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The aim of our study was to create a novel Gaussian mixture

modeling (GMM) pipeline to model the complementary information

derived from18F-FDG PET and diffusion-weighted MRI (DW-MRI) to
separate the tumor microenvironment into relevant tissue com-

partments and follow the development of these compartments

longitudinally. Methods: Serial 18F-FDG PET and apparent diffu-

sion coefficient (ADC) maps derived from DW-MR images of NCI-H460
xenograft tumors were coregistered, and a population-based GMMwas

implemented on the complementary imaging data. The tumor microen-

vironment was segmented into 3 distinct regions and correlated with

histology. ANCOVA was applied to gauge how well the total tumor
volume was a predictor for the ADC and 18F-FDG, or if ADC was a good

predictor of 18F-FDG for average values in the whole tumor or average

necrotic and viable tissues. Results: The coregistered PET/MR images
were in excellent agreement with histology, both visually and quantita-

tively, and allowed for validation of the last-time-point measurements.

Strong correlations were found for the necrotic (r 5 0.88) and viable

fractions (r 5 0.87) between histology and clustering. The GMM pro-
vided probabilities for each compartment with uncertainties expressed

as a mixture of tissues in which the resolution of scans was inadequate

to accurately separate tissues. The ANCOVA suggested that both ADC

and 18F-FDG in the whole tumor (P 5 0.0009, P 5 0.02) as well as
necrotic (P 5 0.008, P 5 0.02) and viable (P 5 0.003, P 5 0.01) tissues

were a positive, linear function of total tumor volume. ADC proved to be

a positive predictor of 18F-FDG in the whole tumor (P 5 0.001) and
necrotic (P 5 0.02) and viable (P 5 0.0001) tissues. Conclusion: The
complementary information of 18F-FDG and ADC longitudinal measure-

ments in xenograft tumors allows for segmentation into distinct tissues

when using the novel GMM pipeline. Leveraging the power of multi-
parametric PET/MRI in this manner has the potential to take the assess-

ment of disease outcome beyond RECIST and could provide an

important impact to the field of precision medicine.
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PET and MRI have been successfully integrated into a com-
bined imaging solution in clinics and preclinical laboratories

worldwide and represent a mature imaging modality (1). However,

because of the relatively short time period in which PET/MRI solu-

tions have been available, oncologic applications that use the com-

plementary information obtained from the separate modalities are in

their infancy. Several investigations have compared 18F-FDG PET/

CT and diffusion-weighted (DWI) MRI measurements on the same

cancer patients to determine the best approach for patient staging,

prognosis, and therapy stratification, pitting PET/CT against MRI, but

have not looked thoroughly into the combined utility of 18F-FDG

PET and MRI (2–5). In 2 of these investigations (4,5), an inverse

correlation between 18F-FDG uptake and DWI metrics in cancerous

lesions has been shown.
DWI is a noninvasive technique to measure the self-diffusion of

water in vivo and is often quantified by the apparent diffusion

coefficient (ADC). Malignant tumors generally have lower ADC

values than benign or necrotic tissues because of water movement

restriction caused by increased cellularity (5). Measurements of tumor

cellularity in non–small cell lung cancer (NSCLC) patients with DWI

have been used to predict tumor invasiveness at early stages and have

been shown to characterize well-differentiated adenocarcinoma from

other types of lung carcinoma (6). The underlying mechanism asso-

ciating changes in ADC to therapeutic response is a decreased cellu-

larity resulting from necrosis and apoptosis (7). In some cases, an

initial decrease in ADC, attributed to cellular swelling or reduced

blood flow (8), is attributed to treatment response.
18F-FDG uptake in lung cancers has been associated not only with

glucose transporter 1 and hexokinase activity, biologic components

directly related to glucose metabolism, but also with hypoxia-inducible

factor 1-a, vascular endothelial growth factor, its receptor, and micro-

vessels (9). This implicates a complex link between glucose consump-

tion and many opposing factors involved in the multifaceted tumor

microenvironment. Moreover, 18F-FDG can potentially stage tumors

in patients with histologically verified NSCLC (10–12), and changes

in 18F-FDG uptake after therapeutic intervention are correlated to pa-

tient prognosis (13–15), possibly predicting response (14). Adding

biologic information measured with DWI might further improve stag-

ing and help decide on patient-individualized therapies for treating

noninvasive adenocarcinomas (15).
To fully use multiparametric PET/MR imaging, assessment of

disease outcome needs to go beyond RECIST (16) and move
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toward comprehensive algorithms, which unify the complemen-
tary datasets. Recently, Schmidt et al. have reported on the corre-
lation of ADC and 18F-FDG inside of NSCLC tumors using a
hybrid PET/MR (17). They applied a Gaussian mixture model
(GMM) (18) and theorized that it separated the tumors into dis-
tinct and relevant tissue classes. Their investigation did not, how-
ever, include a histologic validation, track changes longitudinally,
or use adaptive clustering techniques. The aim of our study was to

create a novel clustering pipeline to model the complementary
information derived from 18F-FDG and ADC to separate the tumor
microenvironment into relevant tissue compartments and follow
their development longitudinally. A correlation with imaging and
histology was established to validate our model and guide a lon-
gitudinal implementation so that it was possible to observe the
dynamics of individual tissue compartments over time.

MATERIALS AND METHODS

A detailed description of cell culturing, animals, tumor inoculation,
18F-FDG production, PET and MR imaging, and image coregistration
and statistics can be found in the supplemental data (supplemental

materials are available at http://jnm.snmjournals.org). The rest of this
section describes details of our modeling pipeline.

The clustering workflow of PET/MRI data was performed in 2
major steps: GMM on all last time points of the 18F-FDG and ADC

datasets and GMM on individual measurements (Fig. 1). The first step
(population initialization) involved combining PET/MRI data acquired

at the last time points from all tumors into one dataset. The combined
dataset serves as a reference for the initialization of GMM in subsequent

steps, as these voxel pairs represent the heterogeneity expected in all
measurements. Before segmentation, the dataset was normalized to the

unit standard deviation (SD). Voxels with ADC values lower than 50 ·
1026 mm2/s were labeled as noise and excluded from initialization; a

2-dimensional (2D) Gaussian distribution was fit to the noise cluster.
Cluster initialization was performed on the noise-free dataset by repeat-

edly running the K-means (18) algorithm with 3 randomly seeded cen-
troids. The model parameters of the noise and noise-free clusters were

used to initialize GMM on the combined dataset. The choice of 3 tissue
clusters and 1 noise cluster was based on visual inspection of the data

(Figs. 2 and 3).
In step 2A, the last time point of each tumor was normalized to unit

SD, and the noise cluster was extracted as described above. Here, the
model parameters of the noise (corresponding to last time point of

respective tumor) and noise-free clusters (obtained in step 1) were
used to initialize GMM on the last time points.

After termination of the expectation maximiza-
tion algorithm, the clustering probability map of

the last time point of each tumor was validated
with respective histology (Fig. 4). After valida-

tion, the model parameters of the noise-free
clusters of each last time point were used to

perform hard clustering (model parameters

were fixed) on the early measurements of the
respective tumor (step 2B). The noise cluster

was characterized as described above. Because
18F-FDG measurements are vulnerable to vari-

ability, the data from early time points were
adaptively scaled by a multiplicative factor to

fit the given distribution. The clusters in the last
step were fixed for 2 main reasons: once vali-

dated with histology, the noise-free cluster pa-
rameters of the last time point can be considered

as GMM representative of the respective tumor
tissue classes, and the density-based models

have the tendency to partition data irrespective
of their biologic significance. It is highly likely

that the necrotic and viable fractions of tumors
in early time points are different as compared

with that in the last time point. Keeping the
clusters fixed does not forcefully assign false

observations to different clusters and models
the tumor progression judiciously. For the sake

FIGURE 1. In the first step of the GMM workflow, data from the last

imaging time point of all tumors are pooled into a single population and

initialized. Step 2A uses initialization from step 1 to segment the last time

point of each tumor. Step 2B uses adaptive scaling on all early time points

for each tumor while holding the GMM parameters from step 2A constant.

FIGURE 2. (From left to right) 18F-FDG, ADC, clustering, and hematoxylin and eosin (H&E)

examples are displayed for comparison. GMM was applied to the last time point of 18F-FDG

and DW-MR images to cluster them into viable (red, V1, and green, V2) and necrotic (blue, Nec)

regions. Manually delineated H&E stainings were coregistered to tumor volumes to verify tissue

classification. Liquefactive (asterisk) and coagulative necrosis (arrowhead) and blood vessel con-

gestion (arrow) are depicted in the H&E stainings.
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of comparison, a 1-dimensional (1D) GMM was performed in the
same manner with only the ADC data.

RESULTS

Hematoxylin and eosin (H&E) stainings depict tumors with
large atypical cells with prominent nucleoli and abundant cyto-
plasm. Mitosis and apoptosis are frequently seen (Fig. 2). Lique-
factive and coagulative necrosis is seen along with blood vessel
congestion and dilation. Visual inspection of the manually
aligned histology and delineated tumor slices revealed that a good
coregistration was achieved (Fig. 3). Uncertainty in tissue classifica-
tion is denoted by a weighted sum of colors and is exemplified in the
clustering results (Fig. 2B), which exhibits fingerlike regions of coag-
ulative necrosis in the histology; a similar texture is seen in the
corresponding clustering probability map. There are 2 viable regions
present, V2 (green) and V1 (red). V2 is seen only at the periphery and
corresponds to connective tissue, dense cells, and vessels (Fig. 3),
whereas V1 is bigger and represents densely packed tumors cells.
The median values and the interquartile range for the average

tumor, necrotic, viable, and noise regions are summarized for both

18F-FDG and ADC (Table 1). The 18F-FDG average values are
highest for the viable tissue and lowest for the necrotic tissue,
whereas the ADC is highest for the necrotic regions and lowest
for the viable regions across all time points.
The fractions of necrosis and viable tissue in H&E stainings cor-

relate quite well to corresponding tissue fractions in clustering slices
(Table 2) and are plotted (Fig. 4) for each mouse along with the line
of identity. Tissue fractions were derived from manually drawn re-
gions on histology (Supplemental Fig. 2). In both the 1D (ADC only)
and the 2D (ADC and 18F-FDG) cases, the GMM had a tendency
to overestimate viable regions and underestimate necrotic regions.
In general, the tumor clustering results were more influenced
by ADC (in the 2D case); however, the overall better agreement

FIGURE 3. (A) Outlines of the coregistered clustering slice (black) and

V2 (green) and necrosis (blue) are placed on top of the histology slice for

comparison of agreement between imaging and histology. (B and C) V2

is seen at the periphery of the tumor along with blood vessels (arrows)

and connective tissue (asterisk). (D) Slight misclassification of the ne-

crotic area occurred due to artifacts produced in ADC because of the

blood-pool.

FIGURE 4. Necrotic (open symbols) and viable (filled symbols) tissue

fractions taken from matching H&E, and clustering imaging slices are

plotted for each mouse (M1–M4) along with the line of identity as vali-

dation of GMM tissue classification. For the sake of comparison, a 1D

GMM was applied to only the ADC parameter. A 2D GMM was applied

to the combined 18F-FDG and ADC imaging dataset.

TABLE 1
Median and Interquartile Range for Whole Tumor and Individual Clusters

Cluster type

18F-FDG SUV ADC (· 10−6 mm2/s)

Median Interquartile range Median Interquartile range

Whole tumor 0.20 0.11 668 410

Viable 1 (red) 0.24 0.11 580 241

Viable 2 (green) 0.21 0.09 551 310

Necrotic (blue) 0.17 0.07 1008 394

Noise (black) 0.13 0.05 4.45 · 10−7 6.63 · 10−5
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between histology in the 2D GMM serves as a validation of this
methodology. The slice-by-slice correspondence between the
2D GMM and histology was calculated with the Dice coefficient
(Supplemental Table 2).
In Figure 5, the histograms of ADC and 18F-FDG for 4 different

time points from mouse 3 are shown along with corresponding
density and scatter plots. The ADC histograms become increas-
ingly skewed toward higher values as tumors become more ne-
crotic. The 18F-FDG histograms, on the other hand, demonstrate
large variability, consequently maintaining a similar average value
for all time points. In general, as the tumors grow in size, so does
the negative correlation between 18F-FDG and ADC on a voxel-
wise basis (Supplemental Fig. 3).
The 3-dimensional renderings of an exemplary tumor (mouse 3)

depict the spatial–temporal evolution of viable (red and green) and
necrotic (blue) tissue compartments (Fig. 6). The initial necrotic
portion at the first time point retains its relative position in the
tumor and becomes larger over time. In the second time point, a
smaller necrotic region appears in the lower portion of the tumor
and also increases in size while retaining its relative position in the
tumor. Moreover, purple areas on the rim of the necrotic region are
due to the mixed probability of belonging to the viable or necrotic
tissue class; the purple regions are possibly associated with hyp-
oxic areas in the tumor (Supplemental Fig. 4). The green viable
region is consistently located at the exterior of the tumor.
The linear regression analysis supported the hypothesis that

tumor volume was positively correlated to ADC and 18F-FDG for
the whole tumor and for the viable and necrotic regions (Supple-
mental Table 1). ADC was also a highly significant predictor for
18F-FDG in the whole tumor and in the segmented viable and
necrotic regions. There was no significant difference between
the slopes of the ADC versus volume (Fig. 7A) and 18F-FDG–
SUV versus volume (Fig. 7B). After the slopes of each group were
constrained, the Tukey–Kramer post hoc test confirmed that a
significant difference existed between all groups (Fig. 7A) and
the viable and necrotic regions (Fig. 7B); the slopes of the re-
gression lines (Fig. 7C) were significantly different from one
another.

DISCUSSION

We have developed a GMM pipeline to assess tumor heteroge-
neity using information from both PET and MRI, showing how
necrotic and viable regions develop in a longitudinal manner. We

validated the methodology both visually (Figs. 2 and 3) and quan-
titatively (Fig. 4) and have found a good agreement between clus-
tering results and histology. We have shown how the intratumoral
relationship between 18F-FDG and ADC changes longitudinally
(Fig. 5). Moreover, the manner in which the GMM segments the
tumors has been shown. The visualization of an exemplary tumor
reveals how tissue classes develop spatially over time (Fig. 6).
Last, we have shown a positive, linear relationship between
18F-FDG and ADC values in the tumor (Figs. 7A and 7B), and ADC

TABLE 2
Correlation Values for Histology and GMM Tissue Fractions

Mouse

2D GMM,

r-value

1D GMM (ADC),

r-value

Viable Necrotic Viable Necrotic

Mouse 1 0.94 0.94 0.69 0.90

Mouse 2 0.85 0.85 0.86 0.86

Mouse 3 0.96 0.96 0.16 0.16

Mouse 4 0.98 0.96 0.66 0.66

All mice 0.87 0.88 0.56 0.56

r-value 5 Pearson correlation coefficient.

FIGURE 5. Histograms represent distributions of ADC and 18F-FDG

values at 4 time points for a single mouse. Density scatter plots depict

the voxelwise relationship of ADC and 18F-FDG values in the tumor. In

the scatter plots on the right, necrotic tissue is in blue, viable is in green

and red, and noise is in black. Combined probabilities of necrotic and

viable classes are shown as a mixture of colors.
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was shown to be an excellent predictor of 18F-FDG in this tumor
model (Fig. 7C).
In this study, the ADC values in the necrotic regions are low

compared with results from other investigators who have also used
similar segmentation techniques on purely MRI data, validated
with histology, to create 2 necrotic region types with the following
values: (1,510 6 120 and 1,560 6 240) (19), (1,260 6 130 and
1,610 6 41) (20), and (2,120 6 50 and 1,790 6 10) (21) ·
1026 mm2/s. The b-values being used affect the ADC values, with
lower b-values being heavily perfusion-dependent and responsible for
increasing the overall ADC. Higher b-values (.100) are desirable
to suppress perfusion-weighted components of well-perfused re-
gions (22). In the 3 aforementioned studies, b-values below 100
were used in the calculation of the ADC maps, whereas we used
b-values greater than 200.
Knowing the extent of necrosis in a tumor model can be helpful

as it can be the source of confounding results in determining the
efficacy of potential tumor therapies, as is the case with Berry
et al. who found that necrotic fractions contributed only noise to
the measurement of a therapeutic effect in an antiangiogenic drug
therapy study (19). Moreover, the extent of necrosis might help to
identify hypoxic tissues at the rim of necrosis and guide therapy
options, because hypoxic tissues are well known to be highly
resistant to radiation therapy (23). We also observed that perinecrotic
tissue stains positive for hypoxia-inducible factor 1-a (Supplemental

Fig. 4), an indirect marker of tissue hyp-
oxia. Although 18F-FDG is not specific for
hypoxic tissue, hypoxia has been shown to
correlate to 18F-FDG uptake (24).
The increase in the ADC value in the

viable regions (Fig. 7A) indicates that
these regions are becoming less dense,
presumably because of micronecrosis as
seen in the histology (Fig. 2). In the ideal
case, the necrotic regions would have a
slope of zero. The increase in both the
parameters over time (Fig. 7C) could
suggest that as the tumor becomes larger,
it also becomes more aggressive because
of the increased necrotic burden, which
harbors an increased interstitial pressure,
low oxygenation, and oxygen reactive
species due to opened cell membranes
(25–27). On the other hand, no partial-
volume correction was performed in this

study and could be a cause for the volume-dependent increase in
18F-FDG values (Fig. 7B).
A positive correlation between ADC and 18F-FDG SUV could

seem, at first glance, inconsistent with findings from Schmidt et al.,
who have reported a negative correlation between SUVmax and
ADCmin (17). However, in accordance with Schmidt et al., the
intratumor correlation coefficient is mostly negative for all tumors
and becomes more negative as the total tumor volume increases
(Supplemental Fig. 3). Thus, on a voxelwise basis, an L-shaped
2D histogram is seen in the tumors of this study and in the human
lung tumors from Schmidt et al. Several other authors have also
reported significant negative correlations between ADC and
18F-FDG in various types of malignancies. Nakajo et al. reported
a correlation coefficient of r 5 20.56 in head and neck squamous
cell carcinomas for ADCmean and 18F-FDG SUVmax (28); Baba
et al. reported r 5 20.36 in breast lesions for ADCmean and
18F-FDG SUVmax (29); and Rakheja et al. reported a range of r values
from 20.18 to 20.29 in various neoplastic lesions, for various
combinations of 18F-FDG SUV and ADCmin and ADCmax (30).
None of these studies reported the correlation between 18F-FDG
SUV and ADC longitudinally, as performed in this study, making
it hard to compare. Nakajo et al. did, however, correlate ADC
and 18F-FDG SUV to patient survival, with higher ADCs and lower
18F-FDG SUVs associated with disease-free survival. The number
of negative correlations observed could imply that ADC and

18F-FDG SUV move along a negative slope
in patients receiving treatment. In the NCI-
H460 xenograft tumors of this study, the vi-
able tissue regions are more island-shaped,
with micronecrosis between dense clusters
of cells, which could lead to a positive cor-
relation in both ADC and 18F-FDG SUV
mean values over time.

The ability of the proposed model to
accurately segment the tumor microenvi-
ronment into the proposed viable and
necrotic regions is dependent on the re-
lationship that 18F-FDG and ADC voxels
inside of the tumor have. There was a def-
inite negative correlation between the 2
imaging parameters at the time point we

FIGURE 6. A 3-dimensional rendering depicts spatial–temporal growth of tumors and develop-

ment of tissue classes. Red and green represent viable tissue, and blue represents necrosis. A

purple rim (arrows) is seen around the necrosis and represents the combined probability of necrotic

and viable tissue classes, possibly indicating hypoxic cells.

FIGURE 7. Average ADC (A) and 18F-FDG (B) values for different tissue classes plotted against

whole tumor volume. 18F-FDG values plotted against ADC values (C) for each class.
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chose to validate our model. The tissue classes have to be present to
create the shape seen in the 2D histogram of the last time point
(Fig. 5); otherwise, this tissue heterogeneity will not be incor-
porated into the model for earlier time points.
The clear limitation of this study is that the tumors were

subcutaneously inoculated in immune-compromised mice. An

orthotopic or genetic mouse model could have led to greater

tissue heterogeneity with an increase in the number of tissue

classes to identify. In addition, serial PET/MR imaging measure-

ments were used in this study, whereas the use of a recently

developed, combined PET/MR system (31) for measurements

could have decreased the error due to rigid coregistration, which

might have been further increased by movement of the animal

from the PET to the MRI scanner, eventually leading to nonrigid

movements of the subject. Also, clustering results were not veri-

fied with histology at every time point. Future studies will focus

on the automatic, nonrigid coregistration of histology with imag-

ing data to obtain a better degree of spatial correspondence (Sup-

plemental Table 2) than we were able to achieve in this study.

Obtaining a good degree of spatial correspondence poses its own

unique challenges because of nonrigid deformations of histology.
In summary, with the proposed GMM pipeline we incorporated

the complementary information intrinsically associated with DW-

MRI and 18F-FDG PET. One class of necrotic tissue was found,

along with 2 classes of viable tissue. The green tissue class was

found only at the periphery of the tumor and represents densely

packed cells, vessels, and connective tissue; it has the lowest

ADC values. This tissue class presumably represents the new

outgrowth of the tumor and could provide a hint as to the di-

rection of growth, as the tumor appears to progress in the di-

rection of this tissue class at every time step (Fig. 6). Because

necrosis has been indicated for poor survival outcome and has

been associated with hypoxia, measuring the relative abundance

of necrosis could help physicians to stratify patients accordingly

and decide on the type of therapy (32). The opportunity to mea-

sure the relative size and growth patterns of different tissue

types after the induction of treatment will help to gauge the

overall response to tumor therapy, as well as to be useful for

monitoring and optimizing the drug dose and scheduling in pre-

clinical animal models.

CONCLUSION

The complementary information from 18F-FDG SUV and
ADC longitudinal measurements in tumors allows for segmen-

tation into distinct tissue classes when the proposed GMM pipe-

line is used. Leveraging the power of multiparametric PET/MR

imaging in this manner has the potential to take the assessment

of disease outcome beyond RECIST and into the realm of pre-

cision medicine.
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