).

To state our next result on propagation of regularity, we introduce
the following notation. For u0 ∈ X, let u ∈ ZT be the local solution
given by Theorem 1.1. Since u ∈ C([−T, T ];W 1,∞), the system

dx(s, t)

dt
= u(x(s, t), t), x(s, 0) = s,

defines a one parameter family of homeomorphisms t 7→ x(·, t), for
(s, t) ∈ R× [−T, T ]. For any open set Ω0 ⊂ R, we define the family of
open sets

Ωt = {x(s, t) : s ∈ Ω0}, t ∈ [−T, T ].

Theorem 1.8. Let u0 ∈ X and let u ∈ ZT be the corresponding local
solution. Let Ω0 ⊂ R be open. With the notation above, we have:
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(a) If
u0|Ω0 ∈ Hj,p(Ω0), (1.9)

for some p ∈ [2,∞) and j ∈ Z, with j ≥ 2, then

u(·, t)|Ωt ∈ Hj,p(Ωt), (1.10)

for any t ∈ [−T, T ].

(b) If
u0|Ω0 ∈ Cj+θ,

for some j ∈ Z, with j ≥ 1, and θ ∈ (0, 1), then

u(·, t)|Ωt ∈ Cj+θ,

for any t ∈ [−T, T ].

Remark 1.9. The result in Theorem 1.8 part (a) holds for fractional
values j of the derivative in (1.9) and (1.10). However, to simplify the
exposition we do not consider this case.

We recall the following unique continuation and decay persistence
property results obtained in [17]:

Theorem 1.10 ([17]). Assume that for some T > 0 and s > 3/2,

u ∈ C([0, T ] : Hs(R))

is a strong solution of the IVP associated to the RCH equation (1.2).
If for some α ∈ (1/2, 1), u0(x) = u(x, 0) satisfies

|u0(x)| = o(e−x) and |∂xu0(x)| = O(e−αx), as x ↑ ∞, (1.11)

and there exists t1 ∈ (0, T ] such that

|u(x, t1)| = o(e−x), as x ↑ ∞,
then u ≡ 0.

Theorem 1.11 ([17]). Assume that for some T > 0 and s > 3/2,

u ∈ C([0, T ] : Hs(R))

is a strong solution of the IVP associated to the RCH equation (1.2).
If for some θ ∈ (0, 1), u0(x) = u(x, 0) satisfies

|u0(x)|, |∂xu0(x)| = O(e−θx), as x ↑ ∞,
then

|u(x, t)|, |∂xu(x, t)| = O(e−θx), as x ↑ ∞,
uniformly in the time interval [0, T ].

As a consequence of Theorem 1.1 we shall obtain the following im-
provements of Theorems 1.10 and 1.11:
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Theorem 1.12. Assume that for some T > 0, u ∈ ZT is a solution of
the IVP associated to the RCH equation described in Theorem 1.1.

If u0(x) = u(x, 0) satisfies

|u0(x)| = o(e−x), and |∂xu0(x)| = O(e−αx) as x ↑ ∞,

for some α ∈ (1/2, 1), and there exists t1 ∈ (0, T ] such that

|u(x, t1)| = o(e−x), as x ↑ ∞,

then u ≡ 0.

Theorem 1.13. Assume that for some T > 0

u ∈C([−T, T ] :H1(R)) ∩ L∞([−T, T ] :W 1,∞(R)) ∩ C1((−T, T ) :L2(R))

is a solution of the IVP associated to the RCH equation described in
Theorem 1.1.

If u0(x) = u(x, 0) satisfies that for some θ ∈ (0, 1)

|u0(x)|, |∂xu0(x)| = O(e−θx) as x ↑ ∞,

then
|u(x, t)|, |∂xu(x, t)| = O(e−θx) as x ↑ ∞,

uniformly in the time interval [0, T ].

Remark 1.14. Since the class of solutions considered in Theorem 1.12
contains the peakons is clear that Theorem 1.12 is an optimal version
of Theorem 1.10. We observe that with minor modifications Theorem
1.13 applies to solutions of the CH equation (1.1). However, we do not
know whether or not the result in Theorem 1.12 can be extended to
solutions of the CH equation (1.1).

Remark 1.15. As it was pointed out in [26] for the CH equation (1.1)
with κ 6= 0 the presence of the linear dispersive term κ∂x(1 − ∂2

x)
−1u

prevents the existence of non-smooth solitary waves. However, The-
orem 1.8 shows that even in this case there is not improvement of
regularity of the solution either in the Hs,p-scale or in the Ck+θ-scale.

Remark 1.16. In [18] Isaza, Linares, and Ponce initiated the study of
the propagation of regularity for dispersive equations considering the
KdV equation (1.4). They established the following result.

Theorem 1.17 ([18]). If u0 ∈ H3/4+(R) and for some l ∈ Z, l ≥ 1
and x0 ∈ R

‖ ∂lxu0‖2
L2((x0,∞)) =

∫ ∞
x0

|∂lxu0(x)|2dx <∞,
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then the solution u = u(x, t) of the IVP associated to (1.4) provided by
the local theory in [21] satisfies that for any v > 0 and ε > 0

sup
0≤t≤T

∫ ∞
x0+ε−vt

(∂jxu)2(x, t) dx < c,

for j = 0, 1, . . . , l with c = c(l; ‖u0‖3/4+,2; ‖ ∂lxu0‖L2((x0,∞)); v; ε;T ).
In particular, for all t ∈ (0, T ], the restriction of u(·, t) to any interval

of the form (a,∞) belongs to H l((a,∞)).
Moreover, for any v ≥ 0, ε > 0 and R > 0∫ T

0

∫ x0+R−vt

x0+ε−vt
(∂l+1
x u)2(x, t) dxdt < c,

with c = c(l; ‖u0‖
3/4+,2

; ‖ ∂lxu0‖L2((x0,∞)); v; ε;R;T ).

Comparing Theorem 1.8 with Theorem 1.17 and those in Kato [19],
one can conclude that solutions of the CH equation, contrary to those of
the KdV equation, do not gain regularity regardless of the smoothness
and the decay of the data.

Remark 1.18. Theorems 1.8, 1.12 and 1.13 extend to solutions of the
IVP associated to the Degasperis-Procesi (DP) equation [12]

∂tu+ 4u∂xu− ∂t∂2
xu = 3∂xu∂

2
xu+ u∂3

xu, t, x ∈ R. (1.12)

In this case, the proof is simpler since the DP equation can be written
as

∂tu+ u∂xu = −∂x(1− ∂2
x)
−1(3u2/2),

where the right hand side of the equations can be regarded as a “lower
order term”. This is not the case with the CH equation which can be
written as

∂tu+ u∂xu = −∂x(1− ∂2
x)
−1(κu+ u2 + (∂xu)2/2).

Thus, we have:

Theorem 1.19. Under the same hypothesis, the conclusions in Theo-
rems 1.1, 1.8 and 1.12 hold for solutions of the IVP associated to the
DP equation (1.12).

Remark 1.20. In [6] and [7] Constantin and Escher (see also [22]) de-
duced conditions on the data u0 ∈ H3(R) which guarantee that the
corresponding local solution u ∈ C([0, T ] : H3(R)) of the IVP associ-
ated to the RCH (1.2) blows up in finite time by showing that

lim
t↑T
‖∂xu(·, t)‖∞ =∞,
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corresponding to the breaking of waves. Observe that H1-solutions of
the CH equation (1.1) satisfy the conservation law

E(u)(t) =

∫ ∞
−∞

(u2 + (∂xu)2)(x, t)dx = E(u0),

so that the H1-norm of the solutions constructed Theorem 1.1 remains
invariant within the existence interval. This highlights a sharp differ-
ence between the blow up of the CH equation and that of the invis-
cid Burgers’ equation. Although in both cases the L∞-norm of the
x-derivative becomes unbounded at the critical time, for the CH equa-
tion the H1-norm remains bounded and for Burgers’ equation the H1/2-
norm becomes unbounded.

The rest of this work is organized as follows: Section 2 contains some
preliminary results to be used in the coming proofs. The statements
on existence, uniquenss, and continuous dependence given in Theorem
1.1 will be proven in Section 3 in a series of results. Section 4 contains
the proof of Theorem 1.8 on propagation of regularity, and Section 4
the proofs of Theorems 1.12 and 1.13. Since the proof of Theorem 1.19
is quite similar to those previously given it will be omitted.

2. Preliminaries

2.1. Notation and definitions. The standard Sobolev spaces are de-
fined by

Hs,p(R) = (1− ∂2
x)
−1/2Lp(R), s ∈ R, 1 ≤ p <∞, (2.1)

with
Hs(R) = Hs,2(R).

We define the Sobolev space

W 1,∞(R) = {f ∈ L∞(R) : f ′ ∈ L∞(R)},

where the derivative is taken in the sense of distributions, and the class
of Lipschitz functions

Lip =

{
f ∈ L∞(R) : sup

s1 6=s2

∣∣∣∣f(s1)− f(s2)

s1 − s2

∣∣∣∣ <∞} .
For notational convenience, define the functional spaces

X = H1(R) ∩W 1,∞(R), Y = L2(R) ∩ L∞(R), X = X ×X × Y.
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The basic Lagrangian quantities and their natural spaces are:

ξ(s, t) ∈ C1([−T, T ] : X) displacement
x(s, t) = s+ ξ(s, t) deformation

z(s, t) ∈ C1([−T, T ] : X) velocity

w(s, t) ∈ C1([−T, T ] : Y ) velocity gradient

and the corresponding Eulerian quantities are:

s(x, t) reference map, i.e. s(x(s, t), t) = s

Sξ(x, t) = η(x, t) = s(x, t)− x reference map displacement
u(x, t) = z(s(x, t), t) velocity
∂xu(x, t) = w(s(x, t), t) velocity gradient

The convolution kernel for (1− ∂x)−1 is denoted by

G(x) = 1
2

exp(−|x|).

2.2. Lipschitz functions and W 1,∞(R).
The proofs of the following statements are not difficult and will be

omitted.

Lemma 2.1. Let f ∈ W 1,∞(R) and define

h(s) =

∫ s

0

f ′(σ)dσ.

Then
h(s) = f(s) + c for all s ∈ R,

and

|f(s1)− f(s2)| ≤ ‖f ′‖L∞ |s1 − s2|, for all s1, s2 ∈ R.

Lemma 2.2. If f ∈ W 1,∞(R), then

lim
a→0

f(s+ a)− f(s)

a
= f ′(s), a.e.

Lemma 2.3. If f ∈ Lip, then f is differentiable almost everywhere,
i.e.

lim
a→0

f(s+ a)− f(s)

a
= g(s), a.e.

and g = f ′ in D′. As a consequence, if f ∈ Y ∩ Lip and g ∈ Y , then
f ∈ X.
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2.3. Deformations.

Lemma 2.4. If ξ ∈ Y , with 1 + essinf ξ′ > ρ > 0, and x(s) = s+ ξ(s),
then

ρ(s2 − s1) ≤ x(s2)− x(s1) ≤ (1 + ‖ξ′‖L∞)(s2 − s1),

for all s2 > s1, x(s) is strictly increasing, and x : R → R is a homeo-
morphism.

Finally, we have

ρ ≤ x′(s) ≤ 1 + ‖ξ′‖L∞ a.e.

Lemma 2.5. If ξ ∈ Y , with 1 + essinf ξ′ > ρ > 0, then x(s) = s+ ξ(s)
has a strictly increasing inverse function s : R→ R which satisfies

(1 + ‖ξ′‖L∞)−1(x2 − x1) ≤ s(x2)− s(x1) ≤ ρ−1(x2 − x1),

for all x2 > x1,
s′(x) = (x′ ◦ s(x))−1 a.e.,

and
(1 + ‖ξ′‖L∞)−1 ≤ s′(x) ≤ ρ−1 a.e.

Lemma 2.6. Let ξ ∈ Y , with 1 + essinf ξ′ > ρ > 0, and define x(s) =
s+ ξ(s). If f ∈ L1(R), then f ◦ x ∈ L1(R),∫ ∞

−∞
f ◦ x(σ)x′(σ)dσ =

∫ ∞
−∞

f(x)dx,

and ‖f ◦ x‖L1 ≤ ρ−1 ‖f‖L1.
Similarly, if s(x) is the inverse function, then f ◦ s ∈ L1(R),∫ ∞

−∞
f ◦ s(x)s′(x)dx =

∫ ∞
−∞

f(s)ds,

and ‖f ◦ s‖L1 ≤ (1 + ‖ξ′‖L∞) ‖f‖L1.

Corollary 2.7. Let ξ ∈ Y , with 1 + essinf ξ′ > ρ > 0, and define
x(s) = s+ ξ(s). If f ∈ Lp, 1 ≤ p ≤ ∞, then f ◦ x ∈ Lp and

‖f ◦ x‖Lp ≤ ρ−1/p ‖f‖Lp .
Similarly, if s(x) is the inverse function, then f ◦ s ∈ Lp and

‖f ◦ s‖Lp ≤ (1 + ‖ξ′‖L∞)1/p ‖f‖Lp .

Definition 2.8. We define the displacement domain

Oρ = {ξ ∈ X : 1 + essinf ξ′ > ρ}, 0 < ρ� 1.

Given ξ ∈ Oρ, set x(s) = s+ ξ(s), and let s(x) be the inverse function
described in Lemma 2.5. Define the mapping Sξ(x) = s(x)− x.
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Lemma 2.9. The mapping S in Definition 2.8 satisfies

S : Oρ → X

and
‖Sξ‖X ≤ C(ρ, ‖ξ′‖L∞) ‖ξ‖X .

Proof. Let η = Sξ. Then by Lemmas 2.5 and 2.6 we have the following:

η(x) = −ξ ◦ s(x),

‖η‖L∞ = ‖ξ‖L∞ , ‖η′‖L∞ ≤ ρ−1 ‖ξ′‖L∞ ,

and
‖η‖L2 ≤ (1 + ‖ξ′‖L∞) ‖ξ‖L2 , ‖η′‖L2 ≤ ρ−1/2 ‖ξ′‖L2 .

�

Lemma 2.10. If ξj ∈ Oρ, j = 1, 2, then

‖Sξ1 − Sξ2‖L∞ ≤ ρ−1 ‖ξ1 − ξ2‖L∞ ,

and

‖Sξ1 − Sξ2‖L2 ≤ C(1 + ‖ξ′1‖L∞ + ‖ξ′2‖L∞)1/2 ‖ξ1 − ξ2‖L2 .

Proof. Set ηj = Sξj and sj(x) = x+ ηj(x), j = 1, 2.
Fix x, and assume that s1(x) > s2(x). Then by Lemmas 2.4 and 2.9

ρ (η1(x)− η2(x)) = ρ (s1(x)− s2(x))

≤1

2
(x1 ◦ s1(x)− x1 ◦ s2(x)) +

1

2
(x2 ◦ s1(x)− x2 ◦ s2(x))

=
1

2
(ξ2 ◦ s2(x)− ξ1 ◦ s2(x)− ξ1 ◦ s1(x) + ξ2 ◦ s1(x)).

If s1(x) < s2(x), then a similar inequality holds with the subscripts 1
and 2 interchanged. Therefore, we have that

ρ |η1(x)− η2(x)| ≤ 1

2
|ξ1 ◦ s1(x)− ξ2 ◦ s1(x)|+ 1

2
|ξ1 ◦ s2(x)− ξ2 ◦ s2(x)|.

From this it follows that

ρ ‖Sξ1 − Sξ2‖L∞ = ρ ‖η1 − η2‖L∞ ≤ ‖ξ1 − ξ2‖L∞ .

Also by Corollary 2.7 we have that
ρ ‖Sξ1−Sξ2‖L2 = ρ ‖η1 − η2‖L2

≤‖ξ1 ◦ s1 − ξ2 ◦ s1‖L2 + ‖ξ1 ◦ s2 − ξ2 ◦ s2‖L2

≤(1 + ‖ξ′1‖L∞)1/2 ‖ξ1 − ξ2‖L2 + (1 + ‖ξ′2‖L∞)1/2 ‖ξ1 − ξ2‖L2

.(1 + ‖ξ′1‖L∞ + ‖ξ′2‖L∞)1/2 ‖ξ1 − ξ2‖L2 .

�
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Lemma 2.11. Let f ∈ L2(R). With the notation of Definition 2.8, the
mapping

ξ 7→ f ◦ s
is locally uniformly continuous from Oρ into L2(R).

Proof. Choose any B > 0, and define the bounded set

N = {ξ ∈ Oρ : ‖ξ‖X ≤ B}.
Let ξj ∈ N , and set

xj(s) = s+ ξj(s) and sj(x) = x+ Sξj(x), j = 1, 2.

If φ ∈ C∞0 (R), then by Lemma 2.6, the mean value theorem, and
Lemma 2.10, we have

‖f ◦ s1 − f ◦ s2‖L2 ≤C(B) ‖f − φ‖L2 + C(ρ,B) ‖φ′‖L∞ ‖ξ1 − ξ2‖L2 .

Let ε > 0 be given. Since C∞0 (R) is dense in L2(R), we can choose φ
depending only on f and B so that the first term is smaller than ε/2.
So if

‖ξ1 − ξ2‖L2 < δ,

then by choosing δ sufficiently small, the second term is also smaller
than ε/2. This proves uniform continuity on N . �

Lemma 2.12. The mapping DxS : Oρ → L2(R) is continuous.

Proof. Let ξj ∈ N , as in the proof of Lemma 2.11, and set

xj(s) = s+ ξj(s) and sj(x) = x+ Sξj(x), j = 1, 2.

Then by Lemma 2.5,

DxSξj(x) = s′j(x)− 1 =
1

x′j ◦ sj(x)
− 1 = −

ξ′j ◦ sj(x)

x′j ◦ sj(x)
.

Therefore, by Lemma 2.4 and the fact that x′j(s) = 1 + ξ′j(s), we see
that

|DxSξ1(x)−DxSξ2(x)|

=

∣∣∣∣−ξ′1 ◦ s1(x) x′2 ◦ s2(x) + ξ′2 ◦ s2(x) x′1 ◦ s1(x)

x′1 ◦ s1(x) x′2 ◦ s2(x)

∣∣∣∣
=

∣∣∣∣−ξ′1 ◦ s1(x) + ξ′2 ◦ s2(x)

x′1 ◦ s1(x) x′2 ◦ s2(x)

∣∣∣∣
≤ρ−2|ξ′1 ◦ s1(x)− ξ′2 ◦ s2(x)|.

From this and the triangle inequality we get

‖DxSξ1 −DxSξ2‖L2 ≤ ρ−2(‖ξ′1 ◦ s1 − ξ′1 ◦ s2‖L2 +‖ξ′1 ◦ s2 − ξ′2 ◦ s2‖L2).
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By Corollary 2.7, the second term is estimated by

‖ξ′1 ◦ s2 − ξ′2 ◦ s2‖L2 ≤ ρ−1/2 ‖ξ′1 − ξ′2‖L2 .

Since ξ′1 ∈ L2, continuity at ξ1 now follows by Lemma 2.11. �

Lemma 2.13. Let ξ ∈ Oρ, define x(s) = s+ ξ(s). If M ∈ Y , then∫ s

−∞
exp(x(σ))M(σ)x′(σ)dσ =

∫ x(s)

−∞
exp(y)M(s(y))dy

and ∫ ∞
s

exp(−x(σ))M(σ)x′(σ)dσ =

∫ ∞
x(s)

exp(−y)M(s(y))dy.

Proof. Define

h(x) =

∫ x

−∞
exp(y)M(s(y))dy.

By the Lebesgue Differentiation Theorem,

h′(x) = lim
a→0

h(x+ a)− h(x)

a
= exp(x)M(s(x)), a.e.

By the chain rule,
d

ds
h(x(s)) = exp(x(s))M(s)x′(s), a.e.

By the same idea as Lemma 2.1

h(x(s)) =

∫ s

−∞
exp(x(σ))M(σ)x′(σ)dσ.

�

2.4. Properties of the kernel.

Lemma 2.14. If ξ ∈ Oρ and x(s) = s+ ξ(s), then

G′(x(s)− x(σ)) = −G(x(s)− x(σ)) sgn(s− σ), s 6= σ,

and
G(x(s)− x(σ)) ≤ G(ρ (s− σ)).

Proof. The results follow by definition and Lemma 2.4. �

Lemma 2.15. Let ξj ∈ Oρ, j = 1, 2, and set xj(s) = s+ ξj(s). Then

|G(x1(s)− x1(σ))−G(x2(s)− x2(σ))|
≤ G(ρ(s− σ)) · (|ξ1(s)− ξ2(s)|+ |ξ1(σ)− ξ2(σ)|)
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and

|G′(x1(s)− x1(σ))−G′(x2(s)− x2(σ))|
≤ G(ρ(s− σ)) · (|ξ1(s)− ξ2(s)|+ |ξ1(σ)− ξ2(σ)|),

for all s, σ ∈ R.

Proof. Assume, without loss of generality, that s > σ. By Lemma 2.4,

xj(s)− xj(σ) ≥ ρ(s− σ) > 0. (2.2)

Then by the mean value theorem, we have

G(x1(s)− x1(σ))−G(x2(s)− x2(σ))

=
1

2
expA · [(−ξ1(s) + ξ2(s)) + (ξ1(σ)− ξ2(σ))],

where A lies between

−(x1(s)− x1(σ)) and − (x2(s)− x2(σ)).

Therefore, by (2.2), we get 1
2

expA ≤ G(ρ(s−σ)), and the first inequal-
ity follows. The second inequality follows from the first and Lemma
2.14. �

We will now briefly discuss the claim made in Remark 1.7.

Proposition 2.16. If f ∈ Lp(R), p ∈ (1,∞), and there exists x0 ∈ R
such that f(x+

0 ) and f(x−0 ) are defined and f(x+
0 ) 6= f(x−0 ), then f /∈

H1/p,p(R).

Proof. This is a direct consequence of the following characterization of
the spaces Hs,p(Rn) established in [28]: Given s ∈ (0, 1), p ∈ (1,∞),
and f ∈ Lp(Rn), then f ∈ Hs,p(Rn) if and only if

Dsf(x) = lim
ε↓0

∫
|y|≥ε

f(x+ y)− f(x)

|y|n+s
dy

is defined in Lp(Rn). In this case

‖f‖s,p = ‖(1− ∂2
x)
s/2f‖p ∼ ‖f‖p + ‖Dsf‖p.

�

Corollary 2.17. For any p ∈ (1,∞)

exp(−|x|) ∈ Hs,p(R), s ∈ (0, 1 + 1/p)

but
exp(−|x|) /∈ H1+1/p,p(R).
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For further details see Chapter 3 in [23].
We end this section proving a result useful in the remainder of this

paper.

Lemma 2.18. Let f ∈ L1(R) and a, b ∈ R. Recall that G(x) =
1
2

exp(−|x|).

(a) If for some j ∈ Z+ and p ∈ [1,∞)

f |(a,b) ∈ Hj,p(a, b), (2.3)

then for any ε > 0

G ∗ f |(a,b) ∈ Hj+1,p((a+ ε, b− ε)), (2.4)

and

(b) if for some j ∈ Z+ and θ ∈ (0, 1]

f |(a,b) ∈ Cj,θ(a, b), (2.5)

then
G ∗ f |(a,b) ∈ Cj+1,θ(a, b). (2.6)

Proof. For any ε > 0 let ϕε ∈ C∞0 (R) with ϕε(x) ≥ 0,

ϕε(x) = 1, x ∈ (a+ 2ε/3, b− 2ε/3), supp(ϕε) ⊂ (a+ ε/3, b− ε/3).

Define

v(x) = G ∗ f(x) = G ∗ (fϕε)(x) +G ∗ (f(1− ϕε))(x) = v1(x) + v2(x).

Since, ∂xG ∈ L1(R) it is easy to see that assuming (2.3) (resp. (2.5)),
v1 satisfies (2.4) (resp. (2.6)).

By observing that v2 ∈ C∞(a + ε, b − ε) one obtains the desired
result. �

It is clear that by using Young’s inequality the result in Lemma 2.3
part (a) extends to the case where a = −∞ or b =∞.

The result in Lemma 2.18 extends to fractional values of j in (2.3)
and (2.4). However, to simplify the exposition we restrict ourselves to
j ∈ Z+.

3. The Initial Value Problem

Here we will establish the local well-posedness for the IVP associated
to the CH equation, that is,{

∂tu+ κ∂xu+ 3u∂xu− ∂t∂2
xu = 2∂xu∂

2
xu+ u∂3

xu, t, x, κ ∈ R,
u(x, 0) = u0(x).

(3.1)
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The proof of Theorem 1.1 will be given in several stages.
We first prove some estimates for the nonlinear terms appearing in

the equation in (3.1). For this aim we will use the notation and esti-
mates from the previous section. To simplify the presentation, define
the nonlinear functions

M(z, w) = 2κz + z2 +
1

2
w2, κ ∈ R,

N(z, w) = M(z, w)− w2.

Recall the definition of Oρ in Definition 2.8. Given

(ξ, z, w) ∈ Oρ ×X × Y,

we shall consider the deformations of the form

x(s) = s+ ξ(s),

and we define the nonlinear mappings

F1(ξ, z, w)(s) = −
∫ ∞
−∞

G′(x(s)− x(σ))M(z, w)(σ)x′(σ)dσ

F2(ξ, z, w)(s) = −
∫ ∞
−∞

G(x(s)− x(σ))M(z, w)(σ)x′(σ)dσ +N(z, w)(s).

3.1. Estimates of nonlinear mappings.

Lemma 3.1. If (z, w) ∈ Y × Y , then

‖M(z, w)‖L∞ + ‖N(z, w)‖L∞ . ‖z‖L∞ + ‖z‖2
L∞ + ‖w‖2

L∞ ,

‖M(z, w)‖L2 + ‖N(z, w)‖L2 . ‖z‖L2 + ‖z‖L2 ‖z‖L∞ + ‖w‖L2 ‖w‖L∞ ,

and

‖M(z, w)‖Y + ‖N(z, w)‖Y . ‖z‖Y + ‖z‖2
Y + ‖w‖2

Y .

Proof. This follows directly from the definitions of M , N , and Y . �

Lemma 3.2. If (zj, wj) ∈ Y × Y , j = 1, 2, then

‖M(z1, w1)−M(z2, w2)‖Y + ‖N(z1, w1)−N(z2, w2)‖Y
. (1 + ‖z1‖Y + ‖z2‖Y ) ‖z1 − z2‖Y

+ (‖w1‖Y + ‖w2‖Y ) ‖w1 − w2‖Y .

Proof. Similar to Lemma 3.1. �
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Lemma 3.3. If (ξ, z, w) ∈ Oρ ×X × Y , then

|F1(ξ, z, w)(s)|+ |F2(ξ, z, w)(s)|

.
∫ ∞
−∞

G(ρ(s− σ))|M(z, w)(σ)|dσ ‖x′‖L∞ + |N(z, w)(s)|,

‖F1(ξ, z, w)‖L∞ + ‖F2(ξ, z, w)‖L∞

. ρ−1 ‖G‖L1 ‖M(z, w)‖L∞ ‖x′‖L∞ + ‖N(z, w)‖L∞ ,

and

‖F1(ξ, z, w)‖L2 + ‖F2(ξ, z, w)‖L2

. ρ−1/2 ‖G‖L2 ‖M(z, w)‖L2 ‖x′‖L∞ + ‖N(z, w)‖L2 .

Moreover, Fj : Oρ ×X × Y → Y , j = 1, 2.

Proof. The first inequality follows from the definitions of Fj, j = 1, 2,
and Lemma 2.14.

The other two inequalities follow from the first one using Young’s
inequality.

The final statement follows from these and Lemma 3.1. �

Lemma 3.4. Let (ξ, z, w) ∈ Oρ ×X × Y . Then
d

ds
F1(ξ, z, w)(s) =

(
F2(ξ, z, w)(s) + w2(s)

)
x′(s), a.e. and in D′.

The map
(ξ, z, w) 7→ F1(ξ, z, w)

takes Oρ ×X × Y into X.

Proof. By definition of F1 and Lemma 2.14, we can write
F1(ξ, z, w)(s) = F11(s) + F12(s),

where

F11(s) =
1

2

∫ s

−∞
exp(−x(s) + x(σ))M(z, w)(σ)x′(σ)dσ,

F12(s) = −1

2

∫ ∞
s

exp(x(s)− x(σ))M(z, w)(σ)x′(σ)dσ,

and x(s) = s+ ξ(s), as usual.
Since

expx(σ) ≤ expσ exp ‖ξ‖L∞ ∈ L1((−∞, s]),
we may write

F11(s) =
1

2
exp(−x(s))

∫ s

−∞
expx(σ)M(z, w)(σ)x′(σ)dσ.
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By Lemmas 2.1 and 3.1, F11 ∈ Y ∩ Lip. By the chain rule, we have
d

ds
exp(−x(s)) = − exp(−x(s))x′(s), a.e.,

and by the Lebesgue Differentiation Theorem, we have
d

ds

∫ s

−∞
expx(σ)M(z, w)(σ)x′(σ)dσ

= lim
a→0

1

a

∫ s+a

s

expx(σ)M(z, w)(σ)x′(σ)dσ

= expx(s)M(z, w)(s)x′(s), a.e.

Thus, by the product rule, we get

F ′11(s) = (−F11(s) + (1/2)M(z, w)(s))x′(s), a.e.

Similarly, we have F12 ∈ Y ∩ Lip, and

F ′12(s) = (F12(s) + (1/2)M(z, w)(s))x′(s), a.e.

Therefore, F1 ∈ Y ∩ Lip, and
d

ds
F1(ξ, z, w)(s) = (−F11(s) + F12(s) +M(z, w)(s))x′(s)

= (F2(ξ, z, w)(s) + w2(s))x′(s), a.e.

Since F ′1 ∈ Y , by Lemma 3.1, we obtain from Lemma 2.3 that F ′1 is the
derivative in the distributional sense and F1 ∈ X. �

Lemma 3.5. Let ξj ∈ Oρ, and set xj(s) = s + ξj(s), j = 1, 2. Then
for k = 1, 2, we have

|Fk(ξ1,z, w)(s)− Fk(ξ2, z, w)(s)|

. |ξ1(s)− ξ2(s)|
∫ ∞
−∞

G(s− σ) |M(z, w)(σ)| x′1(σ)dσ

+

∫ ∞
−∞

G(ρ(s− σ)) |ξ1(σ)− ξ2(σ)| |M(z, w)(σ)| x′1(σ)dσ

+

∫ ∞
−∞

G(ρ(s− σ)) |M(z, w)(σ)| |x′1(σ)− x′2(σ)| dσ,

and∣∣∣∣ dds [F1(x1, z, w)(s)− F1(x2, z, w)(s)]

∣∣∣∣
. |F2(ξ1, z, w)(s)− F2(ξ2, z, w)(s)| x′1(s)

+ (|F2(ξ2, z, w)(s)|+ w2(s)) |ξ′1(s)− ξ′2(s)|.
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Proof. This follows by Lemmas 2.15 and 3.4. �

Definition 3.6. Define the space

X = {v = (ξ, z, w) ∈ X ×X × Y },
with the norm

‖v‖X = ‖ξ‖X + ‖z‖X + ‖w‖Y .

Theorem 3.7. Define the mapping

F(ξ, z, w) = (z, F1(ξ, z, w), F2(ξ, z, w)).

Then F : Oρ ×X × Y → X is locally Lipschitz.

Proof. Lemmas 3.2 and 3.5 yield the result. �

3.2. Local existence. We first construct a solution in Lagrangian co-
ordinates.

Theorem 3.8. Given B > 0, define

N(ρ,B) = {v0 = (ξ0, z0, w0) ∈ X : ξ0 ∈ Oρ, ‖v0‖X < B}.
There exists a time T > 0, depending only upon ρ, B, and B − ‖v0‖X,
such that the system

v(·, t) = v0(·) +

∫ t

0

F(v(·, τ))dτ,

has a unique solution v ∈ C1([−T, T ] : N(ρ,B)).
If z′0(s) = w0(s)(1 + ξ′0(s)) a.e., then

v(·, t) = (ξ(·, t), z(·, t), w(·, t))
satisfies

∂sz(·, t) = w(·, t) (1 + ∂sξ(·, t)) , in C([−T, T ] : Y ). (3.2)

Proof. Since ξ0 ∈ Oρ, we can find ρ̄ such that

ρ < ρ̄ < 1 + essinf ξ′0.

Define the set

N̄ = {v = (ξ, z, w) ∈ X : 1 + essinf ξ′ ≥ ρ̄, ‖v − v0‖X ≤ B − ‖v0‖X}.

Then N̄ 6= ∅ since v0 ∈ N̄, N̄ is closed in X, and N̄ ⊂ N(ρ,B). Apply
the contraction mapping principle to the operator

Sv(·, t) = v0(·) +

∫ t

0

F(v(·, τ))dτ,

on the set C([−T, T ], N̄), with T sufficiently small.
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The last statement follows from

∂tJ(s, t) = −w(s, t)J(s, t), J(s, 0) = 0,

where
J(s, t) = ∂sz(s, t)− w(s, t)∂sx(s, t).

�

3.3. Solution of the Camassa-Holm equation (3.1). Next, we es-
tablish the regularity of the local solution in Eulerian coordinates.

Theorem 3.9. Let u0 ∈ X, and define

v0 = (0, u0, u
′
0) ∈ Oρ ×X × Y.

Choose any B > ‖v0‖X, and let

v = (ξ, z, w) ∈ C1([−T, T ] : N(ρ,B))

be the corresponding solution from Theorem 3.8. Let x(s, t) = s+ξ(s, t)
and let s(x, t) = x+ Sξ(x, t) be the inverse function. Define

u(x, t) = z(s(x, t), t).

Then
Sξ, u ∈ C([−T, T ] : H1) ∩ C1([−T, T ] : L2),

∂xSξ, ∂xu ∈ L∞([−T, T ] : Y ),

∂ts+ u∂xs = 0, on R× [−T, T ], (3.3)
s(x, 0) = x, x ∈ R,

and

∂tu+ u∂xu+G′ ∗M(u, ∂xu) = 0, on R× [−T, T ], (3.4)
u(x, 0) = u0(x), x ∈ R.

Proof. We shall prove the following statements sequentially:

Sξ, u ∈ C([−T, T ] : L2), (3.5)
∂xSξ, ∂xu ∈ L∞([−T, T ] : Y ), (3.6)

∂xSξ, ∂xu ∈ C([−T, T ] : L2), (3.7)

Sξ ∈ C1([−T, T ] : L2) and (3.3) holds, (3.8)

u ∈ C1([−T, T ] : L2) and (3.4) holds. (3.9)

Since v ∈ C1([−T, T ] : N(ρ,B)), we have that

sup
[−T,T ]

∑
k=0,1

(
∥∥∂kt ξ(·, t)∥∥X +

∥∥∂kt z(·, t)
∥∥
X

+
∥∥∂kt w(·, t)

∥∥
Y

) ≤ B.

Throughout the proof, generic constants may depend on B and ρ.
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Let t, t1 ∈ [−T, T ]. By Lemma 2.10, we have that

‖Sξ(·, t1)− Sξ(·, t)‖L2 ≤ C ‖ξ(·, t1)− ξ(·, t)‖L2 .

This proves (3.5) for Sξ.
Using the definition of u and the fact that z ∈ C1([−T, T ] : L2), we

have

u(x, t1)− u(x, t) =

∫ t1

t

∂tz(s(x, t1), τ)dτ + z(s(x, t1), t)− z(s(x, t), t).

Using Lemma 2.1, Corollary 2.7, and Lemma 2.10, we obtain
‖u(·, t1)− u(·, t)‖L2

≤
∫ t1

t

‖∂tz(s(·, t1), τ)‖L2 dτ + ‖∂sz(·, t)‖L∞ ‖s(·, t1)− s(·, t)‖L2

≤
∫ t1

t

(1 + ‖ξ′(·, t1)‖L∞)1/2 ‖∂tz(·, τ)‖L2 dτ + C ‖Sξ(·, t1)− Sξ(·, t)‖L2

≤C(|t1 − t|+ ‖ξ(·, t1)− ξ(·, t)‖L2).

So (3.5) now follows for u.
By Lemma 2.9, we have

‖∂xSξ(·, t)‖Y ≤ ‖Sξ(·, t)‖X ≤ C,

which proves (3.6) for ∂xSξ.
Since z(·, t), s(·, t) ∈ W 1,∞, we use Lemma 2.2, the chain rule, Lemma

2.5, and (3.2) to obtain

∂xu(x, t) = ∂sz(s(x, t), t)(∂sx(s(x, t), t))−1

= w(s(x, t), t) a.e.
(3.10)

Now by Corollary 2.7, we have

‖∂xu(·, t)‖Y = ‖w(s(·, t), t)‖Y ≤ C ‖w(·, t)‖Y ≤ C.

This verifies (3.6) for ∂xu.
Since ξ ∈ C([−T, T ] : Oρ) and DxS : Oρ → L2 is continuous

by Lemma 2.12, we see that ∂xSξ ∈ C([−T, T ] : L2). Since w ∈
C1([−T, T ] : L2), we also obtain that

∂xu(x, t) = w(s(x, t), t) ∈ C([−T, T ] : L2),

exactly as was shown above for u(x, t) = z(s(x, t), t). This establishes
(3.7).

Next, we prove (3.8).
Generally speaking, given a function f(x, t) on R×[−T, T ] and h 6= 0,

we define

Rxf(x, t;h) =
f(x+ h, t)− f(x, t)

h
− ∂xf(x, t)
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and

Rtf(x, t;h) =
f(x, t+ h)− f(x, t)

h
− ∂tf(x, t).

We define Rxf(x, t; 0) = Rtf(x, t; 0) = 0.
Since v ∈ C1([−T, T ] : Oρ × X × Y ), we have in particular that

ξ ∈ C1([−T, T ] : Y ) and z ∈ C1([−T, T ] : L2). Therefore,

‖Rtξ(·, t;h)‖L2 + ‖Rtξ(·, t;h)‖L∞ → 0, as h→ 0, (3.11)

and
‖Rtz(·, t;h)‖L2 → 0, as h→ 0.

Since the derivative of an H1 function exists strongly in L2, we have
that

‖Rsz(·, t;h)‖L2 → 0 and ‖RxSξ(·, t;h)‖L2 → 0, as h→ 0. (3.12)

Having shown that u ∈ C([−T, T ] : H1), we have that u ∈ C([−T, T ] :
L∞). Since we also have that ∂xSξ ∈ C([−T, T ] : L2), it follows that

u∂xs = u(1 + ∂xSξ) ∈ C([−T, T ] : L2).

Therefore, we can prove (3.8) by showing that

lim
t1→t
‖RtSξ(x, t; t1 − t)‖L2 → 0,

using
∂ts = −u∂xs.

In the sequel, we shall write η = Sξ, as before, in order to simplify the
notation.

Given x ∈ R and t, t1 ∈ [−T, T ], we have

s(x, t1) = s(x1, t), with x1 = x(s(x, t1), t).

Again, to simplify the notation, we also set

s1 = s(x, t1) = s(x1, t), s = s(x, t) (3.13)

so that
x1 = x(s1, t), x = x(s, t).

So we can write

s(x, t1)− s(x, t) = s(x1, t)− s(x, t)
= x1 − x+ η(x1, t)− η(x, t)

= [(1 + ∂xη(x, t)) +Rxη(x, t;x1 − x)](x1 − x)

= [∂xs(x, t) +Rxη(x, t;x1 − x)](x1 − x).



24 FELIPE LINARES, GUSTAVO PONCE, AND THOMAS C. SIDERIS

Next, we write

x1 − x = x(s(x, t1), t)− x(s(x, t1), t1)

= x(s1, t)− x(s1, t1)

= ξ(s1, t)− ξ(s1, t1),

from which we see that

|x1 − x| ≤ ‖ξ(·, t1)− ξ(·, t)‖L∞ → 0, as t1 → t.

By (3.12), it follows that

‖Rxη(x, t;x1 − x)‖L2 → 0, as t1 → t.

Continuing from above, we have that

ξ(s1, t)−ξ(s1, t1) = −(∂tξ(s1, t) +Rtξ(s1, t; t1 − t))(t1 − t)
=−

(
z(s, t) + z(s1, t)− z(s, t) +Rtξ(s1, t; t1 − t)

)
(t1 − t).

Recalling the definitions introduced above, we have

Z(x, t; t1 − t) ≡
x1 − x
t1 − t

+ u(x, t) =
x1 − x
t1 − t

+ z(s, t)

= z(s(x, t1), t)− z(s(x, t), t) +Rtξ(s1, t; t1 − t).
An easy estimation of

Rtξ(x, t, t1 − t) =
1

t1 − t

∫ t1

t

(∂tξ(x, τ)− ∂tξ(x, t))dτ

yields

‖Z(·, t; t1 − t)‖L∞ ≤ C(‖z(·, t)‖L∞ + sup
|τ−t|≤|t1−t|

‖∂tz(·, τ)‖L∞) ≤ C.

By Corollary 2.7, we have

‖Z(·, t; t1 − t)‖L2 ≤ ‖z(s(·, t1), t)− z(s(·, t), t)‖L2+‖Rtξ(·, t; t1 − t)‖L2 .

So, using Lemma 2.11 and (3.11), we have that

lim
t1→t
‖Z(x, t; t1 − t)‖L2 = 0.

Altogether, we find that

‖Rts(·, t; t1 − t)‖L2 ≤‖Rxη(·, t; t1 − t)‖L2 ‖u(·, t)‖L∞

+ ‖Z(x, t; t1 − t)‖L2 ‖∂xs(·, t)‖L∞

+ ‖Rxη(·, t; t1 − t)‖L2 ‖Z(x, t; t1 − t)‖L∞

≤C(‖Rxη(·, t; t1 − t)‖L2 + ‖Z(x, t; t1 − t)‖L2).

This tends to 0 as t1 → t, thereby proving the statement (3.8).
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We now turn to the verification of (3.9). Formally speaking, we
expect that

∂tu(x, t) = ∂tz(s(x, t), t) + ∂sz(s(x, t), t)∂ts(x, t). (3.14)

We first show that the expression on the right is indeed a function
in C([−T, T ], L2).

Using the change of variables in Lemma 2.13, we have

∂tz(s(x, t), t) = F1(ξ, z, w)(s(x, t), t)

=−
∫ ∞
−∞

G′(x− y))M(z(s(y, t), t), w(s(y, t), t))dy

=−
∫ ∞
−∞

G′(x− y))M(u(y, t), ∂xu(y, t))dy

=−G′ ∗M(u, ∂xu)(x, t)

≡− v(x, t).

(3.15)

By Lemma 3.2, the map

u 7→M(u, ∂xu)

is continuous from C([−T, T ] : X) to C([−T, T ] : L2). Convolution
with G′ is continuous on L2, so it follows that

v = G′ ∗M(u, ∂xu) ∈ C([−T, T ] : L2).

By (3.3) and (3.10), we have that

∂sz(s(x, t), t) ∂ts(x, t) = ∂sz(s(x, t), t) (u(x, t)∂xs(x, t))

= u(x, t) ∂xu(x, t).
(3.16)

Since u ∈ C([−T, T ] : L∞) and ∂xu ∈ C([−T, T ] : L2), we have that
u∂xu ∈ C([−T, T ] : L2).

Therefore, in order to prove (3.9), it is enough to show that

lim
t1→t
‖Rtu(x, t; t1 − t)‖L2 = 0,

with ∂tu = −u∂xu − v. By (3.15) and (3.16), this will also rigorously
establish (3.14).

We shall examine the expression

u(x, t1)− u(x, t) =z(s(x, t1), t1)− z(s(x, t), t)

=z(s1, t1)− z(s, t)

=(z(s1, t1)− z(s1, t)) + (z(s1, t)− z(s, t)),

(3.17)

where we have used the notation (3.13).
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Since z ∈ C1([−T, T ] : X), the first pair of terms in (3.17) has the
form

z(s1, t1)− z(s1, t)

= ∂tz(s, t)(t1 − t) +

∫ t1

t

(∂tz(s1, τ)− ∂tz(s, τ))dτ

+

∫ t1

t

(∂tz(s, τ)− ∂tz(s, t))dτ

=
{
∂tz(s, t) +

1

t1 − t

∫ t1

t

∫ s1

s

∂s∂tz(σ, τ)dσdτ

+
1

t1 − t

∫ t1

t

(∂tz(s, τ)− ∂tz(s, t))dτ
}

(t1 − t).

(3.18)

Since by (3.13)

s1 − s =(∂ts(x, t) +Rts(x, t; t1 − t))(t1 − t),

the second group of terms in (3.17) can be written as

z(s1, t)− z(s, t) =(∂sz(s, t) +Rsz(s, t; s1 − s))(s1 − s)
=(∂sz(s, t) +Rsz(s, t; s1 − s)
× (∂ts(x, t) +Rts(x, t; t1 − t))(t1 − t).

(3.19)

Using (3.15) and (3.16), we obtain

Rtu(x, t; t1 − t) =
u(x, t1)− u(x, t)

t1 − t
+ v(x, t) + u∂xu(x, t)

=
u(x, t1)− u(x, t)

t1 − t
− ∂tz(s(x, t), t)− ∂sz(s(x, t), t) ∂tz(s, t)

(3.20)

We now combine (3.17), (3.18), (3.19), (3.20) to derive

Rtu(x, t; t1 − t) = A1 + . . .+ A5,

where

A1 =
1

t1 − t

∫ t1

t

∫ s1

s

∂s∂tz(σ, τ)dσdτ

A2 =
1

t1 − t

∫ t1

t

(∂tz(s, τ)− ∂tz(s, t))dτ

A3 = ∂ts(x, t) Rsz(s, t; s1 − s)
A4 = ∂sz(s, t) Rts(x, t; t1 − t)
A5 = Rsz(s, t; s1 − s) Rts(x, t; t1 − t).
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Therefore, the task of proving (3.9) reduces to showing

lim
t1→t
‖Aj‖L2 = 0, j = 1, . . . , 5. (3.21)

Since s ∈ C([−T, T ] : L2),

‖A1‖L2 ≤ C ‖s(·, t1)− s(·, t)‖L2 → 0,

as t1 → t.
By Corollary 2.7, we have

‖A2‖L2 ≤ sup
|τ−t|≤|t1−t|

‖∂tz(s(·, t), τ)− ∂tz(s(·, t), t)‖L2

≤ C(ρ) sup
|τ−t|≤|t1−t|

‖∂tz(·, τ)− ∂tz(·, t)‖L2 ,

which tends to 0, as t1 → t, since ∂tz ∈ C([−T, T ] : L2).
Since u ∈ C([−T, T ] : H1) ⊂ C([−T, T ] : L∞), by the Sobolev

Lemma, we have that u is uniformly bounded. By (3.6), we have that
∂xs = 1 + ∂xξ is uniformly bounded. Therefore, by (3.3), we have that
∂ts = −u∂xs is uniformly bounded. By Corollary 2.7 and (3.12), we
have that

‖Rsz(s(·, t), t;h)‖L2 ≤ C(ρ) ‖Rsz(·, t;h)‖L2 → 0,

as h→ 0. Since Sξ ∈ C([−T, T ] : L∞), we have that

‖s1 − s‖L∞ = ‖s(·, t1)− s(·, t)‖L∞ = ‖Sξ(·, t1)− Sξ(·, t)‖L∞ → 0,

as t1 → t. It follows that

lim
t1→t
‖Rsz(s(·, t), t; s1 − s)‖L2 = 0.

Therefore, we have shown that (3.21) is valid for j = 3.
Since ∂sz ∈ C([−T, T ] : Y ) ⊂ C([−T, T ] : L∞), we have that ∂sz is

uniformly bounded. In proving (3.8), we showed that

lim
t1→t
‖Rts(x, t; t1 − t)‖L2 = 0.

Thus, we obtain the desired conclusion (3.21) for j = 4.
Finally, since ∂ts is uniformly bounded, as noted above, and since

s ∈ C1([−T, T ] : L2), we have that

|Rts(x, t; t1 − t)| =
∣∣∣∣∫ t1

t

(∂ts(x, τ)− ∂ts(x, t))dτ
∣∣∣∣

≤ C ‖∂tz‖L∞(R×[−T,T ]) ≤ C.

So using (3.12), we have that (3.21) holds for j = 5.
This concludes the proof of (3.9) and the theorem.

�
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Now we establish uniqueness of solutions in the Eulerian frame.

Theorem 3.10. If

u ∈ C([−T, T ] : H1) ∩ L∞([−T, T ] : W 1,∞) ∩ C1([−T, T ] : L2)

solves the initial value problem (3.4) with u0 ∈ X, then u is unique.

Proof. The function u is continuous on R× [−T, T ], and u(·, t) is Lips-
chitz for each t ∈ [−T, T ]. By the existence and continuous dependence
theorems for ODEs, the problem

∂tξ(s, t) = u(s+ ξ(s, t), t), ξ(s, 0) = 0 (3.22)

has a unique solution ξ ∈ C1([−T, T ] : C(R)).
Since u ∈ L∞([−T, T ] : W 1,∞), we have that, for h 6= 0,∣∣h−1[ξ(s+ h, t)− ξ(s, t)]

∣∣
=

∣∣∣∣h−1

∫ t

0

[u(s+ h+ ξ(s+ h, τ), τ)− u(s+ ξ(s, τ), τ)]dτ

∣∣∣∣
≤
∣∣∣∣∫ t

0

‖∂xu(·, τ)‖L∞ [1 +
∣∣h−1[ξ(s+ h, τ)− ξ(s, τ)]

∣∣ dτ ∣∣∣∣ .
It follows from Gronwall’s inequality that∣∣h−1[ξ(s+ h, t)− ξ(s, t)]

∣∣ ≤ C

(∫ T

−T
‖∂xu(·, τ)‖L∞ dτ

)
, (3.23)

which proves that ξ ∈ L∞([−T, T ] : W 1,∞). From (3.22), we can now
also say that

∂tξ ∈ C([−T, T ] : C(R)) ∩ L∞([−T, T ] : W 1,∞).

Now define

x(s, t) = s+ ξ(s, t)

z(s, t) = u(x(s, t), t)

w(s, t) = ∂xu(x(s, t), t)

y(s, t) = exp

∫ t

0

w(s, τ)dτ,

for (s, t) ∈ R× [−T, T ]. Note that

∂tx = ∂tξ = z (3.24)

and

∂ty = wy. (3.25)
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These functions have the following regularity properties:

z ∈ C([−T, T ] : C(R)) ∩ L∞([−T, T ] : W 1,∞),

∂sz, w ∈ L∞([−T, T ] : L∞),

y ∈ C([−T, T ] : L∞),

∂ty ∈ L∞([−T, T ] : L∞).

We claim that
∂sx(s, t) = y(s, t). (3.26)

A simple calculation gives

∂tRsx(s, t;h) = w(s, t)Rsx(s, t;h)

+Rxu(x(s, t), t; ∆sx(s, t;h)) ∆sx(s, t;h)/h, (3.27)

in which (as in the proof of Theorem 3.9)

Rsx(s, t;h) =

{
h−1[x(s+ h, t)− x(s, t)]− y(s, t), h 6= 0

0, h = 0,

Rxu(x, t; k) =

{
k−1[u(x+ k, t)− u(x, t)]− ∂xu(x, t), k 6= 0

0, k = 0,

and

∆sx(s, t;h) = x(s+ h, t)− x(s, t).

Since w ∈ L∞, there exist constants ρ, C such that

0 < 2ρ < y(s, t) = exp

∫ t

0

w(s, τ)dτ ≤ C, a.e. s,

for all t ∈ [−T, T ], and

Rsx(0, t;h) = 0,

it follows from (3.27) and Gronwall’s inequality that

‖Rsx(·, t;h)‖L∞≤
∣∣∣∣∫ t

0

‖Rxu(x(·, τ), τ ; ∆sx(·, τ ;h)) ∆sx(·, τ ;h)/h‖L∞ dτ

∣∣∣∣ .
By (3.23), we see that ∆sx(s, t;h) = O(h), uniformly for (s, t) ∈ R ×
[−T, T ]. Therefore, since u ∈ L∞([−T, T ] : W 1,∞), we also have that

Rxu(x(s, t), t; ∆sx(s, t;h)) = O(h),

uniformly for (s, t) ∈ R× [−T, T ]. As a consequence, we conclude that

lim
h→0
‖Rsx(·, t;h)‖L∞ = 0,
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which verifies the claim.
Having verified that

1 + essinf ∂sξ(·, t) = essinf ∂sx(·, t) = essinf y(·, t) > ρ,

we can apply Corollary 2.7 to obtain

z ∈ L∞([−T, T ] : H1) and w ∈ L∞([−T, T ] : L2).

Thus, we also get that

ξ(s, t) =

∫ t

0

z(s, τ)dτ ∈ L∞([−T, T ] : H1).

Thus, (ξ, z, w)(·, t) ∈ Oρ ×X × Y , for t ∈ [−T, T ].
By the chain rule, we have

∂tz(s, t) = (∂tu+ u∂xu)(x(s, t), t),

and since u solves (3.4), we see that

z(s, t) = z(s, 0) +

∫ t

0

∂tz(s, τ)dτ

= u0(s)−
∫ t

0

G′ ∗M(u, ∂xu)(x(s, τ), τ)dτ.

Using Lemma 2.6, we can change variables to get

z(s, t) = u0(s) +

∫ t

0

F1(ξ, z, w)(s, τ)dτ. (3.28)

Therefore,
∂tz = F1(ξ, z, w),

and then by Lemma 3.4,

∂t∂sz = (F2(ξ, z, w) + w2)∂sx. (3.29)

From (3.25), (3.26), and (3.24), we see that

w =
∂ty

y
=
∂t∂sx

y
=
∂sz

y
.

From (3.29), (3.25), and (3.26), this yields

∂tw =
∂t∂sz

y
− ∂sz∂ty

y2
= (F2(ξ, z, w) + w2)− w2 = F2(ξ, z, w).

Observing that

w(s, 0) = ∂xu(x(s, 0), 0) = u′0(x(s, 0)) = u′0(s),

we find that

w(s, t) = u′0(s) +

∫ t

0

F2(ξ, z, w)(s, τ)dτ, t ∈ [−T, T ]. (3.30)
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Combining (3.24), (3.28), and (3.30), we obtain that

v(s, t) = (ξ(s, t), z(s, t), w(s, t)) ∈ C([−T, T ] : Oρ ×X × Y )

solves the integral equation

v(s, t) = v(s, 0) +

∫ t

0

F(v(s, τ))dτ, t ∈ [−T, T ],

where F was defined and shown to be locally Lipschitz on Oρ×X × Y
in Theorem 3.7. Thus, we can use Gronwall’s inequality to see that v
is the unique solution on [−T, T ]. Since x(·, t) is a homeomorphism for
every t ∈ [−T, T ], by Lemma 2.4, we conclude that u is unique, as well.

�

3.4. Continuous dependence on initial conditions.

Theorem 3.11. Let ε > 0 be given. Fix initial data u01 ∈ X, and
choose B > ‖u01‖X . There exists a 0 < δ < B − ‖u01‖X such that for
all

u02 ∈ Nδ = {v ∈ X : ‖u01 − v‖X < δ}
the corresponding solutions

uj ∈ C([−Tj, Tj] : H1) ∩ C1([−Tj, Tj] : L2), j = 1, 2,

of the initial value problem (3.4) constructed in Theorem 3.9 satisfy

sup
|t|≤T

(‖u1(·, t)− u2(·, t)‖H1 + ‖∂tu1(·, t)− ∂tu2(·, t)‖L2) < ε,

where T = min{T1, T2}.

Proof. In this proof, generic constants may depend on ρ, B, and T =
min{T1, T2}.

Given u01 ∈ X and u02 ∈ Nδ, with δ < B − ‖u01‖X , define
v0j = (0, u0j, u

′
0j).

Since ‖v0j‖X = ‖u0j‖X < B, we see that

v0j ∈ N(ρ,B) = {v = (ξ, z, w) ∈ X : ξ ∈ Oρ, ‖v‖X ≤ B}.
Let

vj = (ξj, uj, wj) ∈ C1([−T, T ] : N(ρ,B))

be the corresponding solutions from Theorem 3.8. This means that

sup
|t|≤T

(∥∥∂kt ξj(·, t)∥∥X +
∥∥∂kt zj(·, t)∥∥X +

∥∥∂kt wj(·, t)∥∥Y
)
< B (3.31)

and ξj(·, t) ∈ Oρ, t ∈ [−T, T ], for j = 1, 2 and k = 0, 1.
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Since the vector field F is locally Lipschitz, we obtain from Gron-
wall’s inequality that

sup
|t|≤T
‖v1(·, t)− v2(·, t)‖X ≤ C ‖v01 − v02‖X = C ‖u01 − u02‖X < Cδ.

This implies that

sup
|t|≤T

∑
k=1,2

(
‖∂kt ξ1(·, t)− ∂kt ξ2(·, t)‖X +

∥∥∂kt z1(·, t)− ∂kt z2(·, t)
∥∥
X

+ ‖∂kt w1(·, t)− ∂kt w2(·, t)‖Y

)
< Cδ.

(3.32)

By Lemma 2.10 and (3.32), we have

sup
|t|≤T
‖Sξ1(·, t)− Sξ2(·, t)‖L2

≤ C sup
|t|≤T
‖ξ1(·, t)− ξ2(·, t)‖L2 ≤ Cδ.

(3.33)

The rest of the proof will rely on the following statement.

Claim 3.12. Define the set

N = {ξ ∈ Oρ : ‖ξ‖X < B}.

Let f ∈ C([−T, T ] : L2). The map

ξ(·, t) 7→ f(s(·, t), t)

is uniformly continuous from C([−T, T ] : N) into L∞([−T, T ] : L2).

To prove the Claim 3.12, let ε′ > 0 be given. Since [−T, T ] is compact
and f ∈ C([−T, T ] : L2), the map

t 7→ f(·, t)

is uniformly continuous from [−T, T ] to L2. So we may choose α > 0
such that

t′, t ∈ [−T, T ], |t′ − t| < α implies ‖f(·, t′)− f(·, t)‖L2 < ε′/4C0,

where the constant C0 will be defined below.
Define a partition

tk = −T + k∆t, k = 0, 1, . . . , n,

where ∆t = 2T/n < α. Then for any t ∈ [−T, T ], there exists a tk such
that |t− tk| < α.
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Let ξ1, ξ2 ∈ C([−T, T ] : N). By Lemma 2.11, there exists δ′ > 0 such
that the inequality

sup
|t|≤T
‖f(s1(·, t), tk)− f(s2(·, t), tk)‖L2 < ε′/2, k = 0, 1, . . . , n. (3.34)

holds, provided that

sup
|t|≤T
‖ξ1(·, t)− ξ2(·, t)‖L2 < δ′. (3.35)

Now, with t ∈ [−T, T ] fixed, we have

‖f(s1(·, t), t)− f(s2(·, t), t)‖L2

≤‖f(s1(·, t), t)−f(s1(·, t), tk)‖L2

+ ‖f(s1(·, t), tk)− f(s2(·, t), tk)‖L2

+ ‖f(s2(·, t), tk)− f(s2(·, t), t)‖L2 .

(3.36)

By Corollary 2.7, there exists a constant C0 depending only on B such
that
‖f(sj(·, t), t)− f(sj(·, t), tk)‖L2

≤ C0 ‖f(·, t)− f(·, tk)‖L2

< ε′/4, for j = 1, 2; k = 0, 1, . . . , n.

(3.37)

Therefore, if (3.35) holds, then the estimates (3.36), (3.37), (3.34)
imply that

‖f(s1(·, t), t)− f(s2(·, t), t)‖L2 < ε′, for all t ∈ [−T, T ].

This completes the proof of the Claim 3.12.

By (3.31), we see that ξj ∈ C([−T, T ] : N).
By the definition of uj, we have

‖u1(·, t)− u2(·, t)‖L2

≤ ‖z1(s1(·, t), t)− z1(s2(·, t), t)‖L2 + ‖z1(s2(·, t), t)− z2(s2(·, t), t)‖L2 .

Since u1 ∈ C([−T, T ] : L2), the Claim 3.12 and (3.33) imply that the
first term satisfies

‖z1(s1(·, t), t)− z1(s2(·, t), t)‖L2 = o(δ).

From Corollary 2.7, the second term is estimated by

‖z1(s2(·, t), t)− z2(s2(·, t), t)‖L2 ≤ C ‖z1(·, t)− z2(·, t)‖L2 ≤ Cδ.

This proves that

sup
|t|≤T
‖u1(·, t)− u2(·, t)‖L2 = o(δ).
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Since ∂xuj(·, t) = wj(sj(·, t), t) and wj ∈ C([−T, T ];L2), the same
argument as above yields

sup
|t|≤T
‖∂xu1(·, t)− ∂xu2(·, t)‖L2 = o(δ).

Therefore, we have that

sup
|t|≤T
‖u1(·, t)− u2(·, t)‖H1 = o(δ). (3.38)

For the time derivatives, we use the PDE (3.4) to obtain

‖∂tu1(·, t)− ∂tu2(·, t)‖L2 ≤ ‖u1∂xu1(·, t)− u2∂xu2(·, t)‖L2

+ ‖G′ ∗M(u1, ∂xu1)(·, t)−G′ ∗M(u2, ∂xu2)(·, t)‖L2 .

These terms are easily estimated using the Young inequality, Lemma
3.2, Theorem 3.9, and (3.38), with the result that

sup
|t|≤T
‖∂tu1(·, t)− ∂tu2(·, t)‖L2 = o(δ).

This completes the proof. �

Taken together, Theorems 3.8, 3.9, 3.10, and 3.11 imply Theorem
1.1.

4. Propagation of Regularity

Proof of Theorem 1.8 part (a). We consider ρ ∈ C∞0 (R), such that

ρ(x) ≥ 0, supp(ρ) ⊂ (−1, 1),

∫
ρ(x)dx = 1,

and define ρε(x) = 1
ε
ρ(x

ε
) for ε ∈ (0, 1). For u0 ∈ X let

uε0(x) = ρε ∗ u0(x).

Thus, uε0 ∈ Hs(R) for any s ∈ R and for ε ∈ (0, 1)

‖uε0‖X ≤ ‖u0‖X .
We denote by uε = uε(x, t) the corresponding solution of the IVP
associated to the RCH equation (1.2) provided by Theorem 1.1. By
Theorem 1.1 there exist K > 0 and T = T (‖u0‖X) > 0 (independent
of ε ∈ (0, 1)) such that

sup
ε∈(0,1)

sup
t∈[−T,T ]

‖uε(t)‖X ≤ 2c‖u0‖X = K. (4.1)

In particular, ∫ T

−T
‖∂xuε(·, t)‖∞ dt < c,
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with c independent of ε. Using the a priori energy estimate, see [20],
one has that for any T̃ > 0 and any s > 0

sup
t∈[−T,T̃ ]

‖uε(·, t)‖s,2 ≤ cs‖uε0‖s,2 exp (

∫ T̃

−T̃
‖∂xuε(·, t)‖∞dt),

this combined with (4.1) allows us to extend the solution uε of the IVP
for the RCH equation (1.2) obtained in [22] and in [27] to the time
interval [−T, T ] such that

uε ∈ C([−T, T ] : Hs(R)), for any s ∈ R.
To simplify the exposition we shall assume that

M(uε) = (∂xu
ε)2, and Ω = (a, b), a, b ∈ R, a < b.

It will be clear from our argument that this does not entail a loss of
generality.

Case j = 2:

For each ε ∈ (0, 1) the function ∂2
xu

ε satisfies the equation

∂t∂
2
xu

ε + uε∂x∂
2
xu

ε + c2∂xu
ε∂2
xu

ε − ∂xG ∗M(uε) = 0. (4.2)

By hypothesis it follows that

uε0|(a+ε,b−ε) ∈ H2,p((a+ ε, b− ε)),
with norm independent of ε. Multiplying the equation (4.2) by

p |∂2
xu

ε(x(s, t), t)|p−1 sgn(∂2
xu

ε(x(s, t), t)),

and using that

∂t(∂
2
xu

ε(x(s, t), t)) = ∂t∂
2
xu

ε(x(s, t), t) + u∂x∂
2
xu

ε(x(s, t), t)

one gets

d

dt

∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|pds

≤ c2

∫ b−ε

a+ε

|∂xuε∂2
xu

ε(x(s, t), t)||∂2
xu

ε(x(s, t), t)|p−1ds

+

∫ b−ε

a+ε

|∂xG ∗ (∂xu)2(x(s, t), t)||∂2
xu

ε(x(s, t), t)|p−1ds

= A1 + A2.

(4.3)

One sees that

A1 ≤ ‖∂xuε(t)‖∞
∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|pds,



36 FELIPE LINARES, GUSTAVO PONCE, AND THOMAS C. SIDERIS

and using that quantity |∂x/∂s (s, t)| is bounded above and below uni-
formly in t ∈ [−T, T ] and ε ∈ (0, 1) that

A2 ≤ c‖∂xG‖p‖(∂xuε)2‖1(

∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|pds)(p−1)/p

≤ c‖∂xuε‖2
2(

∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|pds)(p−1)/p.

Inserting these estimates in (4.3) it follows that

d

dt
(

∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|pds)1/p

≤ c‖∂xuε(t)‖∞(

∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|pds)1/p + c‖∂xuε‖2
2.

(4.4)

From (4.4) one concludes, using (4.1), that for any ε ∈ (0, 1)

sup
[−T,T ]

( ∫ b−ε

a+ε

|∂2
xu

ε(x(s, t), t)|p ds
)1/p ≤ C(‖u0‖X ; (

∫ b

a

|∂2
xu0(x)|pdx)1/p).

Combining this estimate with the fact, provided by Theorem 1.1, that
uε → u in C([−T, T ] : H1(R)) and some weak covergence arguments it
follows that

sup
[−T,T ]

(

∫ b

a

|∂2
xu(x(s, t), t)|pds)1/p≤C(‖u0‖X ; (

∫ b

a

|∂2
xu0(x)|pdx)1/p).

Finally, using that the quantity |∂x/∂s(s, t)| is bounded above and
below uniformly in t ∈ [−T, T ] one obtains the desired result

sup
[−T,T ]

(

∫ b(t)

a(t)

|∂2
xu(x, t)|pds)1/p ≤ C(‖u0‖X ; (

∫ b

a

|∂2
xu0(x)|pdx)1/p),

where
a(t) = x(a, t), and b(t) = x(b, t).

Case j = 3:

Using that
∂2
xG ∗ f = G ∗ f − f,

it follows that for each ε ∈ (0, 1) the function ∂3
xu

ε satisfies the equation

∂t∂
3
xu

ε + uε∂x∂
3
xu

ε + c1
3∂xu

ε∂3
xu

ε

+ c2
3∂

2
xu

ε∂2
xu

ε + (∂xu
ε)2 −G ∗M(uε) = 0.

(4.5)

We observe that reapplying the previous argument for the case j = 2
one can handle the first three terms in (4.5). The fourth term in (4.5)
was estimated in the previous step, and the final two term are bounded
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when estimated in the Lp(R)-norm. Hence, reapplying the argument
given in the case j = 2 one gets the desired result.

Case j > 3:

Writing the equation for ∂jxuε one observes that this has three kind
of terms, the first ones appear as :

∂t∂
j
xu

ε + uε∂x∂
j
xu

ε + c1
j∂xu

ε∂jxu
ε

which can be estimated using the argument provided in detail for the
case j = 2, the second ones are terms involving derivatives of order less
than j, i.e. product of terms of the form

∂lxu
ε with l = 2, ..., j − 1,

which have been previously estimated, and finally each term in the
third group have one of the following form

(∂xu
ε)2, G ∗M(uε), ∂xG ∗M(uε)

which can be estimated in the whole real line. Hence, the result for the
general case follows the argument previously described. �

Proof of Theorem 1.8 part (b). To simplify the exposition as in
the proof of part (a) we shall assume

M(u) = (∂xu)2 and Ω = (a, b).

It will be clear from our proof below that these assumptions do not
represent any loss of generality.

Case: ∂xu0|(a,b) ∈ C(a, b).

From the proof of Theorem 1.1 in Lagrangian coordinates we have

w(s, t) = w0(s)−
∫ t

0

w2(s, τ)dτ + q(s, t),

where
w(s, t) = ∂xu(x(s, t), t),

and

q(s, t) =

∫ t

0

∫ ∞
−∞

G(x(s, τ)− y)w2(s(y, τ), τ)dy dτ. (4.6)

Since
w ∈ C([−T, T ] : L2(R) ∩ L∞(R)),

it follows that
q = q(s, t) ∈C1([−T, T ] : X)

≡C1([−T, T ] : H1(R) ∩W 1,∞(R)).
(4.7)
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We recall the hypothesis w0|(a,b) ∈ C(a, b) and consider the sequence

wn+1(s, t) = w0(s) +

∫ t

0

w2
n(s, τ)dτ + q(s, t), n ∈ Z+. (4.8)

with
w1(x, t) = w0(s) + q(s, t) ∈ C([−T, T ] : C(a, b)).

Thus, wn ∈ C([−T, T ] : C(a, b)) for each n ∈ Z+ with wn converging
to w = w(x, t) in the L∞(R× [−T, T ])-norm. Hence,

w ∈ C([−T, T ] : C(a, b)).

Since
∂xu(x, t) = w(s(x, t), t),

with s = s(x, t) the inverse of

x(s, t) = s+

∫ t

0

z(s, τ)dτ, (4.9)

thus

x(s, t)− s =

∫ t

0

z(s, τ)dτ ∈ C1([−T, T ] : X),

and it follows that

∂xu ∈ C([−T, T ] : C(x(a, t), x(b, t)))

which yields the desired result.

Case: ∂xu0|(a,b) ∈ Cθ(a, b), θ ∈ (0, 1).

Since by hypothesis w0 = w0(s) ∈ C([−T, T ] : Cθ(a, b)) from (4.7)
one gets that

w1(x, t) = w0(s) + q(s, t) ∈ C([−T, T ] : Cθ(a, b)),

and from (4.8) that wn ∈ C([−T, T ] : Cθ(a, b)) for each n ∈ Z+ with
wn converging in the L∞([−T, T ] : Cθ(a, b))-norm, since

sup
[−T,T ]

‖wn+1(t)‖Cθ(a,b) ≤‖w0‖Cθ(a,b)

+ T sup
[−T,T ]

‖wn(t)‖∞ sup
[−T,T ]

‖wn(t)‖Cθ(a,b)

+ sup
[−T,T ]

‖q(t)‖Cθ(R),
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and
sup

[−T,T ]

‖(wn+1 − wn)(t)‖Cθ(a,b)

≤ T ( sup
[−T,T ]

‖wn(t)‖∞ + sup
[−T,T ]

‖wn−1(t)‖∞)×

sup
[−T,T ]

‖(wn − wn−1)(t)‖Cθ(a,b),

with
T sup

[−T,T ]

‖wn(t)‖∞ ≤ cT‖w0‖∞ ≤ cT‖u0‖X < 1/2.

Hence,
w ∈ C([−T, T ] : Cθ(a, b)).

Since
∂xu(x, t) = w(s(x, t), t),

with s = s(x, t) as above, see (4.9), it follows that

∂xu ∈ C([−T, T ] : Cθ(x(a, t), x(b, t)))

which yields the desired result.

Case: ∂xu0|(a,b) ∈ W 1,∞(a, b).

Combining the hypothesis ∂sw0(s) ∈ C([−T, T ] : L∞(a, b)) with
(4.6)–(4.7) it follows that

∂sw1(s, t) = ∂sw0(s) + ∂sq(s, t) ∈ C([−T, T ] : L∞(a, b)).

Also, since for each n ∈ Z+, n ≥ 2

∂swn+1(s, t) = ∂sw0(s) + 2

∫ t

0

wn∂swn(s, τ)dτ + ∂sq(s, t), (4.10)

it follows, using the previous steps, that ∂xwn ∈ C([−T, T ] : L∞(a, b))
with ∂swn converging in the L∞((a, b)× [−T, T ])-norm. Hence,

∂sw ∈ C([−T, T ] : L∞(a, b)). (4.11)

Since
∂xu(x, t) = w(s(x, t), t),

with s = s(x, t) as above it follows that

∂2
xu ∈ C([−T, T ] : L∞(x(a, t), x(b, t))) (4.12)

which yields the desired result.

Case: ∂xu0|(a,b) ∈ C1(a, b).
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Now we have that

∂sq(s, t) =

∫ t

0

∫ ∞
−∞

∂xG(x(s, τ)−y)w2(s(y, τ), τ)∂sx(s, τ)dy dτ, (4.13)

with

∂sx(s, t) = exp

(∫ t

0

w(s, τ)dτ

)
.

Thus, from the previous step (4.11)

∂sx ∈ C1([−T, T ] : W 1,∞(a, b)),

and by (4.13)

q ∈ C1([−T, T ] : W 2,∞(a, b)) ↪→ C1([−T, T ] : C1(a, b)). (4.14)

Combining the hypothesis ∂sw0(s) ∈ C([−T, T ] : C(a, b)) and (4.14)
one gets that

∂sw1(x, t) = ∂sw0(s) + ∂sq(s, t) ∈ C([−T, T ] : C(a, b)).

By the iteration (4.10) ∂swn ∈ C([−T, T ] : C(a, b)) for each n ∈ Z+

with ∂swn. Moreover, by using the previous step, ∂swn converges in
L∞((a, b)× [−T, T ]). Hence,

∂sw ∈ C([−T, T ] : C(a, b)). (4.15)

As before we use that

∂xu(x, t) = w(s(x, t), t),

with s = s(x, t) the inverse function of

x(s, t) = s+

∫ t

0

z(s, τ)dτ,

which from (4.12) satisfies that

x− Is ∈ C([−T, T ] : W 2,∞(a, b)).

This allows to conclude that

∂2
xu ∈ C([−T, T ] : C(x(a, t), x(b, t)))

which yields the desired result.

Case: ∂xu0|(a,b) ∈ C1+θ(a, b), θ ∈ (0, 1).

Since from previous step

x(s, t)− s =

∫ t

0

z(s, τ)dτ ∈ C1([−T, T ] : C2(a, b)), (4.16)
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combining (4.15) and Lemma 2.18 it follows that for any ε > 0

q(s, t) =

∫ t

0

∫ ∞
−∞

G(x(s, τ)− y)w2(s(y, τ), τ)dy dτ

∈ C1([−T, T ] : C2(a+ ε, b− ε)).

Thus from the hypothesis ∂sw0(s) ∈ C([−T, T ] : Cθ(a, b)) one gets
that for any ε > 0

∂sw1(x, t) = ∂sw0(s) + ∂sq(s, t) ∈ C([−T, T ] : Cθ(a+ ε, b− ε)).

By the iteration (4.10) ∂swn ∈ C([−T, T ] : Cθ(a + ε, b − ε)) for each
n ∈ Z+ with ∂swn which using the previous steps converges in the
L∞([−T, T ] : Cθ(a+ ε, b− ε))-norm. Hence,

∂sw ∈ C([−T, T ] : Cθ(a+ ε, b− ε)).

As before we use that

∂xu(x, t) = w(s(x, t), t),

with s = s(x, t) the inverse function of

x(s, t) = s+

∫ t

0

z(s, τ)dτ,

which satisfies (4.16). This allows to conclude that

∂2
xu ∈ C([−T, T ] : Cθ(x(a+ ε, t), x(b− ε, t))

for any ε > 0 which yields the result, in this case.
It is clear that the previous argument for ∂xu0|(a,b) ∈ C1+θ(a, b)

works, with slight modifications, for the cases: ∂xu0|(a,b) ∈ W 2,∞(a, b)
and ∂xu0|(a,b) ∈ C2(a, b).

Once these steps have been established, we consider the cases :
∂xu0|(a,b) ∈ C2+θ(a, b), ∂xu0|(a,b) ∈ W 3,∞(a, b) and ∂xu0|(a,b) ∈ C3(a, b).
From the previous steps one observe that for any ε > 0

x(s, t)− s ∈ C1([−T, T ] : C3(a+ ε, b− ε)),

and
q ∈ C1([−T, T ] : C3(a+ ε, b− ε)).

At this point, the argument follows a familiar pattern described in
details above.

The general argument is similar so it will be omitted.
�
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5. Proof of Theorem 1.12 and Theorem 1.13

Proof of Theorem 1.13. As in the proof of Theorem 1.8 we consider
ρ ∈ C∞0 (R) such that

ρ(x) ≥ 0, supp(ρ) ⊂ (−1, 1),

∫
ρ(x)dx = 1,

and define ρε(x) = 1
ε
ρ(x

ε
) for ε ∈ (0, 1). For u0 ∈ X set

uε0(x) = ρε ∗ u0(x).

Thus, uε0 ∈ Hs(R) for any s ∈ R. Let uε = uε(x, t) the corresponding
solution of the IVP associated to the RCH equation (1.2) provided by
Theorem 1.1.

As was mentioned in Remark 1.14 the same argument works for the
CH equation. By Theorem 1.1 there exist K > 0 and T = T (‖u0‖X) >
0 (independent of ε ∈ (0, 1)) such that

sup
ε∈(0,1)

sup
t∈[−T,T ]

‖uε(t)‖X ≤ 2c‖u0‖X = K.

and
uε ∈ C([−T, T ] : Hs(R)), for any s ∈ R.

Next, for each m ∈ Z+ we define

ϕm(x) =


1, x ≤ 0,

eθx, x ∈ (0,m],

eθm, x ≥ m,

with θ ∈ (0, 1). Notice that

0 ≤ ϕ′m(x) ≤ ϕm(x).

As in the proof of Theorem B given in [17] combining energy es-
timate, Gronwall’s lemma and the fact that if f ∈ L2(R) ∩ L∞(R),
then

lim
p↑∞
‖f‖p = ‖f‖∞,

one finds that for any t ∈ [0, T ]

‖uε(t)ϕm‖∞ + ‖∂xuε(t)ϕm‖∞ ≤ eTK
(
‖uε0ϕm‖∞ + ‖∂xuε0ϕm‖∞

+

∫ T

0

(‖ϕm∂xG ∗M(uε(τ))‖∞ + ‖ϕm∂2
xG ∗M(uε(τ))‖∞)dτ

)
.

(5.1)

A simple calculation shows that for any m ∈ Z+ one has that

ϕm(x)

∫ ∞
−∞

e−|x−y|
1

ϕm(y)
dy ≤ 4

1− θ
. (5.2)
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Hence, using (5.2) as in [17] one gets that

|ϕm∂xG ∗ f 2(x)| ≤ c‖ϕmf‖∞‖f‖∞. (5.3)

Similarly, using that ∂2
xG = G− δ one has that

|ϕm∂2
xG ∗ f 2(x)| ≤ c‖ϕmf‖∞‖f‖∞. (5.4)

Therefore, inserting (5.3)-(5.4) in (5.1) and then using (4.1) it follows
that for any t ∈ [0, T ]

‖uε(t)ϕm‖∞ + ‖∂xuε(t)ϕm‖∞ ≤ eTK
(
‖uε0ϕm‖∞ + ‖∂xuε0ϕm‖∞

+

∫ T

0

(‖ϕmuε(τ)‖∞ + ‖ϕm∂xuε(τ)‖∞)dτ
)
.

(5.5)

Taking limit in (5.5) as m ↑ ∞ one has for any t ∈ [0, T ]

‖uε(t) eθx‖∞ + ‖∂xuε(t) eθx‖∞
≤ ceTK(‖uε0 max{1; eθx}‖∞ + ‖∂xuε0 max{1; eθx}‖∞)

≤ ceTK(‖u0 max{1; eθx}‖∞ + ‖∂xu0 max{1; eθx}‖∞).

(5.6)

Finally, taking the limit as ε ↓ 0 in (5.6) using the continuous depen-
dence in Theorem 1.1 and passing to subsequence for each t we obtain
the desired result

sup
t∈[0,T ]

‖uε(t) eθx‖∞ + ‖∂xuε(t) eθx‖∞

≤ ceTK(‖u0 max{1; eθx}‖∞ + ‖∂xu0 max{1; eθx}‖∞).

�

Proof of Theorem 1.12. Once that Theorem 1.13 is available the
proof of Theorem 1.12 follows the argument given in [17] which for a
matter of completeness we sketch here.

Integrating the equation

∂tu+ u∂xu+ ∂xG ∗M(u) = 0,

where M(u) = u2 + 1
2
(∂xu)2, it follows that

u(x, t1)− u0(x) +

∫ t1

0

u∂xu(x, τ)dτ + ∂xG ∗
∫ t1

0

M(u)(x, τ)dτ. (5.7)

By hypothesis one has that

u(x, t1)− u0(x) ∼ o(e−x) as x ↑ ∞,
and by combining the hypothesis (1.11) and Theorem 1.13∫ t1

0

u∂xu(x, τ)dτ ∼ o(e−x) as x ↑ ∞.
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Defining

µ(x) =

∫ t1

0

M(u)(x, τ)dτ,

by Theorem 1.13 it follows that

0 ≤ µ(x) ∼ o(e−x) as x ↑ ∞. (5.8)

Hence,

∂xG ∗ µ(x) = −1

2

∫ ∞
−∞

e−|x−y| sgn(x− y)µ(y)dy

= −1

2
e−x

∫ x

−∞
eyµ(y)dy +

1

2
ex
∫ ∞
x

e−yµ(y)dy ≡ E1 + E2.

Using (5.8) one sees that

E2 = o(1)ex
∫ ∞
x

e−2ydy ∼ o(1)e−x ∼ o(e−x).

Finally, we observe that if µ 6≡ 0 one has that∫ x

−∞
eyµ(y)dy ≥ c0 > 0 for x� 1,

which implies that

−E1 ≥
c0

2
e−x, for x� 1.

This combined with the previous estimates inserted in (5.7) yields a
contradiction. Therefore, µ ≡ 0 and as a result u ≡ 0, which is the
desired result.

�
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